NEUB CSE 121 Lecture 2: Basic Laws in Electrical Circuits

Kirchhoff's Laws

Ohm's Law by itself is not sufficient to analyze circuits. Two of the important laws for analyzing circuits came from German physicist Gustav Robert Kirchhoff in 1847. These laws are formally known as Kirchhoff's Current Law (KCL) and Kirchhoff's Voltage Law (KVL).
Kirchhoff's first law (KCL) is based on the law of conservation of charge, which requires that the algebraic sum of charges within a system cannot change.
Kirchhoff's current law (KCL) states that the algebraic sum of currents entering a node (or a closed boundary) is zero.
Mathematically it can be written as

$$
\begin{equation*}
\sum_{n=1}^{N} i_{n}=0 \tag{2.1}
\end{equation*}
$$

Here N is the number of branches connected to the node and i_{n} is the $\mathrm{n}^{\text {th }}$ current entering (or leaving) the node. By this law, currents entering a node may be regarded as positive, while currents leaving the node may be taken as negative and current entering a node is considered as positive.

Figure 1 Current at a node illustrating KCL
Considering the node in figure 1, applying KCL gives

$$
i_{1}+\left(-i_{2}\right)+i_{3}+i_{4}+\left(-i_{5}\right)=0
$$

Or

$$
i_{1}+i_{3}+i_{4}=i_{2}+i_{5}
$$

So and alternative form of KCL can be stated as
The sum of the currents entering a node is equal to the sum of the currents leaving the node.
Note that KCL also applies to a closed boundary. This may be regarded as a generalized case, because a node may be regarded as a closed surface shrunk to a point. In two dimensions, a closed boundary is the same as a closed path. As typically illustrated in the circuit of Figure 2, the total current entering the closed surface is equal to the total current leaving the surface.

Figure 2 Applying KCL to a closed boundary

NEUB CSE 121 Lecture 2: Basic Laws in Electrical Circuits

A simple application of $K C L$ is combining current sources in par-allel. The combined current is the algebraic sum of the current supplied by the individual sources. For example, the current sources shown in figure 3(a) can be combined as in figure 3(b). The combined or equivalent current source can be found by applying KCL to node a.

$$
I_{T}+I_{2}=I_{1}+I_{3}
$$

Or

$$
I_{T}=I_{1}-I_{2}+I_{3}
$$

A circuit cannot contain two different currents, I_{1} and I_{2}, in series, unless $I_{1}=I_{2}$; otherwise KCL will be violated.

(a)

(b)

Figure 3 Current Sources in parallel (a) Original Circuit (b) equivalent Circuit
Kirchhoff's second law (KVL) is based on the principle of conservation of energy:
Kirchhoff's voltage law (KVL) states that the algebraic sum of all voltages around a closed path (or loop) is zero.
KVL can be mathematically expressed as

$$
\begin{equation*}
\sum_{m=0}^{M} v_{m}=0 \tag{2.2}
\end{equation*}
$$

Here M is the number of voltages in the loop (or the number of branches in the loop) and v_{m} is the $\mathrm{m}^{\text {th }}$ voltage.
To illustrate KVL, consider the circuit in figure 4. The sign on each voltage is the polarity of the terminal encountered first as we travel around the loop. We can start with any branch and go around the loop either clockwise or counterclockwise. Suppose we start with the voltage source and go clockwise around the loop as shown; then voltages would be $-v_{1},+v_{2},+v_{3},-v_{4}$, and $+v_{5}$, in that order. For example, as we reach branch 3 , the positive terminal is met first; hence we have $+v_{3}$. For branch 4, we reach the negative terminal first; hence, $-v_{4}$. Thus, KVL yields

$$
-v_{1}+v_{2}+v_{3}-v_{4}+v_{5}=0
$$

Or

$$
v_{1}+v_{4}=v_{2}+v_{3}+v_{5}
$$

This can be interpreted as
Sum of voltage drops $=$ Sum of voltage rises
This is an alternative form of KVL. If we have travelled counterclockwise, we would have ended up with same equation.

