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Abstract— The neural-based control of a robotic hand has 
many clinical and engineering applications.   Current 
approaches to this problem have been limited due to a lack of 
understanding of the relationship between neural signals and 
dynamic finger movements.  Here, we present a technique to 
predict index finger joint angles from neural signals recorded 
from the associated muscles.  The neural signals are converted 
to a torque estimate (EBTE) and then input to artificial neural 
networks.  The networks predict the finger position more 
closely when the input to the networks are torque estimates 
rather than neural signals.  Furthermore, the networks trained 
with the EBTE signals could predict the joint angles for 
different phases of finger movements (i.e. dynamic reaching 
and positioning task) while networks trained with the neural 
signals could not. Our results indicate that (1) similar finger 
movements are executed with different synergistic strategies 
and (2) different phases of finger movements employ different 
neural strategies.  Through these results, we have 
demonstrated the first concrete technique to control a hand 
prosthetic device or dexterous tele-manipulator using natural 
neural control signals. 
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I.  INTRODUCTION 
Discovering the relationship between neural signals and 

limb position would enable the development of natural brain-
machine interfaces.  Tele-operated devices controlled by 
neural commands could be used to provide precise human 
manipulation in remote or hazardous environments, and 
neurally controlled prosthetics could return function to a 
paralyzed patient by routing neural commands to actuators 
[1].  These applications rest on the assumption that neural 
activity can be translated into intended movements, and that 
these movements can then be executed by a device [1-3].  

Decoding the neural signal into movement parameters 
(i.e, position and velocity) continues to be the major hurdle 
in solving this problem.  Since Georgopolous et al [4] 
predicted gross arm movement direction from neural activity 
in monkey motor cortex, many others have used a variety of 
top-down approaches (central nervous system to movement) 
to predict dynamic movement direction [5, 6].   
Georgopolous et al [4] found that neurons fired selectively 
for a particular direction of hand movement, following a 
roughly cosine tuning curve with respect to movement 
direction.  Schwartz et al [5] further showed that averaging 

these movement vectors over a group of motor neurons 
correlated with arm movement direction.  To establish a 
more concrete relationship between neurons and limb 
position, Fetz et al [7] [2] has shown that neural activity 
downstream of the brain (in the spinal cord) can be used to 
predict muscle activity.  Work by Holdefer et al  [8] 
extended these results by showing that the activity of single 
neurons in the monkey brain caused activation in specific 
sets of limb muscles.  

This type of neural signal processing has enabled the 
development of brain-machine interfaces (BMI), which 
control robots using measured neural activity in rats and 
monkeys [1,15,16].  These devices work by correlating 
sampled neuronal activity in the brain and with limb 
movement direction through various classification 
techniques.   That is, these algorithms use the neural signal to 
select one arm direction from a set of possible directions 
rather than computing the continuous limb movement.  
While these top-down approaches hold promise for the 
construction of a neuroprosthetic device, they can only 
provide coarse estimation of the limb position.   This is 
because it is not clear what the neural signal is encoding.  In 
producing a movement, the neural signal is modified in the 
brain, the spinal cord, and by the muscle itself. 

The method of predicting dynamic and fine movements 
directly from cortical signals treats the brain, spinal cord, and 
muscle as a black box.  To predict fine and dynamic 
movements, it is necessary to take a bottom-up approach.  
The first step is to understand the relationship between the 
neural signal to muscle and the movement itself.  This 
mapping, however, is not trivial because the neural signals to 
the muscles are known to have a nonlinear and many-to-one 
relationship with the forces that muscles produce.  
Furthermore, the complex biomechanical mapping between 
the muscle forces and the joint angles make the already 
many-to-one redundant relationship a difficult mapping to 
model.   

In this paper, we present the first successful method for 
determining precise finger position of a human in a dynamic 
movement task using neural input to muscles.  While 
subjects traced a line with their index finger, we collected 
neural signals from all seven muscles that control the index 
finger.  We describe a technique to convert the neural input 
into a quantity that resembles joint torques as a way to 



resolve the redundant relationship.  Then we describe an 
artificial neural network that takes this quantity as its input 
and predicts the joint angles accurately.  Using this network, 
we hypothesize that the neural network trained with the 
torque-like quantity can predict joint angles for all 
conditions, while the network trained with the unprocessed 
neural signals can only predict specific phases of a 
movement.     

