
This paper is included in the Proceedings of the
2019 USENIX Annual Technical Conference.

July 10–12, 2019 • Renton, WA, USA

ISBN 978-1-939133-03-8

Open access to the Proceedings of the
2019 USENIX Annual Technical Conference

is sponsored by USENIX.

NeuGraph: Parallel Deep Neural Network
Computation on Large Graphs

Lingxiao Ma and Zhi Yang, Peking University; Youshan Miao, Jilong Xue,
Ming Wu, and Lidong Zhou, Microsoft Research; Yafei Dai, Peking University

https://www.usenix.org/conference/atc19/presentation/ma

NeuGraph: Parallel Deep Neural Network Computation on Large Graphs

Lingxiao Ma†∗, Zhi Yang†∗

Peking University
Youshan Miao

Microsoft Research
Jilong Xue

Microsoft Research

Ming Wu
Microsoft Research

Lidong Zhou
Microsoft Research

Yafei Dai
Peking University

Abstract
Recent deep learning models have moved beyond low dimen-
sional regular grids such as image, video, and speech, to high-
dimensional graph-structured data, such as social networks, e-
commerce user-item graphs, and knowledge graphs. This evo-
lution has led to large graph-based neural network models that
go beyond what existing deep learning frameworks or graph
computing systems are designed for. We present NeuGraph,
a new framework that bridges the graph and dataflow mod-
els to support efficient and scalable parallel neural network
computation on graphs. NeuGraph introduces graph computa-
tion optimizations into the management of data partitioning,
scheduling, and parallelism in dataflow-based deep learning
frameworks. Our evaluation shows that, on small graphs that
can fit in a single GPU, NeuGraph outperforms state-of-the-
art implementations by a significant margin, while scaling to
large real-world graphs that none of the existing frameworks
can handle directly with GPUs.

1 Introduction

Graphs are natural representations of many real-world data;
examples include web graphs, social networks, e-commerce
user-item graphs, and knowledge graphs. With a graph repre-
sentation, graph-based learning tasks, such as vertex classifi-
cation and link prediction, can be optimized effectively. There
has been a recent surge of interest in extending neural network
models to graph data [7, 8, 13, 17–19, 23, 25, 29, 37]. These
methods, known as graph neural networks (GNNs), combine
standard neural networks with iterative graph propagation:
the property of a vertex is computed recursively (with neural
networks) from the properties of its neighbor vertices.

However, neither the existing deep learning frameworks
nor the existing graph systems could support GNN algorithms

† National Engineering Laboratory for Big Data Analysis and Applica-
tions, Center for Data Science, Peking University.
∗ Lingxiao Ma and Zhi Yang equally contributed to this work.

The work is done when Lingxiao Ma is an intern and Zhi Yang is a
visiting researcher at Microsoft Research.

sufficiently. The lack of system support has seriously limited
the ability to explore the full potentials of GNNs at scale.
Deep learning (DL) frameworks such as TensorFlow [4], Py-
Torch [2], MXNet [12], and CNTK [50] are designed to ex-
press deep neural networks (DNNs) but do not naturally ex-
press and efficiently execute graph propagation models. Deep
graph library (DGL) [1] supports programming GNNs by
wrapping DL systems with a graph-oriented message-passing
interface. While DGL addresses the expressiveness challenge,
it does not yet explore deeply the opportunities to leverage
graph-aware operations for efficient executions. Furthermore,
none of these frameworks, including DGL, offer the need-
ed scalability to handle large graphs: The highly connected
nature of graphs means that graph propagation could easily
involve a large portion of a large graph, especially for power-
law or dense graphs. Processing even a single vertex requires
that deep learning frameworks load a large amount of graph-
related data (e.g., structure and feature data) into limited GPU
memory.

With the vertex-program abstraction and graph-specific
optimizations, existing graph processing systems [10, 15, 26,
28, 47] can naturally express iterative graph algorithms like
PageRank and community detection, and scale them to graphs
with billions of vertices and edges. But graph systems can
hardly express neural networks (NNs) and lack key capabili-
ties required by efficient DNN executions, such as the tensor
abstraction, automatic differentiation and dataflow program-
ming model.

We therefore advocate bridging deep learning systems and
graph processing systems to enable a new framework for
scalable GNN training. In this paper, we explore the design
of a GNN processing framework on top of dataflow-based
DL systems. We argue that by introducing the graph mod-
el to dataflow and recasting graph-specific optimizations as
dataflow optimizations, we can enable the DL frameworks to
support efficient and scalable DNN computation on graphs.
To support this argument, we developed NeuGraph, an effi-
cient GNN processing framework built on top of an existing
dataflow engine.

USENIX Association 2019 USENIX Annual Technical Conference 443

NeuGraph combines the dataflow abstraction with the
vertex-program abstraction in a new programming model
called SAGA-NN (Scatter-ApplyEdge-Gather-ApplyVertex
with Neural Networks). SAGA can be considered as a variant
of graph-parallel abstraction (e.g., GAS [26]). Unlike a tradi-
tional system where user-defined functions (UDFs) express
vertex programs, UDFs in SAGA-NN express NN compu-
tation on tensors as vertex or edge data, e.g., vertex or edge
data. With the new programming model, NeuGraph allows
users to express a GNN algorithm without worrying about the
underlying system implementation (e.g., GPU memory man-
agement or scheduling). The graph-aware dataflow engine in
NeuGraph judiciously partitions the graph data (vertex and
edge data) into chunks (subgraphs), constructs the dataflow
that operates at the chunk granularity, and schedules parallel
executions of the dataflow on GPUs.

Naively adapting optimizations developed in the context
of graph processing systems can lead to inefficient dataflow
executions on DL frameworks. NeuGraph achieves high ef-
ficiency by introducing a range of optimizations both in the
scheduling of parallel chunk processing, as well as the ex-
ecution of core graph propagation procedures (i.e., Scatter-
ApplyEdge-Gather stages) over the often-sparse graph struc-
ture. With fine-grained graph partitioning, NeuGraph achieves
efficient selective scheduling and pipeline scheduling on top
of the dataflow, to hide data movement between GPU and
host when scaling a model out of the GPU core. To con-
tinue performance scaling, NeuGraph further adopts a new
topology-aware scheduling strategy to efficiently distribute
GNN models over modern multi-GPU systems. Finally, Neu-
Graph introduces computation-related optimizations for graph
propagation, which is often hard to accelerate using GPUs.

We implemented NeuGraph on top of TensorFlow. We
show that NeuGraph can support a variety of GNN algorithms
on large graphs with millions of vertices and hundreds of mil-
lions of edges, as well as hundreds of feature dimensions over
vertices, which existing DL frameworks cannot directly han-
dle with GPUs. Compared on large graphs that TensorFlow
can handle only with CPUs, NeuGraph achieves 16 ∼ 47×
speedups. Even on small graphs that can fit into a GPU’s
memory, NeuGraph can still achieve a up to 5× speedup over
the state-of-art implementation on TensorFlow and a up to
19× speedup over DGL [1]. Moreover, NeuGraph achieves
nearly linear scalability over multiple GPUs.

As one of our key contributions, NeuGraph bridges two
largely parallel threads of research, graph processing systems
and dataflow-based DL frameworks, in the new GNN setting.
NeuGraph significantly expands the capabilities of existing
DL frameworks to support GNNs in the following key dimen-
sions: programming model, graph partition and dataflow trans-
lation, graph propagation operations, and execution schedul-
ing. We have also demonstrated, through extensive evaluation
on real graphs with typical GNNs, significant benefits in scal-
ability and efficiency by connecting graph processing and DL

Layer 1

Layer 2

Output

VertexNN Transformation

EdgeNN Transformation

Figure 1: Feed-forward computation of a 2-layer GNN.

frameworks.
The rest of the paper is organized as follows. Section 2 in-

troduces the SAGA-NN programming abstraction. Section 3
describes the optimizations in the NeuGraph system. Sec-
tion 4 discusses the implementation and Section 5 presents
our experimental results. We discuss related work in Section 6
and conclude in Section 7.

2 NeuGraph Programming Abstraction

In this section, we first reveal the essential structure of graph
neural networks, and then propose our programming model
that combines graph-parallel and dataflow abstractions.

2.1 Graph Neural Networks

Deep learning, in the form of deep neural networks, is a class
of machine learning algorithms that use a cascade of multiple
layers of nonlinear processing units for feature extraction and
transformation. Each successive layer uses the output from the
previous layer as input. Deep learning has been gaining popu-
larity due to its success in areas such as speech, vision, and
natural language processing. In these areas, the coordinates
of the underlying data representation often have a regular
grid structure, which is friendly to hardware accelerators (e.g.,
GPU) with massive SIMD-style parallelisms.

Graph neural networks are deep learning based methods
that operate neural networks on graph data, and have been
adopted for many applications due to convincing in terms
of model accuracy. Recently, several surveys [5, 46, 52, 54]
provided a thorough review of different graph neural network
models as well as a systematic taxonomy of the applications.
A majority of GNN models can be categorized into graph
convolutional networks [7, 9, 13, 19, 23], graph recursive net-
works [25, 33], and graph attention networks [43, 51].

We discuss 3 representative categories of GNNs with 3
representative models: (1) GCN [23] is a graph convolutional
network that generalizes the notion of the convolution opera-
tion, typically for image datasets, and applies it to an arbitrary
graph (e.g., a knowledge graph). GCN has been widely used
in real-world scenarios like recommendation [6, 49]. Initially,
each vertex in the graph has a feature vector. First, each vertex
collects its neighbor vertices’ feature vectors along edges, and

444 2019 USENIX Annual Technical Conference USENIX Association

vertex feature

edge feature

edge output

accumulated

vertex output

a
cc

u
m

.