Figure 4 A single loop circuit illustrating KVL

NEUB CSE 121 Lecture 2: Basic Laws in Electrical Circuits

When voltage sources are connected in series, KVL can be applied to obtain the total voltage. The combined voltage is the algebraic sum of the voltages of the individual sources. For example, for the voltage sources shown in Fig. 5(a), the combined or equivalent voltage source in Fig. 5(b) is obtained by applying KVL.

$$
-V_{a b}+V_{1}+V_{2}-V_{3}=0
$$

Or

$$
V_{a b}=V_{1}+V_{2}-V_{3}
$$

To avoid violating KVL, a circuit cannot contain two different voltages V_{1} and V_{2} in parallel unless $V_{1}=V_{2}$.

(a)

(b)

Figure 5 Voltage sources in series, (a) original circuit (b) equivalent circuit

For the circuit in Fig. 2.21(a), find voltages v_{1} and v_{2}.

Figure 2.21 For Example 2.5

Solution:

To find v_{1} and v_{2}, we apply Ohm's law and Kirchhoff's voltage law. Assume that current i flows through the loop as shown in Fig. 2.21(b). From Ohm's law,

$$
\begin{equation*}
v_{1}=2 i, \quad v_{2}=-3 i \tag{2.5.1}
\end{equation*}
$$

Applying KVL around the loop gives

$$
\begin{equation*}
-20+v_{1}-v_{2}=0 \tag{2.5.2}
\end{equation*}
$$

Substituting Eq. (2.5.1) into Eq. (2.5.2), we obtain

$$
-20+2 i+3 i=0 \quad \text { or } \quad 5 i=20 \quad \Longrightarrow \quad i=4 \mathrm{~A}
$$

Substituting i in Eq. (2.5.1) finally gives

$$
v_{1}=8 \mathrm{~V}, \quad v_{2}=-12 \mathrm{~V}
$$

NEUB CSE 121 Lecture 2: Basic Laws in Electrical Circuits

EXAMPLE 2.6

Determine v_{o} and i in the circuit shown in Fig. 2.23(a).

(a)

(b)

Figure 2.23 For Example 2.6.

Solution:

We apply KVL around the loop as shown in Fig. 2.23(b). The result is

$$
\begin{equation*}
-12+4 i+2 v_{o}-4+6 i=0 \tag{2.6.1}
\end{equation*}
$$

Applying Ohm's law to the $6-\Omega$ resistor gives

$$
\begin{equation*}
v_{o}=-6 i \tag{2.6.2}
\end{equation*}
$$

Substituting Eq. (2.6.2) into Eq. (2.6.1) yields

$$
-16+10 i-12 i=0 \quad \Longrightarrow \quad i=-8 \mathrm{~A}
$$

and $v_{o}=48 \mathrm{~V}$.

EXAMPLE 2.7

Figure 2.25 For Example 2.7.

Find current i_{o} and voltage v_{o} in the circuit shown in Fig. 2.25.

Solution:

Applying KCL to node a, we obtain

$$
3+0.5 i_{o}=i_{o} \quad \Longrightarrow \quad i_{o}=6 \mathrm{~A}
$$

For the $4-\Omega$ resistor, Ohm's law gives

$$
v_{o}=4 i_{o}=24 \mathrm{~V}
$$

\section*{| E X A M PLE | 2.8 |
| :---: | :---: |}

Find the currents and voltages in the circuit shown in Fig. 2.27(a).

Figure 2.27 For Example 2.8 .

NEUB CSE 121 Lecture 2: Basic Laws in Electrical Circuits

Solution:

We apply Ohm's law and Kirchhoff's laws. By Ohm's law,

$$
\begin{equation*}
v_{1}=8 i_{1}, \quad v_{2}=3 i_{2}, \quad v_{3}=6 i_{3} \tag{2.8.1}
\end{equation*}
$$

Since the voltage and current of each resistor are related by Ohm's law as shown, we are really looking for three things: $\left(v_{1}, v_{2}, v_{3}\right)$ or $\left(i_{1}, i_{2}, i_{3}\right)$. At node a, KCL gives

$$
\begin{equation*}
i_{1}-i_{2}-i_{3}=0 \tag{2.8.2}
\end{equation*}
$$

Applying KVL to loop 1 as in Fig. 2.27(b),

$$
-30+v_{1}+v_{2}=0
$$

We express this in terms of i_{1} and i_{2} as in Eq. (2.8.1) to obtain

$$
-30+8 i_{1}+3 i_{2}=0
$$

or

$$
\begin{equation*}
i_{1}=\frac{\left(30-3 i_{2}\right)}{8} \tag{2.8.3}
\end{equation*}
$$

