
www.allitebooks.com

http://www.allitebooks.org

Neural Network Programming
with Java

Unleash the power of neural networks by implementing
professional Java code

Fábio M. Soares

Alan M.F. Souza

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Neural Network Programming with Java

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2016

Production reference: 1060116

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-090-2

www.packtpub.com

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors
Fábio M. Soares

Alan M.F. Souza

Reviewer
Saeed Afzal

Commissioning Editor
Amarabha Banerjee

Acquisition Editor
Rahul Nair

Content Development Editor
Riddhi Tuljapurkar

Technical Editor
Vivek Pala

Copy Editor
Tani Kothari

Project Coordinator
Kinjal Bari

Proofreader
Safis Editing

Indexer
Hemangini Bari

Graphics
Disha Haria

Production Coordinator
Nilesh Mohite

Cover Work
Nilesh Mohite

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Fábio M. Soares holds a master's degree in applied computing from UFPA and
is currently a PhD candidate at the same university. He has been designing neural
network solutions since 2004 and has developed applications with this technique in
several fields, ranging from telecommunications to chemistry process modeling, and
his research topics cover supervised learning for data-driven modeling.

He is also self-employed, offering services such as IT infrastructure management as
well as database administration to a number of small- and medium-sized companies
in northern Brazil. In the past, he has worked for big companies such as Albras, one
of the most important aluminium smelters in the world, and Eletronorte, a great
power supplier in Brazil. He also has experience as a lecturer, having worked at the
Federal Rural University of Amazon and as a Faculty of Castanhal, both in the state
of Pará, teaching subjects involving programming and artificial intelligence.

He has published a number of works, many of them available in English, all
including the topics of artificial intelligence applied to some problem. His
publications include conference proceedings, such as the TMS (The Minerals Metals
and Materials Society), Light Metals and the Intelligent Data Engineering and
Automated Learning. He has also has published two book chapters for Intech.

I would like to give a special acknowledgement to God for having
given me the opportunity to get access to rich knowledge on this
theme, which I simply love doing research on. Special thanks to my
family, my father, Josafá, and mother, Maria Alice (in memoriam),
who would be very proud of me for this book, and also my brother,
Flávio, my aunt, Maria Irenice, as well as all my relatives who always
supported me in some way during my studies. I would also like to
thank the support of my advisor, Prof. Roberto Limão. I am very
grateful to him for having invited me to work with him on many
projects regarding artificial intelligence and neural networks. Also,
special thanks to my partners and former partners from Exodus
Sistemas, who have helped me in my challenges in programming and
IT infrastructure. Finally, I'd like to thank my friend Alan Souza, who
wrote this book with me, for having extended to me this authorship.

www.allitebooks.com

http://www.allitebooks.org

Alan M.F. Souza is computer engineer from Instituto de Estudos Superiores
da Amazônia (IESAM). He holds a post-graduate degree in project management
software and a master's degree in industrial processes (applied computing)
from Universidade Federal do Pará (UFPA). He has been working with neural
networks since 2009 and has worked with IT Brazilian companies developing in
Java, PHP, SQL, and other programming languages since 2006. He is passionate
about programming and computational intelligence. Currently, he is a professor at
Universidade da Amazônia (UNAMA) and a PhD candidate at UFPA.

Since I was a kid, I thought about writing a book. So, this book is a
dream come true and the result of hard work. I'd like to thank God
for giving me this opportunity. I'd also like to thank my father, Célio,
my mother, Socorro, my sister, Alyne, and my amazing wife, Tayná,
for understanding my absences and worries at various moments. I
am grateful to all the members of my family and friends for always
supporting me in difficult times and wishing for my success. I'd like
to thank all the professors who passed through my life, especially
Prof. Roberto Limão for introducing me the very first neural network
concept. I must register my gratitude to Fábio Soares for this great
partnership and friendship. Finally, I must appreciate the tireless
team at Packt Publishing for the invitation and for helping us in the
production process as a whole.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Saeed Afzal, also known as Smac Afzal, is a professional software engineer and
technology enthusiast based in Pakistan. He specializes in solution architecture and
the implementation of scalable high-performance applications.

He is passionate about providing automation solutions for different business needs
on the Web. His current research and work includes the futuristic implementation of
a next-generation web development framework, which reduces development time
and cost and delivers productive websites with many necessary and killer features by
default. He is hopeful of launching his upcoming technology in 2016.

He has also worked on the book Cloud Bees Development by Packt Publishing.

You can found out more about his skills and experience at http://sirsmac.com.
He can be contacted at sirsmac@gmail.com.

I would like to thank the Allah Almighty, my parents, and my wife,
Dr. H. Zara Saeed, for all their encouragement.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

[i]

Table of Contents
Preface vii
Chapter 1: Getting Started with Neural Networks 1

Discovering neural networks 2
Why artificial neural network? 2
How neural networks are arranged 4

The very basic element – artificial neuron 5
Giving life to neurons – activation function 5
The fundamental values – weights 6
An important parameter – bias 7
The parts forming the whole – layers 7

Learning about neural network architectures 8
Monolayer networks 8
Multilayer networks 9
Feedforward networks 9
Feedback networks 10

From ignorance to knowledge – learning process 10
Let the implementations begin! Neural networks in practice 11
Summary 18

Chapter 2: How Neural Networks Learn 19
Learning ability in neural networks 19

How learning helps to solve problems 20
Learning paradigms 20

Supervised learning 20
Unsupervised learning 21

Systematic structuring – learning algorithm 22
Two stages of learning – training and testing 23
The details – learning parameters 24
Error measurement and cost function 25

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Examples of learning algorithms 26
Perceptron 26
Delta rule 27

Coding of the neural network learning 27
Learning parameter implementation 27
Learning procedure 29
Class definitions 30

Two practical examples 37
Perceptron (warning system) 37
ADALINE (traffic forecast) 41

Summary 46
Chapter 3: Handling Perceptrons 47

Studying the perceptron neural network 48
Applications and limitations of perceptrons 48
Linear separation 48
Classical XOR case 50

Popular multilayer perceptrons (MLPs) 52
MLP properties 52
MLP weights 53
Recurrent MLP 54
MLP structure in an OOP paradigm 55

Interesting MLP applications 56
Classification in MLPs 56
Regression in MLPs 58

Learning process in MLPs 60
Simple and very powerful learning algorithm – Backpropagation 61
Elaborate and potent learning algorithm – Levenberg–Marquardt 63

Hands-on MLP implementation! 65
Backpropagation in action 68
Exploring the code 68

Levenberg–Marquardt implementation 72
Practical application – types of university enrolments 75
Summary 78

Chapter 4: Self-Organizing Maps 79
Neural networks' unsupervised way of learning 80
Some unsupervised learning algorithms 80

Competitive learning or winner takes all 82

Table of Contents

[iii]

Kohonen self-organizing maps (SOMs) 84
One-Dimensional SOM 85
Two-Dimensional SOM 86
Step-by-step of SOM learning 88
How to use SOMs 89

Coding of the Kohonen algorithm 90
Exploring the Kohonen class 92
Kohonen implementation (clustering animals) 95

Summary 98
Chapter 5: Forecasting Weather 99

Neural networks for prediction problems 100
No data, no neural net – selecting data 101

Knowing the problem – weather variables 102
Choosing input and output variables 103
Removing insignificant behaviors – Data filtering 103

Adjusting values – data preprocessing 104
Equalizing data – normalization 105

Java implementation for weather prediction 107
Plotting charts 107
Handling data files 108
Building a neural network for weather prediction 109

Empirical design of neural networks 112
Choosing training and test datasets 112
Designing experiments 113
Results and simulations 113

Summary 116
Chapter 6: Classifying Disease Diagnosis 117

What are classification problems, and how can neural networks
be applied to them? 118
A special type of activation function – Logistic regression 119

Multiple classes versus binary classes 120
Comparing the expected versus produced results – the
confusion matrix 121
Classification measures – sensitivity and specificity 122

Applying neural networks for classification 123
Disease diagnosis with neural networks 126

Using ANN to diagnose breast cancer 126
Applying NN for an early diagnosis of diabetes 131

Summary 134

Table of Contents

[iv]

Chapter 7: Clustering Customer Profiles 135
Clustering task 136

Cluster analysis 137
Cluster evaluation and validation 138
External validation 138

Applied unsupervised learning 139
Neural network of radial basis functions 139
Kohonen neural network 140
Types of data 141

Customer profiling 142
Preprocessing data 142

Implementation in Java 143
Card credit analysis for customer profiling 143

Summary 149
Chapter 8: Pattern Recognition (OCR Case) 151

What is pattern recognition all about? 152
Definition of classes among tons of data 152
What if the undefined classes are undefined? 153
External validation 154

How to apply neural networks in pattern recognition 154
Preprocessing the data 155

The OCR problem 156
Simplifying the task – digit recognition 156
Approach to digit representation 157

Let the coding begin! 157
Generating data 158
Building the neural network 160
Testing and redesigning – trial and error 161
Results 163

Summary 166
Chapter 9: Neural Network Optimization and Adaptation 167

Common issues in neural network implementations 168
Input selection 168

Data correlation 169
Dimensionality reduction 170
Data filtering 171

Structure selection 171

Table of Contents

[v]

Online retraining 172
Stochastic online learning 174
Implementation 174
Application 176

Adaptive neural networks 179
Adaptive resonance theory 179
Implementation 180

Summary 182
Appendix A: Setting up the NetBeans Environment 183

Download and install NetBeans 183
Setting up the NetBeans environment 188
Importing a project 191
Programming and running code with NetBeans 194
Debugging with NetBeans 195

Appendix B: Setting Up the Eclipse Environment 199
Download and install Eclipse 199
Setting up the Eclipse environment 204
Importing a project 205
Programming and running code with the Eclipse IDE 210
Debugging with the Eclipse IDE 211

Appendix C: References 213
Chapter 1 – Getting Started with Neural Networks 213
Chapter 2 – How Neural Networks Learn 213
Chapter 3 – Working with Perceptrons 213
Chapter 4 – Self-Organizing Maps 214
Chapter 5 – Forecasting the Weather 214
Chapter 6 – Disease Diagnosis 214
Chapter 7 – Clustering Customer Profiles 215
Chapter 8 – Pattern Recognition (the OCR Case) 215
Chapter 9 – Neural Network Optimization and Adaptation 215

Index 217

[vii]

Preface
The life of a programmer can be described as a continual never-ending learning
pathway. A programmer always faces challenges regarding new technology or new
approaches. Generally, during our lives, although we become used to repeated
things, we are always subjected to learn something new. The process of learning is
one of the most interesting topics in science, and there are a number of attempts to
describe or reproduce the human learning process.

The writing of this book was guided by the challenge of facing new content and
then mastering it. While the name neural networks may appear strange or even give
an idea that this book is about neurology, we strived to simplify these nuances by
focusing on your reasons for deciding to purchase this book. We intended to build
a framework that shows you that neural networks are actually simple and easy to
understand, and absolutely no prior knowledge on this topic is required to fully
understand the concepts we present here.

So, we encourage you to explore the content of this book to the fullest, beholding
the power of neural networks when confronting big problems but always with the
point of view of a beginner. Every concept addressed in this book is explained in easy
language, and also with a technical background. Our mission in this book is to give
you an insight into intelligent applications that can be written using a simple language.

Finally, we would like to thank all those who directly or indirectly have contributed
to this book and supported us from the very beginning, right from the Federal
University of Pará, which is the university that we graduated from, to the data and
component providers INMET (Brazilian Institute of Meteorology), Proben1, and
JFreeCharts. We want to give special thanks to our advisor Prof. Roberto Limão, who
introduced us to the subject of neural networks and coauthored many papers with
us in this field. We also acknowledge the work performed by several authors cited
in the references, which gave us a broader vision on neural networks and insights on
how to adapt them to the Java language in a didactic way.

Preface

[viii]

We welcome you to have a very pleasurable reading experience and you are
encouraged to download the source code and follow the examples presented
in this book.

What this book covers
Chapter 1, Getting Started with Neural Networks, is an introductory foundation on
the neural networks and what they are designed for. You will be presented with
the basic concepts involved in this book. A brief review of the Java programming
language is provided. As in all subsequent chapters, an implementation of a neural
network in Java code is also provided.

Chapter 2, How Neural Networks Learn, covers the learning process of neural networks
and shows how data is used to that end. The complete structure and design of a
learning algorithm is presented here.

Chapter 3, Handling Perceptrons, covers the use of perceptrons, which are one of the
most commonly used neural network architectures. We present a neural network
structure containing layers of neurons and show how they can learn by data in
basic problems.

Chapter 4, Self-Organizing Maps, shows an unsupervised neural network architecture
(the Self-Organising Map), which is applied to finding patterns or clusters in records.

Chapter 5, Forecasting Weather, is the first practical chapter showing an interesting
application of neural networks in forecasting values, namely weather data.

Chapter 6, Classifying Disease Diagnostics, covers another useful task neural networks
are very good at—classification. In this chapter, you will be presented with a very
didactic but interesting application for disease diagnosis.

Chapter 7, Clustering Customer Profiles, talks about how neural networks are able to
find patterns in data, and a common application is to group customers that share the
same properties of buying.

Chapter 8, Pattern Recognition (OCR Case), talks about a very interesting and amazing
capability of recognizing patterns, including optical character recognition, and this
chapter explores how this can be done with neural networks in the Java language.

Chapter 9, Neural Network Optimization and Adaptation, shows advancements
regarding how to optimize and add adaptability to neural networks, thereby
strengthening their power.

Preface

[ix]

What you need for this book
You'll need Netbeans (www.netbeans.org) or Eclipse (www.eclipse.org). Both are free
and available for download at the previously mentioned websites.

Who this book is for
This book is targeted at both developers and enthusiasts who have a basic or even no
Java programming knowledge. No previous knowledge of neural networks is required,
this book will teach from scratch. Even if you are familiar with neural networks and/or
other machine learning techniques but have little or no experience with Java, this book
will take you to the level at which you will be able to develop useful applications. Of
course, if you know basic programming concepts, you will benefit most from this book,
but no prior experience is required.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles are shown
as follows: "In Java projects, the calculation of these values is done through the
Classification class."

A block of code is set as follows:

Data cardDataInput = new Data("data", "card_inputs_training.csv");
Data cardDataInputTestRNA = new Data("data", "card_inputs_test.
csv");
Data cardDataOutputTestRNA = new Data("data", "card_output_test.
csv");

New terms and important words are shown in bold.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[x]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Preface

[xi]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

www.allitebooks.com

http://www.allitebooks.org

[1]

Getting Started with
Neural Networks

In this chapter, we will introduce neural networks and what they are designed for.
This chapter serves as a foundation layer for the subsequent chapters, while
it presents the basic concepts for neural networks. In this chapter, we will cover
the following:

• Artificial Neurons
• Weights and Biases
• Activation Functions
• Layers of Neurons
• Neural Network Implementation in Java

Getting Started with Neural Networks

[2]

Discovering neural networks
First, the term "neural networks" may create a snapshot of a brain in our minds,
particularly for those who have just been introduced to it. In fact, that's right, we
consider the brain to be a big and natural neural network. However, what if we talk
about artificial neural networks (ANNs)? Well, here comes an opposite word to
natural, and the first thing now that comes into our head is an image of an artificial
brain or a robot, given the term "artificial." In this case, we also deal with creating
a structure similar to and inspired by the human brain; therefore, this can be called
artificial intelligence. So, the reader who doesn't have any previous experience with
ANN now may be thinking that this book teaches how to build intelligent systems,
including an artificial brain, capable of emulating the human mind using Java codes,
isn't it? Of course, we will not cover the creation of artificial thinking machines such
as those from the Matrix trilogy movies; however, this book will discuss several
incredible capabilities that these structures can do. We will provide the reader
with Java codes for defining and creating basic neural network structures, taking
advantage of the entire Java programming language framework.

Why artificial neural network?
We cannot begin talking about neural networks without understanding their origins,
including the term as well. We use the terms neural networks (NN) and ANN
interchangeably in this book, although NNs are more general, covering the natural
neural networks as well. So, what actually is an ANN? Let's explore a little of the
history of this term.

In the 1940s, the neurophysiologist Warren McCulloch and the mathematician
Walter Pits designed the first mathematical implementation of an artificial neuron
combining the neuroscience foundations with mathematical operations. At that
time, many studies were being carried out on understanding the human brain and
how and if it could be simulated, but within the field of neuroscience. The idea
of McCulloch and Pits was a real novelty because it added the math component.
Further, considering that the brain is composed of billions of neurons, each one
interconnected with another million, resulting in some trillions of connections, we
are talking about a giant network structure. However, each neuron unit is very
simple, acting as a mere processor capable to sum and propagate signals.

Chapter 1

[3]

On the basis of this fact, McCulloch and Pits designed a simple model for a
single neuron, initially to simulate the human vision. The available calculators or
computers at that time were very rare but capable of dealing with mathematical
operations quite well; on the other hand, even today tasks such as vision and sound
recognition are not easily programmed without the use of special frameworks, as
opposed to the mathematical operations and functions. Nevertheless, the human
brain can perform these latter tasks more efficiently than the first ones, and this fact
really instigates scientists and researchers.

So, an ANN is supposed to be a structure to perform tasks such as pattern
recognition, learning from data, and forecasting trends, just like an expert can do on
the basis of knowledge, as opposed to the conventional algorithmic approach that
requires a set of steps to be performed to achieve a defined goal. An ANN instead
has the capability to learn how to solve some task by itself, because of its highly
interconnected network structure.

Tasks Quickly Solvable by Humans Tasks Quickly Solvable by Computers

Classification of images
Voice recognition
Face identification
Forecast events on the basis of
experience

Complex calculation
Grammatical error correction
Signal processing
Operating system management

Getting Started with Neural Networks

[4]

How neural networks are arranged
It can be said that the ANN is a nature-inspired structure, so it does have similarities
with the human brain. As shown in the following figure, a natural neuron is
composed of a nucleus, dendrites, and axon. The axon extends itself into several
branches to form synapses with other neurons' dendrites.

So, the artificial neuron has a similar structure. It contains a nucleus (processing
unit), several dendrites (analogous to inputs), and one axon (analogous to output), as
shown in the following figure:

The links between neurons form the so-called neural network, analogous to the
synapses in the natural structure.

Chapter 1

[5]

The very basic element – artificial neuron
Natural neurons have proven to be signal processors since they receive micro signals
in the dendrites that can trigger a signal in the axon depending on their strength or
magnitude. We can then think of a neuron as having a signal collector in the inputs
and an activation unit in the output that can trigger a signal that will be forwarded
to other neurons. So, we can define the artificial neuron structure as shown in the
following figure:

In natural neurons, there is a threshold potential that
when reached, fires the axon and propagates the signal to
the other neurons. This firing behavior is emulated with
activation functions, which have proven to be useful in
representing nonlinear behaviors in the neurons.

Giving life to neurons – activation function
The neuron's output is given by an activation function. This component adds
nonlinearity to neural network processing, which is needed because the natural
neuron has nonlinear behaviors. An activation function is usually bounded between
two values at the output, therefore being a nonlinear function, but in some special
cases, it can be a linear function.

The four most used activation functions are as follows:

• Sigmoid
• Hyperbolic tangent
• Hard limiting threshold
• Purely linear

Getting Started with Neural Networks

[6]

The equations and charts associated with these functions are shown in the
following table:

Function Equation Chart

Sigmoid

Hyperbolic
tangent

Hard
limiting
threshold

Linear

The fundamental values – weights
In neural networks, weights represent the connections between neurons and have the
capability to amplify or attenuate neuron signals, for example, multiply the signals,
thus modifying them. So, by modifying the neural network signals, neural weights
have the power to influence a neuron's output, therefore a neuron's activation will
be dependent on the inputs and on the weights. Provided that the inputs come from
other neurons or from the external world, the weights are considered to be a neural
network's established connections between its neurons. Thus, since the weights are
internal to the neural network and influence its outputs, we can consider them as
neural network knowledge, provided that changing the weights will change the
neural network's capabilities and therefore actions.

Chapter 1

[7]

An important parameter – bias
The artificial neuron can have an independent component that adds an extra signal
to the activation function. This component is called bias.

Just like the inputs, biases also have an associated weight. This feature helps in the
neural network knowledge representation as a more purely nonlinear system.

The parts forming the whole – layers
Natural neurons are organized in layers, each one providing a specific level of
processing; for example, the input layer receives direct stimuli from the outside
world, and the output layers fire actions that will have a direct influence on the
outside world. Between these layers, there are a number of hidden layers, in the
sense that they do not interact directly with the outside world. In the artificial neural
networks, all neurons in a layer share the same inputs and activation function, as
shown in the following figure:

Neural networks can be composed of several linked layers, forming the so-called
multilayer networks. The neural layers can be basically divided into three classes:

• Input layer
• Hidden layer
• Output layer

In practice, an additional neural layer adds another level of abstraction of the
outside stimuli, thereby enhancing the neural network's capacity to represent more
complex knowledge.

Getting Started with Neural Networks

[8]

Every neural network has at least an input/output layer
irrespective of the number of layers. In the case of a
multilayer network, the layers between the input and the
output are called hidden.

Learning about neural network
architectures
Basically, a neural network can have different layouts, depending on how the
neurons or neuron layers are connected to each other. Every neural network
architecture is designed for a specific end. Neural networks can be applied to a
number of problems, and depending on the nature of the problem, the neural
network should be designed in order to address this problem more efficiently.

Basically, there are two modalities of architectures for neural networks:

• Neuron connections
 ° Monolayer networks
 ° Multilayer networks

• Signal flow
 ° Feedforward networks
 ° Feedback networks

Monolayer networks
In this architecture, all neurons are laid out in the same level, forming one single
layer, as shown in the following figure:

Chapter 1

[9]

The neural network receives the input signals and feeds them into the neurons, which
in turn produce the output signals. The neurons can be highly connected to each
other with or without recurrence. Examples of these architectures are the single-layer
perceptron, Adaline, self-organizing map, Elman, and Hopfield neural networks.

Multilayer networks
In this category, neurons are divided into multiple layers, each layer corresponding
to a parallel layout of neurons that shares the same input data, as shown in the
following figure:

Radial basis functions and multilayer perceptrons are good examples of this
architecture. Such networks are really useful for approximating real data to a
function specially designed to represent that data. Moreover, because they have
multiple layers of processing, these networks are adapted to learn from nonlinear
data, being able to separate it or determine more easily the knowledge that
reproduces or recognizes this data.

Feedforward networks
The flow of the signals in neural networks can be either in only one direction or in
recurrence. In the first case, we call the neural network architecture feedforward,
since the input signals are fed into the input layer; then, after being processed,
they are forwarded to the next layer, just as shown in the figure in the multilayer
section. Multilayer perceptrons and radial basis functions are also good examples of
feedforward networks.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Neural Networks

[10]

Feedback networks
When the neural network has some kind of internal recurrence, it means that
the signals are fed back in a neuron or layer that has already received and
processed that signal, the network is of the type feedback. See the following
figure of feedback networks:

The special reason to add recurrence in the network is the production of a dynamic
behavior, particularly when the network addresses problems involving time series
or pattern recognition, that require an internal memory to reinforce the learning
process. However, such networks are particularly difficult to train, eventually failing
to learn. Most of the feedback networks are single layer, such as Elman and Hopfield
networks, but it is possible to build a recurrent multilayer network, such as echo and
recurrent multilayer perceptron networks.

From ignorance to knowledge – learning
process
Neural networks learn by adjusting the connections between the neurons, namely
the weights. As mentioned in the neural structure section, weights represent the
neural network knowledge. Different weights cause the network to produce different
results for the same inputs. So, a neural network can improve its results by adapting
its weights according to a learning rule. The general schema of learning is depicted in
the following figure:

Chapter 1

[11]

The process depicted in the preceding figure is called supervised learning because
there is a desired output, but neural networks can learn only by the input data,
without any desired output (supervision). In Chapter 2, How Neural Networks Learn,
we are going to dive deeper into the neural network learning process.

Let the implementations begin! Neural
networks in practice
In this book, we will cover the entire process of implementing a neural network
by using the Java programming language. Java is an object-oriented programming
language that was created in the 1990s by a small group of engineers from Sun
Microsystems, later acquired by Oracle in the 2010s. Nowadays, Java is present in
many devices that are part of our daily life.

In an object-oriented language, such as Java, we deal with classes and objects. A
class is a blueprint of something in the real world, and an object is an instance of this
blueprint, something like a car (class referring to all and any car) and my car (object
referring to a specific car—mine). Java classes are usually composed of attributes and
methods (or functions), that include objects-oriented programming (OOP) concepts.
We are going to briefly review all of these concepts without diving deeper into them,
since the goal of this book is just to design and create neural networks from a practical
point of view. Four concepts are relevant and need to be considered in this process:

• Abstraction: The transcription of a real-world problem or rule into a
computer programming domain, considering only its relevant features and
dismissing the details that often hinder development.

Getting Started with Neural Networks

[12]

• Encapsulation: Analogous to a product encapsulation by which some
relevant features are disclosed openly (public methods), while others are
kept hidden within their domain (private or protected), therefore avoiding
misuse or excess of information.

• Inheritance: In the real world, multiple classes of objects share attributes and
methods in a hierarchical manner; for example, a vehicle can be a superclass
for car and truck. So, in OOP, this concept allows one class to inherit all
features from another one, thereby avoiding the rewriting of code.

• Polymorphism: Almost the same as inheritance, but with the difference
that methods with the same signature present different behaviors on
different classes.

Using the neural network concepts presented in this chapter and the OOP concepts, we
are now going to design the very first class set that implements a neural network. As
can be seen, a neural network consists of layers, neurons, weights, activation functions,
and biases, and there are basically three types of layers: input, hidden, and output.
Each layer may have one or more neurons. Each neuron is connected either to a neural
input/output or to another neuron, and these connections are known as weights.

It is important to highlight that a neural network may have many hidden layers or
none, as the number of neurons in each layer may vary. However, the input and
output layers have the same number of neurons as the number of neural inputs/
outputs, respectively.

So, let's start implementing. Initially, we are going to define six classes, detailed
as follows:

Class name: Neuron
Attributes

private ArrayList<Double>
listOfWeightIn

An ArrayList variable of real numbers that
represents the list of input weights

private ArrayList<Double>
listOfWeightOut

An ArrayList variable of real numbers that
represents the list of output weights

Methods
public double initNeuron() Initializes listOfWeightIn and

listOfWeightOut function with a pseudo
random real number
Parameters: None
Returns: A pseudo random real number

Chapter 1

[13]

public void setListOfWei
ghtIn(ArrayList<Double>
listOfWeightIn)

Sets the listOfWeightIn function with a list of
real numbers list
Parameters: The list of real numbers to be stored
in the class object
Returns: None

public void setListOfWei
ghtOut(ArrayList<Double>
listOfWeightOut)

Sets the listOfWeightOut function with a list
of real numbers list
Parameters: The list of real numbers to be stored
in the class object
Returns: None

public ArrayList<Double>
getListOfWeightIn()

Returns the input weights a list of neurons
Parameters: None
Returns: The list of real numbers stored in the
listOfWeightIn variable

public ArrayList<Double>
getListOfWeightOut()

Returns the output weights a list of neurons
Parameters: None
Returns: The list of real numbers stored in the
listOfWeightOut variable

Class implementation with Java: file Neuron.java
Class Name: Layer

Note: This class is abstract and cannot be instantiated.
Attributes

private ArrayList<Neuron>
listOfNeurons

An ArrayList variable of objects of the
Neuron class

private int
numberOfNeuronsInLayer

Integer number to store the quantity of neurons
that are part of the layer

Methods
public ArrayList<Neuron>
getListOfNeurons()

Returns the list of neurons by layer
Parameters: None
Returns: An ArrayList variable of objects by
the Neuron class

public void setListOfNe
urons(ArrayList<Neuron>
listOfNeurons)

Sets the listOfNeurons function with
an ArrayList variable of objects of the
Neuron class
Parameters: The list of objects of the Neuron
class to be stored
Returns: None

Getting Started with Neural Networks

[14]

public int
getNumberOfNeuronsInLayer()

Returns the number of neurons by layer
Parameters: None
Returns: The number of neurons by layer

public void
setNumberOfNeuronsInLayer(int
numberOfNeuronsInLayer)

Sets the number of neurons in a layer
Parameters: The number of neurons in a layer
Returns: None

Class implementation with Java: file Layer.java
Class name: InputLayer

Note: This class inherits attributes and methods from the Layer class.
Attributes

None
Methods

public initLayer(InputLayer
inputLayer)

Initializes the input layer with pseudo random
real numbers
Parameters: An object of the InputLayer class
Returns: None

public void
printLayer(InputLayer
inputLayer)

Prints the input weights of the layer
Parameters: An object of the InputLayer class
Returns: None

Class implementation with Java: file InputLayer.java
Class name: HiddenLayer

Note: This class inherits attributes and methods from the Layer class.
Attributes

None
Methods

public ArrayList<HiddenLayer>
initLayer(HiddenLayer
hiddenLayer,
ArrayList<HiddenLayer>
listOfHiddenLayer, InputLayer
inputLayer, OutputLayer
outputLayer)

Initializes the hidden layer(s) with pseudo
random real numbers
Parameters: An object of the HiddenLayer
class, a list of objects of the HiddenLayer class,
an object of the InputLayer class, an object of
the OutputLayer class
Returns: None

public void printLayer(
ArrayList<HiddenLayer>
listOfHiddenLayer)

Prints the weights of the layer(s)

Parameters: A list of objects of the
HiddenLayer class
Returns: None

Chapter 1

[15]

Class implementation with Java: file HiddenLayer.java
Class name: OutputLayer

Note: This class inherits attributes and methods from the Layer class.

Attributes
None

Methods
public OutputLayer
initLayer(OutputLayer
outputLayer)

Initializes the output layer with pseudo random
real numbers

Parameters: An object of the OutputLayer class
Returns: None

public void
printLayer(OutputLayer
outputLayer)

Prints the weights of the layer

Parameters: An object of the OutputLayer class
Returns: None

Class implementation with Java: file OutputLayer.java

Class name: NeuralNet

Note: The values of the neural net topology are fixed in this class (two neurons in the input
layer, two hidden layers with three neurons each, and one neuron in the output layer).
Reminder: It's the first version.