Scatter ApplyEdge Gatherv2

edge

v1

edge

v0

ApplyVertex

Neural

Network

Figure 2: SAGA-NN stages for each layer of GNN.

sums the collected vectors (weighted by edge values). Then,
a fully-connected NN is used to compute the vertex feature
vector as the output. This is a layer of GCN. Stacking multiple
GCN layers makes the vertex features representative enough
for tasks. Taking the recommendation system as an example,
a bipartite graph is constructed from the user-item ratings:
There will be an edge with the rating as the edge value be-
tween the user vertex and the item vertex if a user rates an
item. Then, the embeddings of both users and items can be
learned by the GCN from the graph and the features of users
and items. Finally, these embeddings are used to predict the
missing user-item ratings to make a recommendation. (2) GG-
NN [25] is a graph recursive network. It has an architecture
similar to GCN, but uses different parameters for different
edge types, as well as a Gated Recurrent Unit (GRU) in the
NN to process accumulated features. (3) As a graph attention
network, GAT [43] differs GCN mainly in that it computes
an attention value for each edge during transferring vertex
features.

In general, these GNN models share the same basic idea
of collectively aggregating information following the graph
structure. Specifically, each vertex or edge in the graph can be
associated with a set of tensor data (normally a vector) as its
feature or embedding. A GNN can consist of multiple layers,
with an iterative propagation procedure conducted layer-by-
layer over the same graph, as illustrated in Figure 1. At each
layer, the vertex or edge features are transformed and propa-
gated along edges, and then aggregated at the target vertices
to produce new features for the next layer. Different from tra-
ditional graph algorithms (e.g., PageRank), the transformation
on either vertices or edges can be arbitrary DNN computation.
The GNN may also contain a label for each vertex, each edge,
or the entire graph, for computing a loss function at the top
layer. A feed-forward computation is then performed from
the bottom layer to the top, with back-propagation conducted
reversely.

Comparing with DNNs, the complexity due to graphs in
GNNs creates a significant scalability challenge. First, real-
world graphs, such as social networks or e-commerce net-
works, can easily have millions of nodes and edges. Second,
vertices and edges in the graph are interconnected and need
to be modeled as a whole neural network (i.e., a large, sparse
neural network architecture defined according to a graph struc-

ture). This is particularly challenging on GPUs given the
limited GPU memory capacity. Finally, unlike image, audio,
or text that have clear grid structures, graph data are irreg-
ular, making it hard to conduct parallel GNN computation
efficiently on GPUs.

2.2 A Running Example
We take the Gated Graph ConvNet (G-GCN) algorithm [7,29]
as a concrete running example (see Example 2.1). G-GCN in-
corporates the gating mechanism into graph convolution. This
model can be used to extract vertex features for community
detection.

Example 2.1. Let h`
u denote the feature vector of a vertex u

at layer `, and W `, W `
H , and W `

C be the weight parameters to
learn. G-GCN recursively defines the feature of a vertex u as
follows:

h`+1
u = ReLU

(
W `⊗

(
∑

v→u
ηvu � h`

v

))
(1)

where ⊗ refers to matrix multiplication, � refers to element-
wise multiplication, and ηvu (for each edge v→ u) acts as
edge gate,

ηvu = sigmoid
(

W `
H ⊗h`

u + W `
C⊗h`

v

)
(2)

where ReLU and sigmoid are nonlinear activation functions
in neural networks.

G-GCN can be mapped to the pattern of computing a layer
in Figure 1: Equation 2 represents the EdgeNN to compute the
edge weight. ∑v→u ηvu � h`

v in Equation 1 collects features
from neighbors, and ReLU

(
W `⊗· · ·

)
in Equation 1 is the

VertexNN to process the accumulated features.

2.3 SAGA-NN Model
Based on the common pattern observed in GNN models, we
propose SAGA-NN (Scatter-ApplyEdge-Gather-ApplyVertex
with Neural Networks) as a new programming model for
GNNs. It combines dataflow and vertex-program to express
the recursive parallel computation at a layer of a GNN. SAGA-
NN splits the feed-forward computation into four stages: Scat-
ter, ApplyEdge, Gather, and ApplyVertex, as illustrated in Fig-
ure 2.

SAGA-NN provides two user-defined functions (UDFs)
for ApplyEdge and ApplyVertex respectively, for users to de-
clare neural network computations on edges and vertices. The
ApplyEdge function defines the computation on each edge,
which takes edge and p as input, where edge refers to the
edge data and p contains the learnable parameters of the GNN
model. Each edge is a tuple of tensors [src, dest, data]
representing the associated data of the source and destination
vertices connected by the edge, as well as the edge associated
data (e.g., edge weight). This function can be used to apply a

USENIX Association 2019 USENIX Annual Technical Conference 445

G-GCN(vertex`): // computing vertex`+1

params p = [W `
H W `

C W `]
// Passing data over edges
edge`=Scatter(vertex`)
// edge-parallel computation
acc = ApplyEdge(edge`, p):

η = sigmoid(p.W `
H ⊗edge`.dest+p.W `

C⊗edge`.src)
return η�edge`.src

set Gather.accumulator = sum
accum = Gather(acc)
// compute new vertex data
vertex`+1 = ApplyVertex(vertex`, accum , p):
return ReLU

(
p.W `⊗accum

)
return vertex`+1

Figure 3: Gated Graph ConvNet at layer ` in SAGA-NN model.

neural network model on edge and p, and outputs an interme-
diate tensor data associated with the edge. The ApplyVertex
function defines the computation on a vertex, which takes
as input a vertex tensor data vertex, the vertex aggregation
accum, and learnable parameters p, and returns the new vertex
data after applying a neural network model. The SAGA-NN
abstraction builds on a dataflow framework, so users can sym-
bolically define the dataflow graphs in UDFs by connecting
mathematical operations (e.g., add, tanh, sigmoid, matmul)
provided by the underlying framework.

The other two stages, Scatter and Gather, perform data
propagation and prepare data collections to be fed to Ap-
plyEdge and ApplyVertex as input. They are triggered and
conducted by the system implicitly. We chose not to expose
UDFs for Scatter and Gather, because these functions, if pro-
vided, are highly coupled with the propagation procedure,
whose computations flow through the irregular graph struc-
ture and are difficult to express as dataflow that NeuGraph
optimizes—users would have to implement the correspond-
ing derivative functions of the UDFs, a serious burden. Fol-
lowing the same principle, NeuGraph also avoids exposing
user-defined aggregation methods. It provides a set of default
ones instead, including sum, max (e.g., max-pooling opera-
tor [18]), and concatenation, which can be chosen by setting
Gather.accumulator.

NeuGraph models a GNN as a sequence of SAGA stages.
The Scatter passes the vertex data vertex onto its adjacent
edges to construct edge data edge, including both the source
and destination vertex data. The subsequent ApplyEdge then
invokes a parallel computation defined by the UDF on the
edge data to produce an intermediate tensor value for each
edge as its outputs. The Gather then propagates those outputs
along the edges and aggregates them at the destination vertices
through commutative and associative accumulate operations.
Finally, the ApplyVertex executes the computation defined
in UDF on all vertices to produce updated vertex data for
the next layer. The procedure in Figure 1 fits in the SAGA-
NN model: The ApplyEdge and ApplyVertex represent the
EdgeNN and VertexNN, respectively; the Scatter and Gather
perform the propagation along edges. This mapping indicates

that the GNNs following the procedure in Figure 1 could
be implemented with SAGA-NN model, hence presents the
generality of SAGA-NN.

Figure 3 illustrates the description of G-GCN (at layer l)
in the SAGA-NN model. Scatter gives each edge v→ u with
vertices data [h`

v,h`
u], and ApplyEdge computes per-edge up-

date accvu = ηvu�h`
v = sigmoid

(
W `

H ⊗h`
u +W `

C⊗h`
v
)
�h`

v.
Next, Gather performs accumu =∑v:v→u accvu, and ApplyVer-
tex computes h`+1

u = ReLU
(
W `⊗accum

)
.

The dataflow abstraction makes it easy to express neural
network architectures and leverage auto-differentiation. With
the dataflow abstraction in SAGA-NN, NeuGraph enjoys the
flexibility of executing operations on vertices or edges in
batch for increasing efficiency. The vertex-program in SAGA-
NN allows users to express computations naturally by think-
ing like a vertex, and models common patterns in GNNs as
well-defined stages, thereby enabling optimizing in both graph
computation and dataflow scheduling.

3 NeuGraph System

NeuGraph provides a combination of the dataflow and vertex-
program abstractions as the user interface. Under this abstrac-
tion, NeuGraph proposes graph-aware optimizations for GNN
processing to achieve efficiency and scalability.

At a high level, NeuGraph consists of: 1) a translation en-
gine that translates GNN expressed by the SAGA-NN model
into a dataflow graph at chunk-granularity to enable GNN
computation over large graphs in GPUs; 2) a streaming sched-
uler that minimizes data movement across the host and GPU
memory and maximizes its overlap with computation. The
scheduler also needs to be topology-aware for use of multiple
GPUs; 3) a graph propagation engine for deep learning that
employs a set of fast propagation kernels and fuses operations
to remove redundant memory copies; 4) a dataflow execu-
tion runtime. NeuGraph requires no modifications to existing
dataflow-based DL frameworks, offering a general method
to combine graph and NN computation within existing DL
frameworks. In this section, we focus on the first three design
points as they are main contributions of NeuGraph.