Applying KVL to loop 2,

$$
\begin{equation*}
-v_{2}+v_{3}=0 \quad \Longrightarrow \quad v_{3}=v_{2} \tag{2.8.4}
\end{equation*}
$$

as expected since the two resistors are in parallel. We express v_{1} and v_{2} in terms of i_{1} and i_{2} as in Eq. (2.8.1). Equation (2.8.4) becomes

$$
\begin{equation*}
6 i_{3}=3 i_{2} \quad \Longrightarrow \quad i_{3}=\frac{i_{2}}{2} \tag{2.8.5}
\end{equation*}
$$

Substituting Eqs. (2.8.3) and (2.8.5) into (2.8.2) gives

$$
\frac{30-3 i_{2}}{8}-i_{2}-\frac{i_{2}}{2}=0
$$

or $i_{2}=2 \mathrm{~A}$. From the value of i_{2}, we now use Eqs. (2.8.1) to (2.8.5) to obtain
$i_{1}=3 \mathrm{~A}, \quad i_{3}=1 \mathrm{~A}, \quad v_{1}=24 \mathrm{~V}, \quad v_{2}=6 \mathrm{~V}, \quad v_{3}=6 \mathrm{~V}$

1. Alexander Practice problems 2.5-2.8

NEUB CSE 121 Lecture 2: Basic Laws in Electrical Circuits

Series Resistors and Voltage Division

Combinations of resistors in series or parallel are so common, that it warrants some special attention. The process of combining the resistors is facilitated by combining two of them at a time. With this in mind, consider the single-loop circuit of Fig. 6(a). The two resistors are in series, since the same current i flows in both of them. Applying Ohm's law to each of the resistors, we obtain

$$
\begin{equation*}
V_{1}=i R_{1}, \quad V_{2}=i R_{2} \tag{2.4}
\end{equation*}
$$

If we apply KVL we get

$$
-V+V_{1}+V_{2}=0
$$

Or

$$
\begin{equation*}
V=V_{1}+V_{2}=i\left(R_{1}+R_{2}\right) \tag{2.5}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
i=\frac{V}{R_{1}+R_{2}} \tag{2.6}
\end{equation*}
$$

We can also find the current using the equivalent circuit of figure 6(b)

$$
i=\frac{V}{R_{e q}}
$$

So we can imply that

$$
\begin{equation*}
R_{e q}=R_{1}+R_{2} \tag{2.7}
\end{equation*}
$$

Figure 6 (a)A series circuit with 2 resistors and (b) their equivalent circuit
In general it can be said as
The equivalent resistance of any number of resistors connected in series is the sum of the individual resistances.
For N resistors in series then,

$$
\begin{equation*}
R_{e q}=R_{1}+R_{2}+\cdots+R_{N}=\sum_{n=1}^{N} R_{n} \tag{2.8}
\end{equation*}
$$

To determine voltage across each resistor, we substitute equation 2.6 in equation 2.4 to get

$$
\begin{equation*}
V_{1}=\frac{R_{1}}{R_{1}+R_{2}} V, \quad V_{2}=\frac{R_{2}}{R_{1}+R_{2}} V \tag{2.9}
\end{equation*}
$$

Notice that the source voltage v is divided among the resistors in direct proportion to their resistances; the larger the resistance, the larger the voltage drop. This is called the principle of voltage division, and the circuit in Fig. 6 is called a voltage divider. In general, if a voltage divider has N resistors $\left(R_{1}, R_{2}, \ldots, R_{N}\right)$ in series with the source voltage v, the nth resistor ($R n$) will have a voltage drop of

$$
\begin{equation*}
V_{n}=\frac{R_{n}}{R_{1}+R_{2}+\cdots+R_{N}} V \tag{2.10}
\end{equation*}
$$

This rule is known as Voltage Division Rule (VDR)

Parallel Resistors and Current Division

When two elements connect at a single node pair, they are said to be in parallel. Parallel-connected circuit elements have the same voltage across their terminals. Consider the circuit in figure 7(a) From Ohm's law,

$$
V=i_{1} R_{1}=i_{2} R_{2}
$$

Or

$$
i_{1}=\frac{V}{R_{1}}, \quad i_{2}=\frac{V}{R_{2}}
$$

Applying KCL at node a

$$
\begin{equation*}
i=i_{1}+i_{2}=\frac{V}{R_{1}}+\frac{V}{R_{2}}=V\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)=\frac{V}{R_{e q}} \tag{2.11}
\end{equation*}
$$