Attributes

private InputLayer
inputLayer;

An object of the InputLayer class

private HiddenLayer
hiddenLayer;

An object of the HiddenLayer class

private
ArrayList<HiddenLayer>
listOfHiddenLayer;

An ArrayList variable of objects of the
HiddenLayer class. It is possible to have more
than one hidden layer

private OutputLayer
outputLayer;

An object of the OutputLayer class

private int
numberOfHiddenLayers;

Integer number to store the quantity of layers
that are part of the hidden layer

Getting Started with Neural Networks

[16]

Methods

public void initNet() Initializes the neural net as a whole. Layers are
built, and each list of the weights of neurons is
built randomly
Parameters: None
Returns: None

public void printNet() Prints the neural net as a whole. Each input and
output weight of each layer is shown
Parameters: None
Returns: None

Class implementation with Java: file NeuralNet.java

One advantage of OOP languages is the ease to document the program in Unified
Modeling Language (UML). UML class diagrams present classes, attributes, methods,
and relationships between classes in a very simple and straightforward manner, thus
helping the programmer and/or stakeholders to understand the project as a whole.
The following figure represents the very first version of the project's class diagram:

Chapter 1

[17]

Now, let's apply these classes and get some results. The code shown next has a
test class, a main method with an object of the NeuralNet class called n. When this
method is called (by executing the class), it calls the initNet() and printNet()
methods from the object n, generating the following result shown in the figure right
after the code. It represents a neural network with two neurons in the input layer,
three in the hidden layer, and one in the output layer:

public class NeuralNetTest {
 public static void main(String[] args) {
 NeuralNet n = new NeuralNet();
 n.initNet();
 n.printNet();

 }
}

It's relevant to remember that each time that the code runs, it generates new
pseudo random weight values. So, when you run the code, the other values
will appear in Console:

Getting Started with Neural Networks

[18]

Summary
In this chapter, we've seen an introduction to the neural networks, what they
are, what they are used for, and their basic concepts. We've also seen a very basic
implementation of a neural network in the Java programming language, wherein we
applied the theoretical neural network concepts in practice, by coding each of the
neural network elements. It's important to understand the basic concepts before we
move on to advanced concepts. The same applies to the code implemented with Java.

In the next chapter, we will delve into the learning process of a neural network and
explore the different types of leaning with simple examples.

[19]

How Neural Networks Learn
In this chapter, we will show the learning process that neural networks perform in
order to learn from data. We present the concepts of training, test, and validation,
and show how to implement them in Java. We also show some methods for
evaluating a neural network's performance in learning as well as learning algorithms'
parameters. In summary, the following are the concepts addressed in this chapter:

• Learning process
• Learning algorithm
• Types of learning

 ° Supervised
 ° Unsupervised

• Training, test, and validation
• Error measurements
• Generalization

Learning ability in neural networks
What is really amazing about neural networks is their capacity to learn from the
environment, just like brain-gifted beings are able to. We, as humans, experience the
learning process through observations and repetitions, until some task or concept is
completely mastered. From the physiological point of view, the learning process in
the human brain is a reconfiguration of the neural connections between the nodes
(neurons), which results in a new thinking structure.

How Neural Networks Learn

[20]

While the connectionist nature of neural networks distributes the learning process all
over the entire structure, this feature makes this structure flexible enough to learn a
wide variety of knowledge. As opposed to ordinary digital computers that can execute
only those tasks that they are programmed to, neural systems are able to improve and
perform new activities according to some satisfaction criteria. In other words, neural
networks don't need to be programmed; they learn the program by themselves.

How learning helps to solve problems
Considering that every task that requires solving solve may have a huge number of
theoretically possible solutions, the learning process seeks to find an optimal solution
that can produce a satisfying result. The use of structures like artificial neural
networks (ANNs) is encouraged because of their ability to acquire knowledge of any
type, strictly by receiving input stimuli, that is, data relevant to the task/problem.
First, the ANN will produce a random result and an error, and based on this error,
the ANN parameters will be adjusted.

We can then think of the ANN parameters (weights) as
the components of a solution. Let's imagine that one single
solution represents a single point in the solution hyperspace.
Each single solution produces an error measure, which informs
how far away that solution is from the optimal one. For each
iteration, the learning algorithm seeks a solution that can yield
a smaller error and therefore, be closer to the optimal one.

Learning paradigms
There are basically two types of learning for neural networks, namely supervised
and unsupervised. The learning in the human mind, for example, also works
in this way. We can learn from observations without any kind of target pattern
(unsupervised), or we can have a teacher who shows us the right pattern to follow
(supervised). The difference between these two paradigms relies mainly on the
relevance of a target pattern and varies from problem to problem.

Supervised learning
This category of learning deals in pairs of X's and Y's, and the objective is to map
them in a function f: X → Y. Here, the Y data is the supervisor, the target desired
outputs, and the X data is the source-independent data that generates the Y data. It is
analogous to a teacher who is teaching somebody a certain task to be performed, as
shown in the following figure:

Chapter 2

[21]

Subjects to learn:
Inference
Forecasting
Pattern Recognition

One particular feature of this learning paradigm is that there is a direct error
reference, which is just the comparison between the target and the current actual
result. The network parameters are fed into a cost function, which quantifies the
mismatch between the desired and the actual outputs.

A cost function is just a measurement to be minimized in an
optimization problem. That means that one seeks to find the
parameters that drive the cost function to the lowest possible value.
The cost function will be covered in detail further in this chapter.

Supervised learning is very suitable for tasks that already provide a pattern, a
goal to be reached. Some examples are as follows: classification of images, speech
recognition, function approximation, and forecasting. Note that the neural network
should be provided previous knowledge of both input-independent values (X) and
the output classification-dependent values (Y). The presence of a dependent output
value is a necessary condition for the learning to be supervised.

Unsupervised learning
As illustrated in the following figure, in unsupervised learning, we deal only with
data without any labeling or classification; instead, our neural structure tries to draw
inferences and extract knowledge by taking into account only the input data X.

What is the pattern behind this
numbers? So I could guess the

next ones in the sequence.

Maybe I should find some
features common to some of the
numbers, ... And finally determine

they are grouped by their first
letters!

2 3 10 12 13 20 21 ?

4 5 14 15 40 41 42 ?

6 7 16 17 60 61 62 ?

How Neural Networks Learn

[22]

This is analogous to self-learning, when someone learns by him/herself taking
into account his/her experience and a set of supporting criteria. In unsupervised
learning, we don't have a defined desired pattern to be applied on each observation,
but the neural structure can produce one by itself without any supervising need.

Here, the cost function plays an important role. It will
strongly affect all the neural properties as well as the
relation between the input data.

Examples of tasks that unsupervised learning can be applied to are as follows:
clustering, data compression, statistical modeling, and language modeling. This
learning paradigm will be covered in more detail in Chapter 4, Self-Organizing Maps.

Systematic structuring – learning
algorithm
So far, we have theoretically defined the learning process and how it is carried out.
However, in practice, we must dive a little bit deeper into the mathematical logic, the
learning algorithm itself. A learning algorithm is a procedure that drives the learning
process of neural networks and is strongly determined by the neural network
architecture. From the mathematical point of view, one wishes to find the optimal
weights W that can drive the cost function C(X,[Y]) to the lowest possible value.

In general, this process is carried out in the fashion presented in the following
flowchart:

Define the neural network
structure and objective with

an acceptance criteria

Present data (the
environment) to the

neural network

Calculate the neural
network response
to it and the error

Is the neural
response within the
acceptance criteria?

Reconfigure the
neural weights

Neural Network has
learned the
environment

No Yes

Chapter 2

[23]

Just like any program that we wish to write, we should have defined our goal, so in
here, we are talking about a neural network to learn some knowledge. We should
present this knowledge (or environment) to the ANN and check its response,
which naturally will make no sense. The network response is then compared to the
expected result, and this is fed to a cost function C. This cost function will determine
how the weights W can be updated. The learning algorithm then computes the
ΔW term, which means the variation of the values of the weights to be added. The
weights are updated as in the equation.

Where k refers to the kth iteration and W(k) refers to the neural weights at the kth
iteration, and subsequently, k + 1 refers to the next iteration.

As the learning process is run, the neural network must give results closer and
closer to the expectation, until finally, it reaches the acceptation criteria. The learning
process is then considered to be finished.

Two stages of learning – training and testing
Well, we might ask now whether the neural network has already learned from
the data, but how can we attest it has effectively learnt the data? The answer is
just like in the exams that students are subjected to; we need to check the network
response after training. But wait! Do you think it is likely that a teacher would put
in an exam the same questions he/she has presented in the classes? There is no
sense in evaluating somebody's learning with examples that are already known or a
suspecting teacher would conclude the student might have memorized the content,
instead of having learnt it.

Okay, let's now explain this part. What we are talking about here is testing. The
learning process that we have covered is called training. After training a neural
network, we should test it whether it has really learnt. For testing, we must present
to the neural network another fraction of data from the same environment that it has
learnt from. This is necessary because, just like the student, the neural network could
respond properly with only the data points that it had been exposed to; this is called
overtraining. To check whether the neural network has not passed on overtraining,
we must check its response to other data points.

How Neural Networks Learn

[24]

The following figure illustrates the overtraining problem. Imagine that our network
is designed to approximate some function f(x) whose definition is unknown. The
neural network was fed with some data from that function and produced the
following result shown in the figure on the left. However, when expanding to a
wider domain, we note that the neural response does not follow the data.

In this case, we see that the neural network failed to learn the whole environment
(the function f(x)). This happens because of a number of reasons:

• The neural network didn't receive enough information from the environment
• The data from the environment is nondeterministic
• The training and testing datasets are poorly defined
• The neural network has learnt a lot from the training data and forgets about

the testing data

In this book, we will cover this process to prevent this and other issues that may arise
during training.

The details – learning parameters
The learning process may be, and is recommended to be, controlled. One important
parameter is the learning rate, often represented by the Greek letter η. This
parameter dictates how strongly the neural weights would vary in the weights'
hyperspace. Let's imagine a simple neural network with two inputs and one neuron,
therefore one output. So, we've got two weights w1 and w2. Now suppose that we
want to train this network and imagine whether we could evaluate the error for each
pair of weights. Suppose that we found a surface like the one in the following figure:

Chapter 2

[25]

The learning rate is responsible for regulating how far the weights are going to move
on the surface. This may speed up the learning process but can also lead to a set of
weights worse than the previous one.

Another important parameter is the condition for stopping. Usually, the training stops
when the general mean error is reached, but there are cases in which the network fails
to learn and there is little or no change in the weights' values. In the latter case, the
maximum number of iterations, or epochs, is the condition for stopping.

Error measurement and cost function
This is extremely important for the success of the training in the supervised learning.
Let's suppose that we present for the network a set of N records containing pairs of
X and T variables, whereas X are the input-independent values and T are the target
values dependent on X. Let's consider the neural network as a mathematical function
ANN() that produces Y on the output when being fed with the X values.

How Neural Networks Learn

[26]

For each x value given to the ANN, it will produce a y value that when compared to
the t value gives an error e.

However, this is a mere individual error measurement per data point. We should take
into account a general measurement, covering all the N data pairs because we want
the network to learn all the data points and the same weights must be able to produce
the data covering the entire training set. That's the role of the cost function C.

Where X are the inputs, T are the target outputs, W are the weights, x[i] is the input
at the ith instant, and t[i] is the target output for the ith instant. The result of this
function is an overall measurement of the error between the target outputs and the
neural outputs, and this should be minimized.

Examples of learning algorithms
Let's now merge the theoretical content presented so far together into simple
examples of learning algorithms. In this chapter, we are going to explore two neural
architectures: perceptron and adaline. Both are very simple, containing only one layer.

Perceptron
The perceptrons learn by taking into account only the error between the target and
the output, and the learning rate. The update rule is as follows:

Where wi is the weight connecting the ith input to the neuron, t[k] is the target output
for the kth sample, y[k] is the result of the neural network for the kth sample, xi[k] is
the ith input for the kth sample, and η is the learning rate. It can be seen that this rule
is very simplistic and does not consider the perceptron nonlinearities present in the
activation function; it just goes in the opposite direction of the error in the naïve hope
that this would take the network close to the objective.

Chapter 2

[27]

Delta rule
A better algorithm based on the gradient descent method was developed to consider
nonlinearity as well as its derivative. What this algorithm has in addition to the
perceptron rule is the derivative of the activation function g(h), with h being the
weighted sum of all the neuron inputs before passing them to the activation function.
So, the update rule is as follows:

Coding of the neural network learning
Now, it is time to develop a neural network using OOP concepts and explain
the related theory. The project presented in the previous chapter was adapted to
implement the perceptron and adaline rules, as well as the Delta rule.

The NeuralNet class presented in the previous chapter has been updated to include
the training dataset (input and target output), learning parameters, and activation
function settings. The InputLayer function was also updated to include one method.
We added to the project the Adaline, Perceptron, and Training classes. Details
on the implementation of each class can be found in the codes. However, now, let's
make the connection between the neural learning and the Java implementation of the
Training class.

Learning parameter implementation
The Training class should be used for training neural networks. In this chapter, we
are going to use this class to train Perceptron and Adaline classes. Also, the activation
functions that are foreseen to be used in the neural networks in this chapter should be
considered. So, now, let's define two enumeration sets that will handle these settings:

 public enum TrainingTypesENUM {
 PERCEPTRON, ADALINE;
 }

 public enum ActivationFncENUM {
 STEP, LINEAR, SIGLOG, HYPERTAN;
 }

How Neural Networks Learn

[28]

In addition to these parameters, we need to define the condition for stopping, the
error, the MSE error, and the number of epochs, as shown in the following code:

 private int epochs;
 private double error;
 private double mse;

The learning rate has already been defined in the NeuralNet class and will be
used here.

Finally, we need a method to update the weights of a given neuron. So, let's take a
look at the CalcNewWeight method:

 private double calcNewWeight(TrainingTypesENUM trainType,
 double inputWeightOld, NeuralNet n, double error,
 double trainSample, double netValue) {
 switch (trainType) {
 case PERCEPTRON:
 return inputWeightOld + n.getLearningRate() * error *
trainSample;
 case ADALINE:
 return inputWeightOld + n.getLearningRate() * error *
trainSample
 * derivativeActivationFnc(n.getActivationFnc(), netValue);
 default:
 throw new IllegalArgumentException(trainType
 + " does not exist in TrainingTypesENUM");
 }
 }

We see in this method a switch clause that selects the update procedure according
to the training type (Adaline or Perceptron). We can also see the inputWeightOld
(the old weights), n (neural network under training), error (difference between
target and neural output), trainsample (input to the weight), and netValue
(weighted sum before processing by activation function) parameters. The learning
rate is retrieved by calling the getLearningRate() function of the NeuralNet class.

One interesting detail is the derivative of the activation function that is called for
the Adaline training type, which is the Delta rule. All the activation functions are
implemented as methods inside the Training class, and their respective derivatives
are implemented as well. The derivativeActivationFnc method helps to call the
derivative corresponding to the activation function passed in the argument.

Chapter 2

[29]

Learning procedure
Two special methods are implemented in the Training class: one for training the
neural network and the other for training the neurons of some layer. Although this
won't be necessary in this chapter, it is always good to have a code prepared for
future examples or updates. Let's take a quick look at the implementation of the
method train:

public NeuralNet train(NeuralNet n) {

 ArrayList<Double> inputWeightIn = new ArrayList<Double>();

 int rows = n.getTrainSet().length;
 int cols = n.getTrainSet()[0].length;

 while (this.getEpochs() < n.getMaxEpochs()) {

 double estimatedOutput = 0.0;
 double realOutput = 0.0;

 for (int i = 0; i < rows; i++) {

 double netValue = 0.0;

 for (int j = 0; j < cols; j++) {
 inputWeightIn = n.getInputLayer().getListOfNeurons().get(j)
 .getListOfWeightIn();
 double inputWeight = inputWeightIn.get(0);
 netValue = netValue + inputWeight * n.getTrainSet()[i][j];
 }

 estimatedOutput = this.activationFnc(n.getActivationFnc(),
 netValue);
 realOutput = n.getRealOutputSet()[i];

 this.setError(realOutput - estimatedOutput);

 if (Math.abs(this.getError()) > n.getTargetError()) {
 // fix weights
 InputLayer inputLayer = new InputLayer();
 inputLayer.setListOfNeurons(this.teachNeuronsOfLayer(cols,
 i, n, netValue));
 n.setInputLayer(inputLayer);
 }

www.allitebooks.com

http://www.allitebooks.org

How Neural Networks Learn

[30]

 }

 this.setMse(Math.pow(realOutput - estimatedOutput, 2.0));
 n.getListOfMSE().add(this.getMse());

 this.setEpochs(this.getEpochs() + 1);

 }

 n.setTrainingError(this.getError());

 return n;
 }

This method receives a neural network in the parameter and produces another
neural network with trained weights. Further, we see a while clause that loops while
the number of epochs does not reach the maximum set out in the Training class.
Inside this loop, there is a for clause that iterates over all the training samples that
are presented to the network and so begins the process of calculating the neural
output for the input in the current iteration.

When it gets the real output of the network, it compares it to the estimated output
and calculates the error. This error is checked, and if it is higher than the minimum
error, then it starts the update procedure by calling the teachNeuronsOfLayer
method in the following line:

inputLayer.setListOfNeurons(this.teachNeuronsOfLayer(cols,
 i, n, netValue));

The implementation of this method is found in the codes attached with this chapter.

Then, this process is repeated iteratively until all the neural samples are passed to the
neural network, and then, until the maximum number of epochs is reached.

Class definitions
The following table shows all the fields and methods for all the classes covered in
this chapter:

Class name: Training
Note: This class is abstract and cannot be instantiated.

Attributes
private int epochs Integer number to store the training cycle,

known as epoch

Chapter 2

[31]

private double error Real number to store the error between
estimated output and real output

private double mse Real number to store the mean square error
(MSE)

Enums
Note: enum helps to control different types

public enum TrainingTypesENUM {
 PERCEPTRON, ADALINE;
}

Enumeration to store types of training
supported by project (Perceptron and
Adaline)

public enum ActivationFncENUM {
 STEP, LINEAR, SIGLOG,
HYPERTAN;
}

Enumeration to store types of activation
functions supported by project (step, linear,
sigmoid logistics, and hyperbolic tangent)

Methods
public NeuralNet
train(NeuralNet n)

Trains the neural network
Parameters: NeuralNet object (neural net
untrained)
Returns: NeuralNet object (neural net
trained)

public ArrayList<Neuron>
teachNeuronsOfLayer(int
numberOfInputNeurons, int line,
NeuralNet n, double netValue)

Teaches neurons of the layer, calculating and
changing its weights
Parameters: Number of input neurons,
samples line, NeuralNet object, neural net
output
Returns: ArrayList of objects by the
Neuron class

private double
calcNewWeight(TrainingTypesENUM
trainType, double
inputWeightOld, NeuralNet
n, double error, double
trainSample, double netValue)

Calculates the new weight of a neuron
Parameters: Train type enum value, old input
weight value, NeuralNet object, error value,
training sample value, output net value
Returns: Real number represents a new
weight value

public double activationFnc (
ActivationFncENUM fnc, double
value)

Decides which activation function to use and
calls the method of computing it
Parameters: Activation function enum value,
real number value
Returns: Calculated value of the activation
function

How Neural Networks Learn

[32]

public double
derivativeActivationFnc (
ActivationFncENUM fnc, double
value)

Decides which activation function to use and
calls the method of computing the derivative
value
Parameters: Activation function enum value,
real number value
Returns: Calculated value of the derivative of
the activation function

private double fncStep (double
v)

Computes step function
Parameters: Real number value
Returns: Real number value

private double fncLinear
(double v)

Computes linear function
Parameters: Real number value
Returns: Real number value

private double fncSigLog
(double v)

Computes sigmoid logistics function
Parameters: Real number value
Returns: Real number value

private double fncHyperTan
(double v)

Computes hyperbolic tangent function
Parameters: Real number value
Returns: Real number value

private double
derivativeFncLinear (double v)

Computes the derivative of the linear function
Parameters: Real number value
Returns: Real number value

private double
derivativeFncSigLog (double v)

Computes the derivative of the sigmoid
logistics function
Parameters: Real number value
Returns: Real number value

private double
derivativeFncHyperTan (double
v)

Computes the derivative of the hyperbolic
tangent function
Parameters: Real number value
Returns: Real number value

public void
printTrainedNetResult
(NeuralNet trainedNet)

Prints trained neural net and shows its results
Parameters: NeuralNet object
Returns: None

public int getEpochs() Returns the number of epochs of the training
public void setEpochs (int
epochs)

Sets the number of epochs of the training

public double getError() Returns the training error (comparison
between estimated and real values)

Chapter 2

[33]

public void setError (double
error)

Sets the training error

public double getMse() Returns the MSE
public void setMse (double mse) Sets the MSE

Class implementation with Java: file Training.java
Class name: Perceptron

Note: This class inherits attributes and methods from the Training class
Attributes

None
Method

public NeuralNet
train(NeuralNet n)

Trains the neural network using the
perceptron algorithm
Parameters: NeuralNet object (neural net
untrained)
Returns: NeuralNet object (neural net
trained via Perceptron)

Class implementation with Java: file Perceptron.java
Class name: Adaline

Note: This class inherits attributes and methods from the Training class.
Attributes

None
Method

public NeuralNet
train(NeuralNet n)

Trains the neural network using the adaline
algorithm
Parameters: NeuralNet object (neural net
untrained)
Returns: NeuralNet object (neural net
trained via adaline)

Class implementation with Java: file Adaline.java
Class name: InputLayer

Note: This class already existed in the previous version and has been updated as follows:
Attributes

None
Method

public void
setNumberOfNeuronsInLayer(int
numberOfNeuronsInLayer)

Sets the number of neurons in the input layer.
It increased by one because of the bias

How Neural Networks Learn

[34]

Class implementation with Java: file InputLayer.java
Class name: NeuralNet

Note: This class already existed in the previous version and has been updated as follows:
Attributes

private double[][] trainSet Matrix to store the training set of input data
private double[] realOutputSet Vector to store the training set of output data
private int maxEpochs Integer number to store the maximum number

of epochs that neural net will train
private double learningRate Real number to store the learning rate
private double targetError Real number to store the target error
private double trainingError Real number to store the training error
private TrainingTypesENUM
trainType

Enum value of the training type that will be
used to train the neural net

private ActivationFncENUM
activationFnc

Enum value of the activation function that will
be used in training

private ArrayList<Double>
listOfMSE = new
ArrayList<Double>()

ArrayList of real numbers to store the MSE
error of each epoch

Methods
public NeuralNet trainNet
(NeuralNet n)

Trains the neural network
Parameters: NeuralNet object (neural net
untrained)
Returns: NeuralNet object (neural net
trained)

public void
printTrainedNetResult (
NeuralNet n)

Prints the trained neural net and shows its
results
Parameters: NeuralNet object
Returns: None

public double[][] getTrainSet() Returns the matrix of the training set of input
data

public void
setTrainSet(double[][]
trainSet)

Sets the matrix of the training set of input data

public double[]
getRealOutputSet()

Returns the vector training set of output data

Chapter 2

[35]

public void
setRealOutputSet(double[]
realOutputSet)

Sets the vector training set of output data

public int getMaxEpochs() Returns the maximum number of epochs that
the neural net will train

public void setMaxEpochs(int
maxEpochs)

Sets the maximum number of epochs that the
neural net will train

public double getTargetError() Returns the target error
public void
setTargetError(double
targetError)

Sets the target error

public double getLearningRate() Returns the learning rate used in training
public void
setLearningRate(double
learningRate)

Sets the learning rate used in training

public double
getTrainingError()

Returns the training error

public void
setTrainingError(double
trainingError)

Sets the training error

public ActivationFncENUM
getActivationFnc()

Returns the enum value of the activation
function that will be used in training

public void setActivationFnc(
ActivationFncENUM
activationFnc)

Sets the enum value of the activation function
that will be used in training

public TrainingTypesENUM
getTrainType()

Returns the enum value of the training type
that will be used to train the neural net

public void setTrainType(
TrainingTypesENUM trainType)

Sets the enum value of the training type that
will be used to train the neural net

public ArrayList<Double>
getListOfMSE()

Returns the list of real numbers that stores the
MSE error of each epoch

public void setListOfMSE(
ArrayList<Double> listOfMSE)

Sets the list of real numbers that stores the
MSE error of each epoch

Class implementation with Java: file NeuralNet.java

How Neural Networks Learn

[36]

The updated class diagram is shown in the following figure. Attributes and methods
already explained in the previous chapter were omitted. Further, configuration
methods of new attributes (setters and getters) were also omitted.

Chapter 2

[37]

Two practical examples
Now, let's take a look at two examples of applications of these simple neural
network architectures.

Perceptron (warning system)
To facilitate understanding about perceptron, let's consider a basic warning system.
It is based in AND logic. There are two sensors, and the rules of warning are
as follows:

• If both or one of them is disabled, the warning is trigged
• If both are enabled, the warning is not trigged

The following figure shows the basic warning system:

To encode the problem, inputs are represented as follows. 0 means disabled, and
1 means enabled. Output is represented as follows. 0 means enabled, and 1 means
disabled. The following table summarizes this:

Sample Sensor 1 Sensor 2 Alarm
1 0 0 0
2 0 1 0
3 1 0 0
4 1 1 1

How Neural Networks Learn

[38]

The Basic warning system figure illustrates how neurons and layers must be organized
to solve this problem. It is the architecture of the neural net:

Now, let's use the class previously cited. Two methods have been created in the test
class: testPerceptron() and testAdaline(). Let's analyze the first one:

private void testPerceptron() {
 NeuralNet testNet = new NeuralNet();

 testNet = testNet.initNet(2, 0, 0, 1);

 System.out.println("---------PERCEPTRON INIT NET---------");

 testNet.printNet(testNet);

 NeuralNet trainedNet = new NeuralNet();

 // first column has BIAS
 testNet.setTrainSet(new double[][] { { 1.0, 0.0, 0.0 },
 { 1.0, 0.0, 1.0 }, { 1.0, 1.0, 0.0 }, { 1.0, 1.0, 1.0 } });
 testNet.setRealOutputSet(new double[] { 0.0, 0.0, 0.0, 1.0 });
 testNet.setMaxEpochs(10);
 testNet.setTargetError(0.002);
 testNet.setLearningRate(1.0);
 testNet.setTrainType(TrainingTypesENUM.PERCEPTRON);
 testNet.setActivationFnc(ActivationFncENUM.STEP);

 trainedNet = testNet.trainNet(testNet);

 System.out.println();
 System.out.println("---------PERCEPTRON TRAINED NET---------");

Chapter 2

[39]

 testNet.printNet(trainedNet);

 System.out.println();
 System.out.println("---------PERCEPTRON PRINT RESULT---------");

 testNet.printTrainedNetResult(trainedNet);

}

First, an object of the NeuralNet class is created. After that, this object is used to
initialize the neural net with two neurons in the input layer, none in the hidden
layer, and one neuron in the output layer. Then, a message and the untrained neural
net are shown on the screen. Another object of the NeuralNet class is created and
represents the trained neural net. After that, the testNet object is set with the
training input dataset (the first column has bias values), training output dataset,
maximum number of epochs, target error, learning rate, training type (perceptron),
and activation function (step). Then, the trainNet method is called to train the
neural net. To finalize, the perceptron-trained net results are printed. These results
are shown in the following screenshot:

---------PERCEPTRON INIT NET---------
INPUT LAYER
Neuron #1:
Input Weights:
[0.179227246819473]
Neuron #2:
Input Weights:
[0.927776315380873]
Neuron #3:
Input Weights:

How Neural Networks Learn

[40]

[0.7639255282026901]

OUTPUT LAYER
Neuron #1:
Output Weights:
[0.7352957201253741]

---------PERCEPTRON TRAINED NET---------
INPUT LAYER
Neuron #1:
Input Weights:
[-2.820772753180527]
Neuron #2:
Input Weights:
[1.9277763153808731]
Neuron #3:
Input Weights:
[1.76392552820269]

OUTPUT LAYER
Neuron #1:
Output Weights:
[0.7352957201253741]

---------PERCEPTRON PRINT RESULT---------
1.0 0.0 0.0 NET OUTPUT: 0.0 REAL OUTPUT: 0.0 ERROR: 0.0
1.0 0.0 1.0 NET OUTPUT: 0.0 REAL OUTPUT: 0.0 ERROR: 0.0
1.0 1.0 0.0 NET OUTPUT: 0.0 REAL OUTPUT: 0.0 ERROR: 0.0
1.0 1.0 1.0 NET OUTPUT: 1.0 REAL OUTPUT: 1.0 ERROR: 0.0

According to the results, it is possible to check whether the weights changed and
conclude that the neural net learned how to classify when an alarm should be
enabled or not. Reminder: The acquired knowledge belongs inside the weights
[-2.820772753180527], [1.9277763153808731], and [1.76392552820269].
Besides, as the neurons are initialized with pseudo-random values, each time this
code is run, the results change.