3.1 Graph-Aware Dataflow Translation
Just as with DNNs, efficient use of GPUs is critical to the
performance of GNNs, especially for large graphs. However,
existing DL frameworks cannot handle large graphs directly
on a GPU because graph data cannot fit into GPU memory.

To achieve scalability beyond the physical limitation of
GPU memory, NeuGraph introduces graph-specific partition-
ing on top of the dataflow abstraction. Note that both vertex
feature data and graph structure data can be large. NeuGraph
thus applies a 2D graph partitioning: As illustrated in Fig-
ure 4, it slices vertex data into P equally-sized disjoint vertex
chunks, and tiles the adjacency matrix (representing edges)

446 2019 USENIX Annual Technical Conference USENIX Association

1→3
2→1

1→2

3→0 0→1
⓿ ❸❶ ❷

Edge Chunk E0,0

⓿ ❸ ❶ ❷
Output Vertex

Feature Chunk V0’

E0,0

E0,1

E1,0

E1,1

Graph

Chunk V1

Input Vertex
Feature Chunk V0

0

3 2

10

3 2

1

Chunk E1,0

Figure 4: 2D Partitioning of a graph, here P = 2.

into P×P edge chunks. Edges in an edge chunk Ei j con-
nect vertices in two vertex chunks Vi and Vj , respectively.
By splitting graph data into chunks, NeuGraph can process
edge chunks one by one, with only the source and destination
vertex chunks needed for the edge chunk being processed.
To achieve this, NeuGraph generates a dataflow graph with
operators on data chunks, each of which fits in GPU memory,
as illustrated in Figure 5.

For the forward computation at a layer, NeuGraph trans-
lates a dataflow subgraph for each destination vertex interval
(e.g., a column in Figure 4): The Scatter operator inputs a
specific edge chunk, i.e., the edge chunk in the i-th row and
j-th column, and the associated i-th and j-th vertex chunks,
and outputs an edge data chunk containing tuples in the form
of [src, dest, data]. Each edge data chunk can be processed
by operators specified in the ApplyEdge UDF to produce an-
other edge data chunk with the result data acc (as in Figure 3).
The operators at the Gather stage accumulate each edge’s data
based on its destination vertex to generate the corresponding
vertex accumulation data chunk. After the processing of all
the edge chunks for a destination vertex interval is done, the
operators specified in the ApplyVertex UDF process the ver-
tex accumulation chunks and output new vertex data chunks
for the next layer.

For back-propagation, as the UDFs for ApplyEdge and
ApplyVertex are expressed as dataflow computations over
regular tensors, NeuGraph can leverage auto-differentiation
provided by the DL frameworks. Additionally, NeuGraph fur-
ther provides the backward-Gather operator to distribute the
accumulation gradient returned by the backward-ApplyVertex
stage across edges, and the backward-Scatter operator to ac-
cumulate all the partial gradients returned by the backward-
ApplyEdge stage for a vertex in the previous layer.

Note that it is not necessary to enforce strict global barri-
ers between stages in the SAGA-NN model. NeuGraph can
flexibly schedule the chunk-based operators simply based
on the data dependencies described in the dataflow graph.
The system maintains the working set of operators within
GPU memory by employing explicit device-to-host (D2H)
and host-to-device (H2D) operators to conduct data swapping
between the host and GPU memory. Also, during a training
process, some intermediate feature data (e.g., the result of
matrix multiplication in the ApplyEdge stage as in Figure 5)
relevant to vertex chunks or edge chunks will be used in back-

W

E0,0V0 V1

mat
mul

add

mat
mul

sig mul Gather

ApplyEdgeV0

E1,0

V1

WC

src

dst

V0’

SAG SAG

A0

WH

Scatter

mat
mul ReLU

ApplyVertex

E1,0

A0

weights
params.

Accum.

Figure 5: Chunk-based dataflow graph for a destination in-
terval V0 at a G-GCN layer. The backward dataflow graph
and the swapping of intermediate results to host memory for
backward are omitted for a clear visualization.

propagation. To save GPU memory, they are swapped out
to host memory during the feed-forward computation and
swapped back in during the back-propagation.
Discussion. The source vertex determines the row of the
edge chunk and the destination vertex determines the column
of the edge chunk. For every GNN layer, edge processing
can be done in either a row-oriented or a column-oriented
manner, based on the update pattern. For the forward com-
putation, data flows from the source vertex to the destination
vertex. With this pattern, row-oriented processing loses the
opportunity of reusing the accumulated vertex data chunks,
whose total size can be larger than the size of GPU memory.
NeuGraph therefore adopts a column-oriented approach as
illustrated in Figure 5, where it continuously executes oper-
ators in the Scatter-ApplyEdge-Gather (SAG) stages for V0
and V1 to produce A0, which is subsequentially consumed by
operators in the ApplyVertex stage. The destination vertex
chunk and the corresponding accumulated vertex data chunk
(e.g., A0 in the figure) can be reused in GPU memory when
NeuGraph processes edge chunks in the same column, so that
data movement can be minimized.

By contrast, for the backward computation, a vertex gra-
dient is propagated from the destination vertex to the source
vertex. In this case, row-oriented processing is preferred.
The vertex gradient data chunk can be reused from GPU
memory when NeuGraph processes edge chunks in the same
row. In the rest of this section, we focus on the discussion
of the forward-pass execution of chunk-based dataflow, the
backward-pass execution is done in a similar manner.

Besides the chunk processing order, determining the num-
ber of vertex chunks P is also important. Assuming edge
chunks are accessed in the column-oriented manner in the for-
ward pass, each edge chunk is accessed once, and each source
vertex chunk is loaded P times. Thus, a smaller P is preferred
to reduce I/O. NeuGraph selects P as the minimum integer to
fit each chunk in GPU memory. Given a chunk-size choice

USENIX Association 2019 USENIX Annual Technical Conference 447

and the scheduling plan of the dataflow graph, NeuGraph
computes the GPU memory requirement of the execution. If
this requirement is beyond GPU’s capacity, NeuGraph shrinks
the chunk size by increasing P.

3.2 Streaming Processing out of GPU Core

For each layer, NeuGraph can scale GNN computation be-
yond the GPU core by processing the dataflow subgraph for a
column of edge chunks (illustrated in Figure 5) in a column-
by-column way. As we show later in the experiments (Ta-
ble 2), the CPU-GPU data transfer has a significant impact
on the overall performance, especially for sparse graphs. Neu-
Graph introduces a streaming scheduler with two innovations:
selective scheduling that reduces data transfer on unnecessary
vertices, and pipeline scheduling that maximizes the overlap
between computation and data transfer.
Selective Scheduling. Unlike traditional graph algorithms
(e.g., PageRank), the vertex data in GNNs can be much larger
due to their high-dimensional feature vectors. To reduce the
transfer cost of vertex chunks, NeuGraph exploits sparsity
inherent in real-world graphs: To compute a specific edge
chunk, not all vertices in the corresponding vertex chunks
will be used due to the sparse graph structure (e.g., some
vertices have no edges in this chunk). So, when processing
an edge chunk E, NeuGraph applies a filter in CPU to select
the useful vertices from E’s source vertex chunk, and only
transfers the selected vertex data into GPU.

We notice that a random graph partition (e.g., a permuta-
tion of the vertices) makes selective scheduling inefficient.
Therefore, NeuGraph adopts a locality-aware graph partition-
ing algorithm (e.g., Kernighan-Lin algorithm) to condense as
many edges that are connected to the same vertex as possible
into one chunk (e.g., a diagonal one in the matrix of edge
chunks). In this way, better access locality can be achieved for
vertex data and hence more potential in selective scheduling.

Interestingly, when the majority of the vertices are useful
(e.g., in a dense subgraph), directly transferring the full vertex
chunk can be faster as it does not require additional memory
copies for filtering. So for an edge chunk, we dynamically
determine whether to apply the filtering in CPU based on the
fraction θ of useful vertices. Given the host memory copy
throughput Tcopy on the CPU side, the filtering cost is θ

Tcopy
.

Let Ttrans be the bulk transfer throughput from CPU to GPU.
For a vertex chunk, if θ <

Tcopy
Tcopy+Ttrans

, NeuGraph chooses to
apply filtering as it benefits the overall data transfer efficiency.
Otherwise, NeuGraph skips the filtering and directly loads
the entire vertex chunk into GPU.
Pipeline Scheduling. Besides the filtering optimization, Neu-
Graph further overlaps data transfer and computation through
a pipeline scheduling to hide the transfer latency. Instead of
streaming one edge chunk each time into GPU, NeuGraph
can stream multiple chunks into the GPU device memory.

1 2 3 4

1 3 2 4

Swap

Order:
1,2,3,4

Order:
1,3,2,4

Reduced
time

Chunk Loading

Chunk Computing

better
overlapped

1 2 43

1 3 2 4

Time

Figure 6: The swapping heuristic for a case of streaming two
edge sub-chunks (k = 2).

In this case, a smaller chunk size can increase overlapping
potential, which seems opposite to the requirement of a large
chunk size to reduce vertex access I/O.

