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Preface
The life of a programmer can be described as a continual never-ending learning 
pathway. A programmer always faces challenges regarding new technology or new 
approaches. Generally, during our lives, although we become used to repeated 
things, we are always subjected to learn something new. The process of learning is 
one of the most interesting topics in science, and there are a number of attempts to 
describe or reproduce the human learning process.

The writing of this book was guided by the challenge of facing new content and 
then mastering it. While the name neural networks may appear strange or even give 
an idea that this book is about neurology, we strived to simplify these nuances by 
focusing on your reasons for deciding to purchase this book. We intended to build 
a framework that shows you that neural networks are actually simple and easy to 
understand, and absolutely no prior knowledge on this topic is required to fully 
understand the concepts we present here.

So, we encourage you to explore the content of this book to the fullest, beholding 
the power of neural networks when confronting big problems but always with the 
point of view of a beginner. Every concept addressed in this book is explained in easy 
language, and also with a technical background. Our mission in this book is to give 
you an insight into intelligent applications that can be written using a simple language.

Finally, we would like to thank all those who directly or indirectly have contributed 
to this book and supported us from the very beginning, right from the Federal 
University of Pará, which is the university that we graduated from, to the data and 
component providers INMET (Brazilian Institute of Meteorology), Proben1, and 
JFreeCharts. We want to give special thanks to our advisor Prof. Roberto Limão, who 
introduced us to the subject of neural networks and coauthored many papers with 
us in this field. We also acknowledge the work performed by several authors cited 
in the references, which gave us a broader vision on neural networks and insights on 
how to adapt them to the Java language in a didactic way.
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We welcome you to have a very pleasurable reading experience and you are 
encouraged to download the source code and follow the examples presented  
in this book.

What this book covers
Chapter 1, Getting Started with Neural Networks, is an introductory foundation on 
the neural networks and what they are designed for. You will be presented with 
the basic concepts involved in this book. A brief review of the Java programming 
language is provided. As in all subsequent chapters, an implementation of a neural 
network in Java code is also provided.

Chapter 2, How Neural Networks Learn, covers the learning process of neural networks 
and shows how data is used to that end. The complete structure and design of a 
learning algorithm is presented here.

Chapter 3, Handling Perceptrons, covers the use of perceptrons, which are one of the 
most commonly used neural network architectures. We present a neural network 
structure containing layers of neurons and show how they can learn by data in  
basic problems.

Chapter 4, Self-Organizing Maps, shows an unsupervised neural network architecture 
(the Self-Organising Map), which is applied to finding patterns or clusters in records.

Chapter 5, Forecasting Weather, is the first practical chapter showing an interesting 
application of neural networks in forecasting values, namely weather data.

Chapter 6, Classifying Disease Diagnostics, covers another useful task neural networks 
are very good at—classification. In this chapter, you will be presented with a very 
didactic but interesting application for disease diagnosis.

Chapter 7, Clustering Customer Profiles, talks about how neural networks are able to 
find patterns in data, and a common application is to group customers that share the 
same properties of buying.

Chapter 8, Pattern Recognition (OCR Case), talks about a very interesting and amazing 
capability of recognizing patterns, including optical character recognition, and this 
chapter explores how this can be done with neural networks in the Java language.

Chapter 9, Neural Network Optimization and Adaptation, shows advancements 
regarding how to optimize and add adaptability to neural networks, thereby 
strengthening their power.
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What you need for this book
You'll need Netbeans (www.netbeans.org) or Eclipse (www.eclipse.org). Both are free 
and available for download at the previously mentioned websites.

Who this book is for
This book is targeted at both developers and enthusiasts who have a basic or even no 
Java programming knowledge. No previous knowledge of neural networks is required, 
this book will teach from scratch. Even if you are familiar with neural networks and/or 
other machine learning techniques but have little or no experience with Java, this book 
will take you to the level at which you will be able to develop useful applications. Of 
course, if you know basic programming concepts, you will benefit most from this book, 
but no prior experience is required.

Conventions
In this book, you will find a number of text styles that distinguish between different 
kinds of information. Here are some examples of these styles and an explanation of 
their meaning.

Code words in text, database table names, folder names, filenames, file  
extensions, pathnames, dummy URLs, user input, and Twitter handles are shown 
as follows: "In Java projects, the calculation of these values is done through the 
Classification class."

A block of code is set as follows:

Data cardDataInput  = new Data("data", "card_inputs_training.csv");
Data cardDataInputTestRNA   = new Data("data", "card_inputs_test.
csv");
Data cardDataOutputTestRNA  = new Data("data", "card_output_test.
csv");

New terms and important words are shown in bold.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.
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Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or disliked. Reader feedback is important for us as it helps 
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you 
purchased this book elsewhere, you can visit http://www.packtpub.com/support 
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you could report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form 
link, and entering the details of your errata. Once your errata are verified, your 
submission will be accepted and the errata will be uploaded to our website or added 
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.
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Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all 
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works in any form on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated 
material.

We appreciate your help in protecting our authors and our ability to bring you 
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at 
questions@packtpub.com, and we will do our best to address the problem.
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Getting Started with  
Neural Networks

In this chapter, we will introduce neural networks and what they are designed for. 
This chapter serves as a foundation layer for the subsequent chapters, while  
it presents the basic concepts for neural networks. In this chapter, we will cover  
the following:

• Artificial Neurons
• Weights and Biases
• Activation Functions
• Layers of Neurons
• Neural Network Implementation in Java
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Discovering neural networks
First, the term "neural networks" may create a snapshot of a brain in our minds, 
particularly for those who have just been introduced to it. In fact, that's right, we 
consider the brain to be a big and natural neural network. However, what if we talk 
about artificial neural networks (ANNs)? Well, here comes an opposite word to 
natural, and the first thing now that comes into our head is an image of an artificial 
brain or a robot, given the term "artificial." In this case, we also deal with creating 
a structure similar to and inspired by the human brain; therefore, this can be called 
artificial intelligence. So, the reader who doesn't have any previous experience with 
ANN now may be thinking that this book teaches how to build intelligent systems, 
including an artificial brain, capable of emulating the human mind using Java codes, 
isn't it? Of course, we will not cover the creation of artificial thinking machines such 
as those from the Matrix trilogy movies; however, this book will discuss several 
incredible capabilities that these structures can do. We will provide the reader 
with Java codes for defining and creating basic neural network structures, taking 
advantage of the entire Java programming language framework.

Why artificial neural network?
We cannot begin talking about neural networks without understanding their origins, 
including the term as well. We use the terms neural networks (NN) and ANN 
interchangeably in this book, although NNs are more general, covering the natural 
neural networks as well. So, what actually is an ANN? Let's explore a little of the 
history of this term.

In the 1940s, the neurophysiologist Warren McCulloch and the mathematician 
Walter Pits designed the first mathematical implementation of an artificial neuron 
combining the neuroscience foundations with mathematical operations. At that 
time, many studies were being carried out on understanding the human brain and 
how and if it could be simulated, but within the field of neuroscience. The idea 
of McCulloch and Pits was a real novelty because it added the math component. 
Further, considering that the brain is composed of billions of neurons, each one 
interconnected with another million, resulting in some trillions of connections, we 
are talking about a giant network structure. However, each neuron unit is very 
simple, acting as a mere processor capable to sum and propagate signals.
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On the basis of this fact, McCulloch and Pits designed a simple model for a 
single neuron, initially to simulate the human vision. The available calculators or 
computers at that time were very rare but capable of dealing with mathematical 
operations quite well; on the other hand, even today tasks such as vision and sound 
recognition are not easily programmed without the use of special frameworks, as 
opposed to the mathematical operations and functions. Nevertheless, the human 
brain can perform these latter tasks more efficiently than the first ones, and this fact 
really instigates scientists and researchers.

So, an ANN is supposed to be a structure to perform tasks such as pattern 
recognition, learning from data, and forecasting trends, just like an expert can do on 
the basis of knowledge, as opposed to the conventional algorithmic approach that 
requires a set of steps to be performed to achieve a defined goal. An ANN instead 
has the capability to learn how to solve some task by itself, because of its highly 
interconnected network structure.

Tasks Quickly Solvable by Humans Tasks Quickly Solvable by Computers

Classification of images
Voice recognition
Face identification
Forecast events on the basis of 
experience

Complex calculation
Grammatical error correction
Signal processing
Operating system management
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How neural networks are arranged
It can be said that the ANN is a nature-inspired structure, so it does have similarities 
with the human brain. As shown in the following figure, a natural neuron is 
composed of a nucleus, dendrites, and axon. The axon extends itself into several 
branches to form synapses with other neurons' dendrites.

So, the artificial neuron has a similar structure. It contains a nucleus (processing 
unit), several dendrites (analogous to inputs), and one axon (analogous to output), as 
shown in the following figure:

The links between neurons form the so-called neural network, analogous to the 
synapses in the natural structure.
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The very basic element – artificial neuron
Natural neurons have proven to be signal processors since they receive micro signals 
in the dendrites that can trigger a signal in the axon depending on their strength or 
magnitude. We can then think of a neuron as having a signal collector in the inputs 
and an activation unit in the output that can trigger a signal that will be forwarded 
to other neurons. So, we can define the artificial neuron structure as shown in the 
following figure:

In natural neurons, there is a threshold potential that 
when reached, fires the axon and propagates the signal to 
the other neurons. This firing behavior is emulated with 
activation functions, which have proven to be useful in 
representing nonlinear behaviors in the neurons.

Giving life to neurons – activation function
The neuron's output is given by an activation function. This component adds 
nonlinearity to neural network processing, which is needed because the natural 
neuron has nonlinear behaviors. An activation function is usually bounded between 
two values at the output, therefore being a nonlinear function, but in some special 
cases, it can be a linear function.

The four most used activation functions are as follows:

• Sigmoid
• Hyperbolic tangent
• Hard limiting threshold
• Purely linear
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The equations and charts associated with these functions are shown in the  
following table:

Function Equation Chart

Sigmoid

Hyperbolic 
tangent

Hard 
limiting 
threshold

Linear

The fundamental values – weights
In neural networks, weights represent the connections between neurons and have the 
capability to amplify or attenuate neuron signals, for example, multiply the signals, 
thus modifying them. So, by modifying the neural network signals, neural weights 
have the power to influence a neuron's output, therefore a neuron's activation will 
be dependent on the inputs and on the weights. Provided that the inputs come from 
other neurons or from the external world, the weights are considered to be a neural 
network's established connections between its neurons. Thus, since the weights are 
internal to the neural network and influence its outputs, we can consider them as 
neural network knowledge, provided that changing the weights will change the 
neural network's capabilities and therefore actions.
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An important parameter – bias
The artificial neuron can have an independent component that adds an extra signal 
to the activation function. This component is called bias.

Just like the inputs, biases also have an associated weight. This feature helps in the 
neural network knowledge representation as a more purely nonlinear system.

The parts forming the whole – layers
Natural neurons are organized in layers, each one providing a specific level of 
processing; for example, the input layer receives direct stimuli from the outside 
world, and the output layers fire actions that will have a direct influence on the 
outside world. Between these layers, there are a number of hidden layers, in the 
sense that they do not interact directly with the outside world. In the artificial neural 
networks, all neurons in a layer share the same inputs and activation function, as 
shown in the following figure:

Neural networks can be composed of several linked layers, forming the so-called 
multilayer networks. The neural layers can be basically divided into three classes:

• Input layer
• Hidden layer
• Output layer

In practice, an additional neural layer adds another level of abstraction of the  
outside stimuli, thereby enhancing the neural network's capacity to represent more 
complex knowledge.
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Every neural network has at least an input/output layer 
irrespective of the number of layers. In the case of a 
multilayer network, the layers between the input and the 
output are called hidden.

Learning about neural network 
architectures
Basically, a neural network can have different layouts, depending on how the 
neurons or neuron layers are connected to each other. Every neural network 
architecture is designed for a specific end. Neural networks can be applied to a 
number of problems, and depending on the nature of the problem, the neural 
network should be designed in order to address this problem more efficiently.

Basically, there are two modalities of architectures for neural networks:

• Neuron connections
 ° Monolayer networks
 ° Multilayer networks

• Signal flow
 ° Feedforward networks
 ° Feedback networks

Monolayer networks
In this architecture, all neurons are laid out in the same level, forming one single 
layer, as shown in the following figure:
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The neural network receives the input signals and feeds them into the neurons, which 
in turn produce the output signals. The neurons can be highly connected to each 
other with or without recurrence. Examples of these architectures are the single-layer 
perceptron, Adaline, self-organizing map, Elman, and Hopfield neural networks.

Multilayer networks
In this category, neurons are divided into multiple layers, each layer corresponding 
to a parallel layout of neurons that shares the same input data, as shown in the 
following figure:

Radial basis functions and multilayer perceptrons are good examples of this 
architecture. Such networks are really useful for approximating real data to a 
function specially designed to represent that data. Moreover, because they have 
multiple layers of processing, these networks are adapted to learn from nonlinear 
data, being able to separate it or determine more easily the knowledge that 
reproduces or recognizes this data.

Feedforward networks
The flow of the signals in neural networks can be either in only one direction or in 
recurrence. In the first case, we call the neural network architecture feedforward, 
since the input signals are fed into the input layer; then, after being processed, 
they are forwarded to the next layer, just as shown in the figure in the multilayer 
section. Multilayer perceptrons and radial basis functions are also good examples of 
feedforward networks.

www.allitebooks.com
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Feedback networks
When the neural network has some kind of internal recurrence, it means that  
the signals are fed back in a neuron or layer that has already received and  
processed that signal, the network is of the type feedback. See the following  
figure of feedback networks:

The special reason to add recurrence in the network is the production of a dynamic 
behavior, particularly when the network addresses problems involving time series 
or pattern recognition, that require an internal memory to reinforce the learning 
process. However, such networks are particularly difficult to train, eventually failing 
to learn. Most of the feedback networks are single layer, such as Elman and Hopfield 
networks, but it is possible to build a recurrent multilayer network, such as echo and 
recurrent multilayer perceptron networks.

From ignorance to knowledge – learning 
process
Neural networks learn by adjusting the connections between the neurons, namely 
the weights. As mentioned in the neural structure section, weights represent the 
neural network knowledge. Different weights cause the network to produce different 
results for the same inputs. So, a neural network can improve its results by adapting 
its weights according to a learning rule. The general schema of learning is depicted in 
the following figure:
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The process depicted in the preceding figure is called supervised learning because 
there is a desired output, but neural networks can learn only by the input data, 
without any desired output (supervision). In Chapter 2, How Neural Networks Learn, 
we are going to dive deeper into the neural network learning process.

Let the implementations begin! Neural 
networks in practice
In this book, we will cover the entire process of implementing a neural network 
by using the Java programming language. Java is an object-oriented programming 
language that was created in the 1990s by a small group of engineers from Sun 
Microsystems, later acquired by Oracle in the 2010s. Nowadays, Java is present in 
many devices that are part of our daily life.

In an object-oriented language, such as Java, we deal with classes and objects. A 
class is a blueprint of something in the real world, and an object is an instance of this 
blueprint, something like a car (class referring to all and any car) and my car (object 
referring to a specific car—mine). Java classes are usually composed of attributes and 
methods (or functions), that include objects-oriented programming (OOP) concepts. 
We are going to briefly review all of these concepts without diving deeper into them, 
since the goal of this book is just to design and create neural networks from a practical 
point of view. Four concepts are relevant and need to be considered in this process:

• Abstraction: The transcription of a real-world problem or rule into a 
computer programming domain, considering only its relevant features and 
dismissing the details that often hinder development.
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• Encapsulation: Analogous to a product encapsulation by which some 
relevant features are disclosed openly (public methods), while others are 
kept hidden within their domain (private or protected), therefore avoiding 
misuse or excess of information.

• Inheritance: In the real world, multiple classes of objects share attributes and 
methods in a hierarchical manner; for example, a vehicle can be a superclass 
for car and truck. So, in OOP, this concept allows one class to inherit all 
features from another one, thereby avoiding the rewriting of code.

• Polymorphism: Almost the same as inheritance, but with the difference  
that methods with the same signature present different behaviors on 
different classes.

Using the neural network concepts presented in this chapter and the OOP concepts, we 
are now going to design the very first class set that implements a neural network. As 
can be seen, a neural network consists of layers, neurons, weights, activation functions, 
and biases, and there are basically three types of layers: input, hidden, and output. 
Each layer may have one or more neurons. Each neuron is connected either to a neural 
input/output or to another neuron, and these connections are known as weights.

It is important to highlight that a neural network may have many hidden layers or 
none, as the number of neurons in each layer may vary. However, the input and 
output layers have the same number of neurons as the number of neural inputs/
outputs, respectively.

So, let's start implementing. Initially, we are going to define six classes, detailed  
as follows:

Class name: Neuron
Attributes

private ArrayList<Double> 
listOfWeightIn

An ArrayList variable of real numbers that 
represents the list of input weights

private ArrayList<Double> 
listOfWeightOut

An ArrayList variable of real numbers that 
represents the list of output weights

Methods
public double initNeuron() Initializes listOfWeightIn and 

listOfWeightOut function with a pseudo 
random real number
Parameters: None
Returns: A pseudo random real number
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public void setListOfWei
ghtIn(ArrayList<Double> 
listOfWeightIn)

Sets the listOfWeightIn function with a list of 
real numbers list
Parameters: The list of real numbers to be stored 
in the class object
Returns: None

public void setListOfWei
ghtOut(ArrayList<Double> 
listOfWeightOut)

Sets the listOfWeightOut function with a list 
of real numbers list
Parameters: The list of real numbers to be stored 
in the class object
Returns: None

public ArrayList<Double> 
getListOfWeightIn()

Returns the input weights a list of neurons
Parameters: None
Returns: The list of real numbers stored in the 
listOfWeightIn variable

public ArrayList<Double> 
getListOfWeightOut()

Returns the output weights a list of neurons
Parameters: None
Returns: The list of real numbers stored in the 
listOfWeightOut variable

Class implementation with Java: file Neuron.java
Class Name: Layer

Note: This class is abstract and cannot be instantiated.
Attributes

private ArrayList<Neuron> 
listOfNeurons

An ArrayList variable of objects of the  
Neuron class

private int 
numberOfNeuronsInLayer

Integer number to store the quantity of neurons 
that are part of the layer

Methods
public ArrayList<Neuron> 
getListOfNeurons()

Returns the list of neurons by layer
Parameters: None
Returns: An ArrayList variable of objects by 
the Neuron class

public void setListOfNe
urons(ArrayList<Neuron> 
listOfNeurons)

Sets the listOfNeurons function with  
an ArrayList variable of objects of the  
Neuron class
Parameters: The list of objects of the Neuron 
class to be stored
Returns: None
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public int 
getNumberOfNeuronsInLayer()

Returns the number of neurons by layer
Parameters: None
Returns: The number of neurons by layer

public void 
setNumberOfNeuronsInLayer(int 
numberOfNeuronsInLayer)

Sets the number of neurons in a layer
Parameters: The number of neurons in a layer
Returns: None

Class implementation with Java: file Layer.java
Class name: InputLayer

Note: This class inherits attributes and methods from the Layer class.
Attributes

None
Methods

public initLayer(InputLayer 
inputLayer)

Initializes the input layer with pseudo random 
real numbers
Parameters: An object of the InputLayer class
Returns: None

public void 
printLayer(InputLayer 
inputLayer)

Prints the input weights of the layer
Parameters: An object of the InputLayer class
Returns: None

Class implementation with Java: file InputLayer.java
Class name: HiddenLayer

Note: This class inherits attributes and methods from the Layer class.
Attributes

None
Methods

public ArrayList<HiddenLayer> 
initLayer(HiddenLayer 
hiddenLayer, 
ArrayList<HiddenLayer> 
listOfHiddenLayer, InputLayer 
inputLayer, OutputLayer 
outputLayer)

Initializes the hidden layer(s) with pseudo 
random real numbers
Parameters: An object of the HiddenLayer 
class, a list of objects of the HiddenLayer class, 
an object of the InputLayer class, an object of 
the OutputLayer class
Returns: None

public void printLayer(
ArrayList<HiddenLayer> 
listOfHiddenLayer)

Prints the weights of the layer(s)

Parameters: A list of objects of the 
HiddenLayer class
Returns: None
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Class implementation with Java: file HiddenLayer.java
Class name: OutputLayer

Note: This class inherits attributes and methods from the Layer class.

Attributes
None

Methods
public OutputLayer 
initLayer(OutputLayer 
outputLayer)

Initializes the output layer with pseudo random 
real numbers

Parameters: An object of the OutputLayer class
Returns: None

public void 
printLayer(OutputLayer 
outputLayer)

Prints the weights of the layer

Parameters: An object of the OutputLayer class
Returns: None

Class implementation with Java: file OutputLayer.java

Class name: NeuralNet

Note: The values of the neural net topology are fixed in this class (two neurons in the input 
layer, two hidden layers with three neurons each, and one neuron in the output layer). 
Reminder: It's the first version.