Chapter 2

[41]

ADALINE (traffic forecast)
To demonstrate the adaline algorithm, let us imagine that a small part of a city has an
avenue and three streets lead to this avenue. In this avenue, there are many accidents
and heavy traffic. Assume that the government traffic department has decided to
develop a forecasting and warning system. This system aims to anticipate traffic
jams, warning drivers and taking the necessary measures to reduce the incurred
losses, as demonstrated in the following figure:

To develop the system, information is collected for every street and avenue for a
week: the number of cars that travel on these routes per minute, as shown in the
following table:

Sample Street A

(cars/minute)

Street B

(cars/minute)

Street C

(cars/minute)

Avenue

(cars/minute)
1 0.98 0.94 0.95 0.80

2 0.60 0.60 0.85 0.59
3 0.35 0.15 0.15 0.23
4 0.25 0.30 0.98 0.45
5 0.75 0.85 0.91 0.74
6 0.43 0.57 0.87 0.63
7 0.05 0.06 0.01 0.10

How Neural Networks Learn

[42]

Then, the architecture of a neural net to solve this problem is designed as shown in
the following figure:

Next, let's analyze the second test method named testAdaline(). It is as follows:

private void testAdaline() {

 NeuralNet testNet = new NeuralNet();

 testNet = testNet.initNet(3, 0, 0, 1);

 System.out.println("---------ADALINE INIT NET---------");

 testNet.printNet(testNet);

 NeuralNet trainedNet = new NeuralNet();

 // first column has BIAS

 testNet.setTrainSet(new double[][] { { 1.0, 0.98, 0.94, 0.95 },
 { 1.0, 0.60, 0.60, 0.85 }, { 1.0, 0.35, 0.15, 0.15 },
 { 1.0, 0.25, 0.30, 0.98 }, { 1.0, 0.75, 0.85, 0.91 },
 { 1.0, 0.43, 0.57, 0.87 }, { 1.0, 0.05, 0.06, 0.01 } });
 testNet.setRealOutputSet(new double[] { 0.80, 0.59, 0.23, 0.45,
0.74, 0.63, 0.10 });
 testNet.setMaxEpochs(10);
 testNet.setTargetError(0.0001);
 testNet.setLearningRate(0.5);
 testNet.setTrainType(TrainingTypesENUM.ADALINE);
 testNet.setActivationFnc(ActivationFncENUM.LINEAR);

 trainedNet = new NeuralNet();
 trainedNet = testNet.trainNet(testNet);

 System.out.println();

Chapter 2

[43]

 System.out.println("---------ADALINE TRAINED NET---------");

 testNet.printNet(trainedNet);

 System.out.println();
 System.out.println("---------ADALINE PRINT RESULT---------");

 testNet.printTrainedNetResult(trainedNet);

 System.out.println();
 System.out.println("---------ADALINE MSE BY EPOCH---------");
 System.out.println(Arrays.deepToString(trainedNet.getListOfMSE().
toArray()).replace(" ", "\n"));

}

The adaline test logic is very similar to perceptron's. The parameters that differ are
as follows. Three neurons in the input layer, training dataset, output dataset, training
type sets such as adaline, and activation function sets such as Linear. To finalize,
adaline-trained net results and the adaline MSE list are printed. These results are
shown in the following figure:

How Neural Networks Learn

[44]

The complete results are displayed via following code:
---------ADALINE INIT NET---------
INPUT LAYER
Neuron #1:
Input Weights:
[0.39748670958336774]
Neuron #2:
Input Weights:
[0.0018141925587737973]
Neuron #3:
Input Weights:
[0.3705005221910509]
Neuron #4:
Input Weights:
[0.20624007274978795]

OUTPUT LAYER
Neuron #1:
Output Weights:
[0.16125863508860827]

---------ADALINE TRAINED NET---------
INPUT LAYER
Neuron #1:
Input Weights:
[0.08239521813153253]
Neuron #2:
Input Weights:
[0.08060471820877586]
Neuron #3:
Input Weights:
[0.4793193652720801]
Neuron #4:
Input Weights:
[0.259894055603035]

OUTPUT LAYER
Neuron #1:
Output Weights:
[0.16125863508860827]

---------ADALINE PRINT RESULT---------
1.0 0.98 0.94 0.95 NET OUTPUT: 0.85884 REAL OUTPUT: 0.8
ERROR: 0.05884739815477136
1.0 0.6 0.6 0.85 NET OUTPUT: 0.63925 REAL OUTPUT: 0.59
ERROR: 0.04925961548262592
1.0 0.35 0.15 0.15 NET OUTPUT: 0.22148 REAL OUTPUT: 0.23 ERROR:

Chapter 2

[45]

-0.008511117364128656
1.0 0.25 0.3 0.98 NET OUTPUT: 0.50103 REAL OUTPUT: 0.45
ERROR: 0.05103838175632486
1.0 0.75 0.85 0.91 NET OUTPUT: 0.78677 REAL OUTPUT: 0.74
ERROR: 0.046773807868144446
1.0 0.43 0.57 0.87 NET OUTPUT: 0.61637 REAL OUTPUT: 0.63
ERROR: -0.013624886458967755
1.0 0.05 0.06 0.01 NET OUTPUT: 0.11778 REAL OUTPUT: 0.1 ERROR:
0.017783556514326462

---------ADALINE MSE BY EPOCH---------
[0.04647154331286084,
0.018478851884998992,
0.008340477769290564,
0.004405551259806042,
0.0027480838150394362,
0.0019914963464723553,
0.0016222114177244264,
0.00143318844904685,
0.0013337070214879325,
0.001280852868781586]

One more time, according to the abovementioned results, it is possible to conclude
that the neural net learned to predict traffic jams in a specific area. This can be
proven by changing weights and by the MSE list. Look at the graphic plotted using
the MSE data in the following figure. It is easy to note that the MSE decreases as the
number of epochs increases.

How Neural Networks Learn

[46]

Summary
This chapter presented the reader with the entire learning process of neural
networks. We presented the very basic foundations of learning, inspired by human
learning itself. To illustrate this process in practice, we have implemented two
learning algorithms in Java and applied them in two examples. With this, the reader
can gain a basic but useful understanding of how neural networks learn and even
how one can systematically describe the learning process. This will be the foundation
for the next chapter, which will present more complex examples.

[47]

Handling Perceptrons
In this chapter, we are going to explore one of the most popular and basic types
of neural network architecture: the perceptrons. This chapter also presents their
extended generalized version, the so-called multilayer perceptrons, as well as their
features, learning algorithms, and parameters. Also, the reader will learn how to
implement them in Java and how to use them for solving some basic problems:

• Perceptrons
 ° Applications and limitations

• Multilayer perceptrons
 ° Classification
 ° Regression

• Backpropagation algorithm
• Java implementation
• Practical problems

Handling Perceptrons

[48]

Studying the perceptron neural network
Perceptron is the most simple neural network architecture. Projected by Frank
Rosenblatt in 1957, it has just one layer of neurons, receiving a set of inputs and
producing a set of outputs. This was one of the first representations of neural
networks to gain attention, particularly because of its simplicity. The structure of a
single neuron is shown as follows:

Applications and limitations of perceptrons
However, scientists did not take long to conclude that a perceptron neural network
could only be applied to simple tasks because of its simplicity. At that time, neural
networks were being used for simple classification problems, but perceptrons
usually failed when faced with more complex datasets. Let's review the first example
of Chapter 2, How Neural Networks Learn, (AND) to better understand this issue.

Linear separation
The example consists of an AND function that takes two inputs x1 and x2. This
function can be plotted in a two-dimensional chart as follows:

Chapter 3

[49]

Now, let's examine how the neural network evolves in the training by using the
perceptron rule, considering a pair of two weights w1 and w2, initially 0.5, and a bias
value of 0.5. Assume that the learning rate η equals 0.2.

Epoch x1 x2 w1 w2 b y t E Δw1 Δw2 Δb
1 0 0 0,5 0,5 0,5 0,5 0 -0,5 0 0 -0,1
1 0 1 0,5 0,5 0,4 0,9 0 -0,9 0 -0,18 -0,18
1 1 0 0,5 0,32 0,22 0,72 0 -0,72 -0,144 0 -0,144
1 1 1 0,356 0,32 0,076 0,752 1 0,248 0,0496 0,0496 0,0496
2 0 0 0,406 0,370 0,126 0,126 0 -0,126 0,000 0,000 -0,025
2 0 1 0,406 0,370 0,100 0,470 0 -0,470 0,000 -0,094 -0,094
2 1 0 0,406 0,276 0,006 0,412 0 -0,412 -0,082 0,000 -0,082
2 1 1 0,323 0,276 -0,076 0,523 1 0,477 0,095 0,095 0,095
… …
89 0 0 0,625 0,562 -0,312 -0,312 0 0,312 0 0 0,062
89 0 1 0,625 0,562 -0,25 0,313 0 -0,313 0 -0,063 -0,063
89 1 0 0,625 0,500 -0,312 0,313 0 -0,313 -0,063 0 -0,063
89 1 1 0,562 0,500 -0,375 0,687 1 0,313 0,063 0,063 0,063

After 89 epochs, we find the network to produce values close to the desired output.
Since in this example, the outputs are binary (zero or one), we can assume that any
value produced by the network that is below 0.5 is considered to be 0 and any value
above 0.5 is considered to be 1. So, we can draw a function Y = x1w1 + x2w2 + b=0.5,
with the final weights and bias found by the learning algorithm w1 = 0.562, w2 = 0.5,
and b = -0.375, defining the linear boundary as shown in the following chart:

Handling Perceptrons

[50]

This boundary is a definition of all classifications given by the network. You can see
that the boundary is linear, given that the function is linear. Thus, the perceptron
network is really suitable for problems whose patterns are linearly separable.

Classical XOR case
Let's analyze the XOR case, whose chart can be seen in the following figure:

We see that in two dimensions, it is impossible to draw a line to separate the two
patterns. What would happen if we tried to train a single-layer perceptron to learn this
function? Suppose that we tried; let's see what happened through the following table:

Epoch x1 x2 w1 w2 b y t E Δw1 Δw2 Δb
1 0 0 0,5 0,5 0,5 0,5 0 -0,5 0 0 -0,1
1 0 1 0,5 0,5 0,4 0,9 1 0,1 0 0,02 0,02
1 1 0 0,5 0,52 0,42 0,92 1 0,08 0,016 0 0,016
1 1 1 0,516 0,52 0,436 1,472 0 -1,472 -0,294 -0,294 -0,294
2 0 0 0,222 0,226 0,142 0,142 0 -0,142 0,000 0,000 -0,028
2 0 1 0,222 0,226 0,113 0,339 1 0,661 0,000 0,132 0,132
2 1 0 0,222 0,358 0,246 0,467 1 0,533 0,107 0,000 0,107
2 1 1 0,328 0,358 0,352 1,038 0 -1,038 -0,208 -0,208 -0,208
… …
127 0 0 -0,250 -0,125 0,625 0,625 0 -0,625 0,000 0,000 -0,125
127 0 1 -0,250 -0,125 0,500 0,375 1 0,625 0,000 0,125 0,125
127 1 0 -0,250 0,000 0,625 0,375 1 0,625 0,125 0,000 0,125
127 1 1 -0,125 0,000 0,750 0,625 0 -0,625 -0,125 -0,125 -0,125

Chapter 3

[51]

The perceptron just could not find any pair of weights that would drive the error
below 0.625. This can be explained mathematically as we have already perceived from
the chart that this function cannot be linearly separable in two dimensions. So, what if
we add another dimension? Let's see the previous XOR chart in three dimensions:

In three dimensions, it is possible to draw a plane that would separate the patterns,
provided that this additional dimension could properly transform the input data. Okay,
but now, there is an additional problem: How can we derive this additional dimension
since we have only two input variables? One obvious but "workaround" answer would
be adding a third variable as a derivation from the two original ones. With this third
variable a (derivation), our neural network would probably get the following shape:

Okay, now, the perceptron has three inputs, one of them being a composition of
the other two. This also leads to a new question: How should this composition be
processed? We can see that this component can act as a neuron, thereby giving the
neural network a nested architecture. If so, there would be another new question:
How would the weights of this new neuron be trained, since the error is on the
output neuron?

Handling Perceptrons

[52]

Popular multilayer perceptrons (MLPs)
As we can see, one simple example, in which the patterns are not linearly separable,
has led us to more and more issues related to the use of the perceptron architecture.
This need has led to the application of multilayer perceptrons. In Chapter 1, Getting
Started with Neural Networks, we dealt with the fact that the natural neural network
is structured in layers as well, and each layer captures pieces of information from a
specific environment. In artificial neural networks, layers of neurons act in this way,
by extracting and abstracting information from the data, transforming it into another
dimension or shape.

In the XOR example, we found the solution to be the addition of the third component
that would make a linear separation possible. However, there remained a few
questions regarding how that third component would be computed. Now, let's
consider the same solution as a two-layer perceptron, shown as follows:

Now, we have three neurons instead of just one, but in the output, the information
transferred by the previous layer is transformed into another dimension or shape,
whereby it would be theoretically possible to establish a linear boundary on the
data points. However, the question of finding the weights for the first layer remains
unanswered, or can we apply the same training rule to neurons other than the
output? We are going to deal with this issue in the generalized delta rule section.

MLP properties
Multilayer perceptrons can have any number of layers and any number of neurons in
each layer. The activation functions may be different on any layer. An MLP network
is usually composed of at least two layers, one for the output and the other for the
"hidden" layer.

Chapter 3

[53]

There are also some references that consider the input layer
as the nodes that collect input data. Therefore, for these
cases, the MLP is considered to have at least three layers. For
the purposes of this book, let's consider the input layer as a
special type of layer that has no weights, and as the effective
layers, that is, those enabled to be trained, we'll consider the
hidden and output layers.

A hidden layer is so-called because it actually "hides" its outputs from the external
world. Hidden layers can be connected in series in any number, thus forming a deep
neural network. However, the more layers a neural network has, the slower both the
training and running would be, and according to mathematical foundations, a neural
network with one or two hidden layers at most can learn as well as deep neural
networks with dozens of hidden layers.

It is recommended that the activation functions be nonlinear in
the hidden layers, particularly if in the output layer the activation
function is linear. According to linear algebra, having a linear
activation function in all layers is equivalent to having only one
output layer, provided that the additional variables introduced
by the layers would be mere linear combinations of the previous
ones or the inputs. Usually, activation functions such as hyperbolic
tangent or sigmoid are used because they are derivable.

MLP weights
In an MLP feedforward network, a certain neuron i receives data from a neuron j of
the previous layer and forwards its output to a neuron k of the next layer , as can be
seen in the following schema:

Handling Perceptrons

[54]

MLPs in theory may be partially or fully connected. Partially means that not all
neurons from one layer are connected to each neuron of the next layer, and fully
connected means that all neurons from one layer are connected to all neurons of the
next layer. The following figure shows both the partially and fully connected layers:

For mathematical simplicity, let's work only on fully connected MLPs, which can be
described mathematically by the equation:

Where yo is the network output (if we have multiple outputs, we can replace y0 by
Y, representing a vector), fo is the activation function of the output, l is the number
of hidden layers, nhi is the number of neurons in the hidden layer i, wi is the weight
connecting the ith neuron of the last hidden layer to the output, fi is the activation
function of the neuron i, and bi is the bias of the neuron i. It can be seen that this
equation gets larger, as the number of layers increase. In the last summing operation,
there will be the inputs xi.

Recurrent MLP
Neural networks can be both feedforward and feedback (recurrent). So, it is possible
that some neurons or layers forward signals to a previous layer. This behavior allows
the neural network to maintain state on some data sequence, and this feature is
particularly exploited when dealing with time series or handwriting recognition. For
training purposes, a recurrent MLP network can have feedback connections only in
the output layer. In order to give it a more fully recurrent nature, one can connect
multiple recurrent MLPs in cascade.

Chapter 3

[55]

Although recurrent networks are very suitable for some problems, they are usually
harder to train, and eventually, the computer may run out of memory while
executing them. In addition, there are recurrent network architectures better than
MLPs such as the Elman, Hopfield, echo state, and bi-directional RNN. However,
we are not going to dive deep into these architectures, because this book focuses on
the simplest applications for those who have minimal experience in programming.
However, a good reference is the book of Haykin [2008], whose specifications can be
found at the end of this book on recurrent networks for those who are interested in it.

MLP structure in an OOP paradigm
Bringing these concepts into the OOP point of view, we can review the classes
already designed so far already designed, resulting in the following diagram:

Handling Perceptrons

[56]

One can see that the neural network structure is hierarchical. A neural network is
composed of layers that are composed of neurons. In the MLP architecture, there
are three types of layers: input, hidden, and output. So, suppose that in Java, we
would like to define a neural network consisting of three inputs, one output, and one
hidden layer containing five neurons. The resulting code would be as follows:

NeuralNet n = NeuralNet();
InputLayer input = new InputLayer();
input.setNumberOfNeuronsInLayer(3);
HiddenLayer hidden = new HiddenLayer();
hidden.setNumberOfNeuronsInLayer(5);
OutputLayer output = new OutputLayer();
output.setNumberOfNeuronsInLayer(1);
////…
n.setInputLayer(input);
n.setHiddenLayer(hidden);
n.setOutputLayer(output);

Interesting MLP applications
The two broader classes of problems that MLPs are suitable for are as follows:
classification and regression. Classification means that given a dataset composed
of records, each record should be labeled or classified. Regression means that given
a set of inputs and outputs, one must find a function that maps the inputs to the
outputs. Both types of problems belong to the category of supervised learning.

Classification in MLPs
Given a list of classes and a dataset, one wishes to classify them, according to a
historical dataset containing records and their respective classes. The following
table shows an example of this dataset, considering the subjects' average grades
between 0 and 10.

Student
ID

Subjects
Profession

English Math Physics Chemistry Geography History Literature Biology

89543 7.82 8.82 8.35 7.45 6.55 6.39 5.90 7.03 Electrical
engineer

93201 8.33 6.75 8.01 6.98 7.95 7.76 6.98 6.84 Marketing
professional

95481 7.76 7.17 8.39 8.64 8.22 7.86 7.07 9.06 Doctor

94105 8.25 7.54 7.34 7.65 8.65 8.10 8.40 7.44 Lawyer

96305 8.05 6.75 6.54 7.20 7.96 7.54 8.01 7.86 School
principal

Chapter 3

[57]

Student
ID

Subjects
Profession

English Math Physics Chemistry Geography History Literature Biology

92904 6.95 8.85 9.10 7.54 7.50 6.65 5.86 6.76 Programmer

… … …

One example is the prediction of profession based on academic grades. Let's consider
a dataset of former students who are now working. We compile a dataset containing
each student's average grade on each subject and his/her current profession. Note
that the output would be the name of professions, which neural networks are not able
to give directly. Instead, we need to make one column (one output) for each known
profession. If that student chose a certain profession, the column corresponding to
that profession would have the value one; otherwise, it would be zero. The following
chart shows a view of how this matrix would look like:

Now, we want to predict which profession a student will be likely to choose on the
basis of his/her grades. To this end, we structure a neural network containing the
number of academic subjects as the input and the number of known professions as
the output, and an arbitrary number of hidden neurons in the hidden layer. A neural
net schema for this problem is presented in the following figure:

Handling Perceptrons

[58]

For the classification problem, there is usually only one class for each data point. So,
in the output layer, the neurons are fired to produce either zero or one; it is better
to use activation functions that are output bounded between these two values.
However, we must consider a case in which more than one neuron would fire,
giving two classes for a record. There are a number of mechanisms to prevent this
case, such as the softmax function or the winner-takes-all algorithm, for example.
These mechanisms are going to be detailed in the practical application in Chapter 6,
Classifying Disease Diagnosis.

After being trained, the neural network has learnt what the most probable profession
for a given student will be, given his/her grades.

Regression in MLPs
Regression involves finding some function that maps a set of inputs to a set of
outputs. The following table shows a dataset containing k records of m independent
inputs X known to be bound to n dependent outputs.

Input-independent data Output-dependent data
X1 X2 … XM T1 T2 … TN
x1[0] x2[0] … xm[0] t1[0] t2[0] … tn[0]
x1[1] x2[1] … xm[1] t1[1] t2[1] … tn[1]
… … … … … … … …
x1[k] x2[k] … xm[k] t1[k] t2[k] … tn[k]

The preceding table can be compiled in the matrix format:

Where

Chapter 3

[59]

Unlike the classification, the output values are numerical instead of labels or classes.
There is also a historical database containing records of some behavior that we
would like the neural network to learn. One example is the prediction of bus ticket
prices between two cities. In this example, we collect information from a list of cities
and the current ticket prices of a bus departing from one city and arriving in another.
We structure the city features as well as the distance and/or time between them as
the input and the bus ticket price as the output. The following figure illustrates this
road net between the cities, represented as letters:

The following table shows a list of records taken from the cities mentioned in the
preceding image and the structure to be fed into the neural network:

Features of city of origin Features of city of destination Features of the route Ticket
farePopulation GDP Routes Population GDP Routes Distance Time Stops

500,000 4.5 6 45,000 1.5 5 90 1,5 0 15

120,000 2.6 4 500,000 4.5 6 30 0,8 0 10

30,000 0.8 3 65,000 3.0 3 103 1,6 1 20

35,000 1.4 3 45,000 1.5 5 7 0.4 0 5

…

120,000 2.6 4 12,000 0.3 3 37 0.6 0 7

Having structured the dataset, we define an MLP network containing the exact
number of features (multiplied by 2 in the case of two cities) plus the route features
in the input, one output, and an arbitrary number of neurons in the hidden layer.
In the case presented in the preceding table, there would be nine inputs. Since the
output is numerical, there is no need to bound the output layer, so it is better to
choose the linear function as the activation function in the output layer.

Handling Perceptrons

[60]

This neural network would give an estimate price for a route between two cities,
which currently is not served by any bus transportation company.

Learning process in MLPs
The multilayer perceptron network learns on the basis of the delta rule, which is
also inspired by the gradient descent optimization method. The gradient method is
broadly applied to find the minima or maxima of a given function. An example of
evolution of a gradient based search method is shown in the following figure:

This method is applied at "walking," the direction where the function's output is
higher or lower, depending on the criteria. This concept is explored in the delta rule.

The function that the delta rule wants to minimize is the error between the neural
network output and the target output, and the parameters to be found are the
neural weights. This is an enhanced learning algorithm compared to the perceptron
rule, because it takes into account the activation function derivative g'(h), which in
mathematical terms indicates the direction where the function is decreasing the most.

Chapter 3

[61]

Simple and very powerful learning
algorithm – Backpropagation
Although the delta rule works well for the neural networks having only output and
input layers, for the MLP networks, the pure delta rule cannot be applied because
of the hidden layer neurons. To overcome this issue, in the 1980s, Rummelhart et al.
proposed a new algorithm, also inspired by a gradient method called backpropagation.

This algorithm is indeed a generalization of the delta rule for MLPs. The benefits of
having additional layers to abstract more data from the environment have motivated
the development of a training algorithm that can properly adjust the weights of the
hidden layer. On the basis of the gradient method, the error from the output would
be (back)propagated to the previous layers, thereby making the weight update using
the same equation as the delta rule, possible. The algorithm runs according to the
flowchart in the figure:

The second step is the backpropagation itself. What it does is find the weight
variation according to the gradient, which is the base for the delta rule.

Where E is the error, wji is the weight between the neurons i and j, oi is the output of
the ith neuron, hi is the weighted sum of that neuron's inputs before passing to the
activation function. Remember that oi = f(hi), where f is the activation function.

Handling Perceptrons

[62]

Updating in the hidden layers is a bit more complicated as we consider the error as
a function of all the neurons between the weight to be updated and the output. To
facilitate this process, we should compute the sensibility or the backpropagation error:

Further, the weight update is as follows:

The calculation of the backpropagation error varies for the output and for the hidden
layers as follows:

• Backpropagation for the output layer

 ° Where oi is the ith output, ti is the desired ith output, f'(hi) is the
derivative of the output activation function, and hi is the weighted
sum of the ith neuron inputs.

• Backpropagation for the hidden layer

 ° Where l is a neuron of the layer ahead, wil is the weight that connects
the current neuron to the lth neuron of the layer immediately ahead.

For the sake of simplicity, we do not demonstrate fully how the backpropagation
equation was developed. Anyway, if the reader is interested in the details, we
recommend the references [Haykin, 2008; Rumelhart et al., 1986], which the reader can
consult for further information.

This is how backpropagation works, enabling MLP networks to learn.

Chapter 3

[63]

Elaborate and potent learning
algorithm – Levenberg–Marquardt
The backpropagation algorithm, like all gradient-based methods, presents usually
slow convergence, particularly when it falls in a zig-zag situation and when the
weights are changed to almost the same value every two iterations. This drawback
was studied in problems like curve-fitting interpolations by Kenneth Levenberg in
1944 and later by Donald Marquart in 1963, who developed a method for finding
coefficients based on the Gauss–Newton algorithm and the gradient descent
algorithm, so from there comes the name of the algorithm.

The algorithm deals with some optimization terms that are beyond the scope of this
book, but in the references section, the reader will find good resources to learn more
about these concepts, so we will present this method in a simpler way. Let's suppose
that we have a list of inputs x's and outputs t's:

We have seen that a neural network has the property to map inputs to outputs just
like a nonlinear function f with coefficients W (weights and bias):

The nonlinear function will produce values different from the outputs T because we
marked the variable Y in the equation. The Levenberg–Marquardt algorithm works
over a Jacobian matrix, which is a matrix of all partial derivatives with respect to each
weight and bias for each data row. So, the Jacobian matrix has the following format:

Handling Perceptrons

[64]

Where k is the total number of data points and p is the total number of weights and
bias. In the Jacobian matrix, all weights and bias are stored serially in a single row.
The elements of the Jacobian matrix are calculated from the gradients:

The partial derivative of the error E in relation to each weight is calculated in the
backpropagation algorithm, so this algorithm is going to run the backpropagation
step as well.

In every optimization problem, one wishes to minimize the total error:

Where W (weights and bias in the NN case) are the variables to optimize. The
optimization algorithm updates W by adding ΔW. By applying some algebra, we can
extend the last equation as follows:

Converting to the vector and notation, we obtain:

Finally, by setting the error E to zero, we get the Levenberg–Marquardt equation
after some manipulation:

Which is the weight update rule. As can be seen, it involves matrix operations
such as transposition and inversion. The Greek letter λ is the damping factor, an
equivalent of the learning rate.

Chapter 3

[65]

Hands-on MLP implementation!
Now, let's implement all the theory that we've discussed so far. Here, we use the
classes that define the ANN structures NeuralNet, Layer, Neuron, and so on. Now,
we add HiddenLayer and OutputLayer functions, which are inherited from the
Layer class, to implement multilayer neural networks.

We also implement the two learning algorithms that we've presented in this chapter:
Backpropagation and Levenberg–Marquardt. In the Training class, we add two new
terms to the enum Training types: BACKPROPAGATION and LEVENBERG_MARQUARDT.

In order to make the execution of the Levenberg–Marquardt algorithm possible, we
add a new package called edu.packt.neuralnet.util and two more classes, namely
Matrix and IdentityMatrix. These classes implement matrix operations, which are
applied in the Levenberg–Marquardt algorithm. However, we are not going to detail
these classes now; we're just going to use the basic operations of matrix.

The following table shows a list of relevant attributes and methods of the classes
used in this chapter:

Class name: Training
Note: This class is abstract and cannot be instantiated.

Enums
Note: Enum helps to control different types.
public enum TrainingTypesENUM {
 PERCEPTRON, ADALINE,
BACKPROPAGATION;
}

Enumeration to store types of training
supported by project (Backpropagation was
added)

Class name: Backpropagation
Note: This class inherits attributes and methods from the Training class.

Attributes
None

Method
public NeuralNet train (NeuralNet
n)

Trains the neural network using the
backpropagation algorithm. This method
overrides the method from the Training
class
Parameters: NeuralNet object (neural net
untrained)
Returns: NeuralNet object (neural net
trained via backpropagation)

Handling Perceptrons

[66]

private NeuralNet forward
(NeuralNet n, int row)

Performs the propagation of the signal from
the first layer to the hidden layer and to the
output layer
Parameters: NeuralNet object, line
number of training set
Returns: NeuralNet object

private NeuralNet backpropagation
(NeuralNet n, int row)

Performs the retro-propagation of the signal
from the output layer to the hidden layer
and to the first layer. In this method, the
weights are adjusted
Parameters: NeuralNet object, line
number of training set.
Returns: NeuralNet object.

Class implementation with Java: file Backpropagation.java
Class name: LevenbergMarquardt

Note: This class inherits attributes and methods from the backpropagation class.
Attributes

private double dampingFactor The damping factor, which also works as
the learning rate

private Matrix jacobian The Jacobian matrix used in the Levenberg–
Marquardt algorithm

Method
public NeuralNet train (NeuralNet
n)

Trains the neural network using the
Levenberg–Marquardt algorithm. This
method overrides the method from the
backpropagation class
Parameters: NeuralNet object (neural net
untrained)
Returns: NeuralNet object (neural net
trained via backpropagation)

public void buildJacobianMatrix
(NeuralNet n, int row)

Calculate the gradients for each weight
and bias of the neural network for the
corresponding row of the training dataset
and saves them in the corresponding row in
the Jacobian matrix
Parameters: NeuralNet object (neural net
untrained), row (the ith data point)
Returns: Nothing

Chapter 3

[67]

Class name: NeuralNet
Note: This class already existed in previous version and has been updated as follows:

Attributes
private double[][]
realMatrixOutputSet

Matrix to store the training set of the output
data (matrix format)

private double errorMean Real number to store the mean of the error
between two or more neurons

private ActivationFncENUM
activationFncOutputLayer

Enum value of the activation function that
will be used in the output layer of the net

Methods
Note: The getters and setters methods of these attributes were created too.

Class implementation with Java: file NeuralNet.java

The class diagram changes are shown in the following figure. Attributes and
methods already explained in the previous chapters and their configuration methods
(getters and setters) were omitted.

Handling Perceptrons

[68]

Backpropagation in action
We have seen in the flowchart that the backpropagation algorithm has two phases:

• Forward the neural signals
• Backpropagate the error

So, the backpropagation class will have two special methods for each of these phases:
forward() and backpropagation(). The train() method of the backpropagation
class will call these two latter functions.

Exploring the code
Let's analyze the methods forward, backpropagation, and train. The train method
calls forward and backpropagation.

public NeuralNet train(NeuralNet n) {

 int epoch = 0;
 setMse(1.0);

 while(getMse() > n.getTargetError()) {

 if (epoch >= n.getMaxEpochs()) break;

 int rows = n.getTrainSet().length;
 double sumErrors = 0.0;

 for (int rows_i = 0; rows_i < rows; rows_i++) {

 n = forward(n, rows_i);
 n = backpropagation(n, rows_i);
 sumErrors = sumErrors + n.getErrorMean();

 }

 setMse(sumErrors / rows);

 System.out.println(getMse());

 epoch++;

 }

 System.out.println("Number of epochs: "+epoch);

 return n;

 }

Chapter 3

[69]

First, this code gets the training parameters and sets the MSE (which stands for
mean square error), which will be the stop condition. The first loop handles this stop
condition in case the MSE falls below the target. Also, inside this loop, there is a
break in case the number of epochs currently executed reaches the maximum.

The second loop will go over every data point in the training dataset, repeating for
each data point the training process, first calling the forward function and then the
backpropagation function, which will be detailed ahead in this section. The errors are
summed up. After going over all the data points in the training set, this method sets
the current MSE, prints it on the screen, and increases the number of epochs.

Now, let's analyze the forward and backpropagation functions. Since they are quite
long, we are going to explore the most important parts.