Figure 7 (a) Two Resistors in parallel and (b) their equivalent circuit
Where $R_{e q}$ is the resistance in parallel (Figure 7(b))

$$
\begin{gather*}
\frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}} \tag{2.12}\\
R_{e q}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}} \tag{2.13}
\end{gather*}
$$

We can see that if $R_{1}=R_{2}, \quad R_{e q}=\frac{R_{1}}{2}$
We can extend the equation 2.13 for any number of resistances in parallel. SO the equation for equivalent resistance become

$$
\begin{equation*}
R_{e q}=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots+\frac{1}{R_{N}}} \tag{2.14}
\end{equation*}
$$

Note that $\mathrm{R}_{\text {eq }}$ is always smaller than the resistance of the smallest resistor in the parallel combination. If $R_{1}=R_{2}=\cdots=R_{N}=R$, then

$$
\begin{equation*}
R_{e q}=\frac{R}{N} \tag{2.15}
\end{equation*}
$$

Given the total current i entering node a in Fig. 7, how do we obtain current i_{1} and i_{2} ? We know that the equivalent resistor has the same voltage, or

$$
\begin{equation*}
V=i R_{e q}=\frac{i R_{1} R_{2}}{R_{1}+R_{2}} \tag{2.16}
\end{equation*}
$$

So

$$
\begin{equation*}
i_{1}=\frac{R_{2} i}{R_{1}+R_{2}}, \quad i_{2}=\frac{R_{1} i}{R_{1}+R_{2}} \tag{2.17}
\end{equation*}
$$

Which shows that the total current i is shared by the resistors in inverse proportion to their resistances. This is known as the principle of current division, and the circuit in Fig. 7 is known as a

NEUB CSE 121 Lecture 2: Basic Laws in Electrical Circuits

current divider. Notice that the larger current flows through the smaller resistance. This rule is known as Current Division Rule (CDR) Another form of the CDR can be written as

$$
\begin{equation*}
i_{j}=\frac{V}{R_{j}}=\frac{R_{e q}}{R_{j}} i \tag{2.18}
\end{equation*}
$$

Here
$R_{e q}=$ Equivalent resistance
$R_{j}=\mathrm{J}^{\text {th }}$ Resistor
$i_{i}=$ Current through $\mathrm{J}^{\text {th }}$ Resistor

As an extreme case, suppose one of the resistor in figure 7 is zero, say $R_{2}=0$; ie R_{2} is a short circuit as shown in figure $8(\mathrm{a})$ since $R_{2}=0, i_{1}=0, i_{1}=i$. This means that the entire current flows through R_{2} and bypasses R_{1}. Thus when a circuit is short circuited, as shown in figure 8(a) two things should be kept in mind

1. The equivalent resistance is 0
2. The entire current flows through the short circuit

Another extreme case is when $R_{2}=\infty$, that is, R_{2} is an open circuit, as shown in figure 8(b) The current in this case flows through the least resistance path and flows through R_{1} thus the equivalent resistance is $R_{e q}=R_{1}$

(a)

(b)

Figure 8 (a) Short Circuit and (b) Open Circuit

EXAMPLEE 2.9

Find R_{eq} for the circuit shown in Fig. 2.34.

Solution:

To get $R_{\text {eq }}$, we combine resistors in series and in parallel. The $6-\Omega$ and $3-\Omega$ resistors are in parallel, so their equivalent resistance is

$$
6 \Omega \| 3 \Omega=\frac{6 \times 3}{6+3}=2 \Omega
$$

(The symbol $\|$ is used to indicate a parallel combination.) Also, the $1-\Omega$ and $5-\Omega$ resistors are in series; hence their equivalent resistance is

$$
1 \Omega+5 \Omega=6 \Omega
$$

Thus the circuit in Fig. 2.34 is reduced to that in Fig. 2.35(a). In Fig. 2.35 (a), we notice that the two $2-\Omega$ resistors are in series, so the equivalent resistance is