Attributes

private InputLayer 
inputLayer;

An object of the InputLayer class

private HiddenLayer 
hiddenLayer;

An object of the HiddenLayer class

private 
ArrayList<HiddenLayer> 
listOfHiddenLayer;

An ArrayList variable of objects of the 
HiddenLayer class. It is possible to have more 
than one hidden layer

private OutputLayer 
outputLayer;

An object of the OutputLayer class

private int 
numberOfHiddenLayers;

Integer number to store the quantity of layers 
that are part of the hidden layer
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Methods

public void initNet() Initializes the neural net as a whole. Layers are 
built, and each list of the weights of neurons is 
built randomly
Parameters: None
Returns: None

public void printNet() Prints the neural net as a whole. Each input and 
output weight of each layer is shown
Parameters: None
Returns: None

Class implementation with Java: file NeuralNet.java

One advantage of OOP languages is the ease to document the program in Unified 
Modeling Language (UML). UML class diagrams present classes, attributes, methods, 
and relationships between classes in a very simple and straightforward manner, thus 
helping the programmer and/or stakeholders to understand the project as a whole. 
The following figure represents the very first version of the project's class diagram:
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Now, let's apply these classes and get some results. The code shown next has a 
test class, a main method with an object of the NeuralNet class called n. When this 
method is called (by executing the class), it calls the initNet() and printNet()
methods from the object n, generating the following result shown in the figure right 
after the code. It represents a neural network with two neurons in the input layer, 
three in the hidden layer, and one in the output layer:

public class NeuralNetTest {
  public static void main(String[] args) {
    NeuralNet n = new NeuralNet();
    n.initNet();
    n.printNet();

  }
}

It's relevant to remember that each time that the code runs, it generates new  
pseudo random weight values. So, when you run the code, the other values  
will appear in Console:
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Summary
In this chapter, we've seen an introduction to the neural networks, what they 
are, what they are used for, and their basic concepts. We've also seen a very basic 
implementation of a neural network in the Java programming language, wherein we 
applied the theoretical neural network concepts in practice, by coding each of the 
neural network elements. It's important to understand the basic concepts before we 
move on to advanced concepts. The same applies to the code implemented with Java.

In the next chapter, we will delve into the learning process of a neural network and 
explore the different types of leaning with simple examples.
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How Neural Networks Learn
In this chapter, we will show the learning process that neural networks perform in 
order to learn from data. We present the concepts of training, test, and validation, 
and show how to implement them in Java. We also show some methods for 
evaluating a neural network's performance in learning as well as learning algorithms' 
parameters. In summary, the following are the concepts addressed in this chapter:

• Learning process
• Learning algorithm
• Types of learning

 ° Supervised
 ° Unsupervised

• Training, test, and validation
• Error measurements
• Generalization

Learning ability in neural networks
What is really amazing about neural networks is their capacity to learn from the 
environment, just like brain-gifted beings are able to. We, as humans, experience the 
learning process through observations and repetitions, until some task or concept is 
completely mastered. From the physiological point of view, the learning process in 
the human brain is a reconfiguration of the neural connections between the nodes 
(neurons), which results in a new thinking structure.
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While the connectionist nature of neural networks distributes the learning process all 
over the entire structure, this feature makes this structure flexible enough to learn a 
wide variety of knowledge. As opposed to ordinary digital computers that can execute 
only those tasks that they are programmed to, neural systems are able to improve and 
perform new activities according to some satisfaction criteria. In other words, neural 
networks don't need to be programmed; they learn the program by themselves.

How learning helps to solve problems
Considering that every task that requires solving solve may have a huge number of 
theoretically possible solutions, the learning process seeks to find an optimal solution 
that can produce a satisfying result. The use of structures like artificial neural 
networks (ANNs) is encouraged because of their ability to acquire knowledge of any 
type, strictly by receiving input stimuli, that is, data relevant to the task/problem. 
First, the ANN will produce a random result and an error, and based on this error, 
the ANN parameters will be adjusted.

We can then think of the ANN parameters (weights) as 
the components of a solution. Let's imagine that one single 
solution represents a single point in the solution hyperspace. 
Each single solution produces an error measure, which informs 
how far away that solution is from the optimal one. For each 
iteration, the learning algorithm seeks a solution that can yield 
a smaller error and therefore, be closer to the optimal one.

Learning paradigms
There are basically two types of learning for neural networks, namely supervised 
and unsupervised. The learning in the human mind, for example, also works 
in this way. We can learn from observations without any kind of target pattern 
(unsupervised), or we can have a teacher who shows us the right pattern to follow 
(supervised). The difference between these two paradigms relies mainly on the 
relevance of a target pattern and varies from problem to problem.

Supervised learning
This category of learning deals in pairs of X's and Y's, and the objective is to map 
them in a function f: X → Y. Here, the Y data is the supervisor, the target desired 
outputs, and the X data is the source-independent data that generates the Y data. It is 
analogous to a teacher who is teaching somebody a certain task to be performed, as 
shown in the following figure:
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Subjects to learn:
Inference
Forecasting
Pattern Recognition

One particular feature of this learning paradigm is that there is a direct error 
reference, which is just the comparison between the target and the current actual 
result. The network parameters are fed into a cost function, which quantifies the 
mismatch between the desired and the actual outputs.

A cost function is just a measurement to be minimized in an 
optimization problem. That means that one seeks to find the 
parameters that drive the cost function to the lowest possible value.
The cost function will be covered in detail further in this chapter.

Supervised learning is very suitable for tasks that already provide a pattern, a 
goal to be reached. Some examples are as follows: classification of images, speech 
recognition, function approximation, and forecasting. Note that the neural network 
should be provided previous knowledge of both input-independent values (X) and 
the output classification-dependent values (Y). The presence of a dependent output 
value is a necessary condition for the learning to be supervised.

Unsupervised learning
As illustrated in the following figure, in unsupervised learning, we deal only with 
data without any labeling or classification; instead, our neural structure tries to draw 
inferences and extract knowledge by taking into account only the input data X.

What is the pattern behind this
numbers? So I could guess the

next ones in the sequence.

Maybe I should find some
features common to some of the
numbers, ... And finally determine

they are grouped by their first
letters!

2 3 10 12 13 20 21 ?

4 5 14 15 40 41 42 ?

6 7 16 17 60 61 62 ?
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This is analogous to self-learning, when someone learns by him/herself taking 
into account his/her experience and a set of supporting criteria. In unsupervised 
learning, we don't have a defined desired pattern to be applied on each observation, 
but the neural structure can produce one by itself without any supervising need.

Here, the cost function plays an important role. It will 
strongly affect all the neural properties as well as the 
relation between the input data.

Examples of tasks that unsupervised learning can be applied to are as follows: 
clustering, data compression, statistical modeling, and language modeling. This 
learning paradigm will be covered in more detail in Chapter 4, Self-Organizing Maps.

Systematic structuring – learning 
algorithm
So far, we have theoretically defined the learning process and how it is carried out. 
However, in practice, we must dive a little bit deeper into the mathematical logic, the 
learning algorithm itself. A learning algorithm is a procedure that drives the learning 
process of neural networks and is strongly determined by the neural network 
architecture. From the mathematical point of view, one wishes to find the optimal 
weights W that can drive the cost function C(X,[Y]) to the lowest possible value.

In general, this process is carried out in the fashion presented in the following 
flowchart:

Define the neural network
structure and objective with

an acceptance criteria

Present data (the
environment) to the

neural network

Calculate the neural
network response
to it and the error

Is the neural
response within the
acceptance criteria?

Reconfigure the
neural weights

Neural Network has
learned the
environment

No Yes



Chapter 2

[ 23 ]

Just like any program that we wish to write, we should have defined our goal, so in 
here, we are talking about a neural network to learn some knowledge. We should 
present this knowledge (or environment) to the ANN and check its response, 
which naturally will make no sense. The network response is then compared to the 
expected result, and this is fed to a cost function C. This cost function will determine 
how the weights W can be updated. The learning algorithm then computes the 
ΔW term, which means the variation of the values of the weights to be added. The 
weights are updated as in the equation.

Where k refers to the kth iteration and W(k) refers to the neural weights at the kth 
iteration, and subsequently, k + 1 refers to the next iteration.

As the learning process is run, the neural network must give results closer and 
closer to the expectation, until finally, it reaches the acceptation criteria. The learning 
process is then considered to be finished.

Two stages of learning – training and testing
Well, we might ask now whether the neural network has already learned from 
the data, but how can we attest it has effectively learnt the data? The answer is 
just like in the exams that students are subjected to; we need to check the network 
response after training. But wait! Do you think it is likely that a teacher would put 
in an exam the same questions he/she has presented in the classes? There is no 
sense in evaluating somebody's learning with examples that are already known or a 
suspecting teacher would conclude the student might have memorized the content, 
instead of having learnt it.

Okay, let's now explain this part. What we are talking about here is testing. The 
learning process that we have covered is called training. After training a neural 
network, we should test it whether it has really learnt. For testing, we must present 
to the neural network another fraction of data from the same environment that it has 
learnt from. This is necessary because, just like the student, the neural network could 
respond properly with only the data points that it had been exposed to; this is called 
overtraining. To check whether the neural network has not passed on overtraining, 
we must check its response to other data points.
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The following figure illustrates the overtraining problem. Imagine that our network 
is designed to approximate some function f(x) whose definition is unknown. The 
neural network was fed with some data from that function and produced the 
following result shown in the figure on the left. However, when expanding to a 
wider domain, we note that the neural response does not follow the data.

In this case, we see that the neural network failed to learn the whole environment 
(the function f(x)). This happens because of a number of reasons:

• The neural network didn't receive enough information from the environment
• The data from the environment is nondeterministic
• The training and testing datasets are poorly defined
• The neural network has learnt a lot from the training data and forgets about 

the testing data

In this book, we will cover this process to prevent this and other issues that may arise 
during training.

The details – learning parameters
The learning process may be, and is recommended to be, controlled. One important 
parameter is the learning rate, often represented by the Greek letter η. This 
parameter dictates how strongly the neural weights would vary in the weights' 
hyperspace. Let's imagine a simple neural network with two inputs and one neuron, 
therefore one output. So, we've got two weights w1 and w2. Now suppose that we 
want to train this network and imagine whether we could evaluate the error for each 
pair of weights. Suppose that we found a surface like the one in the following figure:
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The learning rate is responsible for regulating how far the weights are going to move 
on the surface. This may speed up the learning process but can also lead to a set of 
weights worse than the previous one.

Another important parameter is the condition for stopping. Usually, the training stops 
when the general mean error is reached, but there are cases in which the network fails 
to learn and there is little or no change in the weights' values. In the latter case, the 
maximum number of iterations, or epochs, is the condition for stopping.

Error measurement and cost function
This is extremely important for the success of the training in the supervised learning. 
Let's suppose that we present for the network a set of N records containing pairs of 
X and T variables, whereas X are the input-independent values and T are the target 
values dependent on X. Let's consider the neural network as a mathematical function 
ANN() that produces Y on the output when being fed with the X values.
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For each x value given to the ANN, it will produce a y value that when compared to 
the t value gives an error e.

However, this is a mere individual error measurement per data point. We should take 
into account a general measurement, covering all the N data pairs because we want 
the network to learn all the data points and the same weights must be able to produce 
the data covering the entire training set. That's the role of the cost function C.

Where X are the inputs, T are the target outputs, W are the weights, x[i] is the input 
at the ith instant, and t[i] is the target output for the ith instant. The result of this 
function is an overall measurement of the error between the target outputs and the 
neural outputs, and this should be minimized.

Examples of learning algorithms
Let's now merge the theoretical content presented so far together into simple 
examples of learning algorithms. In this chapter, we are going to explore two neural 
architectures: perceptron and adaline. Both are very simple, containing only one layer.

Perceptron
The perceptrons learn by taking into account only the error between the target and 
the output, and the learning rate. The update rule is as follows:

Where wi is the weight connecting the ith input to the neuron, t[k] is the target output 
for the kth sample, y[k] is the result of the neural network for the kth sample, xi[k] is 
the ith input for the kth sample, and η is the learning rate. It can be seen that this rule 
is very simplistic and does not consider the perceptron nonlinearities present in the 
activation function; it just goes in the opposite direction of the error in the naïve hope 
that this would take the network close to the objective.
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Delta rule
A better algorithm based on the gradient descent method was developed to consider 
nonlinearity as well as its derivative. What this algorithm has in addition to the 
perceptron rule is the derivative of the activation function g(h), with h being the 
weighted sum of all the neuron inputs before passing them to the activation function. 
So, the update rule is as follows:

Coding of the neural network learning
Now, it is time to develop a neural network using OOP concepts and explain 
the related theory. The project presented in the previous chapter was adapted to 
implement the perceptron and adaline rules, as well as the Delta rule.

The NeuralNet class presented in the previous chapter has been updated to include 
the training dataset (input and target output), learning parameters, and activation 
function settings. The InputLayer function was also updated to include one method. 
We added to the project the Adaline, Perceptron, and Training classes. Details 
on the implementation of each class can be found in the codes. However, now, let's 
make the connection between the neural learning and the Java implementation of the 
Training class.

Learning parameter implementation
The Training class should be used for training neural networks. In this chapter, we 
are going to use this class to train Perceptron and Adaline classes. Also, the activation 
functions that are foreseen to be used in the neural networks in this chapter should be 
considered. So, now, let's define two enumeration sets that will handle these settings:

  public enum TrainingTypesENUM {
    PERCEPTRON, ADALINE;
  }

  public enum ActivationFncENUM {
    STEP, LINEAR, SIGLOG, HYPERTAN;
  }
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In addition to these parameters, we need to define the condition for stopping, the 
error, the MSE error, and the number of epochs, as shown in the following code:

  private int epochs;
  private double error;
  private double mse;

The learning rate has already been defined in the NeuralNet class and will be  
used here.

Finally, we need a method to update the weights of a given neuron. So, let's take a 
look at the CalcNewWeight method:

  private double calcNewWeight(TrainingTypesENUM trainType,
      double inputWeightOld, NeuralNet n, double error,
      double trainSample, double netValue) {
    switch (trainType) {
    case PERCEPTRON:
      return inputWeightOld + n.getLearningRate() * error * 
trainSample;
    case ADALINE:
      return inputWeightOld + n.getLearningRate() * error * 
trainSample
          * derivativeActivationFnc(n.getActivationFnc(), netValue);
    default:
      throw new IllegalArgumentException(trainType
          + " does not exist in TrainingTypesENUM");
    }
  }

We see in this method a switch clause that selects the update procedure according 
to the training type (Adaline or Perceptron). We can also see the inputWeightOld 
(the old weights), n (neural network under training), error (difference between 
target and neural output), trainsample (input to the weight), and netValue 
(weighted sum before processing by activation function) parameters. The learning 
rate is retrieved by calling the getLearningRate() function of the NeuralNet class.

One interesting detail is the derivative of the activation function that is called for 
the Adaline training type, which is the Delta rule. All the activation functions are 
implemented as methods inside the Training class, and their respective derivatives 
are implemented as well. The derivativeActivationFnc method helps to call the 
derivative corresponding to the activation function passed in the argument.
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Learning procedure
Two special methods are implemented in the Training class: one for training the 
neural network and the other for training the neurons of some layer. Although this 
won't be necessary in this chapter, it is always good to have a code prepared for 
future examples or updates. Let's take a quick look at the implementation of the 
method train:

public NeuralNet train(NeuralNet n) {
    
    ArrayList<Double> inputWeightIn = new ArrayList<Double>();

    int rows = n.getTrainSet().length;
    int cols = n.getTrainSet()[0].length;

    while (this.getEpochs() < n.getMaxEpochs()) {

      double estimatedOutput = 0.0;
      double realOutput = 0.0;

      for (int i = 0; i < rows; i++) {

        double netValue = 0.0;

        for (int j = 0; j < cols; j++) {
          inputWeightIn = n.getInputLayer().getListOfNeurons().get(j)
              .getListOfWeightIn();
          double inputWeight = inputWeightIn.get(0);
          netValue = netValue + inputWeight * n.getTrainSet()[i][j];
        }

        estimatedOutput = this.activationFnc(n.getActivationFnc(),
            netValue);
        realOutput = n.getRealOutputSet()[i];

        this.setError(realOutput - estimatedOutput);

        if (Math.abs(this.getError()) > n.getTargetError()) {
          // fix weights
          InputLayer inputLayer = new InputLayer();
          inputLayer.setListOfNeurons(this.teachNeuronsOfLayer(cols,
              i, n, netValue));
          n.setInputLayer(inputLayer);
        }

www.allitebooks.com

http://www.allitebooks.org


How Neural Networks Learn

[ 30 ]

      }

      this.setMse(Math.pow(realOutput - estimatedOutput, 2.0));
      n.getListOfMSE().add(this.getMse());

      this.setEpochs(this.getEpochs() + 1);

    }

    n.setTrainingError(this.getError());

    return n;
  }

This method receives a neural network in the parameter and produces another 
neural network with trained weights. Further, we see a while clause that loops while 
the number of epochs does not reach the maximum set out in the Training class. 
Inside this loop, there is a for clause that iterates over all the training samples that 
are presented to the network and so begins the process of calculating the neural 
output for the input in the current iteration.

When it gets the real output of the network, it compares it to the estimated output 
and calculates the error. This error is checked, and if it is higher than the minimum 
error, then it starts the update procedure by calling the teachNeuronsOfLayer 
method in the following line:

inputLayer.setListOfNeurons(this.teachNeuronsOfLayer(cols,
              i, n, netValue));

The implementation of this method is found in the codes attached with this chapter.

Then, this process is repeated iteratively until all the neural samples are passed to the 
neural network, and then, until the maximum number of epochs is reached.

Class definitions
The following table shows all the fields and methods for all the classes covered in 
this chapter:

Class name: Training
Note: This class is abstract and cannot be instantiated.