To deal with this dilemma, we apply the second-level par-
titioning over the edge grid to improve streaming efficiency
without increasing the total I/O amount. Specifically, we hor-
izontally partition an edge chunk and its associated source
vertex chunk into k (k ≥ 2) fine-grained sub-chunks, which
enables parallel streaming processing of k sub-chunks. While
performing computation on an edge sub-chunk, NeuGraph
can simultaneously stream in other edge sub-chunks and their
associated source vertex sub-chunks.

Recall that different edge sub-chunks could have distinct
data transfer and computation cost due to different sparsi-
ty levels. NeuGraph carefully makes a scheduling plan for
streaming heterogeneous sub-chunks. Given a column of edge
sub-chunks, the system first generates the initial schedule plan
by assigning a random order for processing. Next, it repeat-
edly swaps the order of a pair sub-chunks such that a better
schedule plan with less time can be obtained. This process
stops when it converges or reaches maximum iterations.

Then, NeuGraph exploits the cyclic pattern inherent in
GNNs: Both the computation time and data transfer time of
each sub-chunk can be profiled in the first several iterations
and used in refining the scheduling plan for processing in the
following iterations. Specifically, the system simulates the
execution of the current schedule order based on the profiled
execution information of individual sub-chunks. As illustrated
in Figure 6, by examining the overlapping result in this simu-
lation, the system finds a sub-chunk whose data transfer time
is much shorter than the computation time, and within the
same chunk, another sub-chunk is an opposite case. By swap-
ping the order of these two heterogeneous edge sub-chunks,
the system enables a better balance between the computation
and data transfer.

3.3 Parallel Multi-GPU Processing

To improve scalability further, we can parallelize the train-
ing by partitioning the chunk-based dataflow (model paral-
lelism) over multi-GPUs. Our dataflow graph is easy to paral-
lelize due to its parallel nature, where GPUs can be assigned

448 2019 USENIX Annual Technical Conference USENIX Association

QPI

PCIe Switch

GPU

0

GPU

1

PCIe Switch

GPU

2

GPU

3

PCIe Switch

GPU

4

GPU

5

PCIe Switch

GPU

6

GPU

7

PCIe Host

Bridge

x16 x16 x16 x16 x16 x16 x16 x16x16 x16 x16 x16 x16 x16 x16 x16

x16 x16 x16 x16x16 x16 x16 x16

CPU /

DRAM

CPU /

DRAM

Ring

PCIe Host

Bridge

Figure 7: Multi-GPU architecture

dataflow subgraphs for different columns for cooperative pro-
cessing.

However, with recent advances in hardware, modern multi-
GPU systems introduce complex inter-connections among
GPUs and across GPUs and CPUs, which presents new chal-
lenges to parallelize a dataflow graph. To illustrate this issue,
Figure 7 shows the topology of a typical 8-GPU server, where
GPUs are connected to CPU/DRAM (host memory) via a
multi-level PCIe interface hierarchy. The upper level links
that are shared by multiple communication paths can easily
become a bottleneck. For example, GPUs 0 and 1 can only
reach half of their peak bandwidth when reading edge/vertex
data from host memory simultaneously, as limited by the link
from the left-most PCIe switch to DRAM. Connecting the
host to an accelerator like GPU via PCIe is the most common
channel at present. We start from a common case, which may
apply to other architectures.

To maximize the parallelism degree on multiple GPUs
and prevent shared inter-connection links from becoming
a bottleneck, NeuGraph employs a chain-based streaming
scheduling scheme. Note that a vertex chunk is required by
all the GPUs processing different columns of edge chunks.
So, our idea is to let a GPU forward the vertex chunk (once
loaded to its memory) to its neighbor GPU under the same
PCIe switch, which can eliminate the bandwidth contention
on the upper-level shared inter-connection link. NeuGraph
therefore logically considers the GPUs under the same PCIe
switch as a large virtual GPU and enables them to share data
in a chain order as illustrated by the red dotted line in Figure 7.

In chain-based scheduling, each GPU streams one column
of edge chunks and all vertex chunks to compute a destina-
tion vertex chunk. Note that the vertex data chunk for the
destination interval can be initially loaded and cached in GPU
memory. For simplicity, we assume that only the source ver-
tex data is required for the computation. In particular, a GPU
needs to take the following two operations: 1) loading an edge
chunk from the host memory, and a data chunk from the host
memory or from the device memory of its previous GPU in
the chain, and 2) performing local computations. NeuGraph
employs a coordinated scheduling to better overlap the two
operations. As illustrated in Figure 8, we group GPUs into
multiple virtual GPUs according to the inter-connection topol-
ogy; e.g., GPUs 0 and 1 constitute one virtual GPU; GPUs 2
and 3 constitute another. Initially, GPUs 0 and 2 load vertex
data chunk V0 from the host memory. After loading, GPUs 0

GPU 2 GPU 3GPU 0 GPU 1

E1,2 E1,3

E0,2 E0,3

E1,0 E1,1

E0,0 E0,1

chain-transfer

GPU 0 to 1

(same PCIe switch)
chain-transfer

GPU 2 to 3

V0

V1

GPU Processing Order

Figure 8: NeuGraph transfers vertex chunks along the chain.

and 2 start computing over chunk V0, and also begin loading
chunk V1 from the host memory. Meanwhile, GPUs 1 and
3 start fetching chunk V0 from GPUs 0 and 2, respectively.
Next, GPUs 1 and 3 drop the data chunk V0 after processing
it locally as the chunk has already been consumed by all vir-
tual GPUs. The whole process continues in such a pipelining
fashion until all vertex data chunks have been loaded and
processed.

In Section 3.2, we introduce the selective scheduling that
can help reduce data movement between the host and GPU
device memory. However, to apply selective scheduling in
chain-based streaming, we need to select the useful vertex data
required by the corresponding edge chunks in a virtual GPU;
e.g., E0,0 and E0,1 in Figure 8. In a multi-GPU execution,
we use the threshold θ =

Tcopy
Tcopy+Ttrans

to determine whether
or not to apply selective scheduling, where Tcopy and Ttrans
are aggregative memory-copy and aggregative data-transfer
throughput on both the CPU and GPU sides, respectively.
Thus, given limited CPU resources shared by a large number
of GPUs, NeuGraph applies selective scheduling on more
sparse chunks with a larger θ.

3.4 Graph Propagation Engine
Besides ensuring high streaming efficiency, NeuGraph also
introduces several important optimizations to reduce compu-
tation time in the execution of the Scatter-ApplyEdge-Gather
(SAG) stages, which are not easily amenable to efficient GPU
acceleration due to the often sparse edge structure of a graph.

First, NeuGraph incorporates a dataflow graph optimiza-
tion to remove redundant computations in the SAG stage by
considering the semantics of the SAGA-NN model. Consider
the matrix multiplication operations in the ApplyEdge stage
in Figure 5. These operations are conducted on vertex data
that are scattered to a subset of edges and the learnable param-
eters WC or WH that are shared by all edges. Because a vertex
may have multiple edges to which that the vertex data can be
scattered, such a multiplication for a vertex can be conducted
multiple times, leading to redundancies. NeuGraph therefore
moves the computations that are related only to the source or
destination vertices from the ApplyEdge stage of the current
layer to the ApplyVertex stage of the previous layer.

Second, to support the Scatter and Gather stages efficient-

USENIX Association 2019 USENIX Annual Technical Conference 449

Thread 0

Thread 1

v2 edge v1

Figure 9: Parallelism along the dimension of feature vector.

ly on GPUs, NeuGraph provides scatter/gather operation
kernels optimized for GPU executions. The design carefully
considers the data structure layout to allow the kernel to better
leverage the massive parallelism provided by GPU. In most
GNNs, the data of each vertex is a dense vector rather than a
scalar. We therefore exploit parallelism in per-vertex data ac-
cess that fits better to GPU with SIMD architectures. Figure 9
illustrates the scatter kernel passing the vertex data, from both
the source and the destination, onto an edge to form the edge
data. We assign a thread block to process incoming edges
with the same destination vertex. For vertices with a large
in-degree, we divide the incoming edges into consecutive sub-
groups to be processed by multiple thread blocks. In a thread
block, threads copy the source/destination vertex data into the
edge data in parallel along the dimension of the vertex feature
vector, ensuring good coalesced memory access. The gather
kernel reduces the partial accumulation vectors acc from a
set of edges that end at the same destination vertex accum
into an accumulated vector. We employ a similar principle
of exploiting parallelism for the scatter operator. A block of
threads first cooperatively enumerate an edge group, accumu-
late the features of every edge into a temporary vector in GPU
register, and finally write the result back to the corresponding
destination vertex.

Finally, NeuGraph supports Scatter-ApplyEdge-Gather
(SAG) stage fusion as another kernel optimization on exe-
cution of the propagation procedures. We find that, on most
GNN applications, especially after the dataflow graph opti-
mization, the ApplyEdge function only performs element-
wise operations, such as +, -, ×, ÷, tanh, sigmoid, ReLU .
In this case, we can optimize SAG stages by allowing the
vertex/edge data to be directly updated with element-wise
operations in GPU registers and then written back to their
destination vertices in a single pass, without any extra cost of
creating intermediate edge data in the GPU global memory. To
achieve that, NeuGraph automatically detects such a case and
replaces the whole SAG stages using a specially customized
operation called Fused-Gather. This operation processes each
edge chunk as follows: It first loads the inputs of Scatter;
i.e., source vertices and edge data, into GPU registers, and
then uses GPU threads to perform in-place updates directly
on elements in registers based on user-defined element-wise
operations in ApplyEdge. It finally produces the vector acc,
which is summed onto the corresponding vertex accumulation
vector accum with the user-defined Gather.accumulator.