II. METHODS  

A. Experimental Setup 
The neural input to the muscles and the joint angles were 

measured from two subjects (2 male, age 21, 23) while they 
made a point-to-point movement with their right index finger 
(Fig. 1).  We used a PHANToMTM Premium 1.5 robot 
(Sensable Technologies, Inc.) to record the index finger 
movement.  This robot has 3 degrees of freedom and a 
custom-made finger cuff provided an additional two 
rotational degrees of freedom.  The PHANToM recorded the 
Cartesian position of the robot endpoint, and we attached a 
potentiometer to the pitch axis of the cuff to record the pitch 
of the fingertip.   The subjects’ index finger was fastened 
into the finger cuff so that their distal interphalangeal joint 
(DIP) was aligned to the edge of the cuff.  The Cartesian 
position of the DIP was determined by calculating its 
geometric relationship with the PHANToM endpoint.  The 
subjects’ palm and other digits were strapped to an armrest 
so that all the joints on the index finger could move freely 
while the hand was fixed a known distance away from the 
robot’s origin.  We recorded the joint angles of the robot and 
the finger cuff at 1 kHz..  

Given that the hand is fixed and the robot is rigidly 
coupled to the fingertip, inverse kinematics equations can 
uniquely identify all four joint angles, provided the correct 
range of motion for the joints.  Assuming that (Pwx,Pwy,Pwz) 
is the location of the distal interphalangeal joint (DIP) center 
, Φ is the angle measured by the finger cuff, a2 is the distance 
from the metacarpophalangeal joint (MCP) to proximal 
interphalangeal joint (PIP) and a3 is the distance from the PIP 
to the DIP.  The MCP flexion is determined by  
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the MCP abduction is determined by  
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the PIP flexion is determined by  
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and the DIP flexion is determined by  

)( MCPPIPDIP +−Φ= .                      (4) 

Along with the index finger joint angle information, 
neural input to all the muscles controlling the index finger  

 

Figure 1.  Experimental setup. The subject’s index fingertip endpoint 
and the neural inputs to the muscles controlling the index finger were 

measured as the subject traced a line with his index fingertip.   

were measured: Flexor Digitorum Superficialis, Flexor 
Digitorum Profundus, Extensor Indicis, Extensor Digitorum, 
First Lumbrical, First Dorsal Interosseus, and First Palmar 
Interosseous.  We used fine-wire electromyographic (EMG) 
technique modified from Burgar et al [9, 10].  A 30cm 
segment of 50µm bifilar wire (California Fine Wire) was 
threaded through a 27gage hypodermic needle. Muscles were 
identified using anatomical landmarks and signals were 
tested for cross-talk by viewing the signal on an oscilloscope 
prior to recording.  At the beginning and end of the session, 
the maximum and minimum muscle contraction signals were 
recorded.  To find the minimum, the subjects placed their 
hand on the table and were asked to relax and let the table 
support their arm and hand.  The maximum contraction 
signal was determined for each muscle individually by 
asking the subject to contract as hard as possible against the 
table in the direction of the muscle’s action.  During the 
experiment, the subjects were instructed to trace a 3.5 cm 
line segment with a tracing error of less than 1mm2 and in a 
time window between 450 and 550 milliseconds.  The tip of 
the index finger traveled from the upper left to the lower 
right corner of the index finger workspace.  This motion was 
selected because it spanned a wide range of each of the 
finger joint angles.  At the end of each trial, the subject was 
given performance feedback on a computer monitor.  The 
subject’s trace was superimposed on a drawing of the line 
segment, and colored boxes indicated the outcome in 
achieving the desired time window and tracing error 
performance.  After observing the error, the subject reset his 
finger to the starting point and waited for an audible go 
stimulus to begin the next trace.   