Attributes
private int epochs Integer number to store the training cycle, 

known as epoch
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private double error Real number to store the error between 
estimated output and real output

private double mse Real number to store the mean square error 
(MSE)

Enums
Note: enum helps to control different types

public enum TrainingTypesENUM {
  PERCEPTRON, ADALINE;
}

Enumeration to store types of training 
supported by project (Perceptron and 
Adaline)

public enum ActivationFncENUM {
  STEP, LINEAR, SIGLOG, 
HYPERTAN;
}

Enumeration to store types of activation 
functions supported by project (step, linear, 
sigmoid logistics, and hyperbolic tangent)

Methods
public NeuralNet 
train(NeuralNet n)

Trains the neural network
Parameters: NeuralNet object (neural net 
untrained)
Returns: NeuralNet object (neural net 
trained)

public ArrayList<Neuron> 
teachNeuronsOfLayer(int 
numberOfInputNeurons, int line, 
NeuralNet n, double netValue)

Teaches neurons of the layer, calculating and 
changing its weights
Parameters: Number of input neurons, 
samples line, NeuralNet object, neural net 
output
Returns: ArrayList of objects by the 
Neuron class

private double 
calcNewWeight(TrainingTypesENUM 
trainType, double 
inputWeightOld, NeuralNet 
n, double error, double 
trainSample, double netValue)

Calculates the new weight of a neuron
Parameters: Train type enum value, old input 
weight value, NeuralNet object, error value, 
training sample value, output net value
Returns: Real number represents a new 
weight value

public double activationFnc ( 
ActivationFncENUM fnc, double 
value)

Decides which activation function to use and 
calls the method of computing it
Parameters: Activation function enum value, 
real number value
Returns: Calculated value of the activation 
function



How Neural Networks Learn

[ 32 ]

public double 
derivativeActivationFnc (
ActivationFncENUM fnc, double 
value)

Decides which activation function to use and 
calls the method of computing the derivative 
value
Parameters: Activation function enum value, 
real number value
Returns: Calculated value of the derivative of 
the activation function

private double fncStep (double 
v)

Computes step function
Parameters: Real number value
Returns: Real number value

private double fncLinear 
(double v)

Computes linear function
Parameters: Real number value
Returns: Real number value

private double fncSigLog 
(double v)

Computes sigmoid logistics function
Parameters: Real number value
Returns: Real number value

private double fncHyperTan 
(double v)

Computes hyperbolic tangent function
Parameters: Real number value
Returns: Real number value

private double 
derivativeFncLinear (double v)

Computes the derivative of the linear function
Parameters: Real number value
Returns: Real number value

private double 
derivativeFncSigLog (double v)

Computes the derivative of the sigmoid 
logistics function
Parameters: Real number value
Returns: Real number value

private double 
derivativeFncHyperTan (double 
v)

Computes the derivative of the hyperbolic 
tangent function
Parameters: Real number value
Returns: Real number value

public void 
printTrainedNetResult 
(NeuralNet trainedNet)

Prints trained neural net and shows its results
Parameters: NeuralNet object
Returns: None

public int getEpochs() Returns the number of epochs of the training
public void setEpochs (int 
epochs)

Sets the number of epochs of the training

public double getError() Returns the training error (comparison 
between estimated and real values)



Chapter 2

[ 33 ]

public void setError (double 
error)

Sets the training error

public double getMse() Returns the MSE
public void setMse (double mse) Sets the MSE

Class implementation with Java: file Training.java
Class name: Perceptron

Note: This class inherits attributes and methods from the Training class
Attributes

None
Method

public NeuralNet 
train(NeuralNet n)

Trains the neural network using the 
perceptron algorithm
Parameters: NeuralNet object (neural net 
untrained)
Returns: NeuralNet object (neural net 
trained via Perceptron)

Class implementation with Java: file Perceptron.java
Class name: Adaline

Note: This class inherits attributes and methods from the Training class.
Attributes

None
Method

public NeuralNet 
train(NeuralNet n)

Trains the neural network using the adaline 
algorithm
Parameters: NeuralNet object (neural net 
untrained)
Returns: NeuralNet object (neural net 
trained via adaline)

Class implementation with Java: file Adaline.java
Class name: InputLayer

Note: This class already existed in the previous version and has been updated as follows:
Attributes

None
Method

public void 
setNumberOfNeuronsInLayer( int 
numberOfNeuronsInLayer)

Sets the number of neurons in the input layer. 
It increased by one because of the bias
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Class implementation with Java: file InputLayer.java
Class name: NeuralNet

Note: This class already existed in the previous version and has been updated as follows:
Attributes

private double[][] trainSet  Matrix to store the training set of input data
private double[] realOutputSet Vector to store the training set of output data
private int maxEpochs Integer number to store the maximum number 

of epochs that neural net will train
private double learningRate Real number to store the learning rate
private double targetError Real number to store the target error
private double trainingError Real number to store the training error
private TrainingTypesENUM 
trainType

Enum value of the training type that will be 
used to train the neural net

private ActivationFncENUM 
activationFnc

Enum value of the activation function that will 
be used in training

private ArrayList<Double> 
listOfMSE = new 
ArrayList<Double>()

ArrayList of real numbers to store the MSE 
error of each epoch

Methods
public NeuralNet trainNet 
(NeuralNet n)

Trains the neural network
Parameters: NeuralNet object (neural net 
untrained)
Returns: NeuralNet object (neural net 
trained)

public void 
printTrainedNetResult ( 
NeuralNet n)

Prints the trained neural net and shows its 
results
Parameters: NeuralNet object
Returns: None

public double[][] getTrainSet() Returns the matrix of the training set of input 
data

public void 
setTrainSet(double[][] 
trainSet)

Sets the matrix of the training set of input data

public double[] 
getRealOutputSet()

Returns the vector training set of output data
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public void 
setRealOutputSet(double[] 
realOutputSet)

Sets the vector training set of output data

public int getMaxEpochs() Returns the maximum number of epochs that 
the neural net will train

public void setMaxEpochs(int 
maxEpochs)

Sets the maximum number of epochs that the 
neural net will train

public double getTargetError() Returns the target error
public void 
setTargetError(double 
targetError)

Sets the target error

public double getLearningRate() Returns the learning rate used in training
public void 
setLearningRate(double 
learningRate)

Sets the learning rate used in training

public double 
getTrainingError()

Returns the training error

public void 
setTrainingError(double 
trainingError)

Sets the training error

public ActivationFncENUM 
getActivationFnc()

Returns the enum value of the activation 
function that will be used in training

public void setActivationFnc( 
ActivationFncENUM 
activationFnc)

Sets the enum value of the activation function 
that will be used in training

public TrainingTypesENUM 
getTrainType()

Returns the enum value of the training type 
that will be used to train the neural net

public void setTrainType( 
TrainingTypesENUM trainType)

Sets the enum value of the training type that 
will be used to train the neural net

public ArrayList<Double> 
getListOfMSE()

Returns the list of real numbers that stores the 
MSE error of each epoch

public void setListOfMSE( 
ArrayList<Double> listOfMSE)

Sets the list of real numbers that stores the 
MSE error of each epoch

Class implementation with Java: file NeuralNet.java
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The updated class diagram is shown in the following figure. Attributes and methods 
already explained in the previous chapter were omitted. Further, configuration 
methods of new attributes (setters and getters) were also omitted.
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Two practical examples
Now, let's take a look at two examples of applications of these simple neural  
network architectures.

Perceptron (warning system)
To facilitate understanding about perceptron, let's consider a basic warning system. 
It is based in AND logic. There are two sensors, and the rules of warning are  
as follows:

• If both or one of them is disabled, the warning is trigged
• If both are enabled, the warning is not trigged

The following figure shows the basic warning system:

To encode the problem, inputs are represented as follows. 0 means disabled, and 
1 means enabled. Output is represented as follows. 0 means enabled, and 1 means 
disabled. The following table summarizes this:

Sample Sensor 1 Sensor 2 Alarm
1 0 0 0
2 0 1 0
3 1 0 0
4 1 1 1
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The Basic warning system figure illustrates how neurons and layers must be organized 
to solve this problem. It is the architecture of the neural net:

Now, let's use the class previously cited. Two methods have been created in the test 
class: testPerceptron() and testAdaline(). Let's analyze the first one:

private void testPerceptron() {
  NeuralNet testNet = new NeuralNet();

  testNet = testNet.initNet(2, 0, 0, 1);

  System.out.println("---------PERCEPTRON INIT NET---------");

  testNet.printNet(testNet);

  NeuralNet trainedNet = new NeuralNet();

  // first column has BIAS
  testNet.setTrainSet(new double[][] { { 1.0, 0.0, 0.0 },
    { 1.0, 0.0, 1.0 }, { 1.0, 1.0, 0.0 }, { 1.0, 1.0, 1.0 } });
  testNet.setRealOutputSet(new double[] { 0.0, 0.0, 0.0, 1.0 });
  testNet.setMaxEpochs(10);
  testNet.setTargetError(0.002);
  testNet.setLearningRate(1.0);
  testNet.setTrainType(TrainingTypesENUM.PERCEPTRON);
  testNet.setActivationFnc(ActivationFncENUM.STEP);

  trainedNet = testNet.trainNet(testNet);

  System.out.println();
  System.out.println("---------PERCEPTRON TRAINED NET---------");
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  testNet.printNet(trainedNet);

  System.out.println();
  System.out.println("---------PERCEPTRON PRINT RESULT---------");

  testNet.printTrainedNetResult(trainedNet);

}

First, an object of the NeuralNet class is created. After that, this object is used to 
initialize the neural net with two neurons in the input layer, none in the hidden 
layer, and one neuron in the output layer. Then, a message and the untrained neural 
net are shown on the screen. Another object of the NeuralNet class is created and 
represents the trained neural net. After that, the testNet object is set with the 
training input dataset (the first column has bias values), training output dataset, 
maximum number of epochs, target error, learning rate, training type (perceptron), 
and activation function (step). Then, the trainNet method is called to train the 
neural net. To finalize, the perceptron-trained net results are printed. These results 
are shown in the following screenshot:

---------PERCEPTRON INIT NET---------
### INPUT LAYER ###
Neuron #1:
Input Weights:
[0.179227246819473]
Neuron #2:
Input Weights:
[0.927776315380873]
Neuron #3:
Input Weights:
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[0.7639255282026901]

### OUTPUT LAYER ###
Neuron #1:
Output Weights:
[0.7352957201253741]

---------PERCEPTRON TRAINED NET---------
### INPUT LAYER ###
Neuron #1:
Input Weights:
[-2.820772753180527]
Neuron #2:
Input Weights:
[1.9277763153808731]
Neuron #3:
Input Weights:
[1.76392552820269]

### OUTPUT LAYER ###
Neuron #1:
Output Weights:
[0.7352957201253741]

---------PERCEPTRON PRINT RESULT---------
1.0  0.0  0.0   NET OUTPUT: 0.0   REAL OUTPUT: 0.0   ERROR: 0.0
1.0  0.0  1.0   NET OUTPUT: 0.0   REAL OUTPUT: 0.0   ERROR: 0.0
1.0  1.0  0.0   NET OUTPUT: 0.0   REAL OUTPUT: 0.0   ERROR: 0.0
1.0  1.0  1.0   NET OUTPUT: 1.0   REAL OUTPUT: 1.0   ERROR: 0.0

According to the results, it is possible to check whether the weights changed and 
conclude that the neural net learned how to classify when an alarm should be 
enabled or not. Reminder: The acquired knowledge belongs inside the weights 
[-2.820772753180527], [1.9277763153808731], and [1.76392552820269]. 
Besides, as the neurons are initialized with pseudo-random values, each time this 
code is run, the results change.
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ADALINE (traffic forecast)
To demonstrate the adaline algorithm, let us imagine that a small part of a city has an 
avenue and three streets lead to this avenue. In this avenue, there are many accidents 
and heavy traffic. Assume that the government traffic department has decided to 
develop a forecasting and warning system. This system aims to anticipate traffic 
jams, warning drivers and taking the necessary measures to reduce the incurred 
losses, as demonstrated in the following figure:

To develop the system, information is collected for every street and avenue for a 
week: the number of cars that travel on these routes per minute, as shown in the 
following table:

Sample Street A

(cars/minute)

Street B

(cars/minute)

Street C

(cars/minute)

Avenue

(cars/minute)
1 0.98 0.94 0.95 0.80

2 0.60 0.60 0.85 0.59
3 0.35 0.15 0.15 0.23
4 0.25 0.30 0.98 0.45
5 0.75 0.85 0.91 0.74
6 0.43 0.57 0.87 0.63
7 0.05 0.06 0.01 0.10
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Then, the architecture of a neural net to solve this problem is designed as shown in 
the following figure:

Next, let's analyze the second test method named testAdaline(). It is as follows:

private void testAdaline() {

  NeuralNet testNet = new NeuralNet();

  testNet = testNet.initNet(3, 0, 0, 1);

  System.out.println("---------ADALINE INIT NET---------");

  testNet.printNet(testNet);
    
  NeuralNet trainedNet = new NeuralNet();

  // first column has BIAS

  testNet.setTrainSet(new double[][] { { 1.0, 0.98, 0.94, 0.95 },
      { 1.0, 0.60, 0.60, 0.85 }, { 1.0, 0.35, 0.15, 0.15 },
      { 1.0, 0.25, 0.30, 0.98 }, { 1.0, 0.75, 0.85, 0.91 },
      { 1.0, 0.43, 0.57, 0.87 }, { 1.0, 0.05, 0.06, 0.01 } });
  testNet.setRealOutputSet(new double[] { 0.80, 0.59, 0.23, 0.45, 
0.74, 0.63, 0.10 });
  testNet.setMaxEpochs(10);
  testNet.setTargetError(0.0001);
  testNet.setLearningRate(0.5);
  testNet.setTrainType(TrainingTypesENUM.ADALINE);
  testNet.setActivationFnc(ActivationFncENUM.LINEAR);

  trainedNet = new NeuralNet();
  trainedNet = testNet.trainNet(testNet);

  System.out.println();



Chapter 2

[ 43 ]

  System.out.println("---------ADALINE TRAINED NET---------");

  testNet.printNet(trainedNet);

  System.out.println();
  System.out.println("---------ADALINE PRINT RESULT---------");

  testNet.printTrainedNetResult(trainedNet);
    
  System.out.println();
  System.out.println("---------ADALINE MSE BY EPOCH---------");
  System.out.println( Arrays.deepToString( trainedNet.getListOfMSE().
toArray() ).replace(" ", "\n") );    

}

The adaline test logic is very similar to perceptron's. The parameters that differ are 
as follows. Three neurons in the input layer, training dataset, output dataset, training 
type sets such as adaline, and activation function sets such as Linear. To finalize, 
adaline-trained net results and the adaline MSE list are printed. These results are 
shown in the following figure:
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The complete results are displayed via following code:
---------ADALINE INIT NET---------
### INPUT LAYER ###
Neuron #1:
Input Weights:
[0.39748670958336774]
Neuron #2:
Input Weights:
[0.0018141925587737973]
Neuron #3:
Input Weights:
[0.3705005221910509]
Neuron #4:
Input Weights:
[0.20624007274978795]

### OUTPUT LAYER ###
Neuron #1:
Output Weights:
[0.16125863508860827]

---------ADALINE TRAINED NET---------
### INPUT LAYER ###
Neuron #1:
Input Weights:
[0.08239521813153253]
Neuron #2:
Input Weights:
[0.08060471820877586]
Neuron #3:
Input Weights:
[0.4793193652720801]
Neuron #4:
Input Weights:
[0.259894055603035]

### OUTPUT LAYER ###
Neuron #1:
Output Weights:
[0.16125863508860827]

---------ADALINE PRINT RESULT---------
1.0    0.98  0.94  0.95  NET OUTPUT: 0.85884   REAL OUTPUT: 0.8  
ERROR: 0.05884739815477136
1.0    0.6    0.6    0.85  NET OUTPUT: 0.63925  REAL OUTPUT: 0.59
ERROR: 0.04925961548262592
1.0    0.35  0.15  0.15  NET OUTPUT: 0.22148  REAL OUTPUT: 0.23 ERROR: 
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-0.008511117364128656
1.0    0.25  0.3    0.98  NET OUTPUT: 0.50103  REAL OUTPUT: 0.45 
ERROR: 0.05103838175632486
1.0    0.75  0.85  0.91  NET OUTPUT: 0.78677   REAL OUTPUT: 0.74 
ERROR: 0.046773807868144446
1.0    0.43  0.57  0.87  NET OUTPUT: 0.61637   REAL OUTPUT: 0.63 
ERROR: -0.013624886458967755
1.0    0.05  0.06  0.01  NET OUTPUT: 0.11778  REAL OUTPUT: 0.1  ERROR: 
0.017783556514326462

---------ADALINE MSE BY EPOCH---------
[0.04647154331286084,
0.018478851884998992,
0.008340477769290564,
0.004405551259806042,
0.0027480838150394362,
0.0019914963464723553,
0.0016222114177244264,
0.00143318844904685,
0.0013337070214879325,
0.001280852868781586]

One more time, according to the abovementioned results, it is possible to conclude 
that the neural net learned to predict traffic jams in a specific area. This can be 
proven by changing weights and by the MSE list. Look at the graphic plotted using 
the MSE data in the following figure. It is easy to note that the MSE decreases as the 
number of epochs increases.
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Summary
This chapter presented the reader with the entire learning process of neural 
networks. We presented the very basic foundations of learning, inspired by human 
learning itself. To illustrate this process in practice, we have implemented two 
learning algorithms in Java and applied them in two examples. With this, the reader 
can gain a basic but useful understanding of how neural networks learn and even 
how one can systematically describe the learning process. This will be the foundation 
for the next chapter, which will present more complex examples.
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Handling Perceptrons
In this chapter, we are going to explore one of the most popular and basic types 
of neural network architecture: the perceptrons. This chapter also presents their 
extended generalized version, the so-called multilayer perceptrons, as well as their 
features, learning algorithms, and parameters. Also, the reader will learn how to 
implement them in Java and how to use them for solving some basic problems:

• Perceptrons
 ° Applications and limitations

• Multilayer perceptrons
 ° Classification
 ° Regression

• Backpropagation algorithm
• Java implementation
• Practical problems
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Studying the perceptron neural network
Perceptron is the most simple neural network architecture. Projected by Frank 
Rosenblatt in 1957, it has just one layer of neurons, receiving a set of inputs and 
producing a set of outputs. This was one of the first representations of neural 
networks to gain attention, particularly because of its simplicity. The structure of a 
single neuron is shown as follows:

Applications and limitations of perceptrons
However, scientists did not take long to conclude that a perceptron neural network 
could only be applied to simple tasks because of its simplicity. At that time, neural 
networks were being used for simple classification problems, but perceptrons 
usually failed when faced with more complex datasets. Let's review the first example 
of Chapter 2, How Neural Networks Learn, (AND) to better understand this issue.

Linear separation
The example consists of an AND function that takes two inputs x1 and x2. This 
function can be plotted in a two-dimensional chart as follows:
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Now, let's examine how the neural network evolves in the training by using the 
perceptron rule, considering a pair of two weights w1 and w2, initially 0.5, and a bias 
value of 0.5. Assume that the learning rate η equals 0.2.

Epoch x1 x2 w1 w2 b y t E Δw1 Δw2 Δb
1 0 0 0,5 0,5 0,5 0,5 0 -0,5 0 0 -0,1
1 0 1 0,5 0,5 0,4 0,9 0 -0,9 0 -0,18 -0,18
1 1 0 0,5 0,32 0,22 0,72 0 -0,72 -0,144 0 -0,144
1 1 1 0,356 0,32 0,076 0,752 1 0,248 0,0496 0,0496 0,0496
2 0 0 0,406 0,370 0,126 0,126 0 -0,126 0,000 0,000 -0,025
2 0 1 0,406 0,370 0,100 0,470 0 -0,470 0,000 -0,094 -0,094
2 1 0 0,406 0,276 0,006 0,412 0 -0,412 -0,082 0,000 -0,082
2 1 1 0,323 0,276 -0,076 0,523 1 0,477 0,095 0,095 0,095
… …
89 0 0 0,625 0,562 -0,312 -0,312 0 0,312 0 0 0,062
89 0 1 0,625 0,562 -0,25 0,313 0 -0,313 0 -0,063 -0,063
89 1 0 0,625 0,500 -0,312 0,313 0 -0,313 -0,063 0 -0,063
89 1 1 0,562 0,500 -0,375 0,687 1 0,313 0,063 0,063 0,063

After 89 epochs, we find the network to produce values close to the desired output. 
Since in this example, the outputs are binary (zero or one), we can assume that any 
value produced by the network that is below 0.5 is considered to be 0 and any value 
above 0.5 is considered to be 1. So, we can draw a function Y = x1w1 + x2w2 + b=0.5, 
with the final weights and bias found by the learning algorithm w1 = 0.562, w2 = 0.5, 
and b = -0.375, defining the linear boundary as shown in the following chart:
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This boundary is a definition of all classifications given by the network. You can see 
that the boundary is linear, given that the function is linear. Thus, the perceptron 
network is really suitable for problems whose patterns are linearly separable.

Classical XOR case
Let's analyze the XOR case, whose chart can be seen in the following figure:

We see that in two dimensions, it is impossible to draw a line to separate the two 
patterns. What would happen if we tried to train a single-layer perceptron to learn this 
function? Suppose that we tried; let's see what happened through the following table:

Epoch x1 x2 w1 w2 b y t E Δw1 Δw2 Δb
1 0 0 0,5 0,5 0,5 0,5 0 -0,5 0 0 -0,1
1 0 1 0,5 0,5 0,4 0,9 1 0,1 0 0,02 0,02
1 1 0 0,5 0,52 0,42 0,92 1 0,08 0,016 0 0,016
1 1 1 0,516 0,52 0,436 1,472 0 -1,472 -0,294 -0,294 -0,294
2 0 0 0,222 0,226 0,142 0,142 0 -0,142 0,000 0,000 -0,028
2 0 1 0,222 0,226 0,113 0,339 1 0,661 0,000 0,132 0,132
2 1 0 0,222 0,358 0,246 0,467 1 0,533 0,107 0,000 0,107
2 1 1 0,328 0,358 0,352 1,038 0 -1,038 -0,208 -0,208 -0,208
… …
127 0 0 -0,250 -0,125 0,625 0,625 0 -0,625 0,000 0,000 -0,125
127 0 1 -0,250 -0,125 0,500 0,375 1 0,625 0,000 0,125 0,125
127 1 0 -0,250 0,000 0,625 0,375 1 0,625 0,125 0,000 0,125
127 1 1 -0,125 0,000 0,750 0,625 0 -0,625 -0,125 -0,125 -0,125
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The perceptron just could not find any pair of weights that would drive the error 
below 0.625. This can be explained mathematically as we have already perceived from 
the chart that this function cannot be linearly separable in two dimensions. So, what if 
we add another dimension? Let's see the previous XOR chart in three dimensions:

In three dimensions, it is possible to draw a plane that would separate the patterns, 
provided that this additional dimension could properly transform the input data. Okay, 
but now, there is an additional problem: How can we derive this additional dimension 
since we have only two input variables? One obvious but "workaround" answer would 
be adding a third variable as a derivation from the two original ones. With this third 
variable a (derivation), our neural network would probably get the following shape:

Okay, now, the perceptron has three inputs, one of them being a composition of 
the other two. This also leads to a new question: How should this composition be 
processed? We can see that this component can act as a neuron, thereby giving the 
neural network a nested architecture. If so, there would be another new question: 
How would the weights of this new neuron be trained, since the error is on the 
output neuron?
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Popular multilayer perceptrons (MLPs)
As we can see, one simple example, in which the patterns are not linearly separable, 
has led us to more and more issues related to the use of the perceptron architecture. 
This need has led to the application of multilayer perceptrons. In Chapter 1, Getting 
Started with Neural Networks, we dealt with the fact that the natural neural network 
is structured in layers as well, and each layer captures pieces of information from a 
specific environment. In artificial neural networks, layers of neurons act in this way, 
by extracting and abstracting information from the data, transforming it into another 
dimension or shape.