4 Implementation

We implemented NeuGraph on top of TensorFlow (v1.7) with
about 5,000 lines of C++ code and 3,000 lines of Python code.
NeuGraph uses TensorFlow as the dataflow execution run-
time, and additionally provides three specialized modules for
GNN applications: (1) an engine translating a vertex-centric
symbolic program into dataflow; (2) a streaming scheduler im-
plementing the core scheduling logic; (3) a graph propagation
engine with optimized kernels for the proposed Gather/Scat-
ter operators. We discuss several important aspects of our
implementation next.

Dataflow Translation. NeuGraph provides a base class
GNNlayer in addition to the conventional operators; users
can easily define each layer of a GNN algorithm by providing
a symbolic vertex-program. Then NeuGraph divides vertices
and edges into chunks, and generates a chunk-based dataflow
graph by appropriately connecting GNN-layers with Gather
and Scatter according to the user program. NeuGraph prepro-
cesses the graph using the min-cut partition of METIS [21],
and organizes each edge chunk in the compressed sparse col-
umn (CSC) format for the feed-forward computation, while
using the compressed sparse row (CSR) format for back-
propagation computation.

Streaming Scheduler. To improve performance, the stream-
ing scheduler first analyzes the received dataflow graph and
incorporates the optimizations described in Section 3.2. Neu-
Graph implements a filtering operator running on the CPU
side, and determines whether to apply it before the H2D oper-
ator of each vertex chunk based on the percentage of relevant
vertices (i.e., selectivity). Also, NeuGraph profiles the trans-
fer/computation information of edge chunks and revises the
dataflow graph based on the refined scheduling plan discussed
in Section 3.2.

Multi-GPU Execution. Different devices in NeuGraph need
to communicate with one another for coordination. In existing
DL frameworks, an operator is usually dispatched to a specific
device, with its input and output tensors on the same device.
The multi-GPU communication in NeuGraph is executed
by a series of concurrent operators from different devices.
In each operator, after memory is allocated on a device for
communication, it will exchange addresses with other devices
for upcoming device-to-device data transfer. Parameters in
different GPUs also need synchronization in each iteration.
This is implemented by all-reduce.

Graph Propagation Engine. The graph engine contains
graph-specific operator kernels. NeuGraph has optimized im-
plementations for the proposed operators (gather, scatter,
fused-gather). Specifically, scatter is a map operator that turns
vertex data into edge data, and gather is a reduce operator
that accumulates edge data for each vertex. Also, NeuGraph
implements fused-gather operator described in Section 3.4 to
enable one-pass edge computation when the edge computa-

450 2019 USENIX Annual Technical Conference USENIX Association

CommNet(v`): // computing v`+1

params p = [W `
H , W `

C]
// Passing data over edges
edge` = Scatter(v`)
// no edge-parallel computation
acc = ApplyEdge(edge`):
return edge`.src

set Gather.accumulator = sum
accum = Gather(acc)
// compute new vertex data
v`+1 = ApplyVertex(v`, accum , p):
return ReLU

(
p.W `

H ⊗v`+p.W `
C⊗accum

)
return v`+1

Figure 10: CommNet in SAGA-NN

GCN(v`): // computing v`+1

params p = W `

// Passing data over edges
edge` = Scatter(v`)
// edge.data is static weight
acc = ApplyEdge(edge`):
return edge`.src × edge`.data

set Gather.accumulator = sum
accum = Gather(acc)
// compute new vertex data
v`+1 = ApplyVertex(v`,accum ,p):
return ReLU

(
p.W `⊗accum

)
return v`+1

Figure 11: GCN in SAGA-NN

GG-NN(v`): // computing v`+1

// different for each edge type
params p, A
edge` = Scatter(v`)
// edge.data is edge type
acc = ApplyEdge(edge`, A):
return A(edge`.data) ⊗ edge`.src

set Gather.accumulator = sum
accum = Gather(acc)
// compute new vertex data with GRU
v`+1 = ApplyVertex(v`, accum , p):
return GRU(vertex`, accum)

return v`+1

Figure 12: GG-NN in SAGA-NN

tion is element-wise.

5 Evaluation

In this section, we demonstrate the efficiency and scalability
of NeuGraph by evaluating it on multiple GNNs and datasets.
GNN Models. NeuGraph can support many different types
of graph-based neural networks [7,8,13,18,19,23,25,29,41].
We use the following three representative GNN models.

Communication neural network (CommNet) [41] is a model
with which cooperating agents learn to communicate among
themselves before taking actions. This network can be used
to solve multiple learning communication tasks like traffic
control. In CommNet, there is no computation on the edge, so
the ApplyEdge stage is simply a passthrough (see Figure 10).

Graph convolutional network (GCN) [19,23] applies convo-
lutional operations to an arbitrary graph, and has been used in
many semi-supervised or unsupervised graph clustering prob-
lems, such as entity classification in a knowledge graph. GCN
(see Figure 11) has a computation (without neural networks)
on the edge for weighted neighbor activation.

Gated graph sequence neural network (GG-NN) [25] ap-
plies recurrent neural networks (RNNs) to graph data and is
used for NLP tasks. GG-NN performs NN-based edge compu-
tation (see Figure 12), with different parameters for different
edge types. It also performs a heavy Gated Recurrent Unit
(GRU) computation on vertices.

We chose these GNNs as the benchmark algorithms in the
evaluation not only because of their different computation
patterns, but also for the purpose of comparing with Tensor-
Flow: the propagation stage in these cases can be treated as a
sparse matrix multiplication and therefore expressible in Ten-
sorFlow. Certain algorithms such as G-GCN in our running
example cannot be directly supported using the TensorFlow
multiplication operators.
Datasets. Table 1 lists the real-world datasets used for evalu-
ation, including the PubMed citation network (pubmed) [38],
the BlogCatalog social network (blog) [42], the Reddit on-
line discussion forum (reddit-small, reddit-full) [18], the
Wikipedia data dump (enwiki) [3], and the Amazon data dump

Dataset vertex# edge# feature label avg. degree
pubmed 19.7K 108.4K 500 3 5
blog 10.3K 668.0K 128 39 65
reddit-small 58.2K 1.4M 300 41 25
reddit-full 2.4M 705.9M 300 50 292
enwiki 3.6M 276.1M 300 12 77
amazon 8.6M 231.6M 96 22 27

Table 1: Datasets (K: thousand, M: million).

(amazon) [30]. The column feature in Table 1 reports the sizes
of the vertex feature vectors, and the label column contains
the numbers of label classes. As different GNN tasks share
the same GNN architecture and differ only on the output layer,
we tested the performance of our system on the task of vertex
classification (e.g., classifying academic papers into differ-
ent subjects in the PubMed citation dataset, which contains
sparse bag-of-words feature vectors for each document and a
list of citation links between documents) and set the number
of layers `= 2 in experiments.
Environment and Baselines. We evaluated NeuGraph on
a multi-GPU server, which is equipped with dual 2.6 GHz
Intel Xeon E5-2690v4 processors (28 cores in total), 512 GB
memory, and 8 NVIDIA Tesla P100 GPUs. The installed
operating system is Ubuntu 16.04, using the libraries CUDA
9.0 and cuDNN 7.0.

We compared NeuGraph (NG) with TensorFlow v1.7 (TF)
[4], GraphSAGE [18] (TensorFlow backend) and DGL v0.1.3
(PyTorch v1.0 [2] backend) [1]. GraphSAGE is a modeling
framework for inductive representation learning on graphs
and is widely used to generate low-dimensional vector repre-
sentations for vertices. DGL is a Python package that serves
as an interface between any existing tensor libraries and data
expressed as graphs, thereby making it easy to implement
GNNs.

We took the existing open-source implementations [1, 18,
23] i. We also implemented a basic extension, integrating
TensorFlow with the chunk-based dataflow translation (TF-
SAGA). The TF-SAGA can support larger GNN models, but

iFor fair comparison, we took minor optimizations (e.g., replacing ineffi-
cient feed_dict with preloaded data tensors in memory to avoid redundant
memory copies from python runtime to TensorFlow runtime).

USENIX Association 2019 USENIX Annual Technical Conference 451

 0

 0.02

 0.04

 0.06

 0.08

GCN
CommNet

GG-NN

T
im

e(
s)

pubmed

DGL
TF

TF-SAGA
NG

 0
 0.04
 0.08
 0.12
 0.16
 0.2

GCN
CommNet

GG-NN

T
im

e(
s)

blog

DGL
TF

TF-SAGA
NG

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

GCN
CommNet

GG-NN

T
im

e(
s)

reddit-small

DGL
TF

TF-SAGA
NG

Figure 13: End-to-end performance comparison among DGL,
TensorFlow (TF), TF-SAGA and NeuGraph (NG) on small
datasets. GraphSAGE runs OOM.

with all other optimizations described in Section 3 disabled.
The comparison with TF-SAGA can reveal how much each
optimization contributes to the overall performance.

We focused on metrics for system performance; e.g., time
to scan one epoch of data. NeuGraph produces the same
numerical results as TensorFlow and DGL, and hence has the
same per-epoch convergence. All performance numbers in
our experiments are calculated by computing the averages
over 10 epochs.