The forward function executes the neural computation from the input to the output
layers. For simplicity, this implementation will handle only one hidden layer and
one output layer, provided that this simple architecture is proved to work quite
well when compared to multiple hidden layer networks. The function receives as a
parameter the neural network and the row of the dataset to be forwarded.

private NeuralNet forward(NeuralNet n, int row)

It initializes some parameters such as sum error and the estimated and real outputs.
There is basically one major loop containing two minor loops, one for the hidden
layer and the other for the output layer.

for (HiddenLayer hiddenLayer : listOfHiddenLayer) {

 int numberOfNeuronsInLayer = hiddenLayer.
getNumberOfNeuronsInLayer();

 for (Neuron neuron : hiddenLayer.getListOfNeurons()) {

 for (int layer_j = 0; layer_j < numberOfNeuronsInLayer - 1; layer_
j++) {

 }

 for (int outLayer_i = 0; outLayer_i < n.getOutputLayer().
getNumberOfNeuronsInLayer(); outLayer_i++){

www.allitebooks.com

http://www.allitebooks.org

Handling Perceptrons

[70]

 }

 double errorMean = sumError / n.getOutputLayer()
 .getNumberOfNeuronsInLayer();
 n.setErrorMean(errorMean);

 n.getListOfHiddenLayer().get(hiddenLayer_i)
 .setListOfNeurons(hiddenLayer.getListOfNeurons());

 }
}

After computing the outputs for the hidden and output layers, this function finally
calculates the error, which will be used for backpropagation. The computation for
the hidden layer and the output layer is detailed in the source codes attached to
this chapter.

The backpropagation function also receives as parameters the neural network and
the row indicating the data point to be trained.

private NeuralNet backpropagation(NeuralNet n, int row)

For an easier understanding, this function is divided into six parts:

1. Initialize training parameters and retrieve neural network layers (hidden
and output).

2. Calculate the sensibility for the output layer.
3. Calculate the sensibility for the hidden layer.
4. Update the weights of the output layer.
5. Update the weights of the hidden layer.
6. Update the neural layers in the neural network.

Let's focus on parts 2 to 5. The sensibility for the output layer is quite simple.
Looking at the line computing the sensibility parameter shows us the delta rule.

//sensibility output layer
for (Neuron neuron : outputLayer) {
 error = neuron.getError();
 netValue = neuron.getOutputValue();
 sensibility = derivativeActivationFnc(
 n.getActivationFncOutputLayer(), netValue) * error;

 neuron.setSensibility(sensibility);
}

Chapter 3

[71]

For the hidden layer, there is a need to sum up the weights and the sensibilities of
the output layer. The local variable called tempSensibility handles this sum, after
being used in the calculation of the sensibility. It can be seen that this parameter is
calculated inside a loop that runs over all neurons contained in that layer.

for (Neuron neuron : hiddenLayer) {

 sensibility = 0.0;

 if(neuron.getListOfWeightIn().size() > 0) { //exclude bias
 ArrayList<Double> listOfWeightsOut = new ArrayList<Double>();

 listOfWeightsOut = neuron.getListOfWeightOut();

 double tempSensibility = 0.0;

 int weight_i = 0;
 for (Double weight : listOfWeightsOut) {
 tempSensibility = tempSensibility + (weight *
 outputLayer.get(weight_i)
 .getSensibility());
 weight_i++;
 }

 sensibility = derivativeActivationFnc (
 n.getActivationFnc(), neuron.getOutputValue()) *
 tempSensibility;

 neuron.setSensibility(sensibility);

 }
}

The weight updating in the output layer is as simple as its respective sensibility.
There is a loop inside this part to walk over all the hidden layer neurons connected
to each output neuron. The local variable called newWeight is in charge of receiving
the new value for the respective weight.

 //fix weights (teach) [output layer to hidden layer]
 for (int outLayer_i = 0; outLayer_i < n.getOutputLayer().
getNumberOfNeuronsInLayer(); outLayer_i++) {
 for (Neuron neuron : hiddenLayer) {
 double newWeight = neuron.getListOfWeightOut()
 .get(outLayer_i) + (n.getLearningRate() *
 outputLayer.get(outLayer_i)

Handling Perceptrons

[72]

 .getSensibility() *
 neuron.getOutputValue());

 neuron.getListOfWeightOut().set(outLayer_i,
 newWeight);
 }
 }

For the hidden layer, it is the sensibility parameters that are used, according to the
equations shown in the backpropagation section. There is also an inside loop to walk
over all the neural inputs.

 //fix weights (teach) [hidden layer to input layer]
 for (Neuron neuron : hiddenLayer) {

 ArrayList<Double> hiddenLayerInputWeights = new
ArrayList<Double>();
 hiddenLayerInputWeights = neuron.getListOfWeightIn();

 if(hiddenLayerInputWeights.size() > 0) { //exclude bias

 int hidden_i = 0;
 double newWeight = 0.0;
 for (int i = 0; i < n.getInputLayer().
getNumberOfNeuronsInLayer(); i++) {

 newWeight = hiddenLayerInputWeights.get(hidden_i) +
 (n.getLearningRate() *
 neuron.getSensibility() *
 n.getTrainSet()[row][i]);

 neuron.getListOfWeightIn().set(hidden_i, newWeight);

 hidden_i++;
 }
 }
 }

Levenberg–Marquardt implementation
The Levenberg–Marquardt algorithm uses many features of the backpropagation
algorithm; that's why we inherited this class from backpropagation. Basically, the
train function is the same, except for the following piece of code:

 for (int rows_i = 0; rows_i < rows; rows_i++) {
 n = forward(n, rows_i);

Chapter 3

[73]

 buildJacobianMatrix(n, rows_i);
 sumErrors = sumErrors + n.getErrorMean();
 }
 n=updateWeights(n);

The loop, where it goes over the training dataset, calls the buildJacobianMatrix
method for each data row. This method calls the original version from the inherited
backpropagation method in order to compute the gradients.

As seen in the LMA theory explained earlier, the row of a Jacobian matrix contains
all weights and the bias in a serial sequence. So, the corresponding columns of the
weights in the Jacobian matrix can be detailed as in the following table:

Layer Weight or bias Position
Hidden jth weight of the ith

neuron
(i * (numberOfInputs)) + j

Output Bias of the ith neuron ((numberOfInputs) *
(numberOfHiddenNeurons - 1)) +
(i * (numberOfHiddenNeurons) +
numberOfHiddenNeurons)

Since the buildJacobianMatrix method is a bit similar to backpropagation, we are
going to highlight the Jacobian row construction. For the weights in the hidden layer,
the following line of code is called:

jacobian.setValue(row, (i * (numberOfInputs)) + j,
 (neuron.getSensibility() *
 n.getTrainSet()[row][j]) / nb.getErrorMean());

We can see the sensibility of the hidden neuron being used in the gradient. Now, for
the output layer, we use the following:

jacobian.setValue(row,
 (numberOfInputs + 1) * (numberOfHiddenNeurons) +
 (i * (numberOfHiddenNeurons + 1)) + j,
 (output.getSensibility() * neuron.getOutputValue()) /
 n.getErrorMean());

In this piece of code, the neuron object refers to the hidden neuron that precedes the
output layer.

One more difference between the backpropagation and the Levenberg–Marquardt
algorithm is that the weights here are updated once at an epoch, not on every data
point. This is necessary because the Jacobian matrix is built using the entire dataset.

Handling Perceptrons

[74]

We can see in the train method that after building the Jacobian matrix, the algorithm
calls the updateWeights method. In this method, the Levenberg–Marquardt
matrix equation is solved, and then, the weights are added to the corresponding
contribution from the delta matrix.

Solution of the Levenberg–Marquardt matrix equation:

Matrix term1 = jacobian.transpose().multiply(jacobian)
 .add(new IdentityMatrix(jacobian.getNumberOfColumns())
 .multiply(damping));
Matrix term2 = jacobian.transpose().multiply(error);
Matrix delta = term1.inverse().multiply(term2);

Update of the jth weight of the ith neuron in the hidden layer:

newWeight = hiddenLayerInputWeights.get(i) +
 delta.getValue((i * (numberOfInputs + 1) + j) ,0);
hidden.getListOfWeightIn().set(i, newWeight);
neuron.getListOfWeightIn().set(hidden_i, newWeight);

For the output layer:

newWeight = neuron.getListOfWeightOut().get(i) +
 delta.getValue((numberOfInputs + 1) *
 (numberOfHiddenNeurons) +
 (i*(numberOfHiddenNeurons+1))+j , 0);
neuron.getListOfWeightOut().set(i, newWeight);

Chapter 3

[75]

Practical application – types of university
enrolments
In Brazil, one of the ways for a person to enter university is taking an exam and if he/
she achieves the minimum grade required for the course that he/she is seeking, then
he/she can enroll. To demonstrate the backpropagation algorithm, let us consider this
scenario. Data showed in the following table was collected from a university database.
The second column represents the person's gender (one means female, and zero means
male); the third column has grades scaled by 100, and the last column is formed by two
neurons (1,0 means performed enrollment, and 0,1 means waiver enrollment.

Sample Gender Grade Enrollment

status
1 1 0.73 1,0
2 1 0.81 1,0
3 1 0.86 1,0
4 0 0.65 1,0
5 0 0.45 1,0
6 1 0.70 0,1
7 0 0.51 0,1
8 1 0.89 0,1
9 1 0.79 0,1
10 0 0.54 0,1

The following figure displays the architecture of the neural net to solve this problem:

Handling Perceptrons

[76]

Now, let's analyze the test method named testBackpropagation(). It is as follows:

private void testBackpropagation(){
 NeuralNet testNet = new NeuralNet();

 testNet = testNet.initNet(2, 1, 3, 2);

 System.out.println("---BACKPROPAGATION INIT NET---");

 testNet.printNet(testNet);

 NeuralNet trainedNet = new NeuralNet();

 // first column has BIAS
 testNet.setTrainSet(new double[][] { { 1.0, 1.0, 0.73 }, { 1.0,
1.0, 0.81 }, { 1.0, 1.0, 0.86 }, { 1.0, 1.0, 0.95 }, { 1.0, 0.0, 0.45
}, { 1.0, 1.0, 0.70 }, { 1.0, 0.0, 0.51 }, { 1.0, 1.0, 0.89 }, { 1.0,
1.0, 0.79 }, { 1.0, 0.0, 0.54 } });
 testNet.setRealMatrixOutputSet(new double[][] { {1.0, 0.0}, {1.0,
0.0}, {1.0, 0.0}, {1.0, 0.0}, {1.0, 0.0}, {0.0, 1.0}, {0.0, 1.0},
{0.0, 1.0}, {0.0, 1.0}, {0.0, 1.0} });
 testNet.setMaxEpochs(1000);
 testNet.setTargetError(0.002);
 testNet.setLearningRate(0.1);
 testNet.setTrainType(TrainingTypesENUM.BACKPROPAGATION);
 testNet.setActivationFnc(ActivationFncENUM.SIGLOG);

 testNet.setActivationFncOutputLayer(
 ActivationFncENUM.LINEAR);

 trainedNet = testNet.trainNet(testNet);

 System.out.println();
 System.out.println("---BACKPROPAGATION TRAINED NET---");

 testNet.printNet(trainedNet);

}

Chapter 3

[77]

The backpropagation test logic is similar to Adaline's and perceptron's. First, an
object of the NeuralNet class is created and used for initializing the net with two
neurons in the input layer, one hidden layer with three neurons, and two neurons in
the output layer. The data to train is taken from the preceding table. The maximum
number of epochs is large, because the backpropagation algorithm prolongs the
learning process. To conclude, the backpropagation-trained net weights and the MSE
list are printed. A summary of the results is shown in the following figure:

Handling Perceptrons

[78]

Analyzing the graphic by using the MSE of each epoch plotted in the following
figure, it is possible to conclude that neural net learned to classify, on the basis of
gender and grade, whether a person will or will not enroll at this university.

Summary
In this chapter, we've seen how perceptrons can be applied to solve linear separation
problems and discussed their limitations with respect to the classification of
nonlinear data. To suppress these limitations, we presented multilayer perceptrons
(MLPs) and a new training algorithm called backpropagation. We've also seen
some classes of problems that MLPs can be applied to, such as classification and
regression. It's important to assimilate such concepts to understand their applications
in the subsequent approaches. The Java implementation explored the power of the
backpropagation algorithm with respect to updating the weights in both the output
layer and the hidden layer. One practical application is shown to demonstrate the
MLPs with respect to the solutions of the considered problems.

In the next chapter, we will explore the other learning paradigm of neural networks,
unsupervised learning, that differs slightly from the learning algorithms that we've
seen in this chapter; however, it can produce amazing results.

[79]

Self-Organizing Maps
In this chapter, we present a neural network architecture that is suitable for
unsupervised learning: Self-Organizing Maps (SOMs), also known as Kohonen
network. A special feature of this type of neural network is that they can categorize
records of data without any target output. In this chapter, we are going to explore
how this is achieved, as well as an application to attest its capacity. The subtopics of
this chapter are as follows:

• Neural networks unsupervised learning
 ° Competitive learning

• Kohonen SOMs
 ° 1-Dimensional SOMs
 ° 2-Dimensional SOMs

• Problems solved with unsupervised learning
• Coding of the Kohonen algorithm
• Practical problems

Self-Organizing Maps

[80]

Neural networks' unsupervised way
of learning
We've been acquainted with this type of learning in Chapter 2, How Neural Networks
Learn, and now, we are going to explore the features of this learning paradigm in
a detailed fashion. Unsupervised learning algorithms in essence aim at finding
patterns within datasets by using only the information presented in the datasets
themselves. Here, the unsupervised learning algorithm will adjust the parameters
(weights in the case of neural networks) without any error measure, and this is
the crucial feature that distinguishes unsupervised from supervised learning. The
learning itself is triggered only on the basis of the fact that in neurology, similar
stimuli produce similar responses. So, applying this fundamental knowledge to
artificial neural networks, we can say that similar data produce similar outputs, and
these outputs can be grouped in clusters.

Although this learning may be used in other mathematical fields such as statistics, its
core functionality is intended and designed for machine learning problems such as
data mining and pattern recognition. Neural networks are a subfield in the machine
learning discipline, and provided that their structure allows iterative learning, they
serve as a good framework to apply this concept on.

One wishes to apply unsupervised learning algorithms when there is no defined
target on the data, as well as there is a need to find hidden patterns amongst the
data. Most of the unsupervised learning applications are aimed at clustering tasks,
which means that similar data points are clustered together, while different data
points from different clusters. Further, one application that unsupervised learning is
suitable for is dimensionality reduction, wherein one wants some multidimensional
data to be classified or reorganized in a less-dimensional domain. In the references
[Duda et. al, 2001; Hinton et. al, 1999; Rummelhart & Zipser, 1985; Kohonen, 1982] the
reader may find a useful list of articles that show more examples of applications of
unsupervised learning.

Some unsupervised learning algorithms
There are a multitude of unsupervised algorithms, not only for neural networks.
Examples are K-means, expectation maximization, methods of moments, and
so on. Such algorithms assume the entire dataset as the knowledge to be learned,
so one common feature through all the learning algorithms is that they do not
have an input–output relationship in the current dataset. However, one wishes
to find a different meaning of these data, and that's the goal of any unsupervised
learning algorithm.

Chapter 4

[81]

Bringing this concept into the neural network context, let's take a look at an ANN
and how it deals with data in an unsupervised organization.

The neural network output is considered to be an abstraction of the original data
points. As opposed to the supervised learning paradigm, there is no causality
between the input data points or data variables; instead, we want the neural network
to derive consequent variables that would be able to give another meaning to the
presented data. While in supervised learning algorithms, we usually have a smaller
number of outputs, for unsupervised learning, there is a need to produce an abstract
data representation that may require a high number of outputs. However, except
for classification tasks, their meaning is totally different from the one presented
in the case of supervised learning. Usually, each output neuron is responsible for
representing a feature or a class present in the input data. In most architectures, not
all output neurons need to be activated at a time; usually, only a restricted set of
output neurons is fired, meaning that a neuron is able to better represent most of the
information being fed as the neural input.

One advantage of unsupervised learning over supervised
learning is that as less computational power is required
by the former for the learning of huge datasets, the time
consumption increases linearly, while for supervised
learning, it increases exponentially.

In this chapter, we are going to explore two unsupervised learning algorithms:
competitive learning and Kohonen SOMs.

Self-Organizing Maps

[82]

Competitive learning or winner takes all
As the name implies, competitive learning handles a competition between the output
neurons to determine which one is the winner. To facilitate understanding, suppose
we want to train a single layer neural network with two inputs and four outputs, as
shown in the following figure:

Every output neuron is then connected to these two inputs; hence, for each neuron,
there are two weights.

For this learning, the bias is dropped from the neurons, so
the neurons will process only the weighted inputs.

The competition starts after the data have been processed by the neurons. The
winner neuron will be the one that produces the greatest output value. One
additional difference compared to the supervised learning algorithm is that only the
winner neuron may update its weights, while the others remain unchanged. This is
the so-called winner-takes-all rule. This intention to bring the neuron "nearer" to the
input causes it to win the competition.

Considering that every input neuron i is connected to all output neurons j through a
weight wij. In our case, we would have a set of weights:

Provided that the weights of every neuron have the same dimensionality of the input
data, let's consider all the input data points together in a plot with the weights of
each neuron.

Chapter 4

[83]

In this chart, let's consider the circles as the data points and the squares as the neuron
weights. We can see that some data points are closer to certain weights, while the
others are farther but nearer to others. The neural network performs computations
related to the distance between the inputs and the weights:

The result of this equation will determine how "strong" a neuron is against its
competitors. The winner neuron connections are then adjusted to the neurons
according to the following update rule:

Where η denotes the learning rate. After many iterations, the weights are driven
so near enough to the data points that triggers the greatest output values on the
corresponding neuron, that weight updates are either too small or fall in a zig-zag
pattern. Finally, when the network is already trained, the chart takes another shape:

Self-Organizing Maps

[84]

As can be seen, the neurons form centroids that surround the points capable of
making the corresponding neuron stronger than its competitors.

In an unsupervised neural network, the number of outputs is
completely arbitrary. Sometimes, only some neurons are able
to change their weights, while in other cases, all the neurons
may respond differently to the same input, causing the neural
network to never learn. For these cases, it is recommended
either to review the number of output neurons or to consider
another type of unsupervised learning.

There are basically two stopping conditions of competitive learning:

• Predefined number of epochs: This prevents our algorithm from running for
a relatively long time without convergence

• Minimum value of weight update: This prevents the algorithm from running
longer than necessary

Kohonen self-organizing maps (SOMs)
This network architecture was created by the Finnish professor Teuvo Kohonen at
the beginning of the 80s. It consists of one single-layer neural network capable of
providing a "visualization" of the data in one or two dimensions.

Theoretically, a Kohonen network would be able to provide a 3D
(or even a higher-dimensional) representation of the data; however,
in printed material, such as this book, it is not possible to show 3D
charts without overlapping some data. Thus, in this book, we are
going to deal only with 1D and 2D Kohonen networks.

The major difference between the Kohonen SOMs and the traditional single-layer
competitive neural networks is the concept of neighborhood neurons. While in a
neural network, usually, there is no importance of the order in which the neurons are
positioned in the output, in an SOM, the neighboring neurons play a relevant role
during the learning phase.

An SOM has two modes of functioning: mapping and learning. In the mapping
mode, the input data is classified in the most appropriate neuron, while in the
learning mode, the input data helps the learning algorithm to build the "map." This
map can be interpreted as a lower-dimensional representation from a certain dataset.

In this chapter, we are going to present two types of SOMs: 1D and 2D SOMs.

Chapter 4

[85]

One-Dimensional SOM
This architecture is similar to the network presented in the last section: competitive
learning, with the addition of the neighborhood amongst the output neurons.

Note that every neuron on the output layer has two neighbors. Similarly, the neuron
that fires the greatest value updates its weights, but in an SOM, the neighboring
neurons also update their weights at a relatively slow rate.

The effect of the neighborhood extends the activation area to a wider area of the
map, provided that all the output neurons observe an organization, a path in the 1D
case. The neighborhood function also allows for a better exploration of the properties
of the input space, since it forces the neural network to maintain the connections
between neurons, therefore resulting in more information in addition to only the
clusters that are formed.

In a plot of the input data points with the neural weights, we can see the path formed
by the neurons.

Self-Organizing Maps

[86]

In the chart presented here, for the sake of simplicity, we plotted only the output
weights to demonstrate how the map is designed in a (in this case) 2D space. After
training over many iterations, the neural network converges to the final shape that
represents all data points. Provided this structure, a certain set of data may cause the
Kohonen network to design another shape in the space. This is a good example of
dimensionality reduction, since a multidimensional dataset when presented to the SOM
is able to produce a single line (in the 1D SOM) that "summarizes" the entire dataset.

Two-Dimensional SOM
This is the architecture that is most frequently used to demonstrate the power of a
Kohonen neural network visually. The output layer is a matrix containing N x N
neurons, interconnected like a grid:

In 2D SOMs, every neuron now will have up to four neighbors, although in some
representations, the diagonal neurons may also be considered, thus resulting in up
to eight neighbors. Basically, the working principle of 2D SOMs is the same. Let's
see an example of how a 3 x 3 SOM plot looks in a 2D chart (considering two input
variables):

Chapter 4

[87]

First, the untrained Kohonen network shows a shape that is very strange and screwed
up. The shape of the weights will depend solely on the input data that are going to be
fed to the SOM. Let's see an example of how the map starts to organize itself.

• Suppose that we have the dense dataset shown in the following plot:

• Upon the application of the SOM, the 2D shape gradually changes, until the
network achieve its final configuration:

The final shape of a 2-D SOM may not always be a perfect square; instead, it will
resemble a shape that could be drawn from the dataset. The neighborhood function
is an important component in the learning process because it approximates the
neighboring neurons in the plot, and the structure moves to a configuration that is
more "organized."

The grid on a chart is just for didactic purposes. There are
other ways of illustrating an SOM diagram, such as the
U-matrix and the cluster boundaries.

Self-Organizing Maps

[88]

Step-by-step of SOM learning
An SOM aims at classifying the input data by clustering data points that trigger the
same response on the output. Initially, the untrained network will produce random
outputs, but as more examples are presented, the neural network identifies which
neurons are more often activated, and then, their "position" in the SOM output space
is changed. This algorithm is based on competitive learning, which means that a
winner neuron (also known as Best Matching Unit, BMU) will update its weights
and its neighboring weights.

The following flowchart illustrates the learning process of an SOM network:

Define SOM
structure: number

of inputs and
outputs

Start

SOM trained

Initialise weights by
randomising them

Select the neuron
with the smaller

distance as the BMU

Define a stop
condition: number
of epochs and/or
weights update

Starts the Training,
presenting input

data

For every input
record, compute
the distance to
every neuron's
weight vector

Stop condition
satisfied?

Update the weights
of the BMU and its

neighbours
according to a
neighbourhood

function

Yes

No

The learning slightly resembles that of the algorithms addressed in Chapter 2, How
Neural Networks Learn and Chapter 3, Handling Perceptrons. The three major differences
are the determination of the BMU with the distance, the weight update rule, and the
absence of an error measure. The distance implies that nearer points should produce
similar outputs; thus, here, the criteria to determine the BMU is the neuron that
presents a lower distance to some data point. This Euclidean distance is usually used,
and in this book, we will apply it for the sake of simplicity:

Chapter 4

[89]

The weight update rule uses the neighborhood function Θ(i,j), which states how
much a neighboring neuron i is close to neuron j. Remember that in the SOM, the
BMU neuron is updated together with its neighboring neurons. The update rule
is as follows:

Where α denotes the learning rate; Θ, the neighborhood function; Xk, the kth input;
and Wkj, the weight connecting the kth input to the jth output. Another characteristic
of this learning is that both the learning rate and the neighborhood function are
dependent on the number of epochs. The neighborhood function is usually Gaussian:

Where σ denotes the Gaussian parameter of variance, Wi and Wj represent the
weights of neurons i and j, and t denotes the number of epochs.

The learning rate starts at an initial value and then decreases:

Where r represents a parameter of the learning rate.

How to use SOMs
There are many applications of SOMs, most of them in the field of clustering, data
abstraction, and dimensionality reduction. However, the clustering applications are
the most interesting because of the many possibilities one may apply them to. The
real advantage of clustering is that there is no need to worry about the input–output
relationship; rather, the problem solver can concentrate on the input data. One example
of a clustering application will be explored in Chapter 7, Clustering Customer Profiles.

Self-Organizing Maps

[90]

Coding of the Kohonen algorithm
Now, it is time to get hands-on and implement the Kohonen neural network in Java.
On the basis of the previous changes in the Java code and because of the application
of OOP concepts, it was possible to implement new features without much effort
and without rewriting the code already completed in the project. For the sake of
simplicity, for now, we will implement only competitive learning and the single-
neuron weight updating rule. The changes made are shown in the following table:

Class name: NeuralNet
Note: This class already exists in the previous version and has been updated as follows:
Attributes
private double[][] validationSet; Matrix to store the validation set of

input data
Methods
Note: The getters and setters methods of this attribute were created too.
Class implementation with Java: file NeuralNet.java
Interface name: Validation
Note: In Java, interfaces are structures that may have constant attributes and/or methods
signatures that must be implemented inside a class.
Attributes
None
Method
public void netValidation(NeuralNet
n);

Performs neural network validation,
printing some results on the PC
screen
Parameters: NeuralNet object
(neural net trained)
Returns: -

Interface implementation with Java: file Validation.java
Class name: Kohonen
Note: This class inherits from NeuralNet and implements the Validation interface.
Attributes
None
Method

Chapter 4

[91]

public NeuralNet train (NeuralNet n) Trains the neural network by
applying the Kohonen algorithm.
This method overrides the method
from the Training class
Parameters: NeuralNet object (neural
net untrained)
Returns: NeuralNet object (neural
net trained via Kohonen)

private NeuralNet initNet (NeuralNet
n)

Initializes listOfWeightOut of the
list of neurons from the input layer
with zero
Parameters: NeuralNet object
without the input layer initialized
Returns: NeuralNet object with the
input layer initialized

private ArrayList<Double>
calcEuclideanDistance (NeuralNet n,
double[][] data, int row)

Calculates the Euclidian distance
between the training data and the
weights of the neural network
Parameters: NeuralNet object,
training data, and the row of training
data
Returns: List of real values with
Euclidian distances

private NeuralNet fixWinnerWeights
(NeuralNet n, int winnerNeuron, int
trainSetRow)

Adjusts weights of the winner
neuron (on the basis of the Euclidian
distance list)
Parameters: NeuralNet object,
winner neuron index, training set
row number
Returns: NeuralNet object with
weights from the input layer
modified

public void netValidation(NeuralNet
n)

Adjusts weights of the winner
neuron (on the basis of the Euclidian
distance list)
Parameters: NeuralNet object with
the neural net trained
Returns: -

Class implementation with Java: file Kohonen.java

Self-Organizing Maps

[92]

The class diagram changes are shown in the following figure. Attributes and
methods already explained in previous chapters and their configuration methods
(getters and setters) are not shown.

Perceptron Adaline Backpropagation

<<interface>>
Validation

+netValidation(n : NeuralNet) : void

Kohonen

+train(n : NeuralNet) : NeuralNet
- initNet(n : NeuralNet) : NeuralNet
- calcEuclideanDistance(n : NeuralNet, data: double[][], row : int) : ArrayList<Double>
- fixWinnerWeights(n : NeuralNet, winnerNeuron : int, trainSetRow: int) : NeuralNet
+netValidation(n : NeuralNet) : void

NeuralNet

-validationSet: double [][]

Training

0.1

1

Exploring the Kohonen class
The Kohonen class implements a validation interface that provides a validation
method to ensure that the correct output neuron was chosen. Let's concentrate
on three key methods present in this class: calcEuclideanDistance,
fixWinnerWeights, and train.

The Euclidean distance is calculated according to the equation shown in the Section
SOM learning algorithm, as can be seen in the following code:

 private ArrayList<Double> calcEuclideanDistance(NeuralNet n,
double[][] data, int row) {
 ArrayList<Double> listOfDistances = new ArrayList<Double>();

 int weight_i = 0;
 for(int cluster_i = 0; cluster_i < n.getOutputLayer().
getNumberOfNeuronsInLayer(); cluster_i++) {

 double distance = 0.0;

 for(int input_j = 0; input_j < n.getInputLayer().
getNumberOfNeuronsInLayer(); input_j++) {

 double weight = n.getInputLayer().getListOfNeurons().get(0).
getListOfWeightOut().get(weight_i);

Chapter 4

[93]

 distance = distance + Math.pow(data[row][input_j] - weight,
2.0);
 weight_i++;

 }

 listOfDistances.add(distance);

 //System.out.println("distance normal "+cluster_i+":
"+distance);
 }
 return listOfDistances;

 }

This method receives as a parameter the dataset for computing the distances of all
neurons to a certain row of this dataset. We can see in this method two for loops:
The outer loop iterates over all the neurons in the output layer, whereas the inner
loop iterates over all the input variables of the corresponding row in the dataset.
The distance is finally calculated after the inner loop is executed and is saved in a
list of distances that will be returned.

The weight update rule is implemented in the fixWinnerWeights method, which
already receives as the parameter the winner neuron. The code of this method is
listed as follows:

 private NeuralNet fixWinnerWeights(NeuralNet n, int winnerNeuron,
int trainSetRow) {
 int start, last;

 start = winnerNeuron * n.getInputLayer().
getNumberOfNeuronsInLayer();

 if(start < 0) {
 start = 0;
 }

 last = start + n.getInputLayer().getNumberOfNeuronsInLayer();

 List<Double> listOfOldWeights = new ArrayList<Double>();
 listOfOldWeights = n.getInputLayer().getListOfNeurons().get(0
).getListOfWeightOut().subList(start, last);

 ArrayList<Double> listOfWeights = new ArrayList<Double>();

Self-Organizing Maps

[94]

 listOfWeights = n.getInputLayer().getListOfNeurons().get(0
).getListOfWeightOut();

 int col_i = 0;
 for (int j = start; j < last; j++) {
 double trainSetValue = n.getTrainSet()[trainSetRow][col_i];
 double newWeight = listOfOldWeights.get(col_i) +
 n.getLearningRate() *
 (trainSetValue - listOfOldWeights.get(col_i));

 //System.out.println("newWeight: " + newWeight);

 listOfWeights.set(j, newWeight);
 col_i++;
 }

 n.getInputLayer().getListOfNeurons().get(0).setListOfWeightOut(
listOfWeights);

 return n;

 }

First, the code determines the weights that should be updated, which implies the
winner neuron's weights, from start to end. Then, in the inner for loop, the new
weight is assigned. Note the subtraction of the input value (trainSetValue) and the
old weight.