In the XOR example, we found the solution to be the addition of the third component 
that would make a linear separation possible. However, there remained a few 
questions regarding how that third component would be computed. Now, let's 
consider the same solution as a two-layer perceptron, shown as follows:

Now, we have three neurons instead of just one, but in the output, the information 
transferred by the previous layer is transformed into another dimension or shape, 
whereby it would be theoretically possible to establish a linear boundary on the 
data points. However, the question of finding the weights for the first layer remains 
unanswered, or can we apply the same training rule to neurons other than the 
output? We are going to deal with this issue in the generalized delta rule section.

MLP properties
Multilayer perceptrons can have any number of layers and any number of neurons in 
each layer. The activation functions may be different on any layer. An MLP network 
is usually composed of at least two layers, one for the output and the other for the 
"hidden" layer.
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There are also some references that consider the input layer 
as the nodes that collect input data. Therefore, for these 
cases, the MLP is considered to have at least three layers. For 
the purposes of this book, let's consider the input layer as a 
special type of layer that has no weights, and as the effective 
layers, that is, those enabled to be trained, we'll consider the 
hidden and output layers.

A hidden layer is so-called because it actually "hides" its outputs from the external 
world. Hidden layers can be connected in series in any number, thus forming a deep 
neural network. However, the more layers a neural network has, the slower both the 
training and running would be, and according to mathematical foundations, a neural 
network with one or two hidden layers at most can learn as well as deep neural 
networks with dozens of hidden layers.

It is recommended that the activation functions be nonlinear in 
the hidden layers, particularly if in the output layer the activation 
function is linear. According to linear algebra, having a linear 
activation function in all layers is equivalent to having only one 
output layer, provided that the additional variables introduced 
by the layers would be mere linear combinations of the previous 
ones or the inputs. Usually, activation functions such as hyperbolic 
tangent or sigmoid are used because they are derivable.

MLP weights
In an MLP feedforward network, a certain neuron i receives data from a neuron j of 
the previous layer and forwards its output to a neuron k of the next layer , as can be 
seen in the following schema:
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MLPs in theory may be partially or fully connected. Partially means that not all 
neurons from one layer are connected to each neuron of the next layer, and fully 
connected means that all neurons from one layer are connected to all neurons of the 
next layer. The following figure shows both the partially and fully connected layers:

For mathematical simplicity, let's work only on fully connected MLPs, which can be 
described mathematically by the equation:

Where yo is the network output (if we have multiple outputs, we can replace y0 by 
Y, representing a vector), fo is the activation function of the output, l is the number 
of hidden layers, nhi is the number of neurons in the hidden layer i, wi is the weight 
connecting the ith neuron of the last hidden layer to the output, fi is the activation 
function of the neuron i, and bi is the bias of the neuron i. It can be seen that this 
equation gets larger, as the number of layers increase. In the last summing operation, 
there will be the inputs xi.

Recurrent MLP
Neural networks can be both feedforward and feedback (recurrent). So, it is possible 
that some neurons or layers forward signals to a previous layer. This behavior allows 
the neural network to maintain state on some data sequence, and this feature is 
particularly exploited when dealing with time series or handwriting recognition. For 
training purposes, a recurrent MLP network can have feedback connections only in 
the output layer. In order to give it a more fully recurrent nature, one can connect 
multiple recurrent MLPs in cascade.



Chapter 3

[ 55 ]

Although recurrent networks are very suitable for some problems, they are usually 
harder to train, and eventually, the computer may run out of memory while 
executing them. In addition, there are recurrent network architectures better than 
MLPs such as the Elman, Hopfield, echo state, and bi-directional RNN. However, 
we are not going to dive deep into these architectures, because this book focuses on 
the simplest applications for those who have minimal experience in programming. 
However, a good reference is the book of Haykin [2008], whose specifications can be 
found at the end of this book on recurrent networks for those who are interested in it.

MLP structure in an OOP paradigm
Bringing these concepts into the OOP point of view, we can review the classes 
already designed so far already designed, resulting in the following diagram:
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One can see that the neural network structure is hierarchical. A neural network is 
composed of layers that are composed of neurons. In the MLP architecture, there 
are three types of layers: input, hidden, and output. So, suppose that in Java, we 
would like to define a neural network consisting of three inputs, one output, and one 
hidden layer containing five neurons. The resulting code would be as follows:

NeuralNet n = NeuralNet();
InputLayer input = new InputLayer();
input.setNumberOfNeuronsInLayer(3);
HiddenLayer hidden = new HiddenLayer();
hidden.setNumberOfNeuronsInLayer(5);
OutputLayer output = new OutputLayer();
output.setNumberOfNeuronsInLayer(1);
////… 
n.setInputLayer(input);
n.setHiddenLayer(hidden);
n.setOutputLayer(output);

Interesting MLP applications
The two broader classes of problems that MLPs are suitable for are as follows: 
classification and regression. Classification means that given a dataset composed 
of records, each record should be labeled or classified. Regression means that given 
a set of inputs and outputs, one must find a function that maps the inputs to the 
outputs. Both types of problems belong to the category of supervised learning.

Classification in MLPs
Given a list of classes and a dataset, one wishes to classify them, according to a 
historical dataset containing records and their respective classes. The following  
table shows an example of this dataset, considering the subjects' average grades 
between 0 and 10.

Student 
ID

Subjects
Profession

English Math Physics Chemistry Geography History Literature Biology

89543 7.82 8.82 8.35 7.45 6.55 6.39 5.90 7.03 Electrical 
engineer

93201 8.33 6.75 8.01 6.98 7.95 7.76 6.98 6.84 Marketing 
professional

95481 7.76 7.17 8.39 8.64 8.22 7.86 7.07 9.06 Doctor

94105 8.25 7.54 7.34 7.65 8.65 8.10 8.40 7.44 Lawyer

96305 8.05 6.75 6.54 7.20 7.96 7.54 8.01 7.86 School 
principal
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Student 
ID

Subjects
Profession

English Math Physics Chemistry Geography History Literature Biology

92904 6.95 8.85 9.10 7.54 7.50 6.65 5.86 6.76 Programmer

… … …

One example is the prediction of profession based on academic grades. Let's consider 
a dataset of former students who are now working. We compile a dataset containing 
each student's average grade on each subject and his/her current profession. Note 
that the output would be the name of professions, which neural networks are not able 
to give directly. Instead, we need to make one column (one output) for each known 
profession. If that student chose a certain profession, the column corresponding to 
that profession would have the value one; otherwise, it would be zero. The following 
chart shows a view of how this matrix would look like:

Now, we want to predict which profession a student will be likely to choose on the 
basis of his/her grades. To this end, we structure a neural network containing the 
number of academic subjects as the input and the number of known professions as 
the output, and an arbitrary number of hidden neurons in the hidden layer. A neural 
net schema for this problem is presented in the following figure:
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For the classification problem, there is usually only one class for each data point. So, 
in the output layer, the neurons are fired to produce either zero or one; it is better 
to use activation functions that are output bounded between these two values. 
However, we must consider a case in which more than one neuron would fire, 
giving two classes for a record. There are a number of mechanisms to prevent this 
case, such as the softmax function or the winner-takes-all algorithm, for example. 
These mechanisms are going to be detailed in the practical application in Chapter 6, 
Classifying Disease Diagnosis.

After being trained, the neural network has learnt what the most probable profession 
for a given student will be, given his/her grades.

Regression in MLPs
Regression involves finding some function that maps a set of inputs to a set of 
outputs. The following table shows a dataset containing k records of m independent 
inputs X known to be bound to n dependent outputs.

Input-independent data Output-dependent data
X1 X2 … XM T1 T2 … TN
x1[0] x2[0] … xm[0] t1[0] t2[0] … tn[0]
x1[1] x2[1] … xm[1] t1[1] t2[1] … tn[1]
… … … … … … … …
x1[k] x2[k] … xm[k] t1[k] t2[k] … tn[k]

The preceding table can be compiled in the matrix format:

Where
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Unlike the classification, the output values are numerical instead of labels or classes. 
There is also a historical database containing records of some behavior that we 
would like the neural network to learn. One example is the prediction of bus ticket 
prices between two cities. In this example, we collect information from a list of cities 
and the current ticket prices of a bus departing from one city and arriving in another. 
We structure the city features as well as the distance and/or time between them as 
the input and the bus ticket price as the output. The following figure illustrates this 
road net between the cities, represented as letters:

The following table shows a list of records taken from the cities mentioned in the 
preceding image and the structure to be fed into the neural network:

Features of city of origin Features of city of destination Features of the route Ticket 
farePopulation GDP Routes Population GDP Routes Distance Time Stops

500,000 4.5 6 45,000 1.5 5 90 1,5 0 15

120,000 2.6 4 500,000 4.5 6 30 0,8 0 10

30,000 0.8 3 65,000 3.0 3 103 1,6 1 20

35,000 1.4 3 45,000 1.5 5 7 0.4 0 5

…

120,000 2.6 4 12,000 0.3 3 37 0.6 0 7

Having structured the dataset, we define an MLP network containing the exact 
number of features (multiplied by 2 in the case of two cities) plus the route features 
in the input, one output, and an arbitrary number of neurons in the hidden layer. 
In the case presented in the preceding table, there would be nine inputs. Since the 
output is numerical, there is no need to bound the output layer, so it is better to 
choose the linear function as the activation function in the output layer.
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This neural network would give an estimate price for a route between two cities, 
which currently is not served by any bus transportation company.

Learning process in MLPs
The multilayer perceptron network learns on the basis of the delta rule, which is 
also inspired by the gradient descent optimization method. The gradient method is 
broadly applied to find the minima or maxima of a given function. An example of 
evolution of a gradient based search method is shown in the following figure:

This method is applied at "walking," the direction where the function's output is 
higher or lower, depending on the criteria. This concept is explored in the delta rule.

The function that the delta rule wants to minimize is the error between the neural 
network output and the target output, and the parameters to be found are the 
neural weights. This is an enhanced learning algorithm compared to the perceptron 
rule, because it takes into account the activation function derivative g'(h), which in 
mathematical terms indicates the direction where the function is decreasing the most.
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Simple and very powerful learning  
algorithm – Backpropagation
Although the delta rule works well for the neural networks having only output and 
input layers, for the MLP networks, the pure delta rule cannot be applied because 
of the hidden layer neurons. To overcome this issue, in the 1980s, Rummelhart et al. 
proposed a new algorithm, also inspired by a gradient method called backpropagation.

This algorithm is indeed a generalization of the delta rule for MLPs. The benefits of 
having additional layers to abstract more data from the environment have motivated 
the development of a training algorithm that can properly adjust the weights of the 
hidden layer. On the basis of the gradient method, the error from the output would 
be (back)propagated to the previous layers, thereby making the weight update using 
the same equation as the delta rule, possible. The algorithm runs according to the 
flowchart in the figure:

The second step is the backpropagation itself. What it does is find the weight 
variation according to the gradient, which is the base for the delta rule.

Where E is the error, wji is the weight between the neurons i and j, oi is the output of 
the ith neuron, hi is the weighted sum of that neuron's inputs before passing to the 
activation function. Remember that oi = f(hi), where f is the activation function.
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Updating in the hidden layers is a bit more complicated as we consider the error as 
a function of all the neurons between the weight to be updated and the output. To 
facilitate this process, we should compute the sensibility or the backpropagation error:

Further, the weight update is as follows:

The calculation of the backpropagation error varies for the output and for the hidden 
layers as follows:

• Backpropagation for the output layer

 ° Where oi is the ith output, ti is the desired ith output, f'(hi) is the 
derivative of the output activation function, and hi is the weighted 
sum of the ith neuron inputs.

• Backpropagation for the hidden layer

 ° Where l is a neuron of the layer ahead, wil is the weight that connects 
the current neuron to the lth neuron of the layer immediately ahead.

For the sake of simplicity, we do not demonstrate fully how the backpropagation 
equation was developed. Anyway, if the reader is interested in the details, we 
recommend the references [Haykin, 2008; Rumelhart et al., 1986], which the reader can 
consult for further information.

This is how backpropagation works, enabling MLP networks to learn.
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Elaborate and potent learning  
algorithm – Levenberg–Marquardt
The backpropagation algorithm, like all gradient-based methods, presents usually 
slow convergence, particularly when it falls in a zig-zag situation and when the 
weights are changed to almost the same value every two iterations. This drawback 
was studied in problems like curve-fitting interpolations by Kenneth Levenberg in 
1944 and later by Donald Marquart in 1963, who developed a method for finding 
coefficients based on the Gauss–Newton algorithm and the gradient descent 
algorithm, so from there comes the name of the algorithm.

The algorithm deals with some optimization terms that are beyond the scope of this 
book, but in the references section, the reader will find good resources to learn more 
about these concepts, so we will present this method in a simpler way. Let's suppose 
that we have a list of inputs x's and outputs t's:

We have seen that a neural network has the property to map inputs to outputs just 
like a nonlinear function f with coefficients W (weights and bias):

The nonlinear function will produce values different from the outputs T because we 
marked the variable Y in the equation. The Levenberg–Marquardt algorithm works 
over a Jacobian matrix, which is a matrix of all partial derivatives with respect to each 
weight and bias for each data row. So, the Jacobian matrix has the following format:
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Where k is the total number of data points and p is the total number of weights and 
bias. In the Jacobian matrix, all weights and bias are stored serially in a single row. 
The elements of the Jacobian matrix are calculated from the gradients:

The partial derivative of the error E in relation to each weight is calculated in the 
backpropagation algorithm, so this algorithm is going to run the backpropagation 
step as well.

In every optimization problem, one wishes to minimize the total error:

Where W (weights and bias in the NN case) are the variables to optimize. The 
optimization algorithm updates W by adding ΔW. By applying some algebra, we can 
extend the last equation as follows:

Converting to the vector and notation, we obtain:

Finally, by setting the error E to zero, we get the Levenberg–Marquardt equation 
after some manipulation:

Which is the weight update rule. As can be seen, it involves matrix operations 
such as transposition and inversion. The Greek letter λ is the damping factor, an 
equivalent of the learning rate.
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Hands-on MLP implementation!
Now, let's implement all the theory that we've discussed so far. Here, we use the 
classes that define the ANN structures NeuralNet, Layer, Neuron, and so on. Now, 
we add HiddenLayer and OutputLayer functions, which are inherited from the 
Layer class, to implement multilayer neural networks.

We also implement the two learning algorithms that we've presented in this chapter: 
Backpropagation and Levenberg–Marquardt. In the Training class, we add two new 
terms to the enum Training types: BACKPROPAGATION and LEVENBERG_MARQUARDT.

In order to make the execution of the Levenberg–Marquardt algorithm possible, we 
add a new package called edu.packt.neuralnet.util and two more classes, namely 
Matrix and IdentityMatrix. These classes implement matrix operations, which are 
applied in the Levenberg–Marquardt algorithm. However, we are not going to detail 
these classes now; we're just going to use the basic operations of matrix.

The following table shows a list of relevant attributes and methods of the classes 
used in this chapter:

Class name: Training
Note: This class is abstract and cannot be instantiated.

Enums
Note: Enum helps to control different types.
public enum TrainingTypesENUM {
  PERCEPTRON, ADALINE, 
BACKPROPAGATION;
}

Enumeration to store types of training 
supported by project (Backpropagation was 
added)

Class name: Backpropagation
Note: This class inherits attributes and methods from the Training class.

Attributes
None

Method
public NeuralNet train (NeuralNet 
n)

Trains the neural network using the 
backpropagation algorithm. This method 
overrides the method from the Training 
class
Parameters: NeuralNet object (neural net 
untrained)
Returns: NeuralNet object (neural net 
trained via backpropagation)
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private NeuralNet forward 
(NeuralNet n, int row)

Performs the propagation of the signal from 
the first layer to the hidden layer and to the 
output layer
Parameters: NeuralNet object, line 
number of training set
Returns: NeuralNet object

private NeuralNet backpropagation 
(NeuralNet n, int row)

Performs the retro-propagation of the signal 
from the output layer to the hidden layer 
and to the first layer. In this method, the 
weights are adjusted
Parameters: NeuralNet object, line 
number of training set.
Returns: NeuralNet object.

Class implementation with Java: file Backpropagation.java
Class name: LevenbergMarquardt

Note: This class inherits attributes and methods from the backpropagation class.
Attributes

private double dampingFactor The damping factor, which also works as 
the learning rate

private Matrix jacobian The Jacobian matrix used in the Levenberg–
Marquardt algorithm

Method
public NeuralNet train (NeuralNet 
n)

Trains the neural network using the 
Levenberg–Marquardt algorithm. This 
method overrides the method from the 
backpropagation class
Parameters: NeuralNet object (neural net 
untrained)
Returns: NeuralNet object (neural net 
trained via backpropagation)

public void buildJacobianMatrix 
(NeuralNet n, int row)

Calculate the gradients for each weight 
and bias of the neural network for the 
corresponding row of the training dataset 
and saves them in the corresponding row in 
the Jacobian matrix
Parameters: NeuralNet object (neural net 
untrained), row (the ith data point)
Returns: Nothing
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Class name: NeuralNet
Note: This class already existed in previous version and has been updated as follows:

Attributes
private double[][] 
realMatrixOutputSet

Matrix to store the training set of the output 
data (matrix format)

private double errorMean Real number to store the mean of the error 
between two or more neurons

private ActivationFncENUM 
activationFncOutputLayer

Enum value of the activation function that 
will be used in the output layer of the net

Methods
Note: The getters and setters methods of these attributes were created too.

Class implementation with Java: file NeuralNet.java

The class diagram changes are shown in the following figure. Attributes and 
methods already explained in the previous chapters and their configuration methods 
(getters and setters) were omitted.
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Backpropagation in action
We have seen in the flowchart that the backpropagation algorithm has two phases:

• Forward the neural signals
• Backpropagate the error

So, the backpropagation class will have two special methods for each of these phases: 
forward() and backpropagation(). The train() method of the backpropagation 
class will call these two latter functions.

Exploring the code
Let's analyze the methods forward, backpropagation, and train. The train method 
calls forward and backpropagation.

public NeuralNet train(NeuralNet n) {
    
    int epoch = 0;
    setMse(1.0);
    
    while(getMse() > n.getTargetError()) {
      
      if ( epoch >= n.getMaxEpochs() ) break;
      
      int rows = n.getTrainSet().length;
      double sumErrors = 0.0;
      
      for (int rows_i = 0; rows_i < rows; rows_i++) {
        
        n = forward(n, rows_i);
        n = backpropagation(n, rows_i);
        sumErrors = sumErrors + n.getErrorMean();
        
      }
      
      setMse( sumErrors / rows );
      

      System.out.println( getMse() );
      

      epoch++;
      

    }
    

    System.out.println("Number of epochs: "+epoch);
    

    return n;

  }
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First, this code gets the training parameters and sets the MSE (which stands for 
mean square error), which will be the stop condition. The first loop handles this stop 
condition in case the MSE falls below the target. Also, inside this loop, there is a 
break in case the number of epochs currently executed reaches the maximum.

The second loop will go over every data point in the training dataset, repeating for 
each data point the training process, first calling the forward function and then the 
backpropagation function, which will be detailed ahead in this section. The errors are 
summed up. After going over all the data points in the training set, this method sets 
the current MSE, prints it on the screen, and increases the number of epochs.

Now, let's analyze the forward and backpropagation functions. Since they are quite 
long, we are going to explore the most important parts.

The forward function executes the neural computation from the input to the output 
layers. For simplicity, this implementation will handle only one hidden layer and 
one output layer, provided that this simple architecture is proved to work quite 
well when compared to multiple hidden layer networks. The function receives as a 
parameter the neural network and the row of the dataset to be forwarded.

private NeuralNet forward(NeuralNet n, int row)

It initializes some parameters such as sum error and the estimated and real outputs. 
There is basically one major loop containing two minor loops, one for the hidden 
layer and the other for the output layer.

for (HiddenLayer hiddenLayer : listOfHiddenLayer) {
        
  int numberOfNeuronsInLayer = hiddenLayer.
getNumberOfNeuronsInLayer();
        
  for (Neuron neuron : hiddenLayer.getListOfNeurons()) {
          

    for (int layer_j = 0; layer_j < numberOfNeuronsInLayer - 1; layer_
j++) { 
  
    }
        
    for (int outLayer_i = 0; outLayer_i < n.getOutputLayer().
getNumberOfNeuronsInLayer(); outLayer_i++){
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    }
        
    double errorMean = sumError / n.getOutputLayer()
        .getNumberOfNeuronsInLayer();
    n.setErrorMean(errorMean);
  
    n.getListOfHiddenLayer().get(hiddenLayer_i)
        .setListOfNeurons(hiddenLayer.getListOfNeurons());
              
  }
}

After computing the outputs for the hidden and output layers, this function finally 
calculates the error, which will be used for backpropagation. The computation for 
the hidden layer and the output layer is detailed in the source codes attached to  
this chapter.