The session lasted for 120 movements.  In order to assure 
that all movements used for the analysis were similar, we 
excluded the first 60 movements (to exclude movements that 
may include any adaptation changes) from the analysis.  We 
also stopped recording at 120 movements to prevent fatigue, 
which may change the nature of the EMG signal [11].  

 



 

 

 

 

 

 

 

Figure 2. Model of cocontraction in a joint of the index finger.  Joint 
movements are determined by torque around the joint.   

B. Data analysis   
For each movement, there were 7 EMG recordings and 4 
joint angle measurements for a period of 250-750 
milliseconds, depending on the time it took for the subject to 
reach the endpoint.  The goal of the analysis was to design a 
mapping from EMG to joint angles as a function of time. 
We created two different sets of inputs for the artificial 
neural network to predict the joint angles. 
 

1) Normalized EMG 
EMG signals are a composite of the neural signals from 

many motor-neurons.  As such, the signal is irregular, 
chaotic, and oscillatory.  However, the amount of motor-
neuron activity is correlated with the number of zero-
crossings, the number of times the signal crosses 0 volts[10].  
Therefore, the amount of muscle force, which is a result of 
motor-neuron firing, could be hypothesized to be 
proportional to the frequency of zero-crossings.  

Furthermore, an estimate of the force of contraction can 
be obtained by normalizing the zero-crossings frequency 
using the maximum and minimum contraction. The 
magnitude of the EMG signal was determined by taking the 
number of zero-crossings in a 15-millisecond time window.  
The signal was normalized and low pass filtered at 70Hz 
with an equiripple FIR filter with Kaiser window.  This 
filtered and normalized EMG was one of the inputs used to 
estimate the joint angles.   

2) EMG Based Torque Estimate  
To produce the second set of inputs, we used the 

assumption that this filtered and normalized EMG signal is 
proportional to muscle force [12] to calculate a quantity that 
is related to the joint torque.  Our EMG Based Torque 
Estimate (EBTE), is determined by combining the EMG 
signals of muscles around a joint (Fig. 2).  For each joint, an 
EBTE was computed by  

∑ ⋅=
m jmmj rtFt ,)(ˆ)(τ̂                 (5) 

where )(ˆ tFm is the force estimate from the EMG and jmr ,  is 
the radius of the moment arm for each muscle around the 
joint [13] (Fig. 2).  Using seven EMG signals, we calculated 
four EBTEs corresponding to each degree of freedom. 

 

Since there are more muscles than degrees of freedom, 
there are infinitely many muscle contraction patterns that 
impart the same torque on a joint in the index finger.  These 
patterns represent differences in cocontraction (simultaneous 
activity of opposing muscles around a joint), which changes 
joint stiffness.  Computing the EBTE effectively removes the 
redundant muscle actuation to joint angle mappings.  While 
the EBTE resembles the joint torques, literature suggests that 
EMG signals are not equivalent to muscle force [10, 14].  
Thus, the EBTE, which uses )(ˆ tFm , cannot be considered as 
the joint torque signal, and thus cannot be used in the 
traditional dynamical equations of motion.    

Instead, a two layer artificial neural network was used to 
predict joint angles from the normalized EMG and the 
EBTE.  The network, implemented using MATLAB, 
consisted of a single input layer and a single output layer.  
The input layer had 4 (EBTE network) or 7(EMG network) 
nodes, each connected to a 40 millisecond tapped delay line.  
The output layer consisted of 4 nodes, and the hidden layer 
consisted of 15 nodes.  The network was trained with scaled 
conjugate gradient descent backpropagation with 10 input 
sets until achieving a mean-squared-error of 0.05.  