Finally, let's check how these functions are used together in the Train method.
In order to save space, we will focus only on the epoch loop:

 for (int epoch = 0; epoch < n.getMaxEpochs(); epoch++) {

 //System.out.println("### EPOCH: "+epoch);

 for (int row_i = 0; row_i < rows; row_i++) {
 listOfDistances = calcEuclideanDistance(n, trainData, row_i);

 int winnerNeuron = listOfDistances.indexOf(Collections.
min(listOfDistances));

 n = fixWinnerWeights(n, winnerNeuron, row_i);

 }

 }

Chapter 4

[95]

For every row in the training set, the distances are calculated using the Euclidean
distance and right after that, the winner neuron is determined. Then, the weights are
updated, and the learning process moves to the next iteration.

Kohonen implementation (clustering animals)
In this section, we will explain the Kohonen algorithm in practice. Imagine that
we have some animals and three of their characteristics are: has pelage (Yes/No),
is terrestrial (Yes/No), and has mammary glands (Yes/No). Our goal is to cluster
the animals in two different groups that we do not know yet. The following table
summarizes this data:

Animal
Has pelage

(Y = 1 / No = -1)

Is terrestrial

(Y = 1 / No = -1)

Has mammary glands

(Y = 1 / No = -1)
1 Bat 1 -1 1
2 Shark -1 -1 -1
3 Sea-cow -1 -1 1
4 Spider 1 1 -1
5 Hippo -1 1 1
6 Fly 1 -1 -1
7 Viper -1 1 -1
8 Monkey 1 1 1

The following figure displays the architecture of the Kohonen neural net used for
solving this problem:

Has pelage

Terrestial

Mammary
Gland

Cluster1

Cluster2

INPUT LAYER

Self-Organizing Maps

[96]

Next, let's analyze the test method called testKohonen(). It is as follows:

private void testKohonen(){
 NeuralNet testNet = new NeuralNet();

 //2 inputs because "bias"
 testNet = testNet.initNet(2, 0, 0, 2);

 NeuralNet trainedNet = new NeuralNet();

 testNet.setTrainSet(new double[][] { { 1.0, -1.0, 1.0 }, {
-1.0, -1.0, -1.0 }, { -1.0, -1.0, 1.0 }, { 1.0, 1.0, -1.0 }, {
-1.0, 1.0, 1.0 }, { 1.0, -1.0, -1.0 } });

 //viper and monkey, respectively:
 testNet.setValidationSet(new double[][] { {-1.0, 1.0, -1.0}, {1.0,
1.0, 1.0} });

 testNet.setMaxEpochs(10);
 testNet.setLearningRate(0.1);
 testNet.setTrainType(TrainingTypesENUM.KOHONEN);

 trainedNet = testNet.trainNet(testNet);

 System.out.println();
 System.out.println("---------KOHONEN VALIDATION NET---------");

 testNet.netValidation(trainedNet);

The Kohonen test logic follows the same steps as those used in the previous
implementations. First, an object of the NeuralNet class is created and used for
initializing the net with three neurons in the input layer, and two neurons in the
output layer that represents the number of clusters
to achieve.

After that, samples of rows 1 to 6 from the preceding table are used for the training
and those from the last two rows are used for validating the neural net. It is
important to ensure that the data used for the validation is not the same as that used
for training the neural net. To conclude, a method to train the neural net is called.

Chapter 4

[97]

When this case of test reaches the end, it generates the validation results shown next.

By analyzing the validation results, we find that the neural net is able to cluster two
different kinds of animals:

• Cluster 1: Mammal (monkey)
• Cluster 2: Not mammal (viper)

Self-Organizing Maps

[98]

Summary
In this chapter, we've seen how to apply unsupervised learning algorithms to
neural networks. We've been presented a new and suitable architecture to that end,
the SOMs of Kohonen. Further, unsupervised learning has been proven to be as
powerful as the supervised learning methods because it concentrates only on the
input data, without the necessity of input–output mappings. We've seen two new
training algorithms: competitive learning and its extension for a Kohonen network.
The SOMs also play a role in clustering and dimensionality reduction, besides
providing a graphical representation of large datasets. With the content learned
so far, we can move to the next chapter , which discusses an interesting practical
application of weather forecasting.

[99]

Forecasting Weather
This chapter presents an application of neural networks to the prediction of future
weather data. We are going to walk through the entire process of designing a neural
network to be applied to this problem, how to choose the neural architecture, the
number of neurons, as well as selecting and preprocessing data. Then, the reader
will be presented with a dataset on which our neural network is going to make
predictions of weather variables using the Java programming language. The topics
covered in this chapter are as follows:

• Neural networks for prediction problems
• Selecting data

 ° Input/Output variables
 ° Filtering

• Preprocessing
 ° Normalization

• Java implementation
 ° Adaptations

• Empirical design of neural networks

Forecasting Weather

[100]

Neural networks for prediction problems
So far, the reader has been presented with a number of neural network
implementations and architectures, so now; it is time to get into more complex cases.
The power of neural networks in predictions is really astonishing, since they can
perform "learning" from historical data in a fashion in which the neural connections
are adapted to produce the same results according to some input data. For example,
for a given situation (cause), there is a consequence (result) and this is coded as
data; the neural network can be used to learn the nonlinear function that maps the
situation to the consequence (or the cause to the result).

Prediction problems are an interesting category to apply neural networks to. Let's
take a look at a sample table containing weather data:

Date Avg.
temperature

Pressure Humidity Precipitation Wind
speed

July 31 23° C 880 mbar 66% 16 mm 5 m/s
August 1 22° C 881 mbar 78% 3 mm 3 m/s
August 2 25° C 884 mbar 65% 0 mm 4 m/s
August 3 27° C 882 mbar 53% 0 mm 3 m/s
…
December 11 32° C 890 mbar 64% 0 mm 2 m/s

The preceding table depicts five variables containing hypothetical values of weather
data collected from a hypothetical city, only for the purpose of this example. Now,
let's suppose that each of the variables contains a list of values sequentially taken
over time. We can think of each list as a time series. On a time-series chart, one can
see how they evolve along with time:

Chapter 5

[101]

The relationship between these time series denotes a dynamic representation of
weather in a certain city, as depicted in the preceding chart. We indeed want the
neural network to learn these dynamics; however, it is necessary to understand a
little bit more about the phenomena, because we need to structure this data in a way
that neural networks can process it.

Only after structuring the data can we structure the neural network, that is, the
number of inputs, outputs, and hidden nodes. However, there are many other
architectures that may be suitable for prediction problems, such as radial basis
functions and feedback networks. In this chapter, we will deal with the feedforward
multi layer perceptron with backpropagation learning algorithm, to demonstrate
how this architecture can be simply exploited to predict weather variables. Also,
this architecture presents very good generalized results with good selected data and
there is little complexity involved in the design process.

The overall process for designing neural networks for prediction processes is
depicted in the following figure:

1. Selecting and Filering History Data

2. Data Preprocessing

3. Defining of Neural Network Structure

4. Training Neural Network

5. Validating Neural Network

If the neural network fails to be validated (step 5), then usually, a new structure (step
3) is defined, although sometimes, steps 1 and 2 may be repeated. Each of the steps in
the figure will be addressed in the following sections of this chapter.

No data, no neural net – selecting data
The first thing to do is to select appropriate relevant data that carries most of the
system's dynamics that we want the neural network to reproduce. In our case, we
need to select data that is relevant for weather forecasting.

Forecasting Weather

[102]

While selecting data, getting an expert opinion about the
process and its variables can be really helpful. The expert
does help a lot in understanding the relationship between
the variables, thus selecting them in an appropriate fashion.

In this chapter, we are going to use the data from the Brazilian Institute of
Meteorology (INMET - http://www.inmet.gov.br/ in Portuguese), which is freely
available on the Internet and we have the rights to apply it in this book. However,
the reader may use any free weather database from the Internet while developing
applications. Some examples from the English language sources are listed as follows:

• Wunderground (http://wunderground.com/)
• Open weather map (http://openweathermap.org/api)
• Yahoo weather API (https://developer.yahoo.com/weather/)
• U.S. National Climatic Data Center (http://www.ncdc.noaa.gov/)

Knowing the problem – weather variables
Any weather database has almost the same variables:

• Temperature (°C)
• Humidity (%)
• Pressure (mbar)
• Wind speed (m/s)
• Wind direction (°)
• Precipitation (mm)
• Sunny hours (h)
• Sun energy (W/m2)

This data is usually collected from meteorological stations, satellites, or radars, on an
hourly or daily basis.

Depending on the collection frequency, some variables
may be summarized with average, minimum, or
maximum values.
The data units may also vary from source to source; that's
why the units should always be observed.

Chapter 5

[103]

Choosing input and output variables
Neural networks work as a nonlinear block that may have a predefined number of
inputs and outputs, so we have to select the role that each weather variable will play
in this application. In other words, we have to choose which variable(s) the neural
network is going to predict and by using which input variables.

Regarding time series variables, one can derive new variables
by applying historical data. This means that given a certain
date, one may consider this date's values and the data
collected (and/or summarized) from past dates, therefore
extending the number of variables.

While defining a problem to use neural networks on, we need to consider one
or more predefined target variables: predict temperature, forecast precipitation,
measure insolation, and so on. However, in some cases, one may want to model all
the variables and to find the causal relationships between them. To identify a causal
relationship, there are a number of tools that can be applied:

• Cross-correlation
• Pearson's coefficient
• Statistical analysis
• Bayesian networks

For the sake of simplicity, we are not going to explore these tools in this chapter;
however, the reader is recommended to go to the references [Dowdy & Wearden,
1983; Pearl, 2000; Fortuna et al., 2007] for obtaining more details about these tools.
Instead, since we want to demonstrate the power of neural networks in predicting
weather, we will choose the average temperature of a given day, based on the other
four variables, on the basis of the current technical literature, which is cited in the
preceding reference.

Removing insignificant behaviors – Data
filtering
Sometimes, some issues are faced while getting data from some source. The common
problems are as follows:

• Absence of data in a certain record and variable
• Error in measurement (for example, when a value is badly labeled)
• Outliers (for example, when the value is very far from the usual range)

Forecasting Weather

[104]

To handle each of these issues, one needs to perform filtering on the selected data.
The neural network will reproduce exactly the same dynamics as those of the data
that it will be trained with, so we have to be careful in feeding it with bad data.
Usually, records containing bad data are removed from the dataset, ensuring that
only "good" data are fed to the network.

To better understand filtering, let's consider the dataset as a big matrix containing n
measurements and m variables.

Where aj(i) denotes the measurement of variable j at moment i.

So, our task is to find the bad records and delete them. Mathematically, there are
a number of ways of identifying a bad record. For error measurement and outlier
detection, the following three-sigma rule is very good:

Where xi denotes the value of the ith measurement, E[X] represents the average value,
σX indicates the standard deviation, and di refers to the weighted distance from the
average. If the absolute distance of the ith measurement fails to fit in less than three
records, the ith measurement will be labeled as a bad measurement, and although
the other variables from the same instance (row of the matrix) are good, one should
discard the entire row of the dataset.

Adjusting values – data preprocessing
Raw data collected from a data source usually presents different particularities, such
as data range, sampling, and category. Some variables result from measurements,
while the others are a summary or even calculated. Preprocessing means to adapt
these variables' values to form neural networks that can handle them properly.

Chapter 5

[105]

Regarding weather variables, let's take a look at their range, sampling, and type,
shown in the following table:

Variable Unit Range Sampling Type
Mean temperature °C 23.86–29.25 Hourly Average of hourly

measurements
Precipitation Mm 0–161.20 Daily Accumulation of daily rain
Insolation h 0–10.40 Daily Count of hours receiving

sun radiation
Mean humidity % 65.50–96.00 Hourly Average of hourly

measurements
Mean wind speed km/h 0.00–3.27 Hourly Average of hourly

measurements

Except for insolation and precipitation, the variables are all measured and share
the same sampling, but if we wanted, for example, to use an hourly dataset, we
would have to preprocess all the variables to use the same sample rate. Three of the
variables are summarized using daily average values, but if we wanted to, we could
use hourly data measurements. However, the range would surely be larger.

Equalizing data – normalization
Normalization is the process to get all the variables into the same data range, usually
with smaller values, between 0 and 1 or -1 and 1. This helps the neural network to
present values within the variable zone in activation functions such as sigmoid or
hyperbolic tangent:

Forecasting Weather

[106]

Values too high or too low may drive neurons to produce values that are too high or
too low as well for the activation functions, therefore leading the derivative for these
neurons to be too small, near zero.

The normalization should consider a predefined range of the dataset. It is performed
right away:

Where Nmin and Nmax represent the normalized minimum and maximum limits,
respectively; Xmin and Xmax denote X variable's minimum and maximum limits,
respectively; X indicates the original value; and Xnorm refers to the normalized value.
If we want the normalization to be between 0 and 1, for example, the equation is
simplified as follows:

By applying the normalization, a new "normalized" dataset is produced and is fed to
the neural network. One should also take into account that a neural network fed with
normalized values will be trained to produce normalized values on the output, so the
inverse (denormalization) process becomes necessary as well.

or:

For the normalization between 0 and 1.

Chapter 5

[107]

Java implementation for weather
prediction
In order to implement this case in Java, we had to make some adjustments in the
already written code. The NeuralNet class is updated with a new method called
getNetOutputValues(), to give some output values given a training input dataset.
This method performs almost the same operation as the forward method in the
backpropagation phase, except for the fact that it returns a matrix containing the
output dataset.

In addition, we had to add two components to the project (package edu.packt.
neuralnet.util): data and chart.

Plotting charts
Charts can be drawn in Java by using the freely available package JFreeChart
(http://www.jfree.org/jfreechart/). This package is attached with this chapter's
source code. So, we designed a class called Chart. It implements methods basically
for plotting data series by making calls to natively implemented methods of the
JFreeChart classes. The following table shows a list of methods contained in this class:

Class name: Chart
Attributes

public enum ChartPlotTypeENUM {
 FULL_DATA, COMPARISON;
}

Enum to store chart types may be plotted

Methods
public void plotXYData(Object[]
vector, String chartTitle,
String xAxisLabel, String
yAxisLabel)

Method to plot XY chart based on a data
vector
Parameters: Vector with data to plot, chart
title, x-axis label, and y-axis label
Returns: -

public void plotXYData(double[]
[] matrix, String chartTitle,
String xAxisLabel, String
yAxisLabel, ChartPlotTypeENUM
chartPlotType)

Method to plot XY chart based on a data
matrix
Parameters: Matrix with data to plot, chart
title, x-axis label, y-axis label, and plot type
Returns: -

private String
selectComparisonSeriesName(int
index)

Method to select comparison series name
Parameters: Index
Returns: Series name

Forecasting Weather

[108]

private String
selectTemperatureSeriesName(int
index)

Method to select temperature series name
Parameters: Index
Returns: Series name

Class Implementation with Java: file Chart.java

Handling data files
To work with data files, we have to implement a class called Data. It currently
performs reads from the so-called CSV format, which is suitable for data import and
export. This class also performs preprocessing on the data by means of normalization.

Class name: Data
Attributes

private String path; Variable to store the CSV file folder path
private String fileName; Attribute to store the CSV file name (with

extension)
public enum NormalizationTypesENUM
{
 MAX_MIN, MAX_MIN_EQUALIZED;
}

Enum to store normalization types may
be used

Constructors
public Data(String path, String
fileName)

Constructor to set path and filename
attributes

public Data() Empty constructor to create an empty
object

Methods
Note: The getters and setters methods of this attribute were created too.

public double[][]
rawData2Matrix(Data r) throws
IOException

Method to read raw data (CSV file) and
convert to a double Java matrix
Parameters: Data object
Returns: Double matrix with raw data

private String
defineAbsoluteFilePath(Data r)
throws IOException

Method to define the absolute CSV file
path
Parameters: Data object
Returns: String with the absolute CSV
file path

Chapter 5

[109]

public double[][]
normalize(double[][] rawMatrix,
NormalizationTypesENUM normType)

Method to normalize a raw data matrix
Parameters: Double raw data matrix,
normalization type
Returns: Double matrix normalized

public double[][]
denormalize(double[][] rawMatrix,
double[][] matrixNorm,
NormalizationTypesENUM normType)

Method to denormalize a raw data matrix
Parameters: Double raw data matrix,
double normalized matrix, normalization
type
Returns: Double matrix denormalized

public double[][]
joinArrays(ArrayList<double[][]>
listOfArraysToJoin)

Method to join arrays (vectors) into
a matrix
Parameters: List of arrays
Returns: Double matrix

Class implementation with Java: file Data.java

Building a neural network for weather
prediction
To forecast weather, we collected daily data from the Brazilian Institute of Meteorology
(INMET). The data was measured from a Brazilian city located in the Amazon region.

From the eight variables available at the INMET website, five were selected for use
in this project, where the average of the maximum and the minimum temperature
became the mean temperature variable. The neural network was trained to forecast
the average temperature. So, the structure of the neural network is as shown in the
following figure:

Forecasting Weather

[110]

We designed a class called Weather exclusively for the weather case. It only has a
static main method and is solely aimed at reading the weather data files, creating and
training a neural network with this data, and plotting the error for validation. Let's
take a glance at how the data files are read inside this class:

 Data weatherDataInput = new Data("data", "inmet_13_14_input.csv"
);
 Data weatherDataOutput = new Data("data", "inmet_13_14_output.csv"
);

 //sets the normalisation type
 NormalizationTypesENUM NORMALIZATION_TYPE = Data.
NormalizationTypesENUM.MAX_MIN_EQUALIZED;

 try {
 double[][] matrixInput = weatherDataInput.rawData2Matrix(
weatherDataInput);
 double[][] matrixOutput = weatherDataOutput.rawData2Matrix(
weatherDataOutput);

 //normalise the data
 double[][] matrixInputNorm = weatherDataInput.normalize(
matrixInput, NORMALIZATION_TYPE);
 double[][] matrixOutputNorm = weatherDataOutput.normalize(
matrixOutput, NORMALIZATION_TYPE);

Then, the main method builds a neural network with four hidden neurons and sets
the training dataset, as shown in the following code:

 NeuralNet n1 = new NeuralNet();
 n1 = n1.initNet(4, 1, 4, 1);

 n1.setTrainSet(matrixInputNorm);
 n1.setRealMatrixOutputSet(matrixOutputNorm);

 n1.setMaxEpochs(1000);
 n1.setTargetError(0.00001);
 n1.setLearningRate(0.5);
 n1.setTrainType(TrainingTypesENUM.BACKPROPAGATION);
 n1.setActivationFnc(ActivationFncENUM.SIGLOG);
 n1.setActivationFncOutputLayer(ActivationFncENUM.LINEAR);

 NeuralNet n1Trained = new NeuralNet();

 n1Trained = n1.trainNet(n1);

 System.out.println();

Chapter 5

[111]

Here, the network is trained, and then, the charts of the error are plotted. The
following lines show how the chart class is used:

 Chart c1 = new Chart();
 c1.plotXYData(n1.getListOfMSE().toArray(), "MSE Error", "Epochs",
"MSE Value");

 //TRAINING:
 double[][] matrixOutputRNA = n1Trained.getNetOutputValues(n1Trained
);
 double[][] matrixOutputRNADenorm = new Data().denormalize(
matrixOutput, matrixOutputRNA, NORMALIZATION_TYPE);

 ArrayList<double[][]> listOfArraysToJoin = new ArrayList<double[]
[]>();
 listOfArraysToJoin.add(matrixOutput);
 listOfArraysToJoin.add(matrixOutputRNADenorm);

 double[][] matrixOutputsJoined = new Data().joinArrays(
listOfArraysToJoin);

 Chart c2 = new Chart();
 c2.plotXYData(matrixOutputsJoined, "Real x Estimated -
Training Data", "Weather Data", "Temperature (Celsius)", Chart.
ChartPlotTypeENUM.COMPARISON);

In the following graph, it is possible to see the MSE training error plotted. The x-axis
represents 1000 points (epochs of training), and the y-axis shows the variation of the
MSE values. It is noticed that before the 100th epoch, the MSE value establishes.

Forecasting Weather

[112]

Another graph is displayed next. It shows a comparison between the real (red line)
and the estimated (blue line) average temperature. Dotted black lines symbolize the
margins of error (-1.0 °C and +1.0 °C).

Empirical design of neural networks
While using neural networks in regression problems (that include prediction),
there is no fixed number of hidden neurons, so usually, the solver chooses an
arbitrary number of neurons and then varies it according to the results produced
by the networks created. This procedure may be repeated a number of times until a
network with a satisfying criterion is found.

Choosing training and test datasets
In order to attest the neural network's capability to properly respond to new data,
it is useful to have two separate datasets, called training and test datasets. In this
application, we worked with two distinct periods, one for each dataset.

Period Begin End Type Number of records %
1 01/01/2013 31/12/2014 Training 730 93.8
2 30/04/2015 16/06/2015 Test 48 6.2
Total 778 100

The recommendation is for the training set to have at least 75% of the overall dataset.

Chapter 5

[113]

Designing experiments
Experiments can be performed on the same training and test datasets, but by
varying the other network parameters, such as the learning rate, normalization,
and the number of hidden units. In this case, we performed 12 experiments, whose
parameters were chosen as shown in the following table:

Experiment Number of neurons
in hidden layer

Learning rate Data normalization type

1

2

0.1
MAX_MIN

2 MAX_MIN_EQUALIZED
3

0.5
MAX_MIN

4 MAX_MIN_EQUALIZED
5

0.9
MAX_MIN

6 MAX_MIN_EQUALIZED
7

4

0.1
MAX_MIN

8 MAX_MIN_EQUALIZED
9

0.5
MAX_MIN

10 MAX_MIN_EQUALIZED
11

0.9
MAX_MIN

12 MAX_MIN_EQUALIZED

The objective is to choose a neural network that presents the best performance from
the experiments. The best performance is assigned to the network that presents the
lowest MSE error, but an analysis of generalization with the test data is also useful.

While designing experiments, consider starting always from a
relatively low number of hidden neurons, since it is desirable
to have low computational cost.

Results and simulations
After running the 12 experiments, we found the following MSE errors:

Experiment MSE training error
1 3.6551720491360E-4
2 0.3034120360203837
3 3.8543681112765E-4
4 0.3467096464653794

Forecasting Weather

[114]

Experiment MSE training error
5 4.6319274448088E-4
6 0.4610935945738937
7 2.6604395044000E-4
8 0.2074979827120087
9 2.7763926432754E-4
10 0.2877786584371894
11 3.4582006086257E-4
12 0.4610935945709355

The following graph exhibits neural net 5th experiment's comparison between real
and estimated values, and the respective margins of error:

Chapter 5

[115]

The following graph shows that the same results as those discussed in the previous
paragraph, but for neural network 10th experiment:

Although experiment 10 has a larger MSE than experiment 5 and 10's chart presents
a better generalization behavior. Therefore, we can conclude the following:

• Considering only the final MSE value to decide about the neural net quality
is not recommended.

• Estimated value from experiment 10 follows the real value closer than that
from experiment 5.

• Neural net obtained in experiment 10 preserves the trending by ascent and
descent better than that obtained in 5, as may be viewed between weather
data 1 and 17.

Therefore, by viewing the corresponding charts, we chose network 10 to be the most
suitable for weather prediction.

Forecasting Weather

[116]

Summary
In this chapter, we've seen an interesting practical application of neural networks.
Weather forecasting has always been a rich research field, and indeed, neural
networks are widely used for these tasks. In this chapter, the reader also learned how
to prepare similar experiments for prediction problems. The correct application of
techniques for data selection and preprocessing can save a considerable amount of
time while designing a neural network for the prediction. This chapter also serves
as a foundation for the following chapters, since all of them will focus on practical
cases, so the concepts learned here will be explored widely in the rest of the book.

In the next chapter we will cover classification tasks, which is another common
research field where neural networks can be used. Two case studies will be
presented, covering the whole process on how neural networks are built for disease
diagnosis.

[117]

Classifying Disease
Diagnosis

In this chapter, the reader will be presented with a very didactic but interesting
application that neural networks are suitable for: disease diagnosis. We've
discovered so far that neural networks can be very well applied to classification
problems, where one wants to automatically assign some record to a certain
category. This chapter digs deeper into this by presenting the basics on how to
design a classification algorithm using neural networks. The topics covered in this
chapter are as follows:

• Foundations of classification problems
• Logistic regression

 ° Multiple classes vs. binary classes
 ° Confusion matrix
 ° Sensibility and specificity

• Neural networks for classification
 ° Adaptations in Java code

• Disease diagnosis using neural networks
 ° Diagnosis for cancer
 ° Diagnosis for diabetes

Classifying Disease Diagnosis

[118]

What are classification problems, and how
can neural networks be applied to them?
One thing that neural networks are really good at is classifying records. A very
simple perceptron network draws a decision boundary defining whether a data point
belongs to a particular region or to another region, where a region denotes a class.
Let's take a look at an x–y scatter chart:

The dashed lines explicitly separate the points into classes. These points represent
data records that originally had the corresponding class labels. This implies that
their classes were already known; therefore, this classification tasks falls into the
supervised learning category.

A classification algorithm seeks to find the boundaries between classes in the data
hyperspace. Once the classification boundaries are defined, a new data point, with
an unknown class, receives a class label according to the boundaries defined by the
classification algorithm. The following figure shows an example of how a new record
is classified:

According to the current class configuration, the new record's class is Class 3.

Chapter 6

[119]

A special type of activation
function – Logistic regression
We've covered that neural networks can work as data classifiers by establishing
decision boundaries onto data in the hyperspace. Such a boundary can be linear in
the case of perceptrons or nonlinear in the case of other neural architectures such as
MLPs, Kohonen, or Adaline. The linear case is based on linear regression, on which
the classification boundary is literally a line, as shown in the preceding figure. If
the scatter chart of the data looks like that shown in the following figure, then a
nonlinear classification boundary is needed.

Neural networks are in fact a great nonlinear classifier, and this is achieved by the
usage of nonlinear activation functions. One nonlinear function that actually works
well for nonlinear classification is the sigmoid function, and the procedure for
classification using this function is called logistic regression.

Classifying Disease Diagnosis

[120]

This function returns values bounded between 0 and 1. In this function, the α
parameter denotes how hard the transition from 0 to 1 occurs. The following chart
shows the difference:

Note that the larger the value of the α parameter is, the more the logistic function
takes a shape of a hard-limiting threshold function, also known as a step function.

Multiple classes versus binary classes
Classification problems usually deal with a case of multiple classes, where each
class is assigned a label. However, a binary classification schema is applied in neural
networks. This is because a neural network with a logistic function at the output
layer can produce only values between 0 and 1, meaning that it assigns (1) or not (0)
to some classes.

Nevertheless, there is one approach for multiple classes using binary functions.
Consider that every class is represented by an output neuron, and whenever this
output neuron fires, the neuron's corresponding class is applied on the input
data record. So, let's suppose a network to classify diseases; each neuron output
represents a disease to be applied to some symptom:

Chapter 6

[121]

Note that in this configuration, it is possible to have multiple
diseases with the same symptoms. However, if it is desirable
to choose only one class, then a schema as a competitive
learning algorithm is more suitable.

Comparing the expected versus produced
results – the confusion matrix
There is no perfect classifier algorithm; all of them are subjected to errors and biases.
However, it is expected that a classification algorithm can correctly classify 70% to
90% of the records.

Very high correct classification rates are not always
desirable because of the possible biases presented in the
input data that might affect the classification task, and
there is a risk of overtraining, when only the training data
are correctly classified.

A confusion matrix shows how many of a given class's records were correctly
classified and therefore how many were wrongly classified. The following table
depicts what a confusion matrix may look like:

Actual
class

Inferred class Total

A B C D E F G
A 92% 1% 0% 4% 0% 1% 2% 100%
B 0% 83% 5% 6% 2% 3% 1% 100%
C 1% 3% 85% 0% 2% 5% 4% 100%
D 0% 3% 0% 92% 2% 1% 1% 100%
E 0% 10% 2% 1% 78% 1% 8% 100%
F 22% 2% 2% 3% 3% 65% 3% 100%
G 9% 6% 0% 16% 0% 3% 66% 100%

Note that the main diagonal is expected to have higher values, as the classification
algorithm will always try to extract meaningful information from the input dataset.
The sum of all rows must be equal to 100% because all elements of a given class are
to be classified in one of the available classes. However, note that some classes may
receive more classifications than expected.

Classifying Disease Diagnosis

[122]

The more a confusion matrix looks like an identity matrix, the better the classification
algorithm will be.

Classification measures – sensitivity and
specificity
When the classification is binary, the confusion matrix is found to be a simple 2 x 2
matrix, and therefore, its positions are specially named:

Actual Class Inferred Class
Positive (1) Negative (0)

Positive (1) True Positive False Negative
Negative (0) False Positive True Negative

In disease diagnosis, which is the subject of this chapter, the concept of a binary
confusion matrix is applied in the sense that a false diagnosis may be either a false
positive or a false negative. The rate of false results can be measured by using
sensitivity and specificity indexes.

Sensitivity denotes the true positive rate; it measures how many of the records are
correctly classified positively.

Specificity in turn represents the true negative rate; it indicates the proportion of
negative record identification.

High values of both sensitivity and specificity are desired; however, depending on
the application field, sensitivity may carry more meaning.

Chapter 6

[123]

Applying neural networks for
classification
Classification tasks can be performed by using any of the supervised neural
networks that this book has covered so far. However, it is recommended to use
more complex architectures, such as MLPs. In this chapter, we are going to use the
NeuralNet class to build an MLP with one hidden layer and the sigmoid function at
the output. Every output neuron denotes a class.