The backpropagation function also receives as parameters the neural network and 
the row indicating the data point to be trained.

private NeuralNet backpropagation(NeuralNet n, int row)

For an easier understanding, this function is divided into six parts:

1. Initialize training parameters and retrieve neural network layers (hidden  
and output).

2. Calculate the sensibility for the output layer.
3. Calculate the sensibility for the hidden layer.
4. Update the weights of the output layer.
5. Update the weights of the hidden layer.
6. Update the neural layers in the neural network.

Let's focus on parts 2 to 5. The sensibility for the output layer is quite simple. 
Looking at the line computing the sensibility parameter shows us the delta rule.

//sensibility output layer
for (Neuron neuron : outputLayer) {
  error = neuron.getError();
  netValue = neuron.getOutputValue();
  sensibility = derivativeActivationFnc( 
      n.getActivationFncOutputLayer(), netValue ) * error;
      
  neuron.setSensibility(sensibility);
}
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For the hidden layer, there is a need to sum up the weights and the sensibilities of 
the output layer. The local variable called tempSensibility handles this sum, after 
being used in the calculation of the sensibility. It can be seen that this parameter is 
calculated inside a loop that runs over all neurons contained in that layer.

for (Neuron neuron : hiddenLayer) {
      
  sensibility = 0.0;
      
  if(neuron.getListOfWeightIn().size() > 0) { //exclude bias
    ArrayList<Double> listOfWeightsOut = new ArrayList<Double>();
        
    listOfWeightsOut = neuron.getListOfWeightOut();
        
    double tempSensibility = 0.0;
        
    int weight_i = 0;
    for (Double weight : listOfWeightsOut) {
      tempSensibility = tempSensibility + (weight * 
          outputLayer.get(weight_i)
          .getSensibility());
      weight_i++;
    }
        
    sensibility = derivativeActivationFnc ( 
      n.getActivationFnc(), neuron.getOutputValue() ) *
      tempSensibility;
        
    neuron.setSensibility(sensibility);
        
  }
}

The weight updating in the output layer is as simple as its respective sensibility. 
There is a loop inside this part to walk over all the hidden layer neurons connected 
to each output neuron. The local variable called newWeight is in charge of receiving 
the new value for the respective weight.

  //fix weights (teach) [output layer to hidden layer]
  for (int outLayer_i = 0; outLayer_i < n.getOutputLayer().
getNumberOfNeuronsInLayer(); outLayer_i++) {  
    for (Neuron neuron : hiddenLayer) {
      double newWeight = neuron.getListOfWeightOut()
        .get( outLayer_i ) + ( n.getLearningRate() * 
            outputLayer.get( outLayer_i )
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            .getSensibility() * 
            neuron.getOutputValue() );
        
      neuron.getListOfWeightOut().set(outLayer_i,
            newWeight);
    }
  }

For the hidden layer, it is the sensibility parameters that are used, according to the 
equations shown in the backpropagation section. There is also an inside loop to walk 
over all the neural inputs.

  //fix weights (teach) [hidden layer to input layer]
  for (Neuron neuron : hiddenLayer) {
      
    ArrayList<Double> hiddenLayerInputWeights = new 
ArrayList<Double>();
    hiddenLayerInputWeights = neuron.getListOfWeightIn();
      
    if(hiddenLayerInputWeights.size() > 0) { //exclude bias
      
      int hidden_i = 0;
      double newWeight = 0.0;
      for (int i = 0; i < n.getInputLayer().
getNumberOfNeuronsInLayer(); i++) {
          
      newWeight = hiddenLayerInputWeights.get(hidden_i) +
          (  n.getLearningRate() *
            neuron.getSensibility() * 
            n.getTrainSet()[row][i]  ); 
          
      neuron.getListOfWeightIn().set(hidden_i, newWeight);
          
      hidden_i++;
      }
    }      
  }

Levenberg–Marquardt implementation
The Levenberg–Marquardt algorithm uses many features of the backpropagation 
algorithm; that's why we inherited this class from backpropagation. Basically, the 
train function is the same, except for the following piece of code:

  for (int rows_i = 0; rows_i < rows; rows_i++) {  
    n = forward(n, rows_i);
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    buildJacobianMatrix(n, rows_i);
    sumErrors = sumErrors + n.getErrorMean();    
  }
  n=updateWeights(n);

The loop, where it goes over the training dataset, calls the buildJacobianMatrix 
method for each data row. This method calls the original version from the inherited 
backpropagation method in order to compute the gradients.

As seen in the LMA theory explained earlier, the row of a Jacobian matrix contains 
all weights and the bias in a serial sequence. So, the corresponding columns of the 
weights in the Jacobian matrix can be detailed as in the following table:

Layer Weight or bias Position
Hidden jth weight of the ith 

neuron
(i * (numberOfInputs)) + j

Output Bias of the ith neuron ((numberOfInputs) * 
(numberOfHiddenNeurons - 1)) + 
(i * (numberOfHiddenNeurons) + 
numberOfHiddenNeurons)

Since the buildJacobianMatrix method is a bit similar to backpropagation, we are 
going to highlight the Jacobian row construction. For the weights in the hidden layer, 
the following line of code is called:

jacobian.setValue( row, ( i * ( numberOfInputs ) ) + j,
    ( neuron.getSensibility() *
    n.getTrainSet()[row][j] ) / nb.getErrorMean() );

We can see the sensibility of the hidden neuron being used in the gradient. Now, for 
the output layer, we use the following:

jacobian.setValue( row,
    ( numberOfInputs + 1 ) * ( numberOfHiddenNeurons ) +
    ( i * ( numberOfHiddenNeurons + 1 ) ) + j,
    ( output.getSensibility() * neuron.getOutputValue() ) / 
        n.getErrorMean() );

In this piece of code, the neuron object refers to the hidden neuron that precedes the 
output layer.

One more difference between the backpropagation and the Levenberg–Marquardt 
algorithm is that the weights here are updated once at an epoch, not on every data 
point. This is necessary because the Jacobian matrix is built using the entire dataset.
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We can see in the train method that after building the Jacobian matrix, the algorithm 
calls the updateWeights method. In this method, the Levenberg–Marquardt 
matrix equation is solved, and then, the weights are added to the corresponding 
contribution from the delta matrix.

Solution of the Levenberg–Marquardt matrix equation:

Matrix term1 = jacobian.transpose().multiply(jacobian) 
    .add(new IdentityMatrix(jacobian.getNumberOfColumns())
    .multiply(damping));
Matrix term2 = jacobian.transpose().multiply(error);
Matrix delta = term1.inverse().multiply(term2);

Update of the jth weight of the ith neuron in the hidden layer:

newWeight = hiddenLayerInputWeights.get( i ) + 
    delta.getValue( ( i * ( numberOfInputs + 1 ) + j ) ,0 );
hidden.getListOfWeightIn().set( i, newWeight );
neuron.getListOfWeightIn().set( hidden_i, newWeight );

For the output layer:

newWeight = neuron.getListOfWeightOut().get(i) + 
    delta.getValue(  ( numberOfInputs + 1 ) * 
              ( numberOfHiddenNeurons ) +
              ( i*(numberOfHiddenNeurons+1) )+j , 0);
neuron.getListOfWeightOut().set(i, newWeight);
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Practical application – types of university 
enrolments
In Brazil, one of the ways for a person to enter university is taking an exam and if he/
she achieves the minimum grade required for the course that he/she is seeking, then 
he/she can enroll. To demonstrate the backpropagation algorithm, let us consider this 
scenario. Data showed in the following table was collected from a university database. 
The second column represents the person's gender (one means female, and zero means 
male); the third column has grades scaled by 100, and the last column is formed by two 
neurons (1,0 means performed enrollment, and 0,1 means waiver enrollment.

Sample Gender Grade Enrollment

status
1 1 0.73 1,0
2 1 0.81 1,0
3 1 0.86 1,0
4 0 0.65 1,0
5 0 0.45 1,0
6 1 0.70 0,1
7 0 0.51 0,1
8 1 0.89 0,1
9 1 0.79 0,1
10 0 0.54 0,1

The following figure displays the architecture of the neural net to solve this problem:
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Now, let's analyze the test method named testBackpropagation(). It is as follows:

private void testBackpropagation(){
    NeuralNet testNet = new NeuralNet();
    
    testNet = testNet.initNet(2, 1, 3, 2);
    
    System.out.println("---BACKPROPAGATION INIT NET---");
    
    testNet.printNet(testNet);
    
    NeuralNet trainedNet = new NeuralNet();
    
    // first column has BIAS
    testNet.setTrainSet(new double[][] { { 1.0, 1.0, 0.73 }, { 1.0, 
1.0, 0.81 }, { 1.0, 1.0, 0.86 }, { 1.0, 1.0, 0.95 }, { 1.0, 0.0, 0.45 
}, { 1.0, 1.0, 0.70 }, { 1.0, 0.0, 0.51 }, { 1.0, 1.0, 0.89 }, { 1.0, 
1.0, 0.79 }, { 1.0, 0.0, 0.54 }    });
    testNet.setRealMatrixOutputSet(new double[][] { {1.0, 0.0}, {1.0, 
0.0}, {1.0, 0.0}, {1.0, 0.0}, {1.0, 0.0}, {0.0, 1.0}, {0.0, 1.0},  
{0.0, 1.0}, {0.0, 1.0}, {0.0, 1.0}    });
    testNet.setMaxEpochs(1000);
    testNet.setTargetError(0.002);
    testNet.setLearningRate(0.1);
    testNet.setTrainType(TrainingTypesENUM.BACKPROPAGATION);
    testNet.setActivationFnc(ActivationFncENUM.SIGLOG);
    
    testNet.setActivationFncOutputLayer( 
            ActivationFncENUM.LINEAR );
    
    trainedNet = testNet.trainNet(testNet);

    System.out.println();
    System.out.println("---BACKPROPAGATION TRAINED NET---");

    testNet.printNet(trainedNet);

}
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The backpropagation test logic is similar to Adaline's and perceptron's. First, an 
object of the NeuralNet class is created and used for initializing the net with two 
neurons in the input layer, one hidden layer with three neurons, and two neurons in 
the output layer. The data to train is taken from the preceding table. The maximum 
number of epochs is large, because the backpropagation algorithm prolongs the 
learning process. To conclude, the backpropagation-trained net weights and the MSE 
list are printed. A summary of the results is shown in the following figure:
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Analyzing the graphic by using the MSE of each epoch plotted in the following 
figure, it is possible to conclude that neural net learned to classify, on the basis of 
gender and grade, whether a person will or will not enroll at this university.

Summary
In this chapter, we've seen how perceptrons can be applied to solve linear separation 
problems and discussed their limitations with respect to the classification of 
nonlinear data. To suppress these limitations, we presented multilayer perceptrons 
(MLPs) and a new training algorithm called backpropagation. We've also seen 
some classes of problems that MLPs can be applied to, such as classification and 
regression. It's important to assimilate such concepts to understand their applications 
in the subsequent approaches. The Java implementation explored the power of the 
backpropagation algorithm with respect to updating the weights in both the output 
layer and the hidden layer. One practical application is shown to demonstrate the 
MLPs with respect to the solutions of the considered problems.

In the next chapter, we will explore the other learning paradigm of neural networks, 
unsupervised learning, that differs slightly from the learning algorithms that we've 
seen in this chapter; however, it can produce amazing results.
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Self-Organizing Maps
In this chapter, we present a neural network architecture that is suitable for 
unsupervised learning: Self-Organizing Maps (SOMs), also known as Kohonen 
network. A special feature of this type of neural network is that they can categorize 
records of data without any target output. In this chapter, we are going to explore 
how this is achieved, as well as an application to attest its capacity. The subtopics of 
this chapter are as follows:

• Neural networks unsupervised learning
 ° Competitive learning

• Kohonen SOMs
 ° 1-Dimensional SOMs
 ° 2-Dimensional SOMs

• Problems solved with unsupervised learning
• Coding of the Kohonen algorithm
• Practical problems
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Neural networks' unsupervised way  
of learning
We've been acquainted with this type of learning in Chapter 2, How Neural Networks 
Learn, and now, we are going to explore the features of this learning paradigm in 
a detailed fashion. Unsupervised learning algorithms in essence aim at finding 
patterns within datasets by using only the information presented in the datasets 
themselves. Here, the unsupervised learning algorithm will adjust the parameters 
(weights in the case of neural networks) without any error measure, and this is 
the crucial feature that distinguishes unsupervised from supervised learning. The 
learning itself is triggered only on the basis of the fact that in neurology, similar 
stimuli produce similar responses. So, applying this fundamental knowledge to 
artificial neural networks, we can say that similar data produce similar outputs, and 
these outputs can be grouped in clusters.

Although this learning may be used in other mathematical fields such as statistics, its 
core functionality is intended and designed for machine learning problems such as 
data mining and pattern recognition. Neural networks are a subfield in the machine 
learning discipline, and provided that their structure allows iterative learning, they 
serve as a good framework to apply this concept on.

One wishes to apply unsupervised learning algorithms when there is no defined 
target on the data, as well as there is a need to find hidden patterns amongst the 
data. Most of the unsupervised learning applications are aimed at clustering tasks, 
which means that similar data points are clustered together, while different data 
points from different clusters. Further, one application that unsupervised learning is 
suitable for is dimensionality reduction, wherein one wants some multidimensional 
data to be classified or reorganized in a less-dimensional domain. In the references 
[Duda et. al, 2001; Hinton et. al, 1999; Rummelhart & Zipser, 1985; Kohonen, 1982] the 
reader may find a useful list of articles that show more examples of applications of 
unsupervised learning.

Some unsupervised learning algorithms
There are a multitude of unsupervised algorithms, not only for neural networks. 
Examples are K-means, expectation maximization, methods of moments, and  
so on. Such algorithms assume the entire dataset as the knowledge to be learned,  
so one common feature through all the learning algorithms is that they do not  
have an input–output relationship in the current dataset. However, one wishes 
to find a different meaning of these data, and that's the goal of any unsupervised 
learning algorithm.
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Bringing this concept into the neural network context, let's take a look at an ANN 
and how it deals with data in an unsupervised organization.

The neural network output is considered to be an abstraction of the original data 
points. As opposed to the supervised learning paradigm, there is no causality 
between the input data points or data variables; instead, we want the neural network 
to derive consequent variables that would be able to give another meaning to the 
presented data. While in supervised learning algorithms, we usually have a smaller 
number of outputs, for unsupervised learning, there is a need to produce an abstract 
data representation that may require a high number of outputs. However, except 
for classification tasks, their meaning is totally different from the one presented 
in the case of supervised learning. Usually, each output neuron is responsible for 
representing a feature or a class present in the input data. In most architectures, not 
all output neurons need to be activated at a time; usually, only a restricted set of 
output neurons is fired, meaning that a neuron is able to better represent most of the 
information being fed as the neural input.

One advantage of unsupervised learning over supervised 
learning is that as less computational power is required 
by the former for the learning of huge datasets, the time 
consumption increases linearly, while for supervised 
learning, it increases exponentially.

In this chapter, we are going to explore two unsupervised learning algorithms: 
competitive learning and Kohonen SOMs.
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Competitive learning or winner takes all
As the name implies, competitive learning handles a competition between the output 
neurons to determine which one is the winner. To facilitate understanding, suppose 
we want to train a single layer neural network with two inputs and four outputs, as 
shown in the following figure:

Every output neuron is then connected to these two inputs; hence, for each neuron, 
there are two weights.

For this learning, the bias is dropped from the neurons, so 
the neurons will process only the weighted inputs.

The competition starts after the data have been processed by the neurons. The 
winner neuron will be the one that produces the greatest output value. One 
additional difference compared to the supervised learning algorithm is that only the 
winner neuron may update its weights, while the others remain unchanged. This is 
the so-called winner-takes-all rule. This intention to bring the neuron "nearer" to the 
input causes it to win the competition.

Considering that every input neuron i is connected to all output neurons j through a 
weight wij. In our case, we would have a set of weights:

Provided that the weights of every neuron have the same dimensionality of the input 
data, let's consider all the input data points together in a plot with the weights of 
each neuron.
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In this chart, let's consider the circles as the data points and the squares as the neuron 
weights. We can see that some data points are closer to certain weights, while the 
others are farther but nearer to others. The neural network performs computations 
related to the distance between the inputs and the weights:

The result of this equation will determine how "strong" a neuron is against its 
competitors. The winner neuron connections are then adjusted to the neurons 
according to the following update rule:

Where η denotes the learning rate. After many iterations, the weights are driven 
so near enough to the data points that triggers the greatest output values on the 
corresponding neuron, that weight updates are either too small or fall in a zig-zag 
pattern. Finally, when the network is already trained, the chart takes another shape:
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As can be seen, the neurons form centroids that surround the points capable of 
making the corresponding neuron stronger than its competitors.

In an unsupervised neural network, the number of outputs is 
completely arbitrary. Sometimes, only some neurons are able 
to change their weights, while in other cases, all the neurons 
may respond differently to the same input, causing the neural 
network to never learn. For these cases, it is recommended 
either to review the number of output neurons or to consider 
another type of unsupervised learning.

There are basically two stopping conditions of competitive learning:

• Predefined number of epochs: This prevents our algorithm from running for 
a relatively long time without convergence

• Minimum value of weight update: This prevents the algorithm from running 
longer than necessary

Kohonen self-organizing maps (SOMs)
This network architecture was created by the Finnish professor Teuvo Kohonen at 
the beginning of the 80s. It consists of one single-layer neural network capable of 
providing a "visualization" of the data in one or two dimensions.

Theoretically, a Kohonen network would be able to provide a 3D 
(or even a higher-dimensional) representation of the data; however, 
in printed material, such as this book, it is not possible to show 3D 
charts without overlapping some data. Thus, in this book, we are 
going to deal only with 1D and 2D Kohonen networks.

The major difference between the Kohonen SOMs and the traditional single-layer 
competitive neural networks is the concept of neighborhood neurons. While in a 
neural network, usually, there is no importance of the order in which the neurons are 
positioned in the output, in an SOM, the neighboring neurons play a relevant role 
during the learning phase.

An SOM has two modes of functioning: mapping and learning. In the mapping 
mode, the input data is classified in the most appropriate neuron, while in the 
learning mode, the input data helps the learning algorithm to build the "map." This 
map can be interpreted as a lower-dimensional representation from a certain dataset.

In this chapter, we are going to present two types of SOMs: 1D and 2D SOMs.



Chapter 4

[ 85 ]

One-Dimensional SOM
This architecture is similar to the network presented in the last section: competitive 
learning, with the addition of the neighborhood amongst the output neurons.

Note that every neuron on the output layer has two neighbors. Similarly, the neuron 
that fires the greatest value updates its weights, but in an SOM, the neighboring 
neurons also update their weights at a relatively slow rate.

The effect of the neighborhood extends the activation area to a wider area of the 
map, provided that all the output neurons observe an organization, a path in the 1D 
case. The neighborhood function also allows for a better exploration of the properties 
of the input space, since it forces the neural network to maintain the connections 
between neurons, therefore resulting in more information in addition to only the 
clusters that are formed.

In a plot of the input data points with the neural weights, we can see the path formed 
by the neurons.
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In the chart presented here, for the sake of simplicity, we plotted only the output 
weights to demonstrate how the map is designed in a (in this case) 2D space. After 
training over many iterations, the neural network converges to the final shape that 
represents all data points. Provided this structure, a certain set of data may cause the 
Kohonen network to design another shape in the space. This is a good example of 
dimensionality reduction, since a multidimensional dataset when presented to the SOM 
is able to produce a single line (in the 1D SOM) that "summarizes" the entire dataset.

Two-Dimensional SOM
This is the architecture that is most frequently used to demonstrate the power of a 
Kohonen neural network visually. The output layer is a matrix containing N x N 
neurons, interconnected like a grid:

In 2D SOMs, every neuron now will have up to four neighbors, although in some 
representations, the diagonal neurons may also be considered, thus resulting in up  
to eight neighbors. Basically, the working principle of 2D SOMs is the same. Let's  
see an example of how a 3 x 3 SOM plot looks in a 2D chart (considering two input 
variables):
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First, the untrained Kohonen network shows a shape that is very strange and screwed 
up. The shape of the weights will depend solely on the input data that are going to be 
fed to the SOM. Let's see an example of how the map starts to organize itself.