5.1 Performance on a Single GPU
First, we evaluated NeuGraph by comparing it with the state-
of-the-art frameworks TensorFlow, DGL, and GraphSAGE.
As TensorFlow and DGL can only process graphs that fit
in the device memory of a single GPU, we conducted these
experiments on the first three small graphs in Table 1.

Figure 13 shows the end-to-end comparison results among
different models and datasets. Overall, NeuGraph achieves on
average a 2.5× speedup (up to 5.0×) compared with Ten-
sorFlow, and on average an 8.1× speedup (up to 19.2×)
compared with DGL. We found that the properties of both
graphs and models impact performance. NeuGraph achieves
the largest speedup with GCN on the blog dataset. This is
mainly because the high average vertex degree of the blog
graph leads to greater graph propagation (i.e., SAG stages)
costs, which NeuGraph can optimize more effectively.

Due to lack of graph support on TensorFlow, GraphSAGE
implements GNNs through sampling neighbors and padding
to convert irregular graphs to regular tensors. It leads to out of
memory even on small graphs using the same evaluation setup
(i.e., processing the whole graph with the sampler disabled).
Moreover, it still runs about 5× slower than NeuGraph for
GCN on pubmed even if the sampler is set to sample exactly
one neighbor per vertex.

5.2 Scaling-up on a Single GPU
Since TensorFlow failed to process large graphs on GPU due
to the out of memory (OOM) exceptions, we ran TensorFlow
only on CPU. Accordingly, besides running TF-SAGA on

0

20

40

200

220

GCN
CommNet

GG-NN

T
im
e(
s)

reddit-full
TF(CPU)

TF-SAGA(CPU)
TF-SAGA

NG

0
10
20

70
80

GCN
CommNet

GG-NN

T
im
e(
s)

enwiki
TF(CPU)

TF-SAGA(CPU)
TF-SAGA

NG

0
10
20

40
50

GCN
CommNet

GG-NN

T
im
e(
s)

amazon
TF(CPU)

TF-SAGA(CPU)
TF-SAGA

NG

Figure 14: NeuGraph end-to-end performance comparisons
on different large datasets. TensorFlow uses CPU-only mode
as OOM occurs on GPU. TF-SAGA (CPU) is configured to
run on CPU only, whereas TF-SAGA is GPU-enabled.

 0
 1
 2
 3
 4
 5

reddit-full enwiki amazon
S

pe
ed

 u
p

TF-SAGA
+ NG-kernel
+ NG-selective
+ NG-pipeline
+ NG-swap

Figure 15: NeuGraph performance improvement breakdown
of end-to-end on GCN model over different large datasets.
The speedup is measured over the TF-SAGA (speedup = 1).

GPU, we also ran it on CPU. DGL also experienced OOM ex-
ceptions when directly processing large graphs on GPU, there-
fore requiring additional graph sampling to alleviate memory
pressure at the expense of model capacity and convergence
guarantee. By contrast, NeuGraph can scale GNNs beyond
GPU memory without loss on the model scale. Note that Neu-
Graph can also support the same graph sampling approaches
as DGL. In this case, the results in Section 5.1 have already
demonstrated that NeuGraph significantly outperforms DGL
for small model scales on a single GPU. Hence, we do not
compare them again here but focus instead on model scales
that cannot fit in GPU memory.
End-to-end Comparison. Figure 14 shows the end-to-end
comparison results among different models and datasets. Un-
der the same CPU-only mode, TF-SAGA can achieve on
average a 4.3× speedup over TensorFlow. That is because
TF-SAGA on CPU contains finer grained chunk-level opera-
tors, which can be processed concurrently on the CPUs and
make better use of the CPU resources. Moreover, NeuGraph
achieves 16∼ 47× speedups compared to TensorFlow-CPU,
which is the current solution for large graphs.

Compared with TF-SAGA on GPU, NeuGraph could pro-
vide even better performance with its additional optimiza-
tions. Figure 14 shows that NeuGraph achieves 2.4∼ 4.9×
speedups over the GPU-enabled TF-SAGA on different
models and datasets. Similar to those on small graphs, the
speedups on large graphs depend on the graph structure. The
average speedup across all models on the reddit-full graph
with the highest vertex degree is 4.6× over the GPU-enabled

452 2019 USENIX Annual Technical Conference USENIX Association

Time (s) TF-SAGA NeuGraph
Dataset IO Comp. Runtime IO Comp. Runtime
reddit-full 7.67 13.27 20.94 3.84 2.46 4.28
enwiki 5.93 5.13 11.07 3.24 1.77 3.63
amazon 5.11 1.44 6.55 1.56 1.18 1.82

Table 2: GCN on large graphs: TF-SAGA vs. NeuGraph.
NeuGraph overlaps I/O and computation time.

TF-SAGA, as opposed to 2.8× on the enwiki graph with mod-
erate vertex degree and 3.1× for the amazon graph with the
lowest vertex degree.

Breakdown Comparison. Both streaming and kernel opti-
mizations can play important roles in achieving good overall
performance after scaling GNN out of GPU core. To under-
stand how much each optimization contributes to the overall
performance, we disabled the graph propagation kernel op-
timization (NG-kernel) described in Section 3.4, as well as
selective scheduling (NG-selective) and pipeline scheduling
(NG-pipeline and NG-swap) described in Section 3.2. It ef-
fectively turns NeuGraph into the TF-SAGA. We then turned
on these optimizations one by one and measured the resulting
speedups they brought. To better understand the improvement,
we also profiled the GCN execution on both TF-SAGA and
NeuGraph with nvprof [32].

Figure 15 shows the improvement of each optimization
over TF-SAGA for GCN. The results under other models are
similar. We found that the graph kernel optimization works
better on dense graphs (like reddit-full), whereas selective
scheduling is more effective on sparse graphs (like ama-
zon). For example, the graph kernel optimization can achieve
a 2.8× speedup on the reddit-full graph, but only a 1.2×
speedup on the amazon graph. However, selective scheduling
can still bring an additional 2.6× speedup on the amazon
graph. That is because a high-density graph leads to a higher
computation cost on SAG stage, which is the target of the
graph kernel optimization, whereas a low-density graph with
selective scheduling can filter more unnecessary vertices. The
figure also shows that our swap-based pipeline scheduling
can bring significant improvement by effectively overlapping
data transfer and computation, especially on the reddit-full
graph where data chunks highly heterogeneous.

Table 2 shows the time of the host-device data transfer
(I/O) and computation (Comp.) for TF-SAGA and NeuGraph.
Compared to TF-SAGA, the optimizations in NeuGraph re-
duce both I/O and computation significantly and achieve good
overlapping with pipeline scheduling.

As described in Section 3.1, the processing order of chunks
may also impact performance. To examine the exact effect
of processing order, we ran NeuGraph with the streaming
processing optimizations described in Section 3.2 disabled.
Figure 16 shows that, for the forward-backward pass, the
column-row-oriented strategy is 1.4 ∼ 1.7× faster than the
row-column-oriented one.

 0
 2
 4
 6
 8

 10
 12
 14
 16

reddit-full enwiki amazon

T
im

e
(s

)

Row-Column Sched.
Column-Row (NG) Sched.

Figure 16: NeuGraph with row/column-oriented chunk
scheduling: GCN on large graphs.

5.3 Scaling-out on Multiple GPUs

As described in Section 3.3, we can easily extend TF-SAGA
from one GPU to multiple GPUs by allowing each GPU to
process a dataflow subgraph, without considering the band-
width contention. We compared it to NeuGraph with the chain-
based scheduling disabled or enabled, in order to understand
the performance of our topology-aware scheduling.

Figure 17 shows the results of the GCN model on three
large graphs; the results of other GNN models are simi-
lar. NeuGraph significantly outperforms the multi-GPU TF-
SAGA with the chain-based scheduling enabled or disabled.
The average speedup of NeuGraph is 3.6×/2.7× over multi-
GPU TF-SAGA with varying numbers of GPUs.

The benefit of the chain-based scheduling is highlighted in
the comparison between enabling and disabling this topology-
aware scheduling. For example, when scaling from 1 GPU
to 2 GPUs, the average speedup of the disabled case even
decreases, whereas the enabled one can improve from 3.8×
to 5.5× over the single GPU TF-SAGA. This is mainly be-
cause, without the chain-based scheduling, two GPUs within
the same PCIe switch need to load input edge/vertex data
through a shared link concurrently, which can easily become
the bottleneck. By contrast, the chain-based mechanism al-
lows the second GPU to load vertex data directly from the
first one, reducing the pressure on the shared PCIe link.

We observed that the chain-based scheduling achieves near-
ly linear speedup on the reddit-full and enwiki graphs, but
exhibits less optimal results on the relatively sparse amazon
graph. The reason is that NeuGraph tends to apply selective
scheduling on relatively sparse graphs. However, given the
limited CPU resources shared by an increasing number of
GPUs, NeuGraph has to decrease usage of the CPU for per-
GPU filtering. Also, the current TensorFlow implementation
cannot support NUMA-aware tensor allocation well, which
imposes a performance impact on the CPU filtering, espe-
cially on sparse graphs like the amazon where the filtering is
often used.