We've added to framework a special class called Classification in order to handle
concepts such as confusion matrix, sensitivity, and specificity. The following table
shows a list of the methods and parameters contained in this class:

Class name: Classification
Methods

public double[][]
calculateConfusionMatrix(double
marginError, double[][] matrix)

Method to calculate confusion matrix
Parameters: Margin error and matrix with
real output and estimated output
Returns: Confusion matrix

public void printConfusionMatrix(
double[][] matrix)

Method to print confusion matrix
Parameters: Confusion matrix
Returns: -

public double
calculateSensitivity(double[][]
matrix)

Method to calculate sensitivity of
classification
Parameters: Matrix with real output and
estimated output
Returns: Sensitivity value

public double
calculateSpecificity(double[][]
matrix)

Method to calculate specificity of
classification
Parameters: Matrix with real output and
estimated output
Returns: Specificity value

public double calculateAccuracy(
double[][] matrix)

Method to calculate accuracy of
classification
Parameters: matrix with real output and
estimated output
Returns: specificity value

Classifying Disease Diagnosis

[124]

Class name: Classification
Methods

public double[][]
convertToOneColumn(double[][]
matrix)

Method to convert a matrix with more
than one column to one column. It has
been used when neural net has more than
one neuron in output layer
Parameters: Matrix with more than one
column
Returns: Matrix with one column

Class implementation with Java: file Classification.java

The implementation of a neural network for classification would follow the
following steps:

1. Data loading (training and test data)
2. Data normalization
3. Creating neural network
4. Training neural network
5. Analyze and take conclusions from the classifier via a classification object

First, let's load the data and normalize it:

 //Training data
 Data dataInput = new Data("data", "inputs_training.csv");
 Data dataOutput = new Data("data", "output_training.csv");
 // test data
 Data dataInputTestRNA = new Data("data", "inputs_test.csv");
 Data dataOutputTestRNA = new Data("data", "output_test.csv");

 // normalization
 NormalizationTypesENUM NORMALIZATION_TYPE = Data.
NormalizationTypesENUM.MAX_MIN_EQUALIZED;

It is important to convert the data to the matrix format so that it can be fed into the
neural network:

 //convert the raw data to matrix
 double[][] matrixInput = dataInput.rawData2Matrix(
diseaseDataInput);
 double[][] matrixOutput = dataOutput.rawData2Matrix(
diseaseDataOutput);

Chapter 6

[125]

 //Normalize the data. Normalization code for test data is
suppressed.
 double[][] matrixInputNorm = dataInput.normalize(matrixInput,
NORMALIZATION_TYPE);

Now, let's create the neural network here with 8 inputs, 3 hidden neurons,
and 2 outputs:

 NeuralNet n1 = new NeuralNet();
 n1 = n1.initNet(8, 1, 3, 2);

Next, we perform the training. Since we've already seen how this can be set up in
Chapter 3, Handling Perceptrons, we're leaving this out here to save space. Then, we
create a new network to receive the trained network:

 //Create a new network to receive the trained network
 NeuralNet n1Trained = new NeuralNet();
 n1Trained = n1.trainNet(n1);

 //Plot the error:
 Chart c1 = new Chart();
 c1.plotXYData(n1.getListOfMSE().toArray(), "MSE Error",
"Epochs", "MSE Value");

After the training has been finished, we instantiate a classification object to carry out
some analyses on the results:

 Classification classif = new Classification();

 //Load the test data:
 n1Trained.setTrainSet(matrixInputTestRNANorm);
 n1Trained.setRealMatrixOutputSet(matrixOutputTestRNA);

 double[][] matrixOutputRNATest = n1Trained.
getNetOutputValues(n1Trained);

 //Check the number of outputs to adapt the test data to the
neural multiple outputs
 if(n1Trained.getOutputLayer().getNumberOfNeuronsInLayer() > 1) {

 matrixOutputTestRNA = classif.convertToOneColumn(matrixOutput
TestRNA);
 matrixOutputRNATest = classif.convertToOneColumn(matrixOutput
RNATest);

 }

Classifying Disease Diagnosis

[126]

Finally, we apply some processing for exhibiting the charts and the confusion matrix:

 ArrayList<double[][]> listOfArraysToJoinTest = new
ArrayList<double[][]>();
 listOfArraysToJoinTest.add(matrixOutputTestRNA);
 listOfArraysToJoinTest.add(matrixOutputRNATest);
 double[][] matrixOutputsJoinedTest = new Data().joinArrays(listO
fArraysToJoinTest);

 //Plot a bar chart
 Chart c3 = new Chart();
 c3.plotBarChart(matrixOutputsJoinedTest, "Real x Estimated -
Test Data", " Data", "Result (0: NO / 1: YES)");

 //plots the confusion matrix and the sensitivity and specificity
indexes
 double[][] confusionMatrix = classif.
calculateConfusionMatrix(0.6, matrixOutputsJoinedTest);
 classif.printConfusionMatrix(confusionMatrix);
 System.out.println("SENSITIVITY = " + classif.calculateSensitivi
ty(confusionMatrix));
 System.out.println("SPECIFICITY = " + classif.calculateSpecifici
ty(confusionMatrix));

 //Finally the final accuracy of classification
 System.out.println("ACCURACY = " + classif.calculateAccuracy(
confusionMatrix));

Disease diagnosis with neural networks
For disease diagnosis, we are going to use the free dataset proben1, which is available
on the web (http://www.filewatcher.com/m/proben1.tar.gz.1782734-0.html).
Proben1 is a benchmark set of several datasets from different domains. We are going
to use the cancer and the diabetes dataset. We added two new classes to run the
experiments of each case: CancerDisease and DiabetesDisease.

Using ANN to diagnose breast cancer
Ten variables compose the breast cancer dataset, where nine are inputs and one is a
binary output. The dataset has 699 records, but we excluded 16 from them, which were
found to be incomplete; thus, we used 683 records to train and test a neural network.

Chapter 6

[127]

In real practical problems, it is common to have missing or invalid
data. Ideally, the classification algorithm must handle these
records, but sometimes, it is recommended to exclude them since
there would not be information to produce an accurate result.

The following table shows the configuration of this dataset:

Variable name Type Maximum value and
minimum value

Diagnosis result OUTPUT [0; 1]
Clump thickness INPUT #1 [1; 10]
Uniformity of cell size INPUT #2 [1; 10]
Uniformity of cell shape INPUT #3 [1; 10]
Marginal adhesion INPUT #4 [1; 10]
Single epithelial cell size INPUT #5 [1; 10]
Bare nuclei INPUT #6 [1; 10]
Bland chromatin INPUT #7 [1; 10]
Normal nucleoli INPUT #8 [1; 10]
Mitoses INPUT #9 [1; 10]

Therefore, the proposed neural topology will be that of the following figure:

Classifying Disease Diagnosis

[128]

The dataset division was performed as follows:

• Training: 600 records
• Test: 83 records

As in the previous cases, we performed many experiments to try to find the best
neural net to classify whether the cancer is benign or malignant. So, we conducted
12 different experiments to analyze the MSE and accuracy values. After that, the
confusion matrix, sensitivity, and specificity were generated with the test dataset and
analyzed. At last, an analysis of generalization was conducted. The neural networks
involved in the experiments are shown in the table:

Experiment Number of neurons
in hidden layer

Learning rate Activation function

1

3

0.1

Hidden layer: HYPERTAN
Output layer: SIGLOG

2 Hidden layer: SIGLOG
Output layer: SIGLOG

3

0.5

Hidden layer: HYPERTAN
Output layer: SIGLOG

4 Hidden layer: SIGLOG
Output layer: SIGLOG

5

0.9

Hidden layer: HYPERTAN
Output layer: SIGLOG

6 Hidden layer: SIGLOG
Output layer: SIGLOG

7

5

0.1

Hidden layer: HYPERTAN
Output layer: SIGLOG

8 Hidden layer: SIGLOG
Output layer: SIGLOG

9

0.5

Hidden layer: HYPERTAN
Output layer: SIGLOG

10 Hidden layer: SIGLOG
Output layer: SIGLOG

11

0.9

Hidden layer: HYPERTAN
Output layer: SIGLOG

12 Hidden layer: SIGLOG
Output layer: SIGLOG

Chapter 6

[129]

After each experiment, we collected the MSE values (shown in the following table);
experiment 7 and experiment 12 resulted in the highest accuracy values. Both MSE
training rates are acceptable.

Experiment MSE training rate Accuracy
1 0.03972135063712551 0.975903614457831
2 0.03995188471687546 0.975903614457831
3 0.03933513091403112 0.975903614457831
4 0.03930199248652969 0.975903614457831
5 0.04320989863852442 0.963855421686747
6 0.03906524721664331 0.975903614457831
7 0.02833532990528998 0.987951807228915
8 0.02996896005224385 0.975903614457831
9 0.02516212161358099 0.975903614457831
10 0.02510190111178650 0.975903614457831
11 0.02062000996870342 0.963855421686747
12 0.02466074197562852 0.987951807228915

Graphically, the MSE evolution over time is very fast, as can be seen in the following
chart of the experiment 7:

www.allitebooks.com

http://www.allitebooks.org

Classifying Disease Diagnosis

[130]

The confusion matrix is shown in the table with the sensitivity and specificity for
both experiments:

Experiment Confusion matrix Sensitivity Specificity

7
14.0 | 1.0
 0.0 | 68.0

1.0 0.9855072463768

11
13.0 | 0.0
 1.0 | 69.0

0.9285714285714 1.0

Now, let's analyze generalization. This feature is better observed with bar charts
showing for each case the expected class along with the classification estimated by
the neural network. Red bars denote the actual positive diagnosis, while blue bars
represent the neural output values. It is worth to note that when the output is zero,
the patient is diagnosed with benignant cancer and when the output is one, the
patient is diagnosed with malignant cancer. This feature is better observed with bar
charts as shown in the following figure:

Chapter 6

[131]

Applying NN for an early diagnosis of
diabetes
An additional example to be explored is the diagnosis of diabetes. This dataset has
eight inputs and one output, as shown in the following table. There are 768 records,
all complete. However, Proben1 states that there are several senseless zero values,
probably indicating missing data. We're handling this data as if it were real, thereby
introducing some errors (or noise) into the dataset.

Variable name Type Maximum value and
minimum value

Diagnosis result OUTPUT [0; 1]
Number of times pregnant INPUT #1 [0.0; 17]
Plasma glucose concentration every 2 hours in an
oral glucose tolerance test

INPUT #2 [0.0; 199]

Diastolic blood pressure (mm Hg) INPUT #3 [0.0; 122]
Triceps skin fold thickness (mm) INPUT #4 [0.0; 99]
Two-hour serum insulin (µU/ml) INPUT #5 [0.0; 744]
Body mass index (weight in kg/(height in m)^2) INPUT #6 [0.0; 67.1]
Diabetes pedigree function INPUT #7 [0.078; 2420]
Age (years) INPUT #8 [21; 81]

The dataset division was as follows:

• Training: 690 records
• Test: 78 records

To discover the best neural net topology to classify diabetes, we used the same
schema of neural networks with the same analysis as that described in the last
section. However, we use a multiple class classification in the output layer: two
neurons in this layer will be used, one for the presence of diabetes and the other for
the absence.

Classifying Disease Diagnosis

[132]

So, the proposed neural architecture looks like that shown in the following figure:

The following table shows the MSE training value and the accuracy of the first six
experiments and of the last six experiments:

Experiment MSE training rate Accuracy
1 0.1613790087603789 0.692307692307692
2 0.1621959590254118 0.692307692307692
3 0.1643117235316208 0.653846153846153
4 0.1617892991111149 0.692307692307692
5 0.1726829994853517 0.641025641025641
6 0.1617000829026907 0.692307692307692
7 0.1568402004414977 0.666666666666666
#8 0.1577266938606883 0.692307692307692
9 0.1643499270371965 0.666666666666666
10 0.1538651388477906 0.666666666666666
11 0.1747411925925356 0.692307692307692
12 0.1532305775075525 0.679487179487179

Chapter 6

[133]

The fall of the MSE is fast as in the first case; nevertheless, the eight experiments
showed a slight delay in the decrease in the first epoch.

By analyzing the confusion matrix, it can be seen that sensitivity and specificity
are not as high as in the first case, and the confusion matrix shows a more
homogeneous distribution.

Experiment Confusion matrix Sensitivity Specificity

1
19.0 | 11.0
13.0 | 35.0

0.59375 0.7608695652173914

8
21.0 | 13.0
11.0 | 33.0

0.65625 0.717391304347826

Classifying Disease Diagnosis

[134]

Although this may suggest that the classifier is bad because of the number of
false positives or negatives, we should take into account that the original dataset
contained bad records, which could not be timely filtered. This explains the false
negatives appearing in the generalization bar chart.

Summary
In this chapter, we've seen two examples of the application of neural networks
to disease diagnosis. The fundamentals of the classification problems are briefly
reviewed in order to level the knowledge explored in this chapter. Classification
tasks belong to one of the most frequently used types of supervised tasks in the
fields of machine learning/data mining, and neural networks proved to be very
appropriate for application to such problems. The reader was also presented with the
concepts used for evaluating the classification tasks, such as sensitivity, specificity,
and the confusion matrix. These notations are very useful for all classification tasks,
including those that are handled with other algorithms besides neural networks. The
next chapter will explore a similar kind of tasks but by using unsupervised learning,
which means without expected output data, but the fundamentals presented in this
chapter will be somewhat helpful.

[135]

Clustering Customer Profiles
One of the amazing capabilities of neural networks applying unsupervised learning
is their ability to find hidden patterns that even experts may not have any clue about.
In this chapter, we're going to explore this fascinating feature through a practical
application to find customer clusters by using a transactions database. We'll go
through a review on unsupervised learning and the clustering task. To demonstrate
this application, the reader will be provided with a practical example on customer
profiling and their respective implementations in Java. In this chapter, we will cover
the following topics:

• Clustering Task
 ° Cluster Analysis
 ° Cluster Evaluation

• Applied Unsupervised Learning
 ° Neural Network of Radial Basis Functions
 ° Kohonen Network for Clustering
 ° Handling Different Types of Data

• Customer Profiling
 ° Preprocessing

• Implementation in Java
 ° Credit Analysis and Profiles of Customers

Clustering Customer Profiles

[136]

Clustering task
Clustering is a part of a broader set of tasks in data analysis, whose objective is to
group elements that look alike, more similar to each other, into clusters or groups.
A clustering task is fully based on unsupervised learning since there is no need to
include any target output data in order to find clusters; instead, the solution designer
may choose a number of clusters that he/she wants to group the records into and
check the response of the algorithm to it.

A clustering task may seem to overlap with a classification
task with the crucial difference that in clustering, there is no
need to have a predefined set of classes before the clustering
algorithm is run.

One may wish to apply clustering when there is little or no information at all about
the how the data can be gathered into groups. Provided a dataset, we want our
neural network to identify both the groups and their members. While this may seem
easy and straightforward to perform visually in a two-dimensional dataset, as shown
in the following figure, with a higher number of dimensions, this task becomes not
so trivial to perform and needs an algorithmic solution. an example of 2-dimensional
clustering is shown as follows:

In clustering, the number of clusters is not determined by the data, but by the
data analyst who is looking to cluster the data. Here, the boundaries are little bit
different than those of classification tasks because they depend primarily on the
number of clusters.

Chapter 7

[137]

Cluster analysis
One difficulty in the clustering tasks, and also in unsupervised learning tasks, is
the accurate interpretation of the results. While in supervised learning, there is a
defined target from which we can derive an error measure or confusion matrix,
in unsupervised learning, the evaluation of quality is totally different and totally
dependent on the data itself. The validation criteria involve indexes that assert how
well the data is distributed across the clusters as well as external opinions from
experts on the data, which is also a measure of quality.

For example, let's suppose a task of clustering of plants given
their characteristics (sizes, leave colors, period of fruiting, and so
on). If a neural network mistakenly groups cacti and pine trees
in the same cluster, a botanist would certainly not endorse the
classification on the basis of his/her specific knowledge in the
field and state that this grouping does not make any sense.

Two major issues happen in clustering. One is the fact that one neural network's
output is never activated, meaning that one cluster does not have any data point
associated with it. The other one is the case of nonlinear or sparse clusters, which
could be erroneously grouped into several clusters, while actually, there might be
only one, as shown in the following figure:

Clustering Customer Profiles

[138]

Cluster evaluation and validation
Unfortunately, if the neural network clusters badly, one needs to either redefine the
number of clusters or perform additional data preprocessing. To evaluate how good
the clustered data is, the Davies–Bouldin and Dunn index may be applied.

The Davies–Bouldin index takes into account the cluster's centroids in order to find
the inter- and intra-distances between clusters and cluster members.

Where n is the number of clusters, ci is the centroid of cluster i, σi is the average
distance of all elements in cluster i, and d(ci,cj) is the distance between clusters i and
j. The smaller the value of the DB index, the stronger will be the consideration of the
neural network as a cluster.

However, for dense and sparse clusters, the DB index will not give much useful
information. This limitation can be overcome with the Dunn index:

where d(i, j) is the inter-cluster distance between i and j, and d'(k) is the intra-cluster
distance of cluster k. Here, the higher the Dunn index is, the better will be the
clustering because although the clusters may be sparse, they still need to be grouped
together, and high intra-cluster distances will denote a bad grouping of data.

External validation
In some cases there is already an expected result for clustering, as in the example of
plant clustering. This is called external validation. One may apply a neural network
with unsupervised learning to cluster data that is already assigned a value. The
major difference against the classification lies in the fact that the target outputs are
not considered, so the algorithm itself is expected to draw a borderline based only on
the data.

Chapter 7

[139]

Applied unsupervised learning
In neural networks, there are a number of architectures implementing unsupervised
learning; however, the scope of this book will cover only two: a neural network of
radial basis functions and a Kohonen neural network.

Neural network of radial basis functions
This neural network architecture has three layers and combines two types of
learning, as shown in the following figure:

For the hidden layer, competitive learning is applied in order to activate one of the
radial basis functions in the hidden neurons. The radial basis function takes the form
of Gaussian functions:

where d is the distance vector between the input x and the weights w of the neuron i:

Clustering Customer Profiles

[140]

The output of the neural network will be the linear sum of all the values produced by
the neurons of the hidden layer:

Radial basis functions (RBFs) perform clustering only in the first hidden layer,
whereas in the output layer, supervised learning is applied to find the output
weights. Because the clusters defined in the RBF network are internal, we are
not going to use this network now in this chapter; however, it will be detailed in
Chapter 9, Neural Networks Optimization and Adaptation.

Kohonen neural network
Kohonen networks, which have been covered in Chapter 4, Self-Organizing Maps,
are now used in a modified fashion. Kohonen can produce a shape in one or two
dimensions at the output, but here, we are interested in clustering, which can be
reduced to only one dimension. In addition, clusters may be related or not to each
other, so the vicinity of neurons can be ignored for now in this chapter; this means that
only one neuron will be activated and its neighbors will remain unchanged. Therefore,
the neural network will adjust its weights to match the data to an array of clusters. The
following figure shows a clustering layer in a Kohonen Neural Network:

The training algorithm will be competitive learning, wherein the neuron with the
greatest output has its weights adjusted. By the end of training, all the clusters of
a neural network are expected to be defined. Note that there are no links between
output neurons, meaning that only one input is active at the output.

Chapter 7

[141]

Types of data
In practical applications, data can be classified in the following ways:

• Numerical
 ° Continuous or real
 ° Discrete

• Categorical
 ° Ordinal
 ° Unscaled

So far, we have been working mostly with numerical data, which
is in principle easier to handle with neural networks. However, in
more complex applications, one needs to handle non-numerical
data, which involves translating the data into a "numeric
universe," where the neural networks can be applied over it.

Examples of numerical data are values of temperature (continuous) and the number
of days (discrete). The non-numerical data (categorical) can be ordinal, where there
is a scale between the categories, or be unscaled, when all categories are in the
same level, or no scale can be applied to it. Examples of ordinal categorical data
are satisfaction degrees (dissatisfied, poorly satisfied, and well satisfied), whereas
unscaled categorical data may be city names.

Numerical data can be easily inserted into neural networks, where one may need to
only apply some normalization or preprocessing. However, categorical data needs
some attention. If the data can be scaled (ordinal), it can be "discretized." Taking the
example of satisfaction degree, we may create the following corresponding table:

Satisfaction Degree Scaled Value
Dissatisfied 0
Poorly Satisfied 1
Very Satisfied 2

Clustering Customer Profiles

[142]

However, for unscaled categorical data, it is not recommended to apply numbers
that might induce scaling on the considered variable. So, it is better to treat each
categorical value as one binary variable, meaning 1 in the presence of the considered
value or 0 in the absence of this value:

City Names Neural Input
London Tokyo New York Cape Town Sydney

London 1 0 0 0 0
Tokyo 0 1 0 0 0
New York 0 0 1 0 0
Cape Town 0 0 0 1 0
Sydney 0 0 0 0 1

This mechanism of binary variables may eventually result in sparse data matrices
containing a lot of zeros. However, there are techniques such as single value
decomposition (SVD) that address this problem. The reader will learn more about
this in the references.

Customer profiling
One of the interesting tasks in unsupervised learning is the profiling of customers
or clustering of customers. Given one dataset of customer information, one wants
to find groups of customers that either share similar characteristics or buy the same
products. This task results in a number of benefits for business owners because they
are provided the information regarding the groups of customers that they have,
whereby therefore enabling a more strategic customer relationship.

Preprocessing data
Customer information can contain both numerical and categorical data. Whenever
we face a categorical unscaled variable, we need to split it into the number of values
that the variable may take. For example, let's suppose that we have the following
transaction list of customer purchases:

Transaction ID Customer ID Products Discount Total
1399 56 Milk, Bread, Butter 0.00 4.30
1400 991 Cheese, Milk 2.30 5.60
1401 406 Bread, Sausage 0.00 8.80
1402 239 Chipotle Sauce, Spice 0.00 6.70

Chapter 7

[143]

Transaction ID Customer ID Products Discount Total
1403 33 Turkey 0.00 4.50
1404 406 Turkey, Butter, Spice 1.00 9.00

It can be easily seen that the products is unscaled categorical data, and for each
transaction, there is an undefined number of products purchased, that is, the customer
may purchase only one or several units of these products. In order to transform this
dataset into a numerical dataset, one needs to apply preprocessing. For each product,
there will be a variable added to the dataset, resulting in the following:

Cust.
ID

Milk Bread Butter Cheese Sausage Chipotle
Sauce

Spice Turkey

56 1 1 1 0 0 0 0 0
991 1 0 0 1 0 0 0 0
406 0 1 1 0 1 0 1 1
239 0 0 0 0 0 1 1 0
33 0 0 0 0 0 0 0 1

In order to save space, we ignored the numerical variables and considered the
presence of the product purchased by a client as 1 and the absence as 0. Alternative
preprocessing may consider the number of occurrences of a value, therefore no
longer remaining binary, but becoming discrete.

Implementation in Java
In this section, we will explore the application of a Kohonen neural network to
customer clustering on the basis of the customer information collected from
Proben1 (Card dataset).

Card credit analysis for customer profiling
The Card dataset is composed of 16 variables in total. Fifteen are inputs, and one is
an output variable. For security reasons, all variable names have been changed to
meaningless symbols. This dataset brings a good mix of variable types (continuous,
categorical with small values, and categorical with larger values). The following table
shows a summary of the data:

Clustering Customer Profiles

[144]

Variable Type Values
V1 OUTPUT -1; 1
V2 INPUT #1 b, a
V3 INPUT #2 continuous
V4 INPUT #3 continuous
V5 INPUT #4 u, y, l, t.
V6 INPUT #5 g, p, gg
V7 INPUT #6 c, d, cc, i, j, k, m, r, q, w, x, e, aa, ff
V8 INPUT #7 v, h, bb, j, n, z, dd, ff, o
V9 INPUT #8 continuous
V10 INPUT #9 t, f
V11 INPUT #10 t, f
V12 INPUT #11 continuous
V13 INPUT #12 t, f
V14 INPUT #13 g, p, s
V15 INPUT #14 continuous
V16 INPUT #15 continuous

For simplicity, we didn't use the inputs V5–V8 and V14 in order to not inflate the
number of inputs too much. Further, we applied the following transformation:

Variable Type Values Conversion
V1 OUTPUT -1; 1 -
V2 INPUT #1 b, a b = 1, a = 0
V3 INPUT #2 continuous -
V4 INPUT #3 continuous -
V9 INPUT #8 continuous -
V10 INPUT #9 t, f t = 1, f = 0
V11 INPUT #10 t, f t = 1, f = 0
V12 INPUT #11 continuous -
V13 INPUT #12 t, f t = 1, f = 0
V15 INPUT #14 continuous -
V16 INPUT #15 continuous -

Chapter 7

[145]

The proposed neural net topology is shown in the following figure:

The number of examples stored is 690, but 37 of them have missing values. These
37 records were discarded. Therefore, 653 examples were used to train and test the
neural network. The dataset division was made as follows:

• Training: 583 records
• Test: 70 records

The Kohonen training algorithm to cluster similar behavior depends on some
parameters, such as the following:

• Normalization type
• Learning rate

It is important to note that the Kohonen training algorithm is unsupervised. So,
this algorithm is used when the output is not known. In the card example, there are
output values in the dataset and they will be used here only to attest clustering.

Clustering Customer Profiles

[146]

In this specific case, because the output is known, as classification, the clustering
quality may be attested as follows:

• Sensitivity (true positive rate)
• Specificity (true negative rate)
• Accuracy

In a Java project, the calculations of these values are done through the Classification
class, previously developed in Chapter 6, Classifying Disease Diagnosis.

It is a good practice to perform many experiments to try to find the best neural net
for clustering customer profiles. Ten different experiments will be conducted, and
the quality rates will be analyzed for each, as mentioned earlier. The following table
summarizes the strategy that will be followed:

Experiment Learning Rate Normalization Type
1

0.1
MIN_MAX

2 MAX_MIN_EQUALIZED
3

0.3
MIN_MAX

4 MAX_MIN_EQUALIZED
5

0.5
MIN_MAX

6 MAX_MIN_EQUALIZED
7

0.7
MIN_MAX

8 MAX_MIN_EQUALIZED
9

0.9
MIN_MAX

10 MAX_MIN_EQUALIZED

The Card class was created to run each experiment. Regarding the training,
we applied the Euclidian distance, as previously explained in Chapter 4,
Self-Organizing Maps.

The following piece of code shows a bit of its implementation:

 Data cardDataInput = new Data("data", "card_inputs_training.csv");

 Data cardDataInputTestRNA = new Data("data", "card_inputs_test.
csv");
 Data cardDataOutputTestRNA = new Data("data", "card_output_test.
csv");

 NormalizationTypesENUM NORMALIZATION_TYPE = Data.
NormalizationTypesENUM.MAX_MIN;

Chapter 7

[147]

 try {
 double[][] matrixInput = cardDataInput.rawData2Matrix(
cardDataInput);

 double[][] matrixInputTestRNA = cardDataInput.rawData2Matrix(
cardDataInputTestRNA);

 double[][] matrixOutput = cardDataInput.rawData2Matrix(
cardDataOutputTestRNA);

 double[][] matrixInputNorm = cardDataInput.normalize(matrixInput,
NORMALIZATION_TYPE);

 double[][] matrixInputTestRNANorm = cardDataInput.
normalize(matrixInputTestRNA, NORMALIZATION_TYPE);

 NeuralNet n1 = new NeuralNet();
 n1 = n1.initNet(10, 0, 0, 2);

 n1.setTrainSet(matrixInputNorm);

 n1.setValidationSet(matrixInputTestRNANorm);
 n1.setRealMatrixOutputSet(matrixOutput);

 n1.setMaxEpochs(100);
 n1.setLearningRate(0.1);
 n1.setTrainType(TrainingTypesENUM.KOHONEN);
 n1.setKohonenCaseStudy(KohonenCaseStudyENUM.CARD);

 NeuralNet n1Trained = new NeuralNet();

 n1Trained = n1.trainNet(n1);

 System.out.println();
 System.out.println("---------KOHONEN TEST---------");

 ArrayList<double[][]> listOfArraysToJoin = new ArrayList<double[]
[]>();

 double[][] matrixReal = n1Trained.getRealMatrixOutputSet();
 double[][] matrixEstimated = n1Trained.netValidation(n1Trained);

 listOfArraysToJoin.add(matrixReal);
 litOfArraysToJoin.add(matrixEstimated);

Clustering Customer Profiles

[148]

 double[][] matrixOutputsJoined = new Data().
joinArrays(listOfArraysToJoin);

 //CONFUSION MATRIX
 Classification classif = new Classification();

 double[][] confusionMatrix = classif.
calculateConfusionMatrix(-1.0, matrixOutputsJoined);
 classif.printConfusionMatrix(confusionMatrix);

 //SENSITIVITY
 System.out.println("SENSITIVITY = " + classif.calculateSensitivity
(confusionMatrix));

 //SPECIFICITY
 System.out.println("SPECIFICITY = " + classif.calculateSpecificity
(confusionMatrix));

 //ACCURACY
 System.out.println("ACCURACY = " + classif.calculateAccuracy(co
nfusionMatrix));

 } catch (IOException e) {
 e.printStackTrace();
 }

After running each experiment using the Card class and saving the accuracy rates,
it is possible to observe that experiments 1 and 6 have the same accuracy. Data from
the first experiment was normalized with the MIN_MAX method and data from the
second experiment with MAX_MIN_EQUALIZED.

Experiment Accuracy
1 0.9142857142857143
2 0.6285714285714286
3 0.3714285714285714
4 0.6000000000000000
5 0.5857142857142857
6 0.9142857142857143
7 0.0857142857142857
8 0.3714285714285714
9 0.4142857142857143
10 0.5857142857142857

Chapter 7

[149]

The following table displays the confusion matrix, sensitivity, and specificity of
experiments 1 and 6. Again, please note that it is possible to observe the equivalence
between the neural nets in both experiments. Only 6 patterns from 70 (less than 10%)
could not be clustered correctly.

Experiment Confusion Matrix Sensitivity Specificity

1
31.0 | 2.0
 4.0 | 33.0

0.8857142857142 0.9428571428571

6
31.0 | 2.0
 4.0 | 33.0

0.8857142857142 0.9428571428571

Summary
In this chapter, we discussed an application of customer profiling using the Kohonen
neural network. Unlike the classification task, the clustering task does not consider
any previous knowledge on the desired output; instead, it is desirable that the neural
network finds the clusters. However, we've seen that the validation techniques may
include external validation, which is a comparison with what could be understood as
the "target output." Customer profiling is important because it gives more accurate
and clean information about customers to a business owner, without the "human
interference" in pointing which customers are in some groups or which ones in
others, as in the case of supervised learning. This is the advantage of unsupervised
learning, enabling the data to draw results solely by itself.

In the next chapter, we are going to present another interesting application of neural
networks: digit recognition in images. It is a way to know in practice how pattern
recognition works with a neural net.