• Suppose that we have the dense dataset shown in the following plot:

• Upon the application of the SOM, the 2D shape gradually changes, until the 
network achieve its final configuration:

The final shape of a 2-D SOM may not always be a perfect square; instead, it will 
resemble a shape that could be drawn from the dataset. The neighborhood function 
is an important component in the learning process because it approximates the 
neighboring neurons in the plot, and the structure moves to a configuration that is 
more "organized."

The grid on a chart is just for didactic purposes. There are 
other ways of illustrating an SOM diagram, such as the 
U-matrix and the cluster boundaries.



Self-Organizing Maps

[ 88 ]

Step-by-step of SOM learning
An SOM aims at classifying the input data by clustering data points that trigger the 
same response on the output. Initially, the untrained network will produce random 
outputs, but as more examples are presented, the neural network identifies which 
neurons are more often activated, and then, their "position" in the SOM output space 
is changed. This algorithm is based on competitive learning, which means that a 
winner neuron (also known as Best Matching Unit, BMU) will update its weights 
and its neighboring weights.

The following flowchart illustrates the learning process of an SOM network:

Define SOM
structure: number

of inputs and
outputs

Start

SOM trained

Initialise weights by
randomising them

Select the neuron
with the smaller

distance as the BMU

Define a stop
condition: number
of epochs and/or
weights update

Starts the Training,
presenting input

data

For every input
record, compute
the distance to
every neuron's
weight vector

Stop condition
satisfied?

Update the weights
of the BMU and its

neighbours
according to a
neighbourhood

function

Yes

No

The learning slightly resembles that of the algorithms addressed in Chapter 2, How 
Neural Networks Learn and Chapter 3, Handling Perceptrons. The three major differences 
are the determination of the BMU with the distance, the weight update rule, and the 
absence of an error measure. The distance implies that nearer points should produce 
similar outputs; thus, here, the criteria to determine the BMU is the neuron that 
presents a lower distance to some data point. This Euclidean distance is usually used, 
and in this book, we will apply it for the sake of simplicity:
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The weight update rule uses the neighborhood function Θ(i,j), which states how 
much a neighboring neuron i is close to neuron j. Remember that in the SOM, the 
BMU neuron is updated together with its neighboring neurons. The update rule  
is as follows:

Where α denotes the learning rate; Θ, the neighborhood function; Xk, the kth input; 
and Wkj, the weight connecting the kth input to the jth output. Another characteristic 
of this learning is that both the learning rate and the neighborhood function are 
dependent on the number of epochs. The neighborhood function is usually Gaussian:

Where σ denotes the Gaussian parameter of variance, Wi and Wj represent the 
weights of neurons i and j, and t denotes the number of epochs.

The learning rate starts at an initial value and then decreases:

Where r represents a parameter of the learning rate.

How to use SOMs
There are many applications of SOMs, most of them in the field of clustering, data 
abstraction, and dimensionality reduction. However, the clustering applications are 
the most interesting because of the many possibilities one may apply them to. The 
real advantage of clustering is that there is no need to worry about the input–output 
relationship; rather, the problem solver can concentrate on the input data. One example 
of a clustering application will be explored in Chapter 7, Clustering Customer Profiles.
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Coding of the Kohonen algorithm
Now, it is time to get hands-on and implement the Kohonen neural network in Java. 
On the basis of the previous changes in the Java code and because of the application 
of OOP concepts, it was possible to implement new features without much effort 
and without rewriting the code already completed in the project. For the sake of 
simplicity, for now, we will implement only competitive learning and the single-
neuron weight updating rule. The changes made are shown in the following table:

Class name: NeuralNet
Note: This class already exists in the previous version and has been updated as follows:
Attributes
private double[][] validationSet; Matrix to store the validation set of 

input data
Methods
Note: The getters and setters methods of this attribute were created too.
Class implementation with Java: file NeuralNet.java
Interface name: Validation
Note: In Java, interfaces are structures that may have constant attributes and/or methods 
signatures that must be implemented inside a class.
Attributes
None
Method
public void netValidation(NeuralNet 
n);

Performs neural network validation, 
printing some results on the PC 
screen
Parameters: NeuralNet object 
(neural net trained)
Returns: -

Interface implementation with Java: file Validation.java
Class name: Kohonen
Note: This class inherits from NeuralNet and implements the Validation interface.
Attributes
None
Method
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public NeuralNet train (NeuralNet n) Trains the neural network by 
applying the Kohonen algorithm. 
This method overrides the method 
from the Training class
Parameters: NeuralNet object (neural 
net untrained)
Returns: NeuralNet object (neural 
net trained via Kohonen)

private NeuralNet initNet (NeuralNet 
n)

Initializes listOfWeightOut of the 
list of neurons from the input layer 
with zero
Parameters: NeuralNet object 
without the input layer initialized
Returns: NeuralNet object with the 
input layer initialized

private ArrayList<Double> 
calcEuclideanDistance (NeuralNet n, 
double[][] data, int row)

Calculates the Euclidian distance 
between the training data and the 
weights of the neural network
Parameters: NeuralNet object, 
training data, and the row of training 
data
Returns: List of real values with 
Euclidian distances

private NeuralNet fixWinnerWeights 
(NeuralNet n, int winnerNeuron, int 
trainSetRow)

Adjusts weights of the winner 
neuron (on the basis of the Euclidian 
distance list)
Parameters: NeuralNet object, 
winner neuron index, training set 
row number
Returns: NeuralNet object with 
weights from the input layer 
modified

public void netValidation(NeuralNet 
n)

Adjusts weights of the winner 
neuron (on the basis of the Euclidian 
distance list)
Parameters: NeuralNet object with 
the neural net trained
Returns: -

Class implementation with Java: file Kohonen.java
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The class diagram changes are shown in the following figure. Attributes and 
methods already explained in previous chapters and their configuration methods 
(getters and setters) are not shown.

Perceptron Adaline Backpropagation

<<interface>>
Validation

+netValidation(n : NeuralNet) : void

Kohonen

+train(n : NeuralNet) : NeuralNet
- initNet(n : NeuralNet) : NeuralNet
- calcEuclideanDistance(n : NeuralNet, data: double[][], row : int) : ArrayList<Double>
- fixWinnerWeights(n : NeuralNet, winnerNeuron : int, trainSetRow: int) : NeuralNet
+netValidation(n : NeuralNet) : void

NeuralNet

-validationSet: double [][]

Training

0.1

1

Exploring the Kohonen class
The Kohonen class implements a validation interface that provides a validation 
method to ensure that the correct output neuron was chosen. Let's concentrate 
on three key methods present in this class: calcEuclideanDistance, 
fixWinnerWeights, and train.

The Euclidean distance is calculated according to the equation shown in the Section 
SOM learning algorithm, as can be seen in the following code:

  private ArrayList<Double> calcEuclideanDistance(NeuralNet n, 
double[][] data, int row) {
    ArrayList<Double> listOfDistances = new ArrayList<Double>();
    
    int weight_i = 0;
    for(int cluster_i = 0; cluster_i < n.getOutputLayer().
getNumberOfNeuronsInLayer(); cluster_i++) {
      
      double distance = 0.0;
      
      for(int input_j = 0; input_j < n.getInputLayer().
getNumberOfNeuronsInLayer(); input_j++) {
        
        double weight = n.getInputLayer().getListOfNeurons().get(0).
getListOfWeightOut().get(weight_i);
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        distance = distance + Math.pow(data[row][input_j] - weight, 
2.0);
        weight_i++;
        
      }
    
      listOfDistances.add(distance);
      
      //System.out.println("distance normal "+cluster_i+": 
"+distance);
    }
    return listOfDistances;
    
  }

This method receives as a parameter the dataset for computing the distances of all 
neurons to a certain row of this dataset. We can see in this method two for loops:  
The outer loop iterates over all the neurons in the output layer, whereas the inner 
loop iterates over all the input variables of the corresponding row in the dataset.  
The distance is finally calculated after the inner loop is executed and is saved in a  
list of distances that will be returned.

The weight update rule is implemented in the fixWinnerWeights method, which 
already receives as the parameter the winner neuron. The code of this method is 
listed as follows:

  private NeuralNet fixWinnerWeights(NeuralNet n, int winnerNeuron, 
int trainSetRow) {
    int start, last;
    
    start = winnerNeuron * n.getInputLayer().
getNumberOfNeuronsInLayer();
    
    if(start < 0) {
      start = 0;
    }
    
    last = start + n.getInputLayer().getNumberOfNeuronsInLayer();
    
    List<Double> listOfOldWeights = new ArrayList<Double>();
    listOfOldWeights = n.getInputLayer().getListOfNeurons().get( 0 
).getListOfWeightOut().subList(start, last);
    
    ArrayList<Double> listOfWeights = new ArrayList<Double>();
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    listOfWeights = n.getInputLayer().getListOfNeurons().get( 0 
).getListOfWeightOut();
    
    int col_i = 0;
    for (int j = start; j < last; j++) {
      double trainSetValue = n.getTrainSet()[trainSetRow][col_i];
      double newWeight = listOfOldWeights.get(col_i) + 
          n.getLearningRate() * 
          (trainSetValue - listOfOldWeights.get(col_i));
      
      //System.out.println("newWeight: " + newWeight);
      
      listOfWeights.set(j, newWeight);
      col_i++;
    }
    
    n.getInputLayer().getListOfNeurons().get( 0 ).setListOfWeightOut( 
listOfWeights );
    
    return n;
    
  }

First, the code determines the weights that should be updated, which implies the 
winner neuron's weights, from start to end. Then, in the inner for loop, the new 
weight is assigned. Note the subtraction of the input value (trainSetValue) and the 
old weight.

Finally, let's check how these functions are used together in the Train method.  
In order to save space, we will focus only on the epoch loop:

    for (int epoch = 0; epoch < n.getMaxEpochs(); epoch++) {
      
      //System.out.println("### EPOCH: "+epoch);
    
      for (int row_i = 0; row_i < rows; row_i++) {
        listOfDistances = calcEuclideanDistance(n, trainData, row_i);
        
        int winnerNeuron = listOfDistances.indexOf(Collections.
min(listOfDistances));
        
        n = fixWinnerWeights(n, winnerNeuron, row_i);
        
      }
    
    }
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For every row in the training set, the distances are calculated using the Euclidean 
distance and right after that, the winner neuron is determined. Then, the weights are 
updated, and the learning process moves to the next iteration.

Kohonen implementation (clustering animals)
In this section, we will explain the Kohonen algorithm in practice. Imagine that 
we have some animals and three of their characteristics are: has pelage (Yes/No), 
is terrestrial (Yes/No), and has mammary glands (Yes/No). Our goal is to cluster 
the animals in two different groups that we do not know yet. The following table 
summarizes this data:

# Animal
Has pelage

(Y = 1 / No = -1)

Is terrestrial

(Y = 1 / No = -1)

Has mammary glands

(Y = 1 / No = -1)
1 Bat 1 -1 1
2 Shark -1 -1 -1
3 Sea-cow -1 -1 1
4 Spider 1 1 -1
5 Hippo -1 1 1
6 Fly 1 -1 -1
7 Viper -1 1 -1
8 Monkey 1 1 1

The following figure displays the architecture of the Kohonen neural net used for 
solving this problem:
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Next, let's analyze the test method called testKohonen(). It is as follows:

private void testKohonen(){
    NeuralNet testNet = new NeuralNet();
    
    //2 inputs because "bias"
    testNet = testNet.initNet(2, 0, 0, 2);
    
    NeuralNet trainedNet = new NeuralNet();
    
    testNet.setTrainSet(new double[][] { { 1.0, -1.0, 1.0 },       { 
-1.0, -1.0, -1.0 }, { -1.0, -1.0,  1.0 }, { 1.0, 1.0, -1.0 },       { 
-1.0,  1.0,  1.0 }, {  1.0, -1.0, -1.0 } });
    
    //viper and monkey, respectively:
    testNet.setValidationSet(new double[][] { {-1.0, 1.0, -1.0}, {1.0, 
1.0, 1.0} } );
    
    testNet.setMaxEpochs(10);
    testNet.setLearningRate(0.1);
    testNet.setTrainType(TrainingTypesENUM.KOHONEN);
    
    trainedNet = testNet.trainNet(testNet);

    System.out.println();
    System.out.println("---------KOHONEN VALIDATION NET---------");

    testNet.netValidation(trainedNet);

The Kohonen test logic follows the same steps as those used in the previous 
implementations. First, an object of the NeuralNet class is created and used for 
initializing the net with three neurons in the input layer, and two neurons in the 
output layer that represents the number of clusters  
to achieve.

After that, samples of rows 1 to 6 from the preceding table are used for the training 
and those from the last two rows are used for validating the neural net. It is 
important to ensure that the data used for the validation is not the same as that used 
for training the neural net. To conclude, a method to train the neural net is called.
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When this case of test reaches the end, it generates the validation results shown next.

By analyzing the validation results, we find that the neural net is able to cluster two 
different kinds of animals:

• Cluster 1: Mammal (monkey)
• Cluster 2: Not mammal (viper)



Self-Organizing Maps

[ 98 ]

Summary
In this chapter, we've seen how to apply unsupervised learning algorithms to 
neural networks. We've been presented a new and suitable architecture to that end, 
the SOMs of Kohonen. Further, unsupervised learning has been proven to be as 
powerful as the supervised learning methods because it concentrates only on the 
input data, without the necessity of input–output mappings. We've seen two new 
training algorithms: competitive learning and its extension for a Kohonen network. 
The SOMs also play a role in clustering and dimensionality reduction, besides 
providing a graphical representation of large datasets. With the content learned 
so far, we can move to the next chapter , which discusses an interesting practical 
application of weather forecasting.
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Forecasting Weather
This chapter presents an application of neural networks to the prediction of future 
weather data. We are going to walk through the entire process of designing a neural 
network to be applied to this problem, how to choose the neural architecture, the 
number of neurons, as well as selecting and preprocessing data. Then, the reader 
will be presented with a dataset on which our neural network is going to make 
predictions of weather variables using the Java programming language. The topics 
covered in this chapter are as follows:

• Neural networks for prediction problems
• Selecting data

 ° Input/Output variables
 ° Filtering

• Preprocessing
 ° Normalization

• Java implementation
 ° Adaptations

• Empirical design of neural networks
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Neural networks for prediction problems
So far, the reader has been presented with a number of neural network 
implementations and architectures, so now; it is time to get into more complex cases. 
The power of neural networks in predictions is really astonishing, since they can 
perform "learning" from historical data in a fashion in which the neural connections 
are adapted to produce the same results according to some input data. For example, 
for a given situation (cause), there is a consequence (result) and this is coded as 
data; the neural network can be used to learn the nonlinear function that maps the 
situation to the consequence (or the cause to the result).

Prediction problems are an interesting category to apply neural networks to. Let's 
take a look at a sample table containing weather data:

Date Avg. 
temperature

Pressure Humidity Precipitation Wind 
speed

July 31 23° C 880 mbar 66% 16 mm 5 m/s
August 1 22° C 881 mbar 78% 3 mm 3 m/s
August 2 25° C 884 mbar 65% 0 mm 4 m/s
August 3 27° C 882 mbar 53% 0 mm 3 m/s
…
December 11 32° C 890 mbar 64% 0 mm 2 m/s

The preceding table depicts five variables containing hypothetical values of weather 
data collected from a hypothetical city, only for the purpose of this example. Now, 
let's suppose that each of the variables contains a list of values sequentially taken 
over time. We can think of each list as a time series. On a time-series chart, one can 
see how they evolve along with time:
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The relationship between these time series denotes a dynamic representation of 
weather in a certain city, as depicted in the preceding chart. We indeed want the 
neural network to learn these dynamics; however, it is necessary to understand a 
little bit more about the phenomena, because we need to structure this data in a way 
that neural networks can process it.

Only after structuring the data can we structure the neural network, that is, the 
number of inputs, outputs, and hidden nodes. However, there are many other 
architectures that may be suitable for prediction problems, such as radial basis 
functions and feedback networks. In this chapter, we will deal with the feedforward 
multi layer perceptron with backpropagation learning algorithm, to demonstrate 
how this architecture can be simply exploited to predict weather variables. Also, 
this architecture presents very good generalized results with good selected data and 
there is little complexity involved in the design process.

The overall process for designing neural networks for prediction processes is 
depicted in the following figure:

1. Selecting and Filering History Data

2. Data Preprocessing

3. Defining of Neural Network Structure

4. Training Neural Network

5. Validating Neural Network

If the neural network fails to be validated (step 5), then usually, a new structure (step 
3) is defined, although sometimes, steps 1 and 2 may be repeated. Each of the steps in 
the figure will be addressed in the following sections of this chapter.

No data, no neural net – selecting data
The first thing to do is to select appropriate relevant data that carries most of the 
system's dynamics that we want the neural network to reproduce. In our case, we 
need to select data that is relevant for weather forecasting.
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While selecting data, getting an expert opinion about the 
process and its variables can be really helpful. The expert 
does help a lot in understanding the relationship between 
the variables, thus selecting them in an appropriate fashion.

In this chapter, we are going to use the data from the Brazilian Institute of 
Meteorology (INMET - http://www.inmet.gov.br/ in Portuguese), which is freely 
available on the Internet and we have the rights to apply it in this book. However, 
the reader may use any free weather database from the Internet while developing 
applications. Some examples from the English language sources are listed as follows:

• Wunderground (http://wunderground.com/)
• Open weather map (http://openweathermap.org/api)
• Yahoo weather API (https://developer.yahoo.com/weather/)
• U.S. National Climatic Data Center (http://www.ncdc.noaa.gov/)

Knowing the problem – weather variables
Any weather database has almost the same variables:

• Temperature (°C)
• Humidity (%)
• Pressure (mbar)
• Wind speed (m/s)
• Wind direction (°)
• Precipitation (mm)
• Sunny hours (h)
• Sun energy (W/m2)

This data is usually collected from meteorological stations, satellites, or radars, on an 
hourly or daily basis.

Depending on the collection frequency, some variables 
may be summarized with average, minimum, or 
maximum values.
The data units may also vary from source to source; that's 
why the units should always be observed.
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Choosing input and output variables
Neural networks work as a nonlinear block that may have a predefined number of 
inputs and outputs, so we have to select the role that each weather variable will play 
in this application. In other words, we have to choose which variable(s) the neural 
network is going to predict and by using which input variables.

Regarding time series variables, one can derive new variables 
by applying historical data. This means that given a certain 
date, one may consider this date's values and the data 
collected (and/or summarized) from past dates, therefore 
extending the number of variables.

While defining a problem to use neural networks on, we need to consider one 
or more predefined target variables: predict temperature, forecast precipitation, 
measure insolation, and so on. However, in some cases, one may want to model all 
the variables and to find the causal relationships between them. To identify a causal 
relationship, there are a number of tools that can be applied:

• Cross-correlation
• Pearson's coefficient
• Statistical analysis
• Bayesian networks

For the sake of simplicity, we are not going to explore these tools in this chapter; 
however, the reader is recommended to go to the references [Dowdy & Wearden, 
1983; Pearl, 2000; Fortuna et al., 2007] for obtaining more details about these tools. 
Instead, since we want to demonstrate the power of neural networks in predicting 
weather, we will choose the average temperature of a given day, based on the other 
four variables, on the basis of the current technical literature, which is cited in the 
preceding reference.

Removing insignificant behaviors – Data 
filtering
Sometimes, some issues are faced while getting data from some source. The common 
problems are as follows:

• Absence of data in a certain record and variable
• Error in measurement (for example, when a value is badly labeled)
• Outliers (for example, when the value is very far from the usual range)
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To handle each of these issues, one needs to perform filtering on the selected data. 
The neural network will reproduce exactly the same dynamics as those of the data 
that it will be trained with, so we have to be careful in feeding it with bad data. 
Usually, records containing bad data are removed from the dataset, ensuring that 
only "good" data are fed to the network.

To better understand filtering, let's consider the dataset as a big matrix containing n 
measurements and m variables.

Where aj(i) denotes the measurement of variable j at moment i.

So, our task is to find the bad records and delete them. Mathematically, there are 
a number of ways of identifying a bad record. For error measurement and outlier 
detection, the following three-sigma rule is very good:

Where xi denotes the value of the ith measurement, E[X] represents the average value, 
σX indicates the standard deviation, and di refers to the weighted distance from the 
average. If the absolute distance of the ith measurement fails to fit in less than three 
records, the ith measurement will be labeled as a bad measurement, and although 
the other variables from the same instance (row of the matrix) are good, one should 
discard the entire row of the dataset.