$$
2 \Omega+2 \Omega=4 \Omega
$$

This $4-\Omega$ resistor is now in parallel with the $6-\Omega$ resistor in Fig. 2.35(a); their equivalent resistance is

$$
4 \Omega \| 6 \Omega=\frac{4 \times 6}{4+6}=2.4 \Omega
$$

The circuit in Fig. 2.35(a) is now replaced with that in Fig. 2.35(b). In Fig. 2.35(b), the three resistors are in series. Hence, the equivalent resistance for the circuit is

$$
R_{\mathrm{eq}}=4 \Omega+2.4 \Omega+8 \Omega=14.4 \Omega
$$

Figure 2.34 For Example 2.9 .

(a)

(b)

Figure 2.38 Equivalent circuits for Example 2.10.

Calculate the equivalent resistance $R_{a b}$ in the circuit in Fig. 2.37.

Figure 2.37 For Example 2.10.

Solution:

The $3-\Omega$ and $6-\Omega$ resistors are in parallel because they are connected to the same two nodes c and b. Their combined resistance is

$$
\begin{equation*}
3 \Omega \| 6 \Omega=\frac{3 \times 6}{3+6}=2 \Omega \tag{2.10.1}
\end{equation*}
$$

Similarly, the $12-\Omega$ and $4-\Omega$ resistors are in parallel since they are connected to the same two nodes d and b. Hence

$$
\begin{equation*}
12 \Omega \| 4 \Omega=\frac{12 \times 4}{12+4}=3 \Omega \tag{2.10.2}
\end{equation*}
$$

Also the $1-\Omega$ and $5-\Omega$ resistors are in series; hence, their equivalent resistance is

$$
\begin{equation*}
1 \Omega+5 \Omega=6 \Omega \tag{2.10.3}
\end{equation*}
$$

With these three combinations, we can replace the circuit in Fig. 2.37 with that in Fig. 2.38 (a). In Fig. 2.38 (a), 3- Ω in parallel with $6-\Omega$ gives $2-\Omega$, as calculated in Eq. (2.10.1). This $2-\Omega$ equivalent resistance is now in series with the $1-\Omega$ resistance to give a combined resistance of $1 \Omega+2 \Omega=3 \Omega$. Thus, we replace the circuit in Fig. 2.38(a) with that in Fig. 2.38(b). In Fig. 2.38 (b), we combine the $2-\Omega$ and $3-\Omega$ resistors in parallel to get

$$
2 \Omega \| 3 \Omega=\frac{2 \times 3}{2+3}=1.2 \Omega
$$

This $1.2-\Omega$ resistor is in series with the $10-\Omega$ resistor, so that

$$
R_{a b}=10+1.2=11.2 \Omega
$$

EXAMPLE2.12

Find i_{o} and v_{o} in the circuit shown in Fig. 2.42(a). Calculate the power dissipated in the $3-\Omega$ resistor.

Solution:

The $6-\Omega$ and $3-\Omega$ resistors are in parallel, so their combined resistance is

$$
6 \Omega \| 3 \Omega=\frac{6 \times 3}{6+3}=2 \Omega
$$

(a)

(b)

Figure 2.42 For Example 2.12: (a) original circuit, (b) its equivalent circuit.

Thus our circuit reduces to that shown in Fig. 2.42(b). Notice that v_{o} is not affected by the combination of the resistors because the resistors are in parallel and therefore have the same voltage v_{o}. From Fig. 2.42(b), we can obtain v_{o} in two ways. One way is to apply Ohm's law to get

$$
i=\frac{12}{4+2}=2 \mathrm{~A}
$$

and hence, $v_{o}=2 i=2 \times 2=4 \mathrm{~V}$. Another way is to apply voltage division, since the 12 V in Fig. 2.42(b) is divided between the $4 . \Omega$ and $2-\Omega$ resistors. Hence,

$$
v_{a}=\frac{2}{2+4}(12 \mathrm{~V})=4 \mathrm{~V}
$$

Similarly, i_{o} can be obtained in two ways. One approach is to apply Ohm's law to the $3-\Omega$ resistor in Fig. 2.42(a) now that we know v_{s}; thus,

$$
v_{o}=3 i_{o}=4 \quad \Longrightarrow \quad i_{o}=\frac{4}{3} \mathrm{~A}
$$

Another approach is to apply current division to the circuit in Fig. 2.42(a) now that we know i, by writing