[151]

Pattern Recognition
(OCR Case)

We have seen so far that neural networks show an amazing capability in learning
through data in both supervised and unsupervised ways. In this chapter, we present
an additional case of pattern recognition involving an example of Optical Character
Recognition (OCR). Neural networks can be trained to strictly recognize text
characters written in an image file. A brief review of classification and clusterization
is covered prior to presenting the application itself. In this chapter, we will cover the
following topics:

• Pattern Recognition
 ° Defined Classes
 ° Undefined Classes

• Neural Networks in Pattern Recognition
 ° Kohonen and MLP

• The OCR Problem
 ° Preprocessing and Class Definitions

• Implementation in Java
 ° Digit Recognition

Pattern Recognition (OCR Case)

[152]

What is pattern recognition all about?
Patterns are a bunch of data and elements that look similar to each other, and can
occur systematically and repeat from time to time. Pattern recognition is a task that
can be performed mainly by unsupervised learning using clusterization; however,
when there is labeled data or defined classes of data, this task can be performed by
supervised methods. We as humans perform this task more often than we can imagine.
When we see objects and recognize them as belonging to a certain class, we are indeed
recognizing a pattern. Also, when we analyze charts, discrete events, and time series,
we might find evidence of some sequence of events that repeat systematically under
certain conditions. In summary, patterns can be learned by data observations.

Examples of pattern recognition tasks include the following:

• Shape recognition
• Object classification
• Behavior clustering
• Voice recognition
• OCR
• Chemical reaction taxonomy

Definition of classes among tons of data
In a list of classes that has been predefined for a specific domain, each class is
considered to be a pattern; therefore, every data record or occurrence is assigned one
of these predefined classes.

Classes can usually be predefined by an expert or on
the basis of the previous knowledge of the application
domain. Also, it is desirable to apply defined classes when
we want the data to be classified strictly into one of the
predefined classes.

One illustrated example for pattern recognition using defined classes is animal
recognition by images, as shown in the following figure. The pattern recognizer
however should be trained to catch all the characteristics that formally define the
classes. In the example, eight figures of animals are shown, belonging to two classes:
mammals and birds. Since this is a supervised mode of learning, the neural network
should be provided with a sufficient number of images that allow it to properly
classify new images.

Chapter 8

[153]

Of course, sometimes, the classification may fail mainly due to similar hidden
patterns in the images that neural networks may catch and due to the small
nuances present in the shapes. For example, a dolphin has flippers, but it is still a
mammal. Sometimes, in order to obtain a better classification, it is necessary to apply
preprocessing and ensure that the neural network will receive the appropriate data
that would allow for classification.

What if the undefined classes are undefined?
When data are unlabeled and there is no predefined set of classes, it is a scenario for
unsupervised learning. Shape recognition is a good example since shapes may be
flexible and have an infinite number of edges, vertices, or bindings, as shown in the
following figure:

Pattern Recognition (OCR Case)

[154]

In the preceding image, we can see some types of shapes and we want to arrange
them such that the similar ones can be grouped into the same cluster. Based on the
shape information that is present in the images, it is likely for the pattern recognizer
to classify the rectangle, the square, and the right triangle into the same group.
However, if the information were presented to the pattern recognizer, not as an
image, but as a graph with edges and vertices coordinates, the classification might
have changed a little.

In summary, the pattern recognition task may use both supervised and unsupervised
modes of learning, basically depending on the objective of recognition.

External validation
In some cases, there is already an expected result for clustering, as in the example of
plant clustering. This is called external validation. One may apply a neural network
with unsupervised learning to cluster data that is already assigned a value. The
major difference against the classification lies in the fact that the target outputs are
not considered, so the algorithm itself is expected to draw a borderline based only on
the data.

How to apply neural networks in pattern
recognition
For pattern recognition, the neural network architectures that can be applied are
the MLPs (supervised) and the Kohonen network (unsupervised). In the first case,
the problem should be set up as a classification problem, that is, the data should be
transformed into the X-Y dataset, where for every data record in X, there should be
a corresponding class in Y. As stated in Chapter 3, Handling Perceptrons, and Chapter
6, Classifying Disease Diagnosis, the output of the neural network for classification
problems should have all of the possible classes, and this may require preprocessing
of the output records.

Chapter 8

[155]

For the other case, the unsupervised learning, there is no need to apply labels on the
output; however, the input data should be properly structured as well. To remind
the reader, the schemas of both neural networks are shown in the following figure:

Preprocessing the data
In pattern recognition, we have to deal with all possible types of data, as well as
in clustering:

• Numerical
 ° Continuous or real
 ° Discrete

• Categorical
 ° Ordinal
 ° Unscaled

However, here, we have the possibility to perform pattern recognition on
multimedia content, such as images and videos. So, how should multimedia be
handled? The answer to this question lies in the way these contents are stored in
files. Images, for example, are written with a representation of small colored points
called pixels. Each color can be coded in an RGB notation where the intensity of
red, green, and blue defines every color that the human eye is able to see. Therefore,
an image of dimensions 100 × 100 would have 10,000 pixels, each one having three
values for red, green, and blue, yielding a total of 30,000 points. This is a challenge
for image processing in neural networks.

Pattern Recognition (OCR Case)

[156]

Some methods, which will be reviewed in the next chapter, may reduce this huge
number of dimensions. Then, an image can be treated as a big matrix of numerical
continuous values.

For simplicity, in this chapter, we discuss only grayscale images with small
dimensions.

The OCR problem
Many documents are now being scanned and stored as images, making necessary the
task of converting these documents back into text, for a computer to apply editing
and text processing. However, this feature involves a number of challenges:

• Variety of text fonts
• Text size
• Image noise
• Manuscripts

In spite of these, humans can easily interpret and read even the text written in a
bad-quality image. This can be explained by the fact that humans are already familiar
with the text characters and the words in their language. Somehow, the algorithm
must become acquainted with these elements (characters, digits, signalization, and so
on), in order to successfully recognize text in images.

Simplifying the task – digit recognition
Although there are a variety of tools available in the market for OCR, it is still a
big challenge for an algorithm to properly recognize text in images. So, we will
be restricting our application to a small domain and deal with relatively simple
problems. Therefore, in this chapter, we will implement a neural network to
recognize the digits 0 to 9 represented in images. Also, the images will have
standardized and small dimensions, for the sake of simplicity.

Chapter 8

[157]

Approach to digit representation
We applied the standard dimension of 5 × 5 (25 pixels) in grayscale images, resulting
in 25 grayscale values for each image, as shown in the following figure:

In the preceding image, we have a shape of a circle representing the digit 0 at the left
and a corresponding matrix with gray values for the same digit, in grayscale.

We apply this preprocessing in order to represent all the 10 digits in this application.

Let the coding begin!
To recognize optical characters, we produced data to train and to test the neural
network. In this example, we considered digits from zero to nine. According to the
pixel layout, two versions of each digit data were created, one to train and the other
to test. Classification techniques presented in Chapter 3, Handling Perceptrons, and
Chapter 6, Classifying Disease Diagnosis will be used here.

Pattern Recognition (OCR Case)

[158]

Generating data
Numbers from zero and nine were represented by matrices in the following figure.
Black pixels are typified by the value one and white pixels by the value zero. All pixel
values between zero and one are on grayscale. The first dataset is to train the neural
network, and the second one is for testing. It's possible to detect some random noise in
the test dataset. We performed this procedure deliberately to verify the generalization.

Training dataset

Test dataset

Chapter 8

[159]

Each matrix row was merged into vectors (Dtrain / Dtest) to form a pattern that will be
used to train and test the neural network. Therefore, the input layer of the neural
network will be composed of 26 neurons. The following tables show this data:

Training Input Dataset
Dtrain(0) = [1,0,1,1,1,0,1,0,0,0,1,1,0,0,0,1,1,0,0,0,1,0,1,1,1,0]
Dtrain(1) = [1,0,0,1,0,0,0,1,1,0,0,1,0,1,0,0,0,0,1,0,0,0,0,1,0,0]
Dtrain(2) = [1,1,1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,1,1,1,1,1]
Dtrain(3) = [1,1,1,1,1,1,0,0,0,0,1,0,1,1,1,1,0,0,0,0,1,1,1,1,1,1]
Dtrain(4) = [1,1,0,0,0,1,1,0,0,0,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0,1]
Dtrain(5) = [1,0,1,1,1,0,0,1,0,0,0,0,1,1,1,0,0,0,0,1,0,0,1,1,1,0]
Dtrain(6) = [1,0,1,1,1,0,1,0,0,0,0,1,1,1,1,1,1,0,0,0,1,0,1,1,1,0]
Dtrain(7) = [1,0,1,1,1,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1]
Dtrain(8) = [1,0,1,1,1,0,1,0,0,0,1,1,1,1,1,1,1,0,0,0,1,0,1,1,1,0]
Dtrain(9) = [1,0,1,1,1,0,1,0,0,0,1,0,1,1,1,1,0,0,0,0,1,0,0,0,0,1]

Test Input Dataset
Dtest(0) = [1,0.5,1,1,1,0.5,1,0,0,0,1,1,0,0,0,1,1,0,0,0,1,0.5,1,1,1,0.5]
Dtest(1) = [1,0,0,1,0,0,0,0.5,1,0,0,0.25,0,1,0,0,0,0,1,0,0,0,0,1,0,0]
Dtest(2) = [1,1,1,1,1,1,0.2,0,0,0,1,1,1,1,1,1,1,0,0,0,0.2,1,1,1,1,1]
Dtest(3) = [1,0.5,1,1,1,1,0,0,0,0,1,0,0,1,1,1,0,0,0,0,1,0.5,1,1,1,1]
Dtest(4) = [1,0.5,0,0.5,0,1,1,0,0,0,1,1,1,1,1,0.5,0,0,0,0,1,0.5,0,0,0,1]
Dtest(5) = [1,0,1,1,0.5,0,0,1,0,0,0,0,1,1,1,0,0,0,0,0.5,0.5,0,0.5,1,1,0]
Dtest(6) = [1,0,1,1,0.1,0,1,0,0,0,0,1,1,1,1,1,0.5,0,0,0,0.5,0,1,1,1,0]
Dtest(7) = [1,0,1,1,0.5,0.5,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0.5,0,0,0,0.5]
Dtest(8) = [1,0,0.9,1,0.9,0,0.7,0,0,0,0.8,1,1,0.5,1,1,0.8,0,0,0,0.7,0,0.8,1,0.8,0]
Dtest(9) = [1,0,1,1,0.5,0,0.5,0,0,0,1,0,0.5,1,1,1,0,0,0,0,1,0,0,0,0,0.5]

Pattern Recognition (OCR Case)

[160]

The output dataset was represented by 10 patterns. Each one has a more expressive
value (1) and the rest are zero. Therefore, the output layer of the neural network will
have 10 neurons, as shown in the following table:

Output Dataset
Out(0) = [0,0,0,0,0,0,0,0,0,1]
Out(1) = [1,0,0,0,0,0,0,0,0,0]
Out(2) = [0,1,0,0,0,0,0,0,0,0]
Out(3) = [0,0,1,0,0,0,0,0,0,0]
Out(4) = [0,0,0,1,0,0,0,0,0,0]
Out(5) = [0,0,0,0,1,0,0,0,0,0]
Out(6) = [0,0,0,0,0,1,0,0,0,0]
Out(7) = [0,0,0,0,0,0,1,0,0,0]
Out(8) = [0,0,0,0,0,0,0,1,0,0]
Out(9) = [0,0,0,0,0,0,0,0,1,0]

Building the neural network
So, in this application, our neural network shall have 25 inputs and 10 outputs, so we
varied the number of hidden neurons. We created a class called Digit in the package
ocr to handle this application. The neural network architecture was designed with the
following parameters and represented by the following figure:

• Neural network type: MLP
• Training algorithm: Backpropagation
• Number of hidden layers: 1
• Number of neurons in the hidden layer: 18
• Number of epochs: 6000

Chapter 8

[161]

Testing and redesigning – trial and error
Now, as has been done in other case studies presented previously, let's find the best
neural network topology training several nets. The strategy to do that is summarized
in the following table:

Experiment Learning Rate Activation Functions

1 0.5
Hidden layer: SIGLOG
Output layer: SIGLOG

2
0.7

Hidden layer: SIGLOG
Output layer: SIGLOG

3
0.9

Hidden layer: SIGLOG
Output layer: SIGLOG

4
0.5

Hidden layer: SIGLOG
Output layer: HYPERTAN

5
0.7

Hidden layer: SIGLOG
Output layer: HYPERTAN

6
0.9

Hidden layer: SIGLOG
Output layer: HYPERTAN

Pattern Recognition (OCR Case)

[162]

Experiment Learning Rate Activation Functions
7

0.5
Hidden layer: SIGLOG
Output layer: LINEAR

8
0.7

Hidden layer: SIGLOG
Output layer: LINEAR

9
0.9

Hidden layer: SIGLOG
Output layer: LINEAR

The following piece of code of the Digit class defines how to create a neural network
to read from digit data:

 Data ocrDataInput = new Data("data\\ocr", "ocr_traning_inputs.csv");
 Data ocrDataOutput = new Data("data\\ocr", "ocr_traning_outputs.csv");
 //read the data points coded in a csv file
 Data ocrDataInputTestRNA = new Data("data\\ocr", "ocr_test_inputs.csv");
 Data ocrDataOutputTestRNA = new Data("data\\ocr", "ocr_test_outputs.csv");

 // convert these files into matrices
 double[][] matrixInput = ocrDataInput.rawData2Matrix(ocrDataInput);
 double[][] matrixOutput = ocrDataOutput.rawData2Matrix(ocrDataOutput);

 //creates a neural network
 NeuralNet n1 = new NeuralNet();
 //25 inputs, 1 hidden layer, 18 hidden neurons and 10 outputs
 n1 = n1.initNet(25, 1, 18, 10);

 n1.setTrainSet(matrixInput);
 n1.setRealMatrixOutputSet(matrixOutput);

//set the training parameters
 n1.setMaxEpochs(6000);
 n1.setTargetError(0.00001);
 n1.setLearningRate(0.7);
 n1.setTrainType(TrainingTypesENUM.BACKPROPAGATION);
 n1.setActivationFnc(ActivationFncENUM.SIGLOG);

 n1.setActivationFncOutputLayer(ActivationFncENUM.SIGLOG);

Chapter 8

[163]

Results
After running each experiment using the Digit class and saving the MSE values
(according to the following table), we can observe that experiments 2 and 4 have the
lowest MSE values. The differences between these two experiments are the learning
rate and the activation function used in the output layer.

Experiment MSE Training Rate
1 0.03007294436333284
2 0.02004457991277001
3 0.03002653392502009
4 0.00119817123282438
5 0.06351562546547934
6 0.23755154264016012
7 0.19155179860965179
8 1.73485602025775039
9 44.1822391373913359

The MSE evolution over the training epochs is plotted in the following figures. It is
interesting to note that the curve of experiment 2 stabilizes near the 750th epoch, as
shown in the following figure:

Pattern Recognition (OCR Case)

[164]

However, the curve of experiment 4 keeps varying until the 6000th epoch, as shown
in the following figure:

We have already explained that only the MSE value should not be considered to
attest to neural net quality. Accordingly, the test dataset was used to verify the
neural network generalization capacity. A comparison between the real output with
noise and the neural net estimated output of experiments 2 and 4 is depicted in the
following table. It is possible to conclude that the neural network weights obtained
by experiment 4 are able to better recognize digits from zero to nine even if the
images present pixels noisier than those obtained by experiment 2. While experiment
2 erroneously classified three patterns, experiment 4 classified all patterns correctly.

Chapter 8

[165]

Output Comparison
Real Output (Test Dataset) Digit

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00

0
1
2
3
4
5
6
7
8
9

Estimated Output (Test Dataset) – Experiment 2 Digit
0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.00 0.00 0.97
0.97 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.01 0.00 0.00
0.00 0.00 0.00 0.02 0.00 0.00 0.20 0.00 0.00 0.00
0.00 0.00 0.00 0.96 0.00 0.00 0.00 0.02 0.00 0.00
0.01 0.00 0.00 0.00 0.98 0.01 0.00 0.00 0.00 0.00
0.01 0.00 0.00 0.00 0.00 0.56 0.00 0.07 0.00 0.00
0.00 0.00 0.00 0.00 0.66 0.00 0.14 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.93 0.00 0.01
0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.96 0.00

0 (OK)
1 (OK)
4 (ERR)
7 (ERR)
4 (OK)
5 (OK)
6 (OK)
5 (ERR)
8 (OK)
9 (OK)

Estimated Output (Test Dataset) – Experiment 4 Digit
 0.00 0.16 0.09 0.06 0.06 0.01 0.11 -0.27 -0.09 0.97
 1.00 0.00 0.09 0.13 0.21 -0.22 0.42 0.19 0.34 0.14
 0.00 0.99 0.04 0.05 0.07 0.10 0.14 0.18 0.22 0.25
 0.01 0.03 0.81 0.06 0.09 0.03 0.74 -0.03 -0.03 -0.12
 0.02 -0.11 -0.10 0.94 0.08 0.08 0.11 0.85 0.09 0.06
 0.02 -0.01 0.10 0.06 1.00 0.11 0.10 0.11 0.10 0.06
-0.00 -0.07 -0.05 0.22 0.09 1.00 0.20 0.11 0.26 0.20
 0.51 -0.05 0.25 0.09 0.96 0.22 0.99 0.25 0.34 0.34
 0.00 0.04 0.04 0.04 0.05 0.06 0.05 0.98 0.03 0.07
 0.00 0.01 0.05 0.01 0.02 0.00 0.04 0.03 1.00 0.02

0 (OK)
1 (OK)
2 (OK)
3 (OK)
4 (OK)
5 (OK)
6 (OK)
7 (OK)
8 (OK)
9 (OK)

Pattern Recognition (OCR Case)

[166]

Summary
In this chapter, we've seen the power of neural networks with respect to recognizing
digits from zero to nine in images. Although the coding of the digits was very small
in 5 × 5 images, it was important to see the concept in practice. Neural networks are
capable of learning from data, and provided that real-world representations can be
transformed into data, it is reasonable to state that character recognition is a very
good example of the application of pattern recognition. The application here can be
extended to any type of characters, under the condition that the neural network be
presented all the predefined characters.

The next chapter will explore all the content seen in this book so far to present the
reader with some options for the optimization and improvement of the neural
network application, concluding the outline designed for this book.

[167]

Neural Network Optimization
and Adaptation

In this chapter, the reader will be presented with techniques that help to optimize
neural networks, thereby favoring its best performance. Tasks such as input
selection, dataset separation and filtering, and choice of the number of hidden
neurons are examples of what can be adjusted to improve a neural network's
performance. Furthermore, this chapter focuses on methods for adapting neural
networks to real-time data. Two implementations of these techniques are presented
here. Application problems will be selected for exercises. This chapter deals with
the following:

• Input selection
 ° Dimensionality reduction
 ° Data filtering

• Structure selection
 ° Pruning

• Online retraining
 ° Stochastic online learning

• Adaptive neural networks
 ° Adaptive resonance theory

Neural Network Optimization and Adaptation

[168]

Common issues in neural network
implementations
When developing a neural network application, it is quite common to face problems
regarding how accurate the results are. The source of these problems can be various:

• bad input selection
• noisy data
• very big dataset
• unsuitable structure
• inadequate number of hidden neurons
• inadequate learning rate
• insufficient stop condition; and/or
• bad dataset segmentation

The design of a neural network application sometimes requires a lot of patience
and trial-and-error methods. There is no methodology stating specifically the
number of hidden units and/or which architecture should be used, but there are
recommendations on how to properly choose these parameters. Another issue
that programmers may face is a long training time, which often causes the neural
network to not learn the data. No matter how long the training runs, the neural
network won't converge.

Designing a neural network requires the programmer or
designer to test and redesign the neural structure as many
times as needed, until an acceptable result is obtained.

On the other hand, one may wish to improve the results. A neural network can learn
until the learning algorithm reaches the stop condition, either the number of epochs
or the mean squared error. Even so, sometimes, the results are either inaccurate or not
generalized. This will require a redesign of the neural structure as well as the dataset.

Input selection
One of the key tasks in designing a neural network application is to select
appropriate inputs. For the unsupervised case, one wishes to use only relevant
variables on which the neural network will find the patterns. For the supervised
case, there is a need to map the outputs to the inputs, so one needs to choose only the
input variables that somewhat influence the output.

Chapter 9

[169]

Data correlation
One strategy that helps in selecting good inputs in the supervised case is the
correlation between data series. A correlation between data series is a measure of
how one data sequence reacts or influences the other. Suppose that we have one
dataset containing a number of data series from which we choose one to be an
output. Now, we need to select the inputs from the remaining variables.

We then evaluate the influence of one variable at a time on the output in order to
decide whether to include it as an input or not. The Pearson coefficient is one of the
most used variables:

Where Sx(k)y(k) denotes the covariance between the x and the y variables:

The correlation takes values from -1 to 1, where values close to +1 indicate a positive
correlation, values near -1 indicate a negative correlation, and values near 0 indicate
no correlation at all.

To exemplify, let's see the following three charts of the two variables X and Y:

In the first chart, to the left, visually, one can see that as one variable decreases, the
other increases its value (corr.: -0.8). The middle chart shows the case when the two
variables vary in the same direction, therefore a positive correlation (corr.: +0.7).
The third chart, to the right, shows a case where there is no correlation between the
variables (corr.: -0.1).

Neural Network Optimization and Adaptation

[170]

There is no threshold rule as to which correlation should be taken into account as
a limit; it depends on the application. While absolute correlation values greater
than 0.5 may be suitable for one application, in others, values near 0.2 may add a
significant contribution.

Dimensionality reduction
Another interesting point is regarding the removal of redundant data. Sometimes,
this is desired when there is a lot of available data in both unsupervised and
supervised learning. To exemplify, let's see the following chart of two variables:

It can be seen that both X and Y variables share the same shape, so this can be
interpreted as a redundancy, as both variables are carrying almost the same
information because of the high positive correlation. Thus, one can consider a
technique called Principal Component Analysis (PCA), which is a good approach
for dealing with these cases.

The result of PCA will be a new variable summarizing the previous two (or more)
variables. Basically, the original data series are subtracted by the mean and then
multiplied by the transposed eigenvectors of the covariance matrix:

Where SXY denotes the covariance between the variables X and Y.

The derived new data will then be as follows:

Chapter 9

[171]

Let's see now how a new variable would look like in a chart, compared to the
original variables:

Data filtering
Noisy and bad data are also a source of problems in neural network applications;
that's why we need to filter data. One of the common data filtering techniques can
be performed by excluding the records that exceed the usual range. For example,
temperature values are between -40 and 40, so a value like 50 would be considered
an outlier and could be taken out.

The three-sigma rule is a good and effective measure for filtering. It consists
of filtering the values that are beyond three times the standard deviation from
the mean:

Structure selection
To choose an adequate structure for a neural network is also a very important step.
However, this is often done empirically, since there is no rule on how many hidden
units a neural network should have. The only measure on how many units are
adequate is the neural network performance. One assumes that if the general error is
low enough, then the structure is suitable. Nevertheless, they might have a smaller
structure that could yield the same result.

In this context, there are basically two methodologies: constructive and pruning.
The construction consists of starting with only the input and the output layers, then
adding new neurons at a hidden layer, until a good result can be obtained. The
destructive approach, also known as pruning, works on a bigger structure on which
the neurons having few contributions to the output, are taken out.

Neural Network Optimization and Adaptation

[172]

The construction approach is depicted in the following figure:

Pruning is the way back; when given a high number of neurons, one wishes to
"prune" those whose sensitivity is very low, which means that its contribution to the
error is minimal, as shown in the following figure:

Online retraining
During the learning process, it is important to design how the training should be
performed. Two basic approaches are batch and incremental learning.

Chapter 9

[173]

In batch learning, all the records are fed to the network, so it can evaluate the error
and then update the weights.

In incremental learning, the update is performed after each record has been sent to
the network.

Both approaches work well and have advantages and disadvantages. While batch
learning can used for a less often, though more directed weight update, incremental
learning provides a way for a finely tuned weight adjustment. In this context, it is
possible to design a mode of learning that enables the network to learn continually.

Neural Network Optimization and Adaptation

[174]

Stochastic online learning
Offline learning means that the neural network learns while not in "operation." Every
neural network application is supposed to work in an environment, and in order to
be at production, it should be properly trained. Offline training is suitable to put the
network into operation, since its outputs may vary over large ranges of values, which
would certainly compromise the system, if it is in operation. However, when it comes
to online learning, there are restrictions. While in offline learning, it's possible to use
cross-validation and bootstrapping to predict errors, in online learning, this can't be
done since there's no "training dataset" anymore. However, one would need online
training when some improvement in the neural network's performance is desired.

A stochastic method is used when online learning is performed. This algorithm to
improve neural network training is composed of two main features: random choice
of samples for training and variation of the learning rate in runtime (online). This
training method has been used when noise is found in the objective function. It
helps to escape the local minimum (one of the best solutions) and to reach the global
minimum (the best solution).

The pseudo algorithm is as follows:

Initialize the weights.
 Initialize the learning rate.
 Repeat the following steps:
 Randomly select one (or possibly more) case(s)
 from the population.
 Update the weights by subtracting the gradient
 times the learning rate.
 Reduce the learning rate according to an
 appropriate schedule.

The Source code of the pseudo algorithm can be found at
ftp://ftp.sas.com/pub/neural/FAQ2.html#A_styles.

Implementation
In the Java project, it has created the BackpropagationOnline class inside the learn
package. The differences between this algorithm and classic backpropagation
was programmed by changing the train() method and adding two new methods:
generateIndexRandomList() and reduceLearningRate(). The first one generates
a random list of indexes to be used in the training step, and the second one executes
the learning rate online variation according to the following heuristic:

private double reduceLearningRate(NeuralNet n, double percentage) {

Chapter 9

[175]

 double newLearningRate = n.getLearningRate() *
 ((100.0 - percentage) / 100.0);

 if(newLearningRate < 0.1) {
 newLearningRate = 1.0;
 }

 return newLearningRate;
 }

The train() method was also modified to comply with the pseudo algorithm
presented earlier. The following code is the main part of this method:

ArrayList<Integer> indexRandomList = generateIndexRandomList(rows);

while(getMse() > n.getTargetError()) {

 if (epoch >= n.getMaxEpochs()) break;

 double sumErrors = 0.0;

 for (int rows_i = 0; rows_i < rows; rows_i++) {

 n = forward(n, indexRandomList.get(rows_i));

 n = backpropagation(n, indexRandomList.get(rows_i));

 sumErrors = sumErrors + n.getErrorMean();

 n.setLearningRate(reduceLearningRate(n, n.getLearningRatePerce
ntageReduce()));

 }

 setMse(sumErrors / rows);

 n.getListOfMSE().add(getMse());

 epoch++;

 }

Neural Network Optimization and Adaptation

[176]

Application
We have used data from previous chapters to test this new way to train neural
nets. This chapter uses the same neural net topology that was defined in Chapter 5,
Forecasting Weather, and Chapter 8, Pattern Recognition (OCR Case). The first one is the
forecast weather problem, and the second one is the OCR. The following table shows
the comparison of results.

Values Forecast weather OCR
Classic backpropagation learning rate 0.5 0.5
Classic backpropagation MSE value 0.2877786584 0.0011981712
On-line backpropagation learning rate

Found: 0.15 Found: 0.40
On-line backpropagation MSE value 0.4618623052 9.977909980E-6

The following graph shows the MSE evolution found after the new training method.
It takes into consideration the forecast weather data. The curve has a saw shape
because of the variation of the learning rate. Besides, it's very similar to the curve
shown in Chapter 5, Forecasting Weather.

Chapter 9

[177]

On the other hand, the following graph was produced using the OCR data and
shows that the training process was faster and stopped near the 900th epoch because
it had a very small MSE error. It's important to remember that in Chapter 8, Pattern
Recognition (OCR Case), the training process was slower and continued until the
6000th epoch.

Other experiments were also conducted: train neural nets with the backpropagation
algorithm, considering the learning rate found by using an online approach. The
MSE values decreased in both problems.

Neural Network Optimization and Adaptation

[178]

The forecast weather MSE was about 0.206 against 0.287 (found in Chapter 5,
Forecasting Weather). It's shown in the following figure:

The OCR MSE was about 8.663E-6 against 0.001 (found in Chapter 8, Pattern
Recognition (OCR Case)). It's possible to see this in the following figure:

Chapter 9

[179]

Another important observation is based on the fact that the training process shown
in the preceding figure is almost terminated in the 3000th epoch. Therefore, it's faster
and better than the training process discussed in Chapter 8, Pattern Recognition (OCR
Case), using the same algorithm.

Adaptive neural networks
Analogous to human learning, neural networks may also work in order to not forget
the previous knowledge. Using the traditional approaches for neural learning, this
is nearly impossible because of the fact that every training involves replacing all
the connections already made with the new ones, thereby "forgetting" the previous
knowledge, thus arises a need to make the neural networks adapt to new knowledge
by incrementing instead of replacing their current knowledge. To address this issue,
we are going to explore a method called adaptive resonance theory (ART).

Adaptive resonance theory
The question that drove the development of this theory was the following: "How can
an adaptive system remain plastic to a significant input and yet maintain the stability for
irrelevant inputs?" In other words: "How to retain the previously learned information
while learning new information?"

We've seen that the competitive learning in unsupervised learning deals with pattern
recognition, wherein similar inputs yield similar outputs or fire the same neurons.
In an ART topology, the resonance comes in when the information is being retrieved
from the network, by providing the feedback from the competitive layer and the
input layer. So, while the network receives the data to learn, there is an oscillation
resulting from the feedback between the competitive and the input layers. This
oscillation stabilizes when the pattern is fully developed inside the neural network.
This resonance then reinforces the stored pattern.