Adjusting values – data preprocessing
Raw data collected from a data source usually presents different particularities, such 
as data range, sampling, and category. Some variables result from measurements, 
while the others are a summary or even calculated. Preprocessing means to adapt 
these variables' values to form neural networks that can handle them properly.
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Regarding weather variables, let's take a look at their range, sampling, and type, 
shown in the following table:

Variable Unit Range Sampling Type
Mean temperature °C 23.86–29.25 Hourly Average of hourly 

measurements
Precipitation Mm 0–161.20 Daily Accumulation of daily rain
Insolation h 0–10.40 Daily Count of hours receiving 

sun radiation
Mean humidity % 65.50–96.00 Hourly Average of hourly 

measurements
Mean wind speed km/h 0.00–3.27 Hourly Average of hourly 

measurements

Except for insolation and precipitation, the variables are all measured and share 
the same sampling, but if we wanted, for example, to use an hourly dataset, we 
would have to preprocess all the variables to use the same sample rate. Three of the 
variables are summarized using daily average values, but if we wanted to, we could 
use hourly data measurements. However, the range would surely be larger.

Equalizing data – normalization
Normalization is the process to get all the variables into the same data range, usually 
with smaller values, between 0 and 1 or -1 and 1. This helps the neural network to 
present values within the variable zone in activation functions such as sigmoid or 
hyperbolic tangent:
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Values too high or too low may drive neurons to produce values that are too high or 
too low as well for the activation functions, therefore leading the derivative for these 
neurons to be too small, near zero.

The normalization should consider a predefined range of the dataset. It is performed 
right away:

Where Nmin and Nmax represent the normalized minimum and maximum limits, 
respectively; Xmin and Xmax denote X variable's minimum and maximum limits, 
respectively; X indicates the original value; and Xnorm refers to the normalized value. 
If we want the normalization to be between 0 and 1, for example, the equation is 
simplified as follows:

By applying the normalization, a new "normalized" dataset is produced and is fed to 
the neural network. One should also take into account that a neural network fed with 
normalized values will be trained to produce normalized values on the output, so the 
inverse (denormalization) process becomes necessary as well.

or:

For the normalization between 0 and 1.
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Java implementation for weather 
prediction
In order to implement this case in Java, we had to make some adjustments in the 
already written code. The NeuralNet class is updated with a new method called 
getNetOutputValues(), to give some output values given a training input dataset. 
This method performs almost the same operation as the forward method in the 
backpropagation phase, except for the fact that it returns a matrix containing the 
output dataset.

In addition, we had to add two components to the project (package edu.packt.
neuralnet.util): data and chart.

Plotting charts
Charts can be drawn in Java by using the freely available package JFreeChart 
(http://www.jfree.org/jfreechart/). This package is attached with this chapter's 
source code. So, we designed a class called Chart. It implements methods basically 
for plotting data series by making calls to natively implemented methods of the 
JFreeChart classes. The following table shows a list of methods contained in this class:

Class name: Chart
Attributes

public enum ChartPlotTypeENUM {
  FULL_DATA, COMPARISON;
}

Enum to store chart types may be plotted

Methods
public void plotXYData(Object[] 
vector, String chartTitle, 
String xAxisLabel, String 
yAxisLabel)

Method to plot XY chart based on a data 
vector
Parameters: Vector with data to plot, chart 
title, x-axis label, and y-axis label
Returns: -

public void plotXYData(double[]
[] matrix, String chartTitle, 
String xAxisLabel, String 
yAxisLabel, ChartPlotTypeENUM 
chartPlotType)

Method to plot XY chart based on a data 
matrix
Parameters: Matrix with data to plot, chart 
title, x-axis label, y-axis label, and plot type
Returns: -

private String 
selectComparisonSeriesName(int 
index)

Method to select comparison series name
Parameters: Index
Returns: Series name
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private String 
selectTemperatureSeriesName(int 
index)

Method to select temperature series name
Parameters: Index
Returns: Series name

Class Implementation with Java: file Chart.java

Handling data files
To work with data files, we have to implement a class called Data. It currently 
performs reads from the so-called CSV format, which is suitable for data import and 
export. This class also performs preprocessing on the data by means of normalization.

Class name: Data
Attributes

private String path; Variable to store the CSV file folder path
private String fileName; Attribute to store the CSV file name (with 

extension)
public enum NormalizationTypesENUM 
{
  MAX_MIN, MAX_MIN_EQUALIZED; 
}

Enum to store normalization types may 
be used

Constructors
public Data(String path, String 
fileName)

Constructor to set path and filename 
attributes

public Data( ) Empty constructor to create an empty 
object

Methods
Note: The getters and setters methods of this attribute were created too.

public double[][] 
rawData2Matrix(Data r) throws 
IOException

Method to read raw data (CSV file) and 
convert to a double Java matrix
Parameters: Data object
Returns: Double matrix with raw data

private String 
defineAbsoluteFilePath(Data r) 
throws IOException

Method to define the absolute CSV file 
path
Parameters: Data object
Returns: String with the absolute CSV  
file path
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public double[][] 
normalize(double[][] rawMatrix, 
NormalizationTypesENUM normType)

Method to normalize a raw data matrix
Parameters: Double raw data matrix, 
normalization type
Returns: Double matrix normalized

public double[][] 
denormalize(double[][] rawMatrix, 
double[][] matrixNorm, 
NormalizationTypesENUM normType)

Method to denormalize a raw data matrix
Parameters: Double raw data matrix, 
double normalized matrix, normalization 
type
Returns: Double matrix denormalized

public double[][] 
joinArrays(ArrayList<double[][]> 
listOfArraysToJoin)

Method to join arrays (vectors) into  
a matrix
Parameters: List of arrays
Returns: Double matrix

Class implementation with Java: file Data.java

Building a neural network for weather 
prediction
To forecast weather, we collected daily data from the Brazilian Institute of Meteorology 
(INMET). The data was measured from a Brazilian city located in the Amazon region.

From the eight variables available at the INMET website, five were selected for use 
in this project, where the average of the maximum and the minimum temperature 
became the mean temperature variable. The neural network was trained to forecast 
the average temperature. So, the structure of the neural network is as shown in the 
following figure:
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We designed a class called Weather exclusively for the weather case. It only has a 
static main method and is solely aimed at reading the weather data files, creating and 
training a neural network with this data, and plotting the error for validation. Let's 
take a glance at how the data files are read inside this class:

   Data weatherDataInput  = new Data( "data", "inmet_13_14_input.csv" 
);
  Data weatherDataOutput = new Data( "data", "inmet_13_14_output.csv" 
);
    
  //sets the normalisation type  
  NormalizationTypesENUM NORMALIZATION_TYPE = Data.
NormalizationTypesENUM.MAX_MIN_EQUALIZED;
    
  try {
    double[][] matrixInput = weatherDataInput.rawData2Matrix( 
weatherDataInput );
    double[][] matrixOutput = weatherDataOutput.rawData2Matrix( 
weatherDataOutput );
      
    //normalise the data      
    double[][] matrixInputNorm  = weatherDataInput.normalize( 
matrixInput, NORMALIZATION_TYPE );
    double[][] matrixOutputNorm = weatherDataOutput.normalize( 
matrixOutput, NORMALIZATION_TYPE );

Then, the main method builds a neural network with four hidden neurons and sets 
the training dataset, as shown in the following code:

  NeuralNet n1 = new NeuralNet();
  n1 = n1.initNet(4, 1, 4, 1);
      
  n1.setTrainSet( matrixInputNorm );
  n1.setRealMatrixOutputSet( matrixOutputNorm );
      
  n1.setMaxEpochs( 1000 );
  n1.setTargetError( 0.00001 );
  n1.setLearningRate( 0.5 );
  n1.setTrainType( TrainingTypesENUM.BACKPROPAGATION );
  n1.setActivationFnc( ActivationFncENUM.SIGLOG );
      n1.setActivationFncOutputLayer(ActivationFncENUM.LINEAR);
      
  NeuralNet n1Trained = new NeuralNet();
      
  n1Trained = n1.trainNet( n1 );
      
  System.out.println();
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Here, the network is trained, and then, the charts of the error are plotted. The 
following lines show how the chart class is used:

  Chart c1 = new Chart();
  c1.plotXYData( n1.getListOfMSE().toArray(), "MSE Error", "Epochs", 
"MSE Value" );
      
  //TRAINING:
  double[][] matrixOutputRNA = n1Trained.getNetOutputValues( n1Trained 
);
  double[][] matrixOutputRNADenorm  = new Data().denormalize( 
matrixOutput, matrixOutputRNA, NORMALIZATION_TYPE);
      
  ArrayList<double[][]> listOfArraysToJoin = new ArrayList<double[]
[]>();
  listOfArraysToJoin.add( matrixOutput );
  listOfArraysToJoin.add( matrixOutputRNADenorm );
      
  double[][] matrixOutputsJoined = new Data().joinArrays( 
listOfArraysToJoin );
      
  Chart c2 = new Chart();
  c2.plotXYData( matrixOutputsJoined, "Real x Estimated - 
Training Data", "Weather Data", "Temperature (Celsius)", Chart.
ChartPlotTypeENUM.COMPARISON );

In the following graph, it is possible to see the MSE training error plotted. The x-axis 
represents 1000 points (epochs of training), and the y-axis shows the variation of the 
MSE values. It is noticed that before the 100th epoch, the MSE value establishes.
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Another graph is displayed next. It shows a comparison between the real (red line) 
and the estimated (blue line) average temperature. Dotted black lines symbolize the 
margins of error (-1.0 °C and +1.0 °C).

Empirical design of neural networks
While using neural networks in regression problems (that include prediction), 
there is no fixed number of hidden neurons, so usually, the solver chooses an 
arbitrary number of neurons and then varies it according to the results produced 
by the networks created. This procedure may be repeated a number of times until a 
network with a satisfying criterion is found.

Choosing training and test datasets
In order to attest the neural network's capability to properly respond to new data, 
it is useful to have two separate datasets, called training and test datasets. In this 
application, we worked with two distinct periods, one for each dataset.

Period Begin End Type Number of records %
1 01/01/2013 31/12/2014 Training 730 93.8
2 30/04/2015 16/06/2015 Test 48 6.2
Total 778 100

The recommendation is for the training set to have at least 75% of the overall dataset.
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Designing experiments
Experiments can be performed on the same training and test datasets, but by 
varying the other network parameters, such as the learning rate, normalization, 
and the number of hidden units. In this case, we performed 12 experiments, whose 
parameters were chosen as shown in the following table:

Experiment Number of neurons 
in hidden layer

Learning rate Data normalization type

1

2

0.1
MAX_MIN

2 MAX_MIN_EQUALIZED
3

0.5
MAX_MIN

4 MAX_MIN_EQUALIZED
5

0.9
MAX_MIN

6 MAX_MIN_EQUALIZED
7

4

0.1
MAX_MIN

8 MAX_MIN_EQUALIZED
9

0.5
MAX_MIN

10 MAX_MIN_EQUALIZED
11

0.9
MAX_MIN

12 MAX_MIN_EQUALIZED

The objective is to choose a neural network that presents the best performance from 
the experiments. The best performance is assigned to the network that presents the 
lowest MSE error, but an analysis of generalization with the test data is also useful.

While designing experiments, consider starting always from a 
relatively low number of hidden neurons, since it is desirable 
to have low computational cost.

Results and simulations
After running the 12 experiments, we found the following MSE errors:

Experiment MSE training error
1 3.6551720491360E-4
2 0.3034120360203837
3 3.8543681112765E-4
4 0.3467096464653794
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Experiment MSE training error
5 4.6319274448088E-4
6 0.4610935945738937
7 2.6604395044000E-4
8 0.2074979827120087
9 2.7763926432754E-4
10 0.2877786584371894
11 3.4582006086257E-4
12 0.4610935945709355

The following graph exhibits neural net 5th experiment's comparison between real 
and estimated values, and the respective margins of error:
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The following graph shows that the same results as those discussed in the previous 
paragraph, but for neural network 10th experiment:

Although experiment 10 has a larger MSE than experiment 5 and 10's chart presents 
a better generalization behavior. Therefore, we can conclude the following:

• Considering only the final MSE value to decide about the neural net quality 
is not recommended.

• Estimated value from experiment 10 follows the real value closer than that 
from experiment 5.

• Neural net obtained in experiment 10 preserves the trending by ascent and 
descent better than that obtained in 5, as may be viewed between weather 
data 1 and 17.

Therefore, by viewing the corresponding charts, we chose network 10 to be the most 
suitable for weather prediction.
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Summary
In this chapter, we've seen an interesting practical application of neural networks. 
Weather forecasting has always been a rich research field, and indeed, neural 
networks are widely used for these tasks. In this chapter, the reader also learned how 
to prepare similar experiments for prediction problems. The correct application of 
techniques for data selection and preprocessing can save a considerable amount of 
time while designing a neural network for the prediction. This chapter also serves 
as a foundation for the following chapters, since all of them will focus on practical 
cases, so the concepts learned here will be explored widely in the rest of the book.

In the next chapter we will cover classification tasks, which is another common 
research field where neural networks can be used. Two case studies will be 
presented, covering the whole process on how neural networks are built for disease 
diagnosis.
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Classifying Disease 
Diagnosis

In this chapter, the reader will be presented with a very didactic but interesting 
application that neural networks are suitable for: disease diagnosis. We've 
discovered so far that neural networks can be very well applied to classification 
problems, where one wants to automatically assign some record to a certain 
category. This chapter digs deeper into this by presenting the basics on how to 
design a classification algorithm using neural networks. The topics covered in this 
chapter are as follows:

• Foundations of classification problems
• Logistic regression

 ° Multiple classes vs. binary classes
 ° Confusion matrix
 ° Sensibility and specificity

• Neural networks for classification
 ° Adaptations in Java code

• Disease diagnosis using neural networks
 ° Diagnosis for cancer
 ° Diagnosis for diabetes
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What are classification problems, and how 
can neural networks be applied to them?
One thing that neural networks are really good at is classifying records. A very 
simple perceptron network draws a decision boundary defining whether a data point 
belongs to a particular region or to another region, where a region denotes a class. 
Let's take a look at an x–y scatter chart:

The dashed lines explicitly separate the points into classes. These points represent 
data records that originally had the corresponding class labels. This implies that 
their classes were already known; therefore, this classification tasks falls into the 
supervised learning category.

A classification algorithm seeks to find the boundaries between classes in the data 
hyperspace. Once the classification boundaries are defined, a new data point, with 
an unknown class, receives a class label according to the boundaries defined by the 
classification algorithm. The following figure shows an example of how a new record 
is classified:

According to the current class configuration, the new record's class is Class 3.
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A special type of activation  
function – Logistic regression
We've covered that neural networks can work as data classifiers by establishing 
decision boundaries onto data in the hyperspace. Such a boundary can be linear in 
the case of perceptrons or nonlinear in the case of other neural architectures such as 
MLPs, Kohonen, or Adaline. The linear case is based on linear regression, on which 
the classification boundary is literally a line, as shown in the preceding figure. If 
the scatter chart of the data looks like that shown in the following figure, then a 
nonlinear classification boundary is needed.

Neural networks are in fact a great nonlinear classifier, and this is achieved by the 
usage of nonlinear activation functions. One nonlinear function that actually works 
well for nonlinear classification is the sigmoid function, and the procedure for 
classification using this function is called logistic regression.
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This function returns values bounded between 0 and 1. In this function, the α 
parameter denotes how hard the transition from 0 to 1 occurs. The following chart 
shows the difference:

Note that the larger the value of the α parameter is, the more the logistic function 
takes a shape of a hard-limiting threshold function, also known as a step function.

Multiple classes versus binary classes
Classification problems usually deal with a case of multiple classes, where each 
class is assigned a label. However, a binary classification schema is applied in neural 
networks. This is because a neural network with a logistic function at the output 
layer can produce only values between 0 and 1, meaning that it assigns (1) or not (0) 
to some classes.

Nevertheless, there is one approach for multiple classes using binary functions. 
Consider that every class is represented by an output neuron, and whenever this 
output neuron fires, the neuron's corresponding class is applied on the input 
data record. So, let's suppose a network to classify diseases; each neuron output 
represents a disease to be applied to some symptom:
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Note that in this configuration, it is possible to have multiple 
diseases with the same symptoms. However, if it is desirable 
to choose only one class, then a schema as a competitive 
learning algorithm is more suitable.

Comparing the expected versus produced 
results – the confusion matrix
There is no perfect classifier algorithm; all of them are subjected to errors and biases. 
However, it is expected that a classification algorithm can correctly classify 70% to 
90% of the records.

Very high correct classification rates are not always 
desirable because of the possible biases presented in the 
input data that might affect the classification task, and 
there is a risk of overtraining, when only the training data 
are correctly classified.

A confusion matrix shows how many of a given class's records were correctly 
classified and therefore how many were wrongly classified. The following table 
depicts what a confusion matrix may look like:

Actual 
class

Inferred class Total

A B C D E F G
A 92% 1% 0% 4% 0% 1% 2% 100%
B 0% 83% 5% 6% 2% 3% 1% 100%
C 1% 3% 85% 0% 2% 5% 4% 100%
D 0% 3% 0% 92% 2% 1% 1% 100%
E 0% 10% 2% 1% 78% 1% 8% 100%
F 22% 2% 2% 3% 3% 65% 3% 100%
G 9% 6% 0% 16% 0% 3% 66% 100%

Note that the main diagonal is expected to have higher values, as the classification 
algorithm will always try to extract meaningful information from the input dataset. 
The sum of all rows must be equal to 100% because all elements of a given class are 
to be classified in one of the available classes. However, note that some classes may 
receive more classifications than expected.
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The more a confusion matrix looks like an identity matrix, the better the classification 
algorithm will be.

Classification measures – sensitivity and 
specificity
When the classification is binary, the confusion matrix is found to be a simple 2 x 2 
matrix, and therefore, its positions are specially named:

Actual Class Inferred Class
Positive (1) Negative (0)

Positive (1) True Positive False Negative
Negative (0) False Positive True Negative

In disease diagnosis, which is the subject of this chapter, the concept of a binary 
confusion matrix is applied in the sense that a false diagnosis may be either a false 
positive or a false negative. The rate of false results can be measured by using 
sensitivity and specificity indexes.

Sensitivity denotes the true positive rate; it measures how many of the records are 
correctly classified positively.

Specificity in turn represents the true negative rate; it indicates the proportion of 
negative record identification.

High values of both sensitivity and specificity are desired; however, depending on 
the application field, sensitivity may carry more meaning.
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Applying neural networks for 
classification
Classification tasks can be performed by using any of the supervised neural 
networks that this book has covered so far. However, it is recommended to use 
more complex architectures, such as MLPs. In this chapter, we are going to use the 
NeuralNet class to build an MLP with one hidden layer and the sigmoid function at 
the output. Every output neuron denotes a class.