NEUB CSE 121 Lecture 2: Basic Laws in Electrical Circuits

$$
i_{o}=\frac{6}{6+3} i=\frac{2}{3}(2 \mathrm{~A})=\frac{4}{3} \mathrm{~A}
$$

The power dissipated in the $3-\Omega$ resistor is

$$
p_{o}=v_{a} i_{o}=4\left(\frac{4}{3}\right)=5.333 \mathrm{~W}
$$

EXAMPLE 2.13

For the circuit shown in Fig. 2.44(a), determine: (a) the voltage v_{o}, (b) the power supplied by the current source, (c) the power absorbed by each resistor.

Solution:

(a) The $6-\mathrm{k} \Omega$ and $12-\mathrm{k} \Omega$ resistors are in series so that their combined value is $6+12=18 \mathrm{k} \Omega$. Thus the circuit in Fig. 2.44(a) reduces to that
shown in Fig. 2.44(b). We now apply the current division technique to find i_{1} and i_{2}.

$$
\begin{aligned}
i_{1} & =\frac{18,000}{9000+18,000}(30 \mathrm{~mA})=20 \mathrm{~mA} \\
i_{2} & =\frac{9000}{9000+18,000}(30 \mathrm{~A})=10 \mathrm{~mA}
\end{aligned}
$$

(a)

Notice that the voltage across the $9-\mathrm{k} \Omega$ and $18-\mathrm{k} \Omega$ resistors is the same, and $v_{o}=9,000 i_{1}=18,000 i_{2}=180 \mathrm{~V}$, as expected.
(b) Power supplied by the source is

$$
p_{o}=v_{o} i_{o}=180(30) \mathrm{mW}=5.4 \mathrm{~W}
$$

(c) Power absorbed by the $12-\mathrm{k} \Omega$ resistor is

$$
p=i v=i_{2}\left(i_{2} R\right)=i_{2}^{2} R=\left(10 \times 10^{-3}\right)^{2}(12,000)=1.2 \mathrm{~W}
$$

Power absorbed by the $6-\mathrm{k} \Omega$ resistor is

(b)

Figure 2.44 For Example 2.13:
(a) original circuit,
(b) its equivalent circuit.

$$
p=i_{2}^{2} R=\left(10 \times 10^{-3}\right)^{2}(6000)=0.6 \mathrm{~W}
$$

Power absorbed by the $9-k \Omega$ resistor is

$$
p=\frac{v_{o}^{2}}{R}=\frac{(180)^{2}}{9000}=3.6 \mathrm{~W}
$$

or

$$
p=v_{o} i_{1}=180(20) \mathrm{mW}=3.6 \mathrm{~W}
$$

Notice that the power supplied (5.4 W) equals the power absorbed ($1.2+$ $0.6+3.6=5.4 \mathrm{~W}$). This is one way of checking results.
2. Alexander practice problem 2.9, 2.10, 2.12, 2.13

NEUB CSE 121 Lecture 2: Basic Laws in Electrical Circuits

Wye-Delta Transformation (Y- Δ)

Situations often arise in circuit analysis when the resistors are neither in parallel nor in series. For example, consider the bridge circuit in Fig. 9. How do we combine resistors R1 through R6 when the resistors are neither in series nor in parallel? Many circuits of the type shown in Fig. 9 can be simplified by using three-terminal equivalent networks. These are the wye (Y) or tee (T) network shown in Fig. 10 and the delta (Δ) or pi (π) network shown in Fig. 11. These networks occur by themselves or as part of a larger network. They are used in three-phase networks, electrical filters, and matching networks. Our main interest here is in how to identify them when they occur as part of a network and how to apply wye-delta transformation in the analysis of that network.

Figure 11 Two forms of same network (a) Δ and (b) π

Figure 12 Superposition of Y and Δ networks as an aid in transforming one to another

NEUB CSE 121 Lecture 2: Basic Laws in Electrical Circuits

Δ to Y conversion

The equations for Δ to Y conversion is as follow

$$
\begin{aligned}
R_{1} & =\frac{R_{b} R_{c}}{R_{a}+R_{b}+R_{c}} \\
R_{2} & =\frac{R_{a} R_{c}}{R_{a}+R_{b}+R_{c}} \\
R_{3} & =\frac{R_{a} R_{b}}{R_{a}+R_{b}+R_{c}}
\end{aligned}
$$

Each resistor in the Y network is the product of the resistors in the two adjacent Δ branches, divided by the sum of the three Δ resistors.