Neural Network Optimization and Adaptation

[180]

Implementation
A new class called ART has been created in the som package. The following table
describes the methods of this class:

Class name: ART
Attributes

private int SIZE_OF_INPUT_LAYER; Global variable to store the number of
neurons in the input layer

private int SIZE_OF_OUTPUT_LAYER; Global variable to store the number of
neurons in the output layer

Methods
public NeuralNet train(NeuralNet
n)

Method to train the neural net based on
the ART algorithm
Parameters: Neural net object to train
Returns: Trained neural net object

private void
initGlobalVars(NeuralNet n)

Method to initialize global variables
Parameters: Neural net object
Returns: -

private NeuralNet
initNet(NeuralNet n)

Method to initialize neural net weights
Parameters: Neural net object
Returns: Neural net object with the
initialized weights

private int
calcWinnerNeuron(NeuralNet n, int
row_i, double[][] patterns)

Method to calculate the winner neuron
Parameters: Neural net object, row of the
training set, training set patterns
Returns: Index of the winner neuron

private NeuralNet
setNetOutput(NeuralNet n, int
winnerNeuron)

Method to attribute the neural net output
Parameters: Neural net object, index of
winner neuron
Returns: Neural net object with the output
attributes

private boolean
vigilanceTest(NeuralNet n, int
row_i)

Method to verify whether the neural net
has learned or not
Parameters: Neural net object, row of the
training set
Returns: True if the neural net learned and
false if not

Chapter 9

[181]

private NeuralNet
fixWeights(NeuralNet n, int
row_i, int winnerNeuron)

Method to fix the weights of the neural net
Parameters: Neural net object, row of the
training set, index of the winner neuron
Returns: Neural net object with the
weights fixed

Class Implementation with Java: file ART.java

The training method is shown in the following code. It's possible to notice that
first, the global variables and the neural net are initialized. After that, the number
of training sets and the training patterns are stored, and then, the training process
begins. The first step of this process is to calculate the index of the winner neuron;
the second is to make an attribution of the neural net output. The next step involves
verifying whether the neural net has learned or not. If it has learned, then the
weights are fixed, and if not, another training sample is presented to the net.

public NeuralNet train(NeuralNet n){

 this.initGlobalVars(n);

 n = this.initNet(n);

 int rows = n.getTrainSet().length;

 double[][] trainPatterns = n.getTrainSet();

 for (int epoch = 0; epoch < n.getMaxEpochs(); epoch++) {

 for (int row_i = 0; row_i < rows; row_i++) {

 int winnerNeuron = this.calcWinnerNeuron(n, row_i,
trainPatterns);

 n = this.setNetOutput(n, winnerNeuron);

 boolean isMatched = this.vigilanceTest(n, row_i);

 if (isMatched) {
 n = this.fixWeights(n, row_i, winnerNeuron);
 }

 }

 }

 return n;

 }

Neural Network Optimization and Adaptation

[182]

Summary
In this chapter, we've discussed a few topics that make a neural network work better,
either by improving its accuracy or by extending its knowledge. These techniques
help a lot in designing solutions with artificial neural networks. The reader is
welcome to apply this framework in any desired task that neural networks can be
used on, in order to explore the enhanced power that these structures can have. Even
simple details such as selecting the input data may influence the entire learning
process, as well as the filtering of bad data or the elimination of redundant variables.
We demonstrated in two implementations, two strategies that help to improve the
performance of a neural network: stochastic online learning and adaptive resonance
theory. These methodologies enable the network to extend its knowledge and
therefore, adapt to new changing environments.

[183]

Setting up the NetBeans
Environment

This appendix shows a step-by-step procedure of how to set up the development
environment for the NetBeans IDE.

Download and install NetBeans
Before downloading and installing NetBeans, make sure
that you have installed the JDK (Java Development Kit),
which can be downloaded from https://www.oracle.
com/java/index.html.

Setting up the NetBeans Environment

[184]

Follow these steps to download and install NetBeans:

1. NetBeans can be freely downloaded at the project's site https://netbeans.
org/downloads/index.html (shown in the following figure); choose the
installer that is to be downloaded according to your operation system, as
shown in the drop-down list platform:

2. You can select from the versions displayed in the web page. For the
projects in this book, the Java SE version fits very well; in addition, it is the
smallest and lightest version as well. The download should start shortly; in
every case, you can click on the download it here button, as shown in the
following screenshot:

Appendix A

[185]

3. After the download, you should run the netbeans-<version>-javase-<your_
os>.exe executable file. The following screen appears. You can perform the
standard installation then. When executing the installer, it tells you about the
size of the installation and the version. You can then click on the Next button.

Setting up the NetBeans Environment

[186]

4. You must accept the license agreement by marking the checkbox, as shown in
the following screenshot, and then click on the Next button:

5. Then, you can select the folders where the program will be installed or you
can just leave the default folders, as indicated in the following screenshot:

Appendix A

[187]

6. Now, we're ready to install. You may the click on the Check for Updates
checkbox and just click on the Install button.

7. After the installation, you may click on the NetBeans icon on the desktop to
run NetBeans. An initial page will open:

Setting up the NetBeans Environment

[188]

Setting up the NetBeans environment
To set up the NetBeans environment, you need to perform the following steps:

1. The NetBeans environment already provides options to create and open new
projects. Now, let's create a new project by selecting the menu File | New
Project. In the dialog window that opens, make sure that you have selected
the Java Project with Existing Sources project template and then click on
Next, as shown in the following screenshot:

2. Then, you can choose a name for the project, the name NeuralNetPackt_ch01
is mere a suggestion, and you are free to choose the name you want.

Appendix A

[189]

3. In the next screen, you can select the folder where the source codes are stored:

Setting up the NetBeans Environment

[190]

4. In the file, open the dialog that opens, browse to the folder where the files are
stored, and select it.

5. Once you've selected the folder, you can click on the Open button and then
the next button in the parent window. Now, a list of includes and excludes is
displayed. You can just leave it as is and click on the Finish button.

Appendix A

[191]

6. And we're done! Now, you are ready to work on the codes of each chapter in
your NetBeans installation.

Importing a project
The following are the steps to import a project in NetBeans:

1. NetBeans offers an option to import an existing project, whether created on
NetBeans or Eclipse. You can go to the menu File | Import Project and select
the appropriate option.

Setting up the NetBeans Environment

[192]

If you already have Eclipse installed and you want to import it into
NetBeans, just select the folder for the workspace location and click on OK.

2. Select the project you want to import and click on the Finish button.

Appendix A

[193]

3. And the project is imported successfully.

4. If you want to import from a Zip file, you can choose the From Zip option
by navigating to File | Import Project. Just make sure that the Zip file was
created from the NetBeans project.

Setting up the NetBeans Environment

[194]

Programming and running code with
NetBeans
After going through all the previous steps, you are able to start Java programming.
The next screenshot shows you the structure of the NetBeans environment:

The following are the details of the NetBeans environment's sections:

• Projects: This section is displayed on the left-hand side of the packages and
classes that compose the Java project

• Code: This is shown in the middle of the screen and brings the code you
should interact with

• Run the code: As displayed in the button indicated on the screen
• Debug the code: To debug the code, select the Debug menu and then choose

a file to debug (or press Ctrl + Shift + F5)

We recommend you to run the IDE as an administrator,
but it is not necessary.

Appendix A

[195]

Debugging with NetBeans
To debug a Java program in NetBeans, you just select a project to debug or the class
file itself, as shown in the following screenshot:

To debug line-by-line, you should add a breakpoint. So, you can place a breakpoint
by clicking on the corresponding line number. Let's add a breakpoint in the
beginning of the main method.

Setting up the NetBeans Environment

[196]

Use the following commands to debug line-by-line on the source code:

• F5: This is used to step into the method
• F6: This is used to step over the method
• F7: This is used to return to the step
• F8: This is used to resume debugging
• Ctrl + F2: This is used to terminate the debug

To inspect the value of a variable, just right-click on the code screen and select the
New Watch option (or just press Ctrl + Shift + F7). Insert the name of the variable or
expression you want to watch and click on Ok. You can see at the bottom of the screen
a section called variables, where all the user custom expressions and relevant variables
are displayed with their current values, as shown in the following screenshot:

Appendix A

[197]

In the preceding case, n is an object, so you can expand all its attributes by clicking
on the + sign on the left-hand side. And there you are; all the attributes are shown
as follows:

[199]

Setting Up the Eclipse
Environment

This appendix shows you a step-by-step procedure of how to set up your
development environment if you want to use the Eclipse IDE.

Download and install Eclipse
Before downloading and installing Eclipse, ensure that you
have installed its JDK (Java Development Kit), accessing
https://www.oracle.com/java/index.html.

Setting Up the Eclipse Environment

[200]

The following are the steps to install Eclipse:

1. Access http://www.eclipse.org/downloads (shown in the following
figure); choose Eclipse Installer to download the installer according to your
operating system. Recently, the Eclipse team made the installation process
easier through Eclipse Installer.

2. The web page represented in the following screenshot appears after this.
You should click on the Download button. The best mirror to download is
selected automatically, but if you want to choose another one, you may do so
at the bottom of the page.

Appendix B

[201]

3. After the download, you should run the eclipse-inst-<your_os>.exe
executable file. The following screen appears after this. As we will not
develop web applications, you should click on the first option, that is,
Eclipse IDE for Java Developers.

Setting Up the Eclipse Environment

[202]

4. Now, you should select the installation folder and decide whether you
want to create the start menu entry and desktop shortcut. Then, click on
the INSTALL button.

5. You must accept the license by clicking on the Accept Now button.

Appendix B

[203]

6. Finally, the installation process begins.

7. After the installation, you may click on the LAUNCH button to run Eclipse.

Setting Up the Eclipse Environment

[204]

Setting up the Eclipse environment
Follow the next steps to set up the environment:

1. In the next step, we choose the workspace folder where your projects will be
placed. If you mark the Use this as the default and do not ask again option,
then the next time you run Eclipse, it will not be necessary to inform the
workspace folder again. Now, click on the OK button.

2. The welcome screen is displayed and you are ready to start the
Java programming.

Appendix B

[205]

Importing a project
Before importing the project, make sure that you unzip it in
a folder you know.

The following are the steps to import a project in Eclipse:

1. To import a project that is already developed in your Eclipse IDE, navigate
to File | Import.

Setting Up the Eclipse Environment

[206]

2. After the import prompt is displayed, you should expand the General option,
choose Existing Projects into Workspace, and click on the Next button.

Appendix B

[207]

3. Now, click on the Browse… button to search for the project unzip folder.
After that, do not forget to mark the Search for nested projects option and
click on the Finish button.

Setting Up the Eclipse Environment

[208]

4. In this step, you should close the welcome screen, and you will see in
Package explorer the project you've imported to Eclipse.

5. If you see a JRE version error, you should open the Problems tab. Right-click
on Unbound classpath container…, and choose Quick Fix. The next screen
will be exhibited.

Appendix B

[209]

6. Now, click on the Select a system library to use… option and the Finish button.
The Edit Library window appears, and you should select the Workspace
default JRE (jre1.8.0_40) option then and click on the Finish button.

Setting Up the Eclipse Environment

[210]

Programming and running code with the
Eclipse IDE

Make sure that you run the Eclipse IDE as an administrator.

After all the previous steps, you are now able to start Java programming. The next
screenshot shows the structure of Eclipse:

The following are the four sections of Eclipse:

• Package Explorer: This section is displayed on the left-hand side of the
packages and classes that compose the Java project

• Code: This is shown in the middle of the screen and brings the code that you
should interact with

Appendix B

[211]

• Run the code: There are many ways to run code. Perhaps, the easiest one is
the play button indicated by arrow A

• Debug the code: There are also many ways to debug code. The easiest one is
the bug button appointed by arrow B.

When you click on the button to run the code, it runs in the Console tab, as shown in
the following screenshot:

Debugging with the Eclipse IDE
To debug a Java class using the Eclipse IDE, you must create a breakpoint. It can
be made by simply double-clicking near the line number (a blue round will be
displayed). Then, when you click on the debug button to run the debugging process,
the execution of the class will stop right on the line marked with the breakpoint, and
you may type the following keys on the keyboard:

• F5: This is used to step into a method
• F6: This is used to step over a method

Setting Up the Eclipse Environment

[212]

• F7: This is used to step return
• F8: This is used to resume debugging
• Ctrl + F2: This is used to terminate the debug

The following screenshot shows the Eclipse debug screen. There is an important
section in this screen on the right-top corner named Variables that shows the
variables and its respective current values.

[213]

References
Here are some references for you if you want to know more about a specific topic
covered in this book.

Chapter 1 – Getting Started with Neural
Networks

• Kevin L. Priddy, Paul. E.Keller.. Artificial Neural Networks: An introduction.
SPIE Press. . January 1, 2005.

• James Levenick . Simply Java: An introduction to Java Programming. Charles
River Media; 1st ed., September 8, 2005.

Chapter 2 – How Neural Networks Learn
• Terrence J. Sejnowski. Neural Network Learning Algorithms. Neural Computers

Volume 41. Springer Study Edition, pp. 291-300, 1989.
• Derrick H. Hguyen, Bernard Widrow. Neural Networks for Self-Learning

Control Systems. IEEE Control Systems Magazine, April 1990.

Chapter 3 – Working with Perceptrons
• Simon O. Haykin. Neural Networks and Leaning Machines. Prentice Hall, 3rd

ed., November 28, 2008.
• David E. Rumelhart, Geoffrey E. Hinton, Ronald J. Williams. Learning

Representations by back-propagating errors. Nature v. 323 (6088), pp. 533-536,
October 8, 1986.

References

[214]

• K. Levenberg. A Method for the Solution of Certain Non-Linear Problems in Least
Squares. Quaterly of Applied Mathematics, vol 2, pp. 164-168, 1944.

• D. Marquardt. An Algorithm for Least-Squares Estimation of Nonlinear
Parameters. SIAM Journal on Applied Mathematics, vol 11 (2), pp. 431-441,
1963.

Chapter 4 – Self-Organizing Maps
• Richard O Duda, Peter E. Hart, David G. Stork. Unsupervised Learning and

Clustering, Pattern Classification 2nd ed.. Wiley, 2001.
• Geoffrey Hinton, Terrence, J. Sejnowski. Unsupervised Learning: Foundations of

Neural Computation. MIT Press, 1999.
• David E. Rummelhart, David Zipser. Feature discovery by competitive learning.

Cognitive science 9.1, pp. 75-112, 1985.
• Teuvo Kohonen. Self-Organized Formation of Topologically Correct Feature Maps.

Biological Cybernetics, v. 43 (1), pp. 59-69, 1982.

Chapter 5 – Forecasting the Weather
• S. Dowdy, S. Wearden. Statistics for Reasearch. Wiley, pp. 230, 1983.
• Judea Pearl. Causality: Models, Reasoning, and Inference. Cambridge University

Press, 2000.
• Luigi Fortuna, Salvatore Graziani, Alessandro Rizzo, Maria G. Xibilia. Soft

Sensors for Monitoring and Control of Industrial Processes. Springer Advances in
Industrial Control, 2007.

Chapter 6 – Disease Diagnosis
• Edward I. Altman, Giancarlo Marco, Varetto Franco. Corporate distress

diagnosis: Comparison using linear discriminant analysis and neural networks (the
Italian experience). Journal of Banking and Finance v. 18, pp. 505-529, 1994.

• C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University
Press, 1995.

• Qeethara K. Al-Shayea. Artificial Neural Networks in Medical Diagnosis.
International Journal of Computer Science Issues, Vol. 8, Issue 2, pp. 150-154,
March 2011.

Appendix C

[215]

• David A. Freedman. Statistical Models: Theory and Practice. Cambrige
University Press, 2009.

• Tom Fawcett. An Introduction to ROC Analysis. Pattern Recognition Letters,
vol. 27, is. 8 pp. 861-874, 2006.

Chapter 7 – Clustering Customer Profiles
• Du, K.L. Clustering: A Neural Network Approach. Neural Networks, Vol. 23, Is.

1, pp. 89-107, January 2010.
• J. Park, I.W. Sandberg. Universal Approximation using Radial-Basis-Function

Networks. Neural Computation, vol. 3 is. 2, pp. 246-257, 1991.
• Michael E. Wall, Andreas Rechtsteiner, Luis M. Rocha, Singular value

decomposition and principal component analysis. A Practical Approach to
Microarray Data Analysis, pp. 91-109, 2003.

• Glendon Cross, Wayne Thompson. Understanding your Customer: Segmentation
Techniques for Gaining Customer Insight and Predicting Risk in the Telecom
Industry. SAS Global Forum, 2008.

Chapter 8 – Pattern Recognition (the
OCR Case)

• Jayanta K. Basu, Debnath Bhattacharyya, Tai-hoon Kim. Use of Artificial
Neural Network in Pattern Recognition. International Journal of Software
Engineering and Its Applications, Vol. 4, No. 2, April 2010.

• Vivek Shrivastava, Navdeep Sharma. Artificial Neural Network Based Optical
Character Recognition. Signal and Image Processing: An International Journal
(SIPIJ), Vol. 3, No. 5, October 2012.

Chapter 9 – Neural Network Optimization
and Adaptation

• Utrans J. Moody, Rehfuss S., Siegelmann H. Input variable selection for neural
networks: application to predicting the U.S. business cycle. Computational
Intelligence for Financial Engineering, Proceedings of the IEEE/IAFE, 1995

• Saxén H., Pettersson, F. Method for the selection of inputs and structure of
feedforwaed neural networks. Computers and Chemical Enginnering, Vol. 30, Is.
6-7, pp. 1048-1045, May 15, 2006.

References

[216]

• Alan M. F. Souza, Carolina M. Affonso, Fábio M. Soares, Roberto C.L. De
Oliveira. Soft Sensor for Fluoridated Alumina Inference in Gas Treatment Centers.
Intelligent Data Engineering and Automated Learning 2012, Lecture Notes
in Computer Science v. 7435, pp. 294-302, Spinger Verlab Berlin Heidelberg,
2012.

• Jollife. I.T. Principal Component Analysis. 2nd ed. Springer Wiley, 2002.
• Karmin, E.D. A simple procedure for pruning back-propagation trained neural

networks. IEEE transactions on Neural Networks, pp. 239-242, June 1990.
• P.E. Gill, W. Murray, M.H. Wright. Practical Optimization. Academic Press:

London, 1981.
• Gail A. Carpenter, Stephen Grossberg. Adaptive Resonance Theory. The

Handbook of Brain Theory and Neural Networks, 2nd ed., pp. 1-11, 2002.

[217]

Index
A
abstraction 11
activation function 5, 6
ADALINE (traffic forecast) 41-45
adaptive neural networks

about 179
implementation 180, 181

adaptive resonance theory (ART) 179
AND logic 37
applied unsupervised learning

about 139
Kohonen neural network 140
neural network, of radial basis

functions 139, 140
types of data 141

artificial intelligence 2
artificial neural networks (ANNs)

about 2
need for 2
used, for diagnosing breast cancer 126-130

artificial neuron 5

B
backpropagation algorithm 61, 62, 68
Best Matching Unit (BMU) 88
bias 7
binary classes

versus multiple classes 120, 121

C
card credit analysis

for customer profiling 143-149
categorical data 142

classes 152
classification

neural networks, applying for 123, 124
sensitivity measure 122
specificity measure 122

classification, in MLPs 56, 57
classification problems

foundations 118
cluster analysis 137
cluster evaluation 138
clustering 136
clustering task 136
cluster validation 138
coding, of neural network learning

about 27
class definitions 30-35
learning parameter implementation 27, 28
learning procedure 29, 30

common issues, in neural network
implementations 168

competitive learning 82-84
confusion matrix 121
cost function 21, 25
customer profiling

about 142
card credit analysis 143-149
data, preprocessing 142, 143

D
data correlation 169, 170
data filtering 171
data preprocessing, weather forecasting

application
about 104
data equalizing 105, 106

[218]

data selection, weather forecasting
application

data filtering 103, 104
input and output variables, selecting 103
weather variables 102

data, types
categorical 142
numerical 141

Davies-Bouldin index 138
defined classes

using 152, 153
delta rule 27
digit recognition 156
digit representation approach 157
dimensionality reduction 170, 171
disease diagnosis, with neural networks

about 126
ANN, used for diagnosing breast

cancer 126-130
NN, applying for early diagnosing

of diabetes 131-133
Dunn index 138

E
Eclipse IDE

code, running with 211
debugging with 211, 212

encapsulation 12
epoch 30
error measurement 25
Euclidian distance algorithm 146
external validation 138, 154

F
feedback networks 10
feedforward networks 9

H
hands-on MLP implementation

about 65-67
backpropagation algorithm 68
code, exploring 68-72

I
implementation, in Java

card credit analysis, for customer
profiling 143-149

inheritance 12
input selection

about 168
data correlation 169, 170
data filtering 171
dimensionality reduction 170, 171

J
Java implementation, weather forecasting

application
about 107
charts, plotting 107
data files, handling 108
neural network, building 109-111

JFreeChart
URL 107

K
Kohonen algorithm

coding 90-92
Kohonen class

exploring 92-95
Kohonen implementation

animals, clustering 95-97
Kohonen neural network 140
Kohonen self-organizing maps (SOMs)

1D SOM 85
2D SOM 86, 87
about 84
step-by-step learning 88, 89
using 89

L
layers, of neurons 7
learning

about 20
parameters 24, 25

[219]

learning ability, in neural networks 19
learning algorithms, examples

about 26
delta rule 27
perceptrons 26

learning paradigms
about 20
supervised learning 20, 21
unsupervised learning 21, 22

learning process, in MLPs
about 60
backpropagation algorithm 61, 62
Levenberg – Marquardt algorithm 63, 64

learning process, neural networks 10, 11
learning, stages

testing 23, 24
training 23, 24

Levenberg – Marquardt algorithm
about 63, 64
implementation 72-74

logistic regression 119, 120

M
MLP applications

about 56
classification 56, 57
regression 56-59

monolayer networks 8
multilayer networks 9
multilayer perceptrons (MLPs)

about 52
in OOP paradigm 55, 56
properties 52
weights 53, 54

multiple classes
versus binary classes 120, 121

N
NetBeans

code, running with 194
debugging with 195-197
download link 184
environment, setting up 188-191

installing 184-187
programming with 194
project, importing 191-193

neural network architectures
about 8
feedback networks 10
feedforward networks 9
monolayer networks 8
multilayer networks 9

neural network architectures, applications
about 37
ADALINE (traffic forecast) 41-45
perceptron (warning system) 37-40

neural network implementations
common issues 168

neural network, of radial basis
functions 139, 140

neural networks
about 1, 119
applying, for classification 123, 124
applying, for early diagnosis

of diabetes 131-133
arranging 4
discovering 2
empirical design 112
implementing 11-17
learning ability 19
learning process 10, 11

neural networks, for prediction
problems 100, 101

neural networks, in pattern recognition
applying 154, 155
data, preprocessing 155, 156

neural networks, of empirical design
about 112
experiments, designing 113
results and simulations 113-115
training and test datasets, selecting 112

neural networks unsupervised learning 80
normalization 105
numerical data

about 141
examples 141

[220]

O
objects-oriented programming (OOP) 11
OCR problem

about 156
task, simplifying 156

online retraining
about 172, 173
application 176-179
implementation 174
stochastic online learning 174

Optical Character Recognition (OCR) 151
optical characters, recognizing

about 157
data, generating 158-160
neural network, building 160
results 163, 164
trial and error 161, 162

P
pattern recognition

about 152
defined classes 152, 153
examples, tasks 152
undefined classes 153, 154

patterns 152
Pearson coefficient 169
perceptron

about 26
applications 48
limitations 48
linear separation 48, 49
studying 48
XOR case, analyzing 50, 51

perceptron (warning system) 37-40
polymorphism 12
practical application

types of university enrolments 75-78
Principal Component Analysis (PCA) 170
Proben1

about 126
reference link 126

pseudo algorithm
reference link, for source code 174

R
Radial basis functions (RBFs) 140
recurrent MLP 54
regression, in MLPs 58, 59

S
Self-Organizing Maps (SOMs) 79
single value decomposition (SVD) 142
stochastic online learning 174
structure selection 171
supervised learning 11, 20, 21
systematic structuring 22, 23

U
undefined classes 153, 154
Unified Modeling Language (UML) 16
unsupervised learning 21, 22
unsupervised learning algorithms

about 80, 81
competitive learning 82-84

W
weather forecasting application

data preprocessing 104
data, selecting 101
Java implementation 107

weights 6

Thank you for buying
Neural Network Programming with Java

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Machine Learning with Spark
ISBN: 978-1-78328-851-9 Paperback: 338 pages

Create scalable machine learning applications to
power a modern data-driven business using Spark

1. A practical tutorial with real-world use cases
allowing you to develop your own machine
learning systems with Spark.

2. Combine various techniques and models into
an intelligent machine learning system.

3. Use Spark's powerful tools to load, analyze,
clean, and transform your data.

Scala for Machine Learning
ISBN: 978-1-78355-874-2 Paperback: 520 pages

Leverage Scala and Machine Learning to construct
and study systems that can learn from data

1. Explore a broad variety of data processing,
machine learning, and genetic algorithms
through diagrams, mathematical formulation,
and source code.

2. Leverage your expertise in Scala programming
to create and customize AI applications
with your own scalable machine learning
algorithms.

3. Experiment with different techniques, and
evaluate their benefits and limitations using
real-world financial applications, in a tutorial
style.

Please check www.PacktPub.com for information on our titles

Mastering Machine Learning with
scikit-learn
ISBN: 978-1-78398-836-5 Paperback: 238 pages

Apply effective learning algorithms to real-world
problems using scikit-learn

1. Design and troubleshoot machine learning
systems for common tasks including regression,
classification, and clustering.

2. Acquaint yourself with popular machine
learning algorithms, including decision
trees, logistic regression, and support vector
machines.

3. A practical example-based guide to help you
gain expertise in implementing and evaluating
machine learning systems using scikit-learn.

Clojure for Machine Learning
ISBN: 978-1-78328-435-1 Paperback: 292 pages

Successfully leverage advanced machine learning
techniques using the Clojure ecosystem

1. Covers a lot of machine learning techniques
with Clojure programming.

2. Encompasses precise patterns in data to
predict future outcomes using various machine
learning techniques.

3. Packed with several machine learning libraries
available in the Clojure ecosystem.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Getting Started with
Neural Networks
	Discovering neural networks
	Why artificial neural network?
	How neural networks are arranged
	The very basic element – artificial neuron
	Giving life to neurons – activation function
	The fundamental values – weights
	An important parameter – bias
	The parts forming the whole – layers

	Learning about neural network architectures
	Monolayer networks
	Multilayer networks
	Feedforward networks
	Feedback networks

	From ignorance to knowledge – learning process
	Let the implementations begin! Neural networks in practice
	Summary

	How Neural Networks Learn
	Learning ability in neural networks
	How learning helps to solve problems

	Learning paradigms
	Supervised learning
	Unsupervised learning

	Systematic structuring – learning algorithm
	Two stages of learning – training and testing
	The details – learning parameters
	Error measurement and cost function

	Examples of learning algorithms
	Perceptron
	Delta rule

	Coding of the neural network learning
	Learning parameter implementation
	Learning procedure
	Class definitions

	Two practical examples
	Perceptron (warning system)
	ADALINE (traffic forecast)

	Summary

	Handling Perceptrons
	Studying the perceptron neural network
	Applications and limitations of perceptrons
	Linear separation
	Classical XOR case

	Popular multilayer perceptrons (MLPs)
	MLP properties
	MLP weights
	Recurrent MLP
	MLP structure in an OOP paradigm

	Interesting MLP applications
	Classification in MLPs
	Regression in MLPs

	Learning process in MLPs
	Simple and very powerful learning
algorithm – Backpropagation
	Elaborate and potent learning
algorithm – Levenberg–Marquardt

	Hands-on MLP implementation!
	Backpropagation in action
	Exploring the code

	Levenberg–Marquardt implementation
	Practical application – types of university enrolments
	Summary

	Self-Organizing Maps
	Neural networks' unsupervised way
of learning
	Some unsupervised learning algorithms
	Competitive learning or winner takes all

	Kohonen self-organizing maps (SOMs)
	One-Dimensional SOM
	Two-Dimensional SOM
	Step-by-step of SOM learning
	How to use SOMs

	Coding of the Kohonen algorithm
	Exploring the Kohonen class
	Kohonen implementation (clustering animals)

	Summary

	Forecasting Weather
	Neural networks for prediction problems
	No data, no neural net – selecting data
	Knowing the problem – weather variables
	Choosing input and output variables
	Removing insignificant behaviors – Data filtering

	Adjusting values – data preprocessing
	Equalizing data – normalization

	Java implementation for weather prediction
	Plotting charts
	Handling data files
	Building a neural network for weather prediction

	Empirical design of neural networks
	Choosing training and test datasets
	Designing experiments
	Results and simulations

	Summary

	Classifying Disease Diagnosis
	What are classification problems, and how can neural networks be applied to them?
	A special type of activation
function – Logistic regression
	Multiple classes versus binary classes
	Comparing the expected versus produced results – the confusion matrix
	Classification measures – sensitivity and specificity

	Applying neural networks for classification
	Disease diagnosis with neural networks
	Using ANN to diagnose breast cancer
	Applying NN for an early diagnosis of diabetes

	Summary

	Clustering Customer Profiles
	Clustering task
	Cluster analysis
	Cluster evaluation and validation
	External validation

	Applied unsupervised learning
	Neural network of radial basis functions
	Kohonen neural network
	Types of data

	Customer profiling
	Preprocessing data

	Implementation in Java
	Card credit analysis for customer profiling

	Summary

	Pattern Recognition
(OCR Case)
	What is pattern recognition all about?
	Definition of classes among tons of data
	What if the undefined classes are undefined?
	External validation

	How to apply neural networks in pattern recognition
	Preprocessing the data

	The OCR problem
	Simplifying the task – digit recognition
	Approach to digit representation

	Let the coding begin!
	Generating data
	Building the neural network
	Testing and redesigning – trial and error
	Results

	Summary

	Neural Network Optimization and Adaptation
	Common issues in neural network implementations
	Input selection
	Data correlation
	Dimensionality reduction
	Data filtering

	Structure selection
	Online retraining
	Stochastic online learning
	Implementation
	Application

	Adaptive neural networks
	Adaptive resonance theory
	Implementation

	Summary

	Setting up the NetBeans Environment
	Download and install NetBeans
	Setting up the NetBeans environment
	Importing a project
	Programming and running code with NetBeans
	Debugging with NetBeans

	Setting Up the Eclipse Environment
	Download and install Eclipse
	Setting up the Eclipse environment
	Importing a project
	Programming and running code with the Eclipse IDE
	Debugging with the Eclipse IDE

	References
	Chapter 1 – Getting Started with Neural Networks
	Chapter 2 – How Neural Networks Learn
	Chapter 3 – Working with Perceptrons
	Chapter 4 – Self-Organizing Maps
	Chapter 5 – Forecasting the Weather
	Chapter 6 – Disease Diagnosis
	Chapter 7 – Clustering Customer Profiles
	Chapter 8 – Pattern Recognition (the OCR Case)
	Chapter 9 – Neural Network Optimization and Adaptation

	Index