All movements to the target were stereotypical reaching 
movements in that they were performed in two distinctive 
phases shown in Fig 3.  The first phase, called the “reaching 
phase,” contained a high velocity (greater than 80mm/sec) 
profile towards the endpoint.  The second phase, called the 
“corrective” phase, contained a slower velocity profile 
(between 20 and 70 mm/sec) to correct the error of the 
reaching phase and position the fingertip at the endpoint.  
Because we hypothesized that the reaching and corrective 
phases may use different mappings between the muscles and 
the joint angles, we treated those two phases separately while 
training the neural network. Rather than dividing the whole 
movement into two segments, we took the reaching phase to 
be the segment where the first bell-shaped profile exceeded 
75 mm/sec, and the corrective phase to be the segment where 
the second bell-shaped profile exceeded 20 mm/sec.  This 
segmentation technique allowed multiple reaching 
movements to align properly during the network training.  
We also tested a “whole” movement condition.  The whole 
movement was taken from the beginning of the reaching 
phase until the end of the corrective phase.  

For each training session, 13 movements were selected at 
random from the 60 total movements.  The network was 
trained with 10 movements selected at random from the 
selected 13 movements.  After reaching the convergence 
criterion (MSE < 0.05), the network was tested on the 3 input 
sets it had not been given.  Joint angles calculated from the 
neural network were compared with joint angles determined 
from the inverse kinematics equations (equations (1) – (4)).  

Using the data collected, the EMG network and EBTE 
network was compared in the following ways: 

• Predicting joint angles for the whole movement.  If 
the redundancy is well represented in the EBTE 
model, the network trained with the EBTE should  

 

 

Muscle 1 

Muscle 2 

Muscle 3 

R1 

R3 R2



A 

reaching corrective

S
pe

ed
 (m

m
/s

ec
)

Time (ms)  
B 

START

END

Y
 p

os
iti

on
 (m

m
)

X position (mm)  

Figure 3.  Line tracing task.  A: The speed profile of the trace as a 
function of time shows two bell-shaped curves: the reaching movement 
(150ms-310ms) and the corrective movement (475ms-550ms).  B: The 

position of the index fingertip during the trace.  The dotted line 
indicates the prompt, the solid line indicates the subject’s trace. 

predict the joint angles more accurately than the 
normalized EMG. 

• Predicting joint angles for the reaching phase based 
on networks trained on only the reaching phase.  
Both networks  should also be able predict the 
reaching phase since cocontraction strategy is 
constant (see discussion). 

• Predicting joint angles for corrective phase based on 
the networks trained on the reaching phase.  Since 
only the EBTE network should have a unique 
mapping to the joint movement, it should predict 
joint angles for reaching or corrective phases even if 
the network was trained on the reaching phase only.  
If the cocontraction strategies are different between 
these two phases, then the EMG network should 
predict joint angles poorly in this condition. 
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Figure 4. Joint angle predictions of a neural network based on EBTE.  
MCP = metacarpophalangeal joint flexion, ABD = 

metacarpophalangeal joint abduction, DIP = distal interphalangeal 
joint PIP = proximal interphalangeal joint. 

III. RESULTS 

A. Predicting Whole Movements with a Network Trained 
on Whole Movements 
When the input to neural network was the EBTE of the 

whole movement, it converged after 90 epochs.  The 
comparison between the actual and predicted movements for 
a test movement (not used during training) is shown in Fig. 
4.  For 3 testing movements, the average R2 was 0.76 ± 0.14.  
When the normalized EMG was used as the input, it 
converged after 85 epochs and predicted the testing 
movements with an average R2 of 0.70 ± 0.16.  Though we 
predicted better performance from the EBTE network, the 
improved performance was not statistically significant 
(p<0.61).   

B. Predicting Reaching Movements with a Network 
Trained on Reaching Movements 
When the input to the neural network was the EBTE of 

the reaching movement only, it converged after 70 epochs.  
For the 3 testing movements, the average R2 was 0.83 ± 0.09. 
When normalized EMG was used to predict reaching 
movements, the network converged in 55 trials with an 
average R2 of 0.81±0.05 for the testing movements (Fig 5).  
As expected, both networks were able to predict joint angles 
well. 