6 Related Work
The growing scale and importance of graph data has driv-
en the development of numerous specialized graph process-
ing systems, including Pregel [28], GraphLab [26], Power-

USENIX Association 2019 USENIX Annual Technical Conference 453

1
4

8

16

 1 2 4 8

S
pe

ed
 u

p

GPU#

reddit-full

NG-chain
NG w/o.chain

TF-SAGA

1

4

8

16

 1 2 4 8
GPU#

enwiki

NG-chain
NG w/o.chain

TF-SAGA

1

4

8

16

 1 2 4 8
GPU#

amazon

NG-chain
NG w/o.chain

TF-SAGA

Figure 17: Scaling out GCN with NeuGraph on large graphs (w/o refers to without). The speedup is measured over the single GPU
TF-SAGA (speedup = 1). Chain-base scheduling works on multi-GPU, resulting in the same 1 GPU point with it enabled/disabled.

Graph [15] and GraphX [16]. There are many other following
works with optimizations on different aspects including graph
layout, sequential data access, and secondary storage (e.g.,
GraphChi [24], Grace [34], FlashGraph [53], XStream [36]
and Chaos [35]), distributed shared memory and RDMA (e.g.,
Grappa [31] and GraM [45]), NUMA-awareness, schedul-
ing, and graph partitioning (e.g., PowerLyra [10] and Bi-
Graph [11]). All these works focus on CPU based computa-
tion.

There is another series of system works that focus on ex-
ploiting GPU for large graph processing. GraphReduce [39]
can process out-of-memory graphs on a single GPU and op-
timize memory coalescing by using two different formats.
GTS [22] can also process out-of-memory graphs on multiple
GPUs by fully exploiting the asynchronous GPU streams.
Garaph [27] exploits edge-centric parallelism and dynamic
scheduling to achieve the best performance on the CPU/GPU
hybrid platform. Lux [20] investigates the placement of graph
data over the CPU memory hierarchy on multiple nodes. All
these graph processing systems are driven by basic graph
benchmarks such as PageRank and shortest path, but lack the
support for neural network computation, such as the tensor
abstraction and auto-differentiation. To be compatible with
existing DL libraries, NeuGraph chooses to recast the graph-
specific optimizations as dataflow optimizations on top of DL
frameworks (e.g., TensorFlow). This does not limit the capa-
bility of expressing a general DL computation, and allows
users to benefit from both graph and DL optimizations.

TuX2 [47] aims to bridge the gap between graph and tra-
ditional machine learning computation, while NeuGraph tar-
gets neural network computation on graphs, which connects
graph processing and deep learning supported by the dataflow
frameworks like TensorFlow [4], PyTorch [2], MXNet [12],
and CNTK [50], etc. Most recently, Cavs [48] introduces
the vertex-centric programming model into dynamic neural
networks to address the problems that each sample has a
unique dataflow graph and the training is iterative on batch-
es of samples. NeuGraph addresses different problems and
challenges regarding scalability and performance in support-
ing GNN models on large real-world graphs. DGL [1] wraps
DL systems with a message-passing programming interface

for GNNs, while NeuGraph addresses the system challenges
(e.g., scalability and efficiency) by translating graph-aware
computation on dataflow and recasting graph optimizations.

From the modeling perspective, there are several model-
ing works (e.g., GraphSAGE [18], MPNN [14], and GN-
Block [5]) that attempt to unify existing GNNs into a sin-
gle modeling framework. These generalized modeling frame-
works can be implemented easily and executed efficiently
at scale by NeuGraph. Recently developed graph sampling
approaches (e.g., DGL [1], GraphSAGE [18], PinSAGE [49],
and FastGCN [9]) alleviate scalability challenges of GNNs
at the expense of model capacity and convergence guaran-
tee. These approaches are orthogonal to and compatible with
our work. NeuGraph frees users from choosing appropriate
sample sizes and worrying about GPU memory limitations.

7 Conclusion and Future Work

GNN is an emerging computation model that arises natural-
ly from the need to apply neural network models on graphs.
Supporting efficient and scalable parallel computation for
GNN training is demanding due to its inherent complexi-
ty. Given this new requirement, we advocate unifying graph
computation and deep learning systems for GNNs. NeuGraph
represents a critical step in this direction by showing not only
the feasibility, but also the potential of such unification. We
accomplish this by defining a new, flexible SAGA-NN model
to express GNN algorithms by fusing graph-related optimiza-
tions into the management of data partitioning, scheduling
and parallelism in deep learning frameworks.

One potential future direction is to scale GNN further to
multiple servers, by leveraging the work in distributed graph
systems [40, 44, 45].

Acknowledgments

We thank the anonymous reviewers for their valuable com-
ments and suggestions. We are particularly grateful to our
shepherd Harry Xu for his detailed guidance in the final revi-
sion process.

454 2019 USENIX Annual Technical Conference USENIX Association

References

[1] Deep graph library. https://github.com/dmlc/dgl,
Retrieved January, 2019.

[2] PyTorch. http://pytorch.org, Retrieved January,
2019.

[3] Wikimedia downloads. https://dumps.wikimedia.
org/, Retrieved May, 2018.

[4] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tuck-
er, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. Tensorflow: A system for
large-scale machine learning. In Proceedings of the 12th
USENIX Symposium on Operating Systems Design and
Implementation, OSDI’16, pages 265–283. USENIX
Association, 2016.

[5] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Al-
varo Sanchez-Gonzalez, Vinicius Zambaldi, Mateusz
Malinowski, Andrea Tacchetti, David Raposo, Adam
Santoro, Ryan Faulkner, et al. Relational inductive bias-
es, deep learning, and graph networks. arXiv preprint
arXiv:1806.01261, 2018.

[6] Rianne van den Berg, Thomas N Kipf, and Max Welling.
Graph convolutional matrix completion. arXiv preprint
arXiv:1706.02263, 2017.

[7] Xavier Bresson and Thomas Laurent. Residual gated
graph convnets. arXiv preprint arXiv:1711.07553, 2017.

[8] Thang D. Bui, Sujith Ravi, and Vivek Ramavajjala.
Neural graph learning: Training neural networks using
graphs. In Proceedings of 11th ACM International Con-
ference on Web Search and Data Mining, WSDM’18,
pages 64–71. ACM, 2018.

[9] Jie Chen, Tengfei Ma, and Cao Xiao. FastGCN: fast
learning with graph convolutional networks via impor-
tance sampling. In International Conference on Learn-
ing Representations, ICLR’18, 2018.

[10] Rong Chen, Jiaxin Shi, Yanzhe Chen, and Haibo Chen.
PowerLyra: Differentiated graph computation and par-
titioning on skewed graphs. In Proceedings of the
Tenth European Conference on Computer Systems, Eu-
roSys’15, pages 1:1–1:15. ACM, 2015.

[11] Rong Chen, Jiaxin Shi, Binyu Zang, and Haibing Guan.
Bipartite-oriented distributed graph partitioning for big
learning. In Proceedings of 5th Asia-Pacific Workshop
on Systems, APSys’14, pages 14:1–14:7. ACM, 2014.

[12] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang,
Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang,
and Zheng Zhang. MXNet: A flexible and efficient
machine learning library for heterogeneous distribut-
ed systems. In NIPS Workshop on Machine Learning
Systems, LearningSys’16, 2016.

[13] Michaël Defferrard, Xavier Bresson, and Pierre Van-
dergheynst. Convolutional neural networks on graphs
with fast localized spectral filtering. In Advances in
Neural Information Processing Systems, NIPS’16, pages
3844–3852, 2016.

[14] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley,
Oriol Vinyals, and George E Dahl. Neural message
passing for quantum chemistry. In Proceedings of the
34th International Conference on Machine Learning-
Volume 70, ICML’17, pages 1263–1272. JMLR. org,
2017.

[15] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny
Bickson, and Carlos Guestrin. PowerGraph: Distributed
graph-parallel computation on natural graphs. In Pro-
ceedings of the 10th USENIX Symposium on Operating
Systems Design and Implementation, OSDI’12, pages
17–30. USENIX Association, 2012.

[16] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave,
Daniel Crankshaw, Michael J. Franklin, and Ion Sto-
ica. GraphX: Graph processing in a distributed dataflow
framework. In Proceedings of the 11th USENIX Sympo-
sium on Operating Systems Design and Implementation,
OSDI’14, pages 599–613. USENIX Association, 2014.

[17] Marco Gori, Gabriele Monfardini, and Franco Scarselli.
A new model for learning in graph domains. In Proceed-
ings of the 2005 IEEE International Joint Conference
on Neural Networks, IJCNN’05, pages 729–734. IEEE,
2005.

[18] William L. Hamilton, Rex Ying, and Jure Leskovec. In-
ductive representation learning on large graphs. In
Advances in neural information processing systems,
NIPS’17, pages 1024–1034, 2017.

[19] Mikael Henaff, Joan Bruna, and Yann LeCun. Deep
convolutional networks on graph-structured data. arXiv
preprint arXiv:1506.05163, 2015.

[20] Zhihao Jia, Yongkee Kwon, Galen Shipman, Pat Mc-
Cormick, Mattan Erez, and Alex Aiken. A distributed
multi-gpu system for fast graph processing. Proceedings
of the VLDB Endowment, 11(3):297–310, November
2017.

[21] George Karypis and Vipin Kumar. A fast and high qual-
ity multilevel scheme for partitioning irregular graphs.

USENIX Association 2019 USENIX Annual Technical Conference 455

https://github.com/dmlc/dgl
http://pytorch.org
https://dumps.wikimedia.org/
https://dumps.wikimedia.org/

SIAM Journal on scientific Computing, 20(1):359–392,
1998.