Y to Δ Conversion

The equations for Y to Δ conversion is as follows

$$
\begin{aligned}
R_{a}= & \frac{R_{1} R_{2}+R_{2} R_{3}+R_{3} R_{1}}{R_{1}} \\
R_{b}= & \frac{R_{1} R_{2}+R_{2} R_{3}+R_{3} R_{1}}{R_{2}} \\
R_{c}= & \frac{R_{1} R_{2}+R_{2} R_{3}+R_{3} R_{1}}{R_{3}}
\end{aligned}
$$

Each resistor in the Δ network is the sum of all possible products of Y resistors taken two at a time, divided by the opposite Y resistor.
The Y and Δ networks are said to be balanced when

$$
R_{1}=R_{2}=R_{3}=R_{Y}, \quad R_{a}=R_{b}=R_{c}
$$

Under these conditions

$$
R_{Y}=\frac{R_{\Delta}}{3} \quad \text { or } R_{\Delta}=3 R_{Y}
$$

Proof of Y - Δ transformations is available in Alexander book section 7.2

EXAMPLE 2.14

Convert the Δ network in Fig. 2.50(a) to an equivalent Y network.

(a)

(b)

Solution:

$$
\begin{gathered}
R_{1}=\frac{R_{b} R_{c}}{R_{a}+R_{b}+R_{c}}=\frac{25 \times 10}{25+10+15}=\frac{250}{50}=5 \Omega \\
R_{2}=\frac{R_{c} R_{a}}{R_{a}+R_{b}+R_{c}}=\frac{25 \times 15}{50}=7.5 \Omega \\
R_{3}=\frac{R_{a} R_{b}}{R_{a}+R_{b}+R_{c}}=\frac{15 \times 10}{50}=3 \Omega
\end{gathered}
$$

Using Eqs. (2.49) to (2.51), we obtain The equivalent Y network is shown in Fig. 2.50(b).

EXAMPLE 2.15
 Obtain the equivalent resistance $R_{a b}$ for the circuit in Fig. 2.52 and use it to find current i.

Solution:

In this circuit, there are two Y networks and one Δ network. Transforming just one of these will simplify the circuit. If we convert the Y network comprising the $5-\Omega, 10-\Omega$, and $20-\Omega$ resistors, we may select

$$
R_{1}=10 \Omega, \quad R_{2}=20 \Omega, \quad R_{3}=5 \Omega
$$

Thus from Eqs. (2.53) to (2.55) we have

$$
\begin{aligned}
R_{a} & =\frac{R_{1} R_{2}+R_{2} R_{3}+R_{3} R_{1}}{R_{1}}=\frac{10 \times 20+20 \times 5+5 \times 10}{10} \\
& =\frac{350}{10}=35 \Omega \\
R_{b} & =\frac{R_{1} R_{2}+R_{2} R_{3}+R_{3} R_{1}}{R_{2}}=\frac{350}{20}=17.5 \Omega \\
R_{c} & =\frac{R_{1} R_{2}+R_{2} R_{3}+R_{3} R_{1}}{R_{3}}=\frac{350}{5}=70 \Omega
\end{aligned}
$$

With the Y converted to Δ, the equivalent circuit (with the vo source removed for now) is shown in Fig. 2.53(a). Combining the pairs of resistors in parallel, we obtain

$$
\begin{gathered}
70 \| 30=\frac{70 \times 30}{70+30}=21 \Omega \\
12.5 \| 17.5=\frac{12.5 \times 17.5}{12.5+17.5}=7.2917 \Omega \\
15 \| 35=\frac{15 \times 35}{15+35}=10.5 \Omega
\end{gathered}
$$

so that the equivalent circuit is shown in Fig. 2.53(b). Hence, we

$$
R_{a b}=(7.292+10.5) \| 21=\frac{17.792 \times 21}{17.792+21}=9.632 \Omega
$$

Then

$$
i=\frac{v_{s}}{R_{a b}}=\frac{120}{9.632}=12.458 \mathrm{~A}
$$

3. Alexander practice problem 2.14, 2.15