C. Predicting Corrective Movements with a Network 
Trained on Reaching Movements 
Finally, the network trained on the reaching movements 

alone was used to predict corrective movements.  The EBTE 
network predicted corrective phase joint angles with an 
average  R2 of 0.84 ± 0.16.  When normalized EMG was 
used as input, the network predicted corrective movement 
joint angles with an average R2 of 0.58±0.14 (Fig 5). 
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Figure 5. Performance of EBTE netowork versus EMG network under 
three testing conditions. The performance of the EBTE network was 

not statistically different in any of the testing conditions: 1) trained on 
reaching phase, tested on reaching phase 2) trained on reaching phase, 

tested on corrective phase, 3) trained on whole trial and tested on 
whole trial.  The performance of the EMG network was statistically 

poorer (p<0.05) in conditions 2 and 3 than on condition 1.  
Furthermore, the EBTE network performed statistically better than 

the normalized EMG network in condition 2. 

IV. DISCUSSION 
The control of neuroprosthetics rests heavily on the 

ability to use neural signals to predict limb position.   In the 
past, neural signals have been used to predict gross direction 
and muscle activation patterns in the hand and arm [1-8].  
Though this work has been used to grossly control a 
prosthetic device, it lacks the fine resolution necessary to 
make a fully functional neural prosthetic for humans.  To 
achieve this goal, one of the necessary hurdles to overcome 
is the continuous mapping between the neural input to 
muscles and the position of a limb.  To date, there have not 
been published reports demonstrating this mapping. 

In our results, we have shown that both EBTE and 
normalized EMG predicted dynamic index finger 
movements well (mean R2 = 0.78).  Both networks were 
also able to predict dynmamic movements (mean R2 = 0.82) 
in the reaching phase alone.  Nevertheless, we hypothesized 
that EBTE would be a more robust predictor of position 
since, unlike EMG, it was designed to be insensitive to 
varying cocontraction strategies.      

 
To test this hypothesis, we trained the networks on the 
reaching phase and compared their performance on 
predicted reaching and corrective phase movement.  It has 
been shown that increasing the positional accuracy of a 
movement increases the level muscle cocontraction[17]. 
Since greater positional accuracy is required during the 
corrective movement than the reaching movement, it is 
likely that different cocontraction strategies are utilized to 
execute the two movements.  Therefore, we hypothesized 
that only the EBTE trained network would be able to predict 
both the reaching and corrective movements.  The EMG 

trained network would be able to predict finger position 
only in the phase in which it was trained.  Fig 5 shows a 
statistically significant (p <0.05) decrease in performance 
when the EMG network was tested on the corrective phase 
movement. No statistical difference was found between the 
EBTE network’s prediction of reaching movements and 
corrective movements.  This result shows that 1) the EBTE 
we calculated is a good model to eliminate the cocontraction 
effect, and 2) using the EBTE, the joint angles could be 
reliably predicted regardless of the neural strategies used.  

 
Given our hypothesis that the EBTE is a better predictor of 
limb position than EMG, it is surprising that the EMG 
trained network performed statistically the same as the 
EBTE trained network on the whole trial data.  One 
explanation is that the reaching movement was overly 
represented in the whole trial data.  In fact, the reaching 
movement phase composed approximately ¾ of the whole 
trial.  Thus, it is possible that the EMG trained network 
learned only the cocontraction pattern found in the reaching 
phase and could therefore accurately predict the joint angles 
in a large portion of the whole trial. The total performance 
of the normalized EMG network would therefore be 
inflated.  This hypothesis is supported by the fact that the 
normalized EMG network is qualitatively better at 
predicting the joint angles in the first 210 milliseconds of 
the trial (Fig 4b).  This potentially spurious result could be 
resolved by selecting movement phases of equal duration.    
 

We have demonstrated the first mapping between neural 
input to muscles and their associated joint angles in a 
dynamic movement task.  There are two logical next steps.  
The first is to extend the network to include other fingers in 
the hand.  By monitoring joint position and muscle activity, 
the predictive ability of the network can be extending to 
capture whole hand movements.  The second is to use the 
neural signals found in the higher neural structures like the 
spinal cord in order to predict the neural input to the muscles.  
In this way, we would produce a mapping from neural 
signals originating in the spine to limb position.  Together, 
these advances will allow us to develop a brain-machine 
interface that decodes neural signals to produce a fully-
functional neuroprosthetic hand.   
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