[22] Min-Soo Kim, Kyuhyeon An, Himchan Park, Hyunseok
Seo, and Jinwook Kim. GTS: A fast and scalable graph
processing method based on streaming topology to gpus.
In Proceedings of the 2016 ACM SIGMOD Internation-
al Conference on Management of Data, SIGMOD ’16,
pages 447–461. ACM, 2016.

[23] Thomas N. Kipf and Max Welling. Semi-supervised
classification with graph convolutional networks. In
International Conference on Learning Representations,
ICLR’17, 2017.

[24] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin.
GraphChi: Large-scale graph computation on just a PC.
In Proceedings of the 10th USENIX Symposium on Op-
erating Systems Design and Implementation, OSDI’12,
pages 31–46. USENIX Association, 2012.

[25] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and
Richard Zemel. Gated graph sequence neural networks.
In International Conference on Learning Representa-
tions, ICLR’16, 2016.

[26] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos
Guestrin, Aapo Kyrola, and Joseph M Hellerstein. Dis-
tributed GraphLab: a framework for machine learning
and data mining in the cloud. Proceedings of the VLDB
Endowment, 5(8):716–727, 2012.

[27] Lingxiao Ma, Zhi Yang, Han Chen, Jilong Xue, and
Yafei Dai. Garaph: Efficient gpu-accelerated graph
processing on a single machine with balanced replica-
tion. In Proceedings of the 2017 USENIX Annual Tech-
nical Conference, USENIX ATC’17, pages 195–207.
USENIX Association, 2017.

[28] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik,
James C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz
Czajkowski. Pregel: A system for large-scale graph
processing. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data, SIG-
MOD’10, pages 135–145. ACM, 2010.

[29] Diego Marcheggiani and Ivan Titov. Encoding sen-
tences with graph convolutional networks for semantic
role labeling. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Processing,
EMNLP’17, pages 1506–1515. Association for Compu-
tational Linguistics, 2017.

[30] Julian McAuley, Christopher Targett, Qinfeng Shi, and
Anton Van Den Hengel. Image-based recommendations
on styles and substitutes. In Proceedings of the 38th
International ACM SIGIR Conference on Research and

Development in Information Retrieval, SIGIR’15, pages
43–52. ACM, 2015.

[31] Jacob Nelson, Brandon Holt, Brandon Myers, Preston
Briggs, Luis Ceze, Simon Kahan, and Mark Oskin.
Latency-tolerant software distributed shared memory. In
Proceedings of the 2015 USENIX Annual Technical Con-
ference, USENIX ATC’15, pages 291–305. USENIX
Association, 2015.

[32] Nvidia Corporation. Profiler :: Cuda toolkit
documentation. https://docs.nvidia.com/cuda/
profiler-users-guide/index.html, Retrieved Jan-
uary, 2019.

[33] Nanyun Peng, Hoifung Poon, Chris Quirk, Kristina
Toutanova, and Wen-tau Yih. Cross-sentence n-ary re-
lation extraction with graph lstms. Transactions of the
Association for Computational Linguistics, 5:101–115,
2017.

[34] Vijayan Prabhakaran, Ming Wu, Xuetian Weng, Frank
McSherry, Lidong Zhou, and Maya Haradasan. Manag-
ing large graphs on multi-cores with graph awareness.
In Proceedings of the 2012 USENIX Annual Technical
Conference, USENIX ATC’12, pages 41–52. USENIX
Association, 2012.

[35] Amitabha Roy, Laurent Bindschaedler, Jasmina Malice-
vic, and Willy Zwaenepoel. Chaos: Scale-out graph
processing from secondary storage. In Proceedings of
the 25th Symposium on Operating Systems Principles,
SOSP’15, pages 410–424. ACM, 2015.

[36] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel.
X-Stream: Edge-centric graph processing using stream-
ing partitions. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles,
SOSP’13, pages 472–488. ACM, 2013.

[37] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus
Hagenbuchner, and Gabriele Monfardini. The graph
neural network model. IEEE Transactions on Neural
Networks, 20(1):61–80, 2009.

[38] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise
Getoor, Brian Galligher, and Tina Eliassi-Rad. Col-
lective classification in network data. AI magazine,
20(1):61–80, 2008.

[39] Dipanjan Sengupta, Shuaiwen Leon Song, Kapil Agar-
wal, and Karsten Schwan. GraphReduce: Processing
large-scale graphs on accelerator-based systems. In
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Anal-
ysis, SC ’15, pages 28:1–28:12. ACM, 2015.

456 2019 USENIX Annual Technical Conference USENIX Association

https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://docs.nvidia.com/cuda/profiler-users-guide/index.html

[40] Jiaxin Shi, Youyang Yao, Rong Chen, Haibo Chen, and
Feifei Li. Fast and concurrent rdf queries with rdma-
based distributed graph exploration. In Proceedings
of the 12th USENIX Symposium on Operating Systems
Design and Implementation, OSDI’16, pages 317–332.
USENIX Association, 2016.

[41] Sainbayar Sukhbaatar, Arthur Szlam, and Rob Fergus.
Learning multiagent communication with backpropa-
gation. In Advances in Neural Information Processing
Systems, NIPS’16, pages 2244–2252, 2016.

[42] Lei Tang and Huan Liu. Relational learning via la-
tent social dimensions. In Proceedings of the 15th
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD’09, pages 817–826.
ACM, 2009.

[43] Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio. Graph
attention networks. In International Conference on
Learning Representations, ICLR’18, 2018.

[44] Siyuan Wang, Chang Lou, Rong Chen, and Haibo Chen.
Fast and concurrent rdf queries using rdma-assisted gpu
graph exploration. In Proceedings of the 2018 USENIX
Annual Technical Conference, USENIX ATC’18, pages
651–664. USENIX Association, 2018.

[45] Ming Wu, Fan Yang, Jilong Xue, Wencong Xiao,
Youshan Miao, Lan Wei, Haoxiang Lin, Yafei Dai, and
Lidong Zhou. GraM: Scaling graph computation to the
trillions. In Proceedings of the Sixth ACM Symposium
on Cloud Computing, SoCC’15, pages 408–421. ACM,
2015.

[46] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong
Long, Chengqi Zhang, and Philip S Yu. A comprehen-
sive survey on graph neural networks. arXiv preprint
arXiv:1901.00596, 2019.

[47] Wencong Xiao, Jilong Xue, Youshan Miao, Zhen Li,
Cheng Chen, Ming Wu, Wei Li, and Lidong Zhou. TuX2:
Distributed graph computation for machine learning. In
Proceedings of the the 14th USENIX Symposium on Net-
worked Systems Design and Implementation, NSDI’17,
pages 669–682. USENIX Association, 2017.

[48] Shizhen Xu, Hao Zhang, Wei Dai, Jin Kyu Kim, Zhijie
Deng, Qirong Ho, Guangwen Yang, and Eric P. Xing.

Cavs: An efficient runtime system for dynamic neural
networks. In Proceedings of the 2018 USENIX Annual
Technical Conference, USENIX ATC’18, pages 937–
950. USENIX Association, 2018.

[49] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombat-
chai, William L Hamilton, and Jure Leskovec. Graph
convolutional neural networks for web-scale recom-
mender systems. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, KDD’18, pages 974–983.
ACM, 2018.

[50] Dong Yu, Adam Eversole, Mike Seltzer, Kaisheng
Yao, Oleksii Kuchaiev, Yu Zhang, Frank Seide, Zhi-
heng Huang, Brian Guenter, Huaming Wang, Jasha
Droppo, Geoffrey Zweig, Chris Rossbach, Jie Gao, An-
dreas Stolcke, Jon Currey, Malcolm Slaney, Guoguo
Chen, Amit Agarwal, Chris Basoglu, Marko Padmilac,
Alexey Kamenev, Vladimir Ivanov, Scott Cypher, Hari
Parthasarathi, Bhaskar Mitra, Baolin Peng, and Xuedong
Huang. An introduction to computational networks and
the computational network toolkit. Technical report, Mi-
crosoft Technical Report MSR-TR-2014–112, October
2014.

[51] Jiani Zhang, Xingjian Shi, Junyuan Xie, Hao Ma, Irwin
King, and Dit-Yan Yeung. GaAN: Gated attention net-
works for learning on large and spatiotemporal graphs.
arXiv preprint arXiv:1803.07294, 2018.

[52] Ziwei Zhang, Peng Cui, and Wenwu Zhu. Deep learning
on graphs: A survey. arXiv preprint arXiv:1812.04202,
2018.

[53] Da Zheng, Disa Mhembere, Randal Burns, Joshua Vogel-
stein, Carey E. Priebe, and Alexander S. Szalay. Flash-
Graph: Processing billion-node graphs on an array of
commodity ssds. In Proceedings of the 13th USENIX
Conference on File and Storage Technologies, FAST’15,
pages 45–58. USENIX Association, 2015.

[54] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang,
Zhiyuan Liu, and Maosong Sun. Graph neural networks:
A review of methods and applications. arXiv preprint
arXiv:1812.08434, 2018.

USENIX Association 2019 USENIX Annual Technical Conference 457

	Introduction
	NeuGraph Programming Abstraction
	Graph Neural Networks
	A Running Example
	SAGA-NN Model

	NeuGraph System
	Graph-Aware Dataflow Translation
	Streaming Processing out of GPU Core
	Parallel Multi-GPU Processing
	Graph Propagation Engine

	Implementation
	Evaluation
	Performance on a Single GPU
	Scaling-up on a Single GPU
	Scaling-out on Multiple GPUs

	Related Work
	Conclusion and Future Work