We've added to framework a special class called Classification in order to handle 
concepts such as confusion matrix, sensitivity, and specificity. The following table 
shows a list of the methods and parameters contained in this class:

Class name: Classification
Methods

public double[][] 
calculateConfusionMatrix( double 
marginError, double[][] matrix )

Method to calculate confusion matrix
Parameters: Margin error and matrix with 
real output and estimated output
Returns: Confusion matrix

public void printConfusionMatrix( 
double[][] matrix )

Method to print confusion matrix
Parameters: Confusion matrix
Returns: -

public double 
calculateSensitivity( double[][] 
matrix )

Method to calculate sensitivity of 
classification
Parameters: Matrix with real output and 
estimated output
Returns: Sensitivity value

public double 
calculateSpecificity( double[][] 
matrix ) 

Method to calculate specificity of 
classification
Parameters: Matrix with real output and 
estimated output
Returns: Specificity value

public double calculateAccuracy( 
double[][] matrix )

Method to calculate accuracy of 
classification
Parameters: matrix with real output and 
estimated output
Returns: specificity value
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Class name: Classification
Methods

public double[][] 
convertToOneColumn( double[][] 
matrix )

Method to convert a matrix with more 
than one column to one column. It has 
been used when neural net has more than 
one neuron in output layer
Parameters: Matrix with more than one 
column
Returns: Matrix with one column

Class implementation with Java: file Classification.java

The implementation of a neural network for classification would follow the  
following steps:

1. Data loading (training and test data)
2. Data normalization
3. Creating neural network
4. Training neural network
5. Analyze and take conclusions from the classifier via a classification object

First, let's load the data and normalize it:

    //Training data
  Data dataInput  = new Data("data", "inputs_training.csv");
    Data dataOutput = new Data("data", "output_training.csv");
    // test data
    Data dataInputTestRNA  = new Data("data", "inputs_test.csv");
    Data dataOutputTestRNA = new Data("data", "output_test.csv");

    // normalization
    NormalizationTypesENUM NORMALIZATION_TYPE = Data.
NormalizationTypesENUM.MAX_MIN_EQUALIZED;

It is important to convert the data to the matrix format so that it can be fed into the 
neural network:

      //convert the raw data to matrix
      double[][] matrixInput  = dataInput.rawData2Matrix( 
diseaseDataInput );
      double[][] matrixOutput = dataOutput.rawData2Matrix( 
diseaseDataOutput );
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      //Normalize the data. Normalization code for test data is 
suppressed.
      double[][] matrixInputNorm = dataInput.normalize(matrixInput, 
NORMALIZATION_TYPE);

Now, let's create the neural network here with 8 inputs, 3 hidden neurons,  
and 2 outputs:

      NeuralNet n1 = new NeuralNet();
      n1 = n1.initNet(8, 1, 3, 2);

Next, we perform the training. Since we've already seen how this can be set up in 
Chapter 3, Handling Perceptrons, we're leaving this out here to save space. Then, we 
create a new network to receive the trained network:

      //Create a new network to receive the trained network
      NeuralNet n1Trained = new NeuralNet();
      n1Trained = n1.trainNet(n1);
      
      //Plot the error:
      Chart c1 = new Chart();
      c1.plotXYData(n1.getListOfMSE().toArray(), "MSE Error", 
"Epochs", "MSE Value");

After the training has been finished, we instantiate a classification object to carry out 
some analyses on the results:

      Classification classif = new Classification();
      
      //Load the test data:
      n1Trained.setTrainSet( matrixInputTestRNANorm );
      n1Trained.setRealMatrixOutputSet( matrixOutputTestRNA );
      
      double[][] matrixOutputRNATest = n1Trained.
getNetOutputValues(n1Trained);
      
      //Check the number of outputs to adapt the test data to the 
neural multiple outputs
      if(n1Trained.getOutputLayer().getNumberOfNeuronsInLayer() > 1) {
      
        matrixOutputTestRNA = classif.convertToOneColumn(matrixOutput
TestRNA);
        matrixOutputRNATest = classif.convertToOneColumn(matrixOutput
RNATest);
        

      }
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Finally, we apply some processing for exhibiting the charts and the confusion matrix:      

      ArrayList<double[][]> listOfArraysToJoinTest = new 
ArrayList<double[][]>();
      listOfArraysToJoinTest.add( matrixOutputTestRNA );
      listOfArraysToJoinTest.add( matrixOutputRNATest );
      double[][] matrixOutputsJoinedTest = new Data().joinArrays(listO
fArraysToJoinTest);

      //Plot a bar chart      
      Chart c3 = new Chart();
      c3.plotBarChart(matrixOutputsJoinedTest, "Real x Estimated - 
Test Data", " Data", "Result (0: NO / 1: YES)");

      
      //plots the confusion matrix and the sensitivity and specificity 
indexes
      double[][] confusionMatrix = classif.
calculateConfusionMatrix(0.6, matrixOutputsJoinedTest);
      classif.printConfusionMatrix(confusionMatrix);
      System.out.println("SENSITIVITY = " + classif.calculateSensitivi
ty(confusionMatrix));
      System.out.println("SPECIFICITY = " + classif.calculateSpecifici
ty(confusionMatrix));

      //Finally the final accuracy of classification
      System.out.println("ACCURACY    = " + classif.calculateAccuracy(
confusionMatrix));

Disease diagnosis with neural networks
For disease diagnosis, we are going to use the free dataset proben1, which is available 
on the web (http://www.filewatcher.com/m/proben1.tar.gz.1782734-0.html). 
Proben1 is a benchmark set of several datasets from different domains. We are going 
to use the cancer and the diabetes dataset. We added two new classes to run the 
experiments of each case: CancerDisease and DiabetesDisease.

Using ANN to diagnose breast cancer
Ten variables compose the breast cancer dataset, where nine are inputs and one is a 
binary output. The dataset has 699 records, but we excluded 16 from them, which were 
found to be incomplete; thus, we used 683 records to train and test a neural network.
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In real practical problems, it is common to have missing or invalid 
data. Ideally, the classification algorithm must handle these 
records, but sometimes, it is recommended to exclude them since 
there would not be information to produce an accurate result.

The following table shows the configuration of this dataset:

Variable name Type Maximum value and 
minimum value

Diagnosis result OUTPUT [0; 1]
Clump thickness INPUT #1 [1; 10]
Uniformity of cell size INPUT #2 [1; 10]
Uniformity of cell shape INPUT #3 [1; 10]
Marginal adhesion INPUT #4 [1; 10]
Single epithelial cell size INPUT #5 [1; 10]
Bare nuclei INPUT #6 [1; 10]
Bland chromatin INPUT #7 [1; 10]
Normal nucleoli INPUT #8 [1; 10]
Mitoses INPUT #9 [1; 10]

Therefore, the proposed neural topology will be that of the following figure:
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The dataset division was performed as follows:

• Training: 600 records
• Test: 83 records

As in the previous cases, we performed many experiments to try to find the best 
neural net to classify whether the cancer is benign or malignant. So, we conducted 
12 different experiments to analyze the MSE and accuracy values. After that, the 
confusion matrix, sensitivity, and specificity were generated with the test dataset and 
analyzed. At last, an analysis of generalization was conducted. The neural networks 
involved in the experiments are shown in the table:

Experiment Number of neurons 
in hidden layer

Learning rate Activation function

1

3

0.1

Hidden layer: HYPERTAN
Output layer: SIGLOG

2 Hidden layer: SIGLOG
Output layer: SIGLOG

3

0.5

Hidden layer: HYPERTAN
Output layer: SIGLOG

4 Hidden layer: SIGLOG
Output layer: SIGLOG

5

0.9

Hidden layer: HYPERTAN
Output layer: SIGLOG

6 Hidden layer: SIGLOG
Output layer: SIGLOG

7

5

0.1

Hidden layer: HYPERTAN
Output layer: SIGLOG

8 Hidden layer: SIGLOG
Output layer: SIGLOG

9

0.5

Hidden layer: HYPERTAN
Output layer: SIGLOG

10 Hidden layer: SIGLOG
Output layer: SIGLOG

11

0.9

Hidden layer: HYPERTAN
Output layer: SIGLOG

12 Hidden layer: SIGLOG
Output layer: SIGLOG
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After each experiment, we collected the MSE values (shown in the following table); 
experiment 7 and experiment 12 resulted in the highest accuracy values. Both MSE 
training rates are acceptable.

Experiment MSE training rate Accuracy
1 0.03972135063712551 0.975903614457831
2 0.03995188471687546 0.975903614457831
3 0.03933513091403112 0.975903614457831
4 0.03930199248652969 0.975903614457831
5 0.04320989863852442 0.963855421686747
6 0.03906524721664331 0.975903614457831
7 0.02833532990528998 0.987951807228915
8 0.02996896005224385 0.975903614457831
9 0.02516212161358099 0.975903614457831
10 0.02510190111178650 0.975903614457831
11 0.02062000996870342 0.963855421686747
12 0.02466074197562852 0.987951807228915

Graphically, the MSE evolution over time is very fast, as can be seen in the following 
chart of the experiment 7:

www.allitebooks.com

http://www.allitebooks.org
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The confusion matrix is shown in the table with the sensitivity and specificity for 
both experiments:

Experiment Confusion matrix Sensitivity Specificity

7
14.0 |  1.0
 0.0 | 68.0

1.0 0.9855072463768

11
13.0 |  0.0
 1.0 | 69.0

0.9285714285714 1.0

Now, let's analyze generalization. This feature is better observed with bar charts 
showing for each case the expected class along with the classification estimated by 
the neural network. Red bars denote the actual positive diagnosis, while blue bars 
represent the neural output values. It is worth to note that when the output is zero, 
the patient is diagnosed with benignant cancer and when the output is one, the 
patient is diagnosed with malignant cancer. This feature is better observed with bar 
charts as shown in the following figure:
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Applying NN for an early diagnosis of 
diabetes
An additional example to be explored is the diagnosis of diabetes. This dataset has 
eight inputs and one output, as shown in the following table. There are 768 records, 
all complete. However, Proben1 states that there are several senseless zero values, 
probably indicating missing data. We're handling this data as if it were real, thereby 
introducing some errors (or noise) into the dataset.

Variable name Type Maximum value and 
minimum value

Diagnosis result OUTPUT [0; 1]
Number of times pregnant INPUT #1 [0.0; 17]
Plasma glucose concentration every 2 hours in an 
oral glucose tolerance test

INPUT #2 [0.0; 199]

Diastolic blood pressure (mm Hg) INPUT #3 [0.0; 122]
Triceps skin fold thickness (mm) INPUT #4 [0.0; 99]
Two-hour serum insulin (µU/ml) INPUT #5 [0.0; 744]
Body mass index (weight in kg/(height in m)^2) INPUT #6 [0.0; 67.1]
Diabetes pedigree function INPUT #7 [0.078; 2420]
Age (years) INPUT #8 [21; 81]

The dataset division was as follows:

• Training: 690 records
• Test: 78 records

To discover the best neural net topology to classify diabetes, we used the same 
schema of neural networks with the same analysis as that described in the last 
section. However, we use a multiple class classification in the output layer: two 
neurons in this layer will be used, one for the presence of diabetes and the other for 
the absence.
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So, the proposed neural architecture looks like that shown in the following figure:

The following table shows the MSE training value and the accuracy of the first six 
experiments and of the last six experiments:

Experiment MSE training rate Accuracy
1 0.1613790087603789 0.692307692307692
2 0.1621959590254118 0.692307692307692
3 0.1643117235316208 0.653846153846153
4 0.1617892991111149 0.692307692307692
5 0.1726829994853517 0.641025641025641
6 0.1617000829026907 0.692307692307692
7 0.1568402004414977 0.666666666666666
#8 0.1577266938606883 0.692307692307692
9 0.1643499270371965 0.666666666666666
10 0.1538651388477906 0.666666666666666
11 0.1747411925925356 0.692307692307692
12 0.1532305775075525 0.679487179487179
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The fall of the MSE is fast as in the first case; nevertheless, the eight experiments 
showed a slight delay in the decrease in the first epoch.

By analyzing the confusion matrix, it can be seen that sensitivity and specificity  
are not as high as in the first case, and the confusion matrix shows a more 
homogeneous distribution.

Experiment Confusion matrix Sensitivity Specificity

1
19.0 | 11.0
13.0 | 35.0

0.59375 0.7608695652173914

8
21.0 | 13.0
11.0 | 33.0

0.65625 0.717391304347826
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Although this may suggest that the classifier is bad because of the number of 
false positives or negatives, we should take into account that the original dataset 
contained bad records, which could not be timely filtered. This explains the false 
negatives appearing in the generalization bar chart.

Summary
In this chapter, we've seen two examples of the application of neural networks 
to disease diagnosis. The fundamentals of the classification problems are briefly 
reviewed in order to level the knowledge explored in this chapter. Classification 
tasks belong to one of the most frequently used types of supervised tasks in the 
fields of machine learning/data mining, and neural networks proved to be very 
appropriate for application to such problems. The reader was also presented with the 
concepts used for evaluating the classification tasks, such as sensitivity, specificity, 
and the confusion matrix. These notations are very useful for all classification tasks, 
including those that are handled with other algorithms besides neural networks. The 
next chapter will explore a similar kind of tasks but by using unsupervised learning, 
which means without expected output data, but the fundamentals presented in this 
chapter will be somewhat helpful.
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Clustering Customer Profiles
One of the amazing capabilities of neural networks applying unsupervised learning 
is their ability to find hidden patterns that even experts may not have any clue about. 
In this chapter, we're going to explore this fascinating feature through a practical 
application to find customer clusters by using a transactions database. We'll go 
through a review on unsupervised learning and the clustering task. To demonstrate 
this application, the reader will be provided with a practical example on customer 
profiling and their respective implementations in Java. In this chapter, we will cover 
the following topics:

• Clustering Task
 ° Cluster Analysis
 ° Cluster Evaluation

• Applied Unsupervised Learning
 ° Neural Network of Radial Basis Functions 
 ° Kohonen Network for Clustering
 ° Handling Different Types of Data

• Customer Profiling
 ° Preprocessing

• Implementation in Java
 ° Credit Analysis and Profiles of Customers
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Clustering task
Clustering is a part of a broader set of tasks in data analysis, whose objective is to 
group elements that look alike, more similar to each other, into clusters or groups. 
A clustering task is fully based on unsupervised learning since there is no need to 
include any target output data in order to find clusters; instead, the solution designer 
may choose a number of clusters that he/she wants to group the records into and 
check the response of the algorithm to it.

A clustering task may seem to overlap with a classification 
task with the crucial difference that in clustering, there is no 
need to have a predefined set of classes before the clustering 
algorithm is run.

One may wish to apply clustering when there is little or no information at all about 
the how the data can be gathered into groups. Provided a dataset, we want our 
neural network to identify both the groups and their members. While this may seem 
easy and straightforward to perform visually in a two-dimensional dataset, as shown 
in the following figure, with a higher number of dimensions, this task becomes not 
so trivial to perform and needs an algorithmic solution. an example of 2-dimensional 
clustering is shown as follows:

In clustering, the number of clusters is not determined by the data, but by the  
data analyst who is looking to cluster the data. Here, the boundaries are little bit 
different than those of classification tasks because they depend primarily on the 
number of clusters.
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Cluster analysis
One difficulty in the clustering tasks, and also in unsupervised learning tasks, is 
the accurate interpretation of the results. While in supervised learning, there is a 
defined target from which we can derive an error measure or confusion matrix, 
in unsupervised learning, the evaluation of quality is totally different and totally 
dependent on the data itself. The validation criteria involve indexes that assert how 
well the data is distributed across the clusters as well as external opinions from 
experts on the data, which is also a measure of quality.

For example, let's suppose a task of clustering of plants given 
their characteristics (sizes, leave colors, period of fruiting, and so 
on). If a neural network mistakenly groups cacti and pine trees 
in the same cluster, a botanist would certainly not endorse the 
classification on the basis of his/her specific knowledge in the 
field and state that this grouping does not make any sense.

Two major issues happen in clustering. One is the fact that one neural network's 
output is never activated, meaning that one cluster does not have any data point 
associated with it. The other one is the case of nonlinear or sparse clusters, which 
could be erroneously grouped into several clusters, while actually, there might be 
only one, as shown in the following figure:
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Cluster evaluation and validation
Unfortunately, if the neural network clusters badly, one needs to either redefine the 
number of clusters or perform additional data preprocessing. To evaluate how good 
the clustered data is, the Davies–Bouldin and Dunn index may be applied.

The Davies–Bouldin index takes into account the cluster's centroids in order to find 
the inter- and intra-distances between clusters and cluster members.

Where n is the number of clusters, ci is the centroid of cluster i, σi is the average 
distance of all elements in cluster i, and d(ci,cj) is the distance between clusters i and 
j. The smaller the value of the DB index, the stronger will be the consideration of the 
neural network as a cluster.

However, for dense and sparse clusters, the DB index will not give much useful 
information. This limitation can be overcome with the Dunn index:

where d(i, j) is the inter-cluster distance between i and j, and d'(k) is the intra-cluster 
distance of cluster k. Here, the higher the Dunn index is, the better will be the 
clustering because although the clusters may be sparse, they still need to be grouped 
together, and high intra-cluster distances will denote a bad grouping of data.

External validation
In some cases there is already an expected result for clustering, as in the example of 
plant clustering. This is called external validation. One may apply a neural network 
with unsupervised learning to cluster data that is already assigned a value. The 
major difference against the classification lies in the fact that the target outputs are 
not considered, so the algorithm itself is expected to draw a borderline based only on 
the data.
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Applied unsupervised learning
In neural networks, there are a number of architectures implementing unsupervised 
learning; however, the scope of this book will cover only two: a neural network of 
radial basis functions and a Kohonen neural network.

Neural network of radial basis functions
This neural network architecture has three layers and combines two types of 
learning, as shown in the following figure:

For the hidden layer, competitive learning is applied in order to activate one of the 
radial basis functions in the hidden neurons. The radial basis function takes the form 
of Gaussian functions:

where d is the distance vector between the input x and the weights w of the neuron i:
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The output of the neural network will be the linear sum of all the values produced by 
the neurons of the hidden layer:

Radial basis functions (RBFs) perform clustering only in the first hidden layer, 
whereas in the output layer, supervised learning is applied to find the output 
weights. Because the clusters defined in the RBF network are internal, we are  
not going to use this network now in this chapter; however, it will be detailed in 
Chapter 9, Neural Networks Optimization and Adaptation.

Kohonen neural network
Kohonen networks, which have been covered in Chapter 4, Self-Organizing Maps, 
are now used in a modified fashion. Kohonen can produce a shape in one or two 
dimensions at the output, but here, we are interested in clustering, which can be 
reduced to only one dimension. In addition, clusters may be related or not to each 
other, so the vicinity of neurons can be ignored for now in this chapter; this means that 
only one neuron will be activated and its neighbors will remain unchanged. Therefore, 
the neural network will adjust its weights to match the data to an array of clusters. The 
following figure shows a clustering layer in a Kohonen Neural Network:

The training algorithm will be competitive learning, wherein the neuron with the 
greatest output has its weights adjusted. By the end of training, all the clusters of 
a neural network are expected to be defined. Note that there are no links between 
output neurons, meaning that only one input is active at the output.
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Types of data
In practical applications, data can be classified in the following ways:

• Numerical
 ° Continuous or real
 ° Discrete

• Categorical
 ° Ordinal
 ° Unscaled

So far, we have been working mostly with numerical data, which 
is in principle easier to handle with neural networks. However, in 
more complex applications, one needs to handle non-numerical 
data, which involves translating the data into a "numeric 
universe," where the neural networks can be applied over it.

Examples of numerical data are values of temperature (continuous) and the number 
of days (discrete). The non-numerical data (categorical) can be ordinal, where there 
is a scale between the categories, or be unscaled, when all categories are in the 
same level, or no scale can be applied to it. Examples of ordinal categorical data 
are satisfaction degrees (dissatisfied, poorly satisfied, and well satisfied), whereas 
unscaled categorical data may be city names.

Numerical data can be easily inserted into neural networks, where one may need to 
only apply some normalization or preprocessing. However, categorical data needs 
some attention. If the data can be scaled (ordinal), it can be "discretized." Taking the 
example of satisfaction degree, we may create the following corresponding table:

Satisfaction Degree Scaled Value
Dissatisfied 0
Poorly Satisfied 1
Very Satisfied 2
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However, for unscaled categorical data, it is not recommended to apply numbers 
that might induce scaling on the considered variable. So, it is better to treat each 
categorical value as one binary variable, meaning 1 in the presence of the considered 
value or 0 in the absence of this value:

City Names Neural Input
London Tokyo New York Cape Town Sydney

London 1 0 0 0 0
Tokyo 0 1 0 0 0
New York 0 0 1 0 0
Cape Town 0 0 0 1 0
Sydney 0 0 0 0 1

This mechanism of binary variables may eventually result in sparse data matrices 
containing a lot of zeros. However, there are techniques such as single value 
decomposition (SVD) that address this problem. The reader will learn more about 
this in the references.

Customer profiling
One of the interesting tasks in unsupervised learning is the profiling of customers 
or clustering of customers. Given one dataset of customer information, one wants 
to find groups of customers that either share similar characteristics or buy the same 
products. This task results in a number of benefits for business owners because they 
are provided the information regarding the groups of customers that they have, 
whereby therefore enabling a more strategic customer relationship.

Preprocessing data
Customer information can contain both numerical and categorical data. Whenever 
we face a categorical unscaled variable, we need to split it into the number of values 
that the variable may take. For example, let's suppose that we have the following 
transaction list of customer purchases:

Transaction ID Customer ID Products Discount Total
1399 56 Milk, Bread, Butter 0.00 4.30
1400 991 Cheese, Milk 2.30 5.60
1401 406 Bread, Sausage 0.00 8.80
1402 239 Chipotle Sauce, Spice 0.00 6.70
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Transaction ID Customer ID Products Discount Total
1403 33 Turkey 0.00 4.50
1404 406 Turkey, Butter, Spice 1.00 9.00

It can be easily seen that the products is unscaled categorical data, and for each 
transaction, there is an undefined number of products purchased, that is, the customer 
may purchase only one or several units of these products. In order to transform this 
dataset into a numerical dataset, one needs to apply preprocessing. For each product, 
there will be a variable added to the dataset, resulting in the following:

Cust. 
ID

Milk Bread Butter Cheese Sausage Chipotle 
Sauce

Spice Turkey

56 1 1 1 0 0 0 0 0
991 1 0 0 1 0 0 0 0
406 0 1 1 0 1 0 1 1
239 0 0 0 0 0 1 1 0
33 0 0 0 0 0 0 0 1

In order to save space, we ignored the numerical variables and considered the 
presence of the product purchased by a client as 1 and the absence as 0. Alternative 
preprocessing may consider the number of occurrences of a value, therefore no 
longer remaining binary, but becoming discrete.

Implementation in Java
In this section, we will explore the application of a Kohonen neural network to 
customer clustering on the basis of the customer information collected from  
Proben1 (Card dataset).

Card credit analysis for customer profiling
The Card dataset is composed of 16 variables in total. Fifteen are inputs, and one is 
an output variable. For security reasons, all variable names have been changed to 
meaningless symbols. This dataset brings a good mix of variable types (continuous, 
categorical with small values, and categorical with larger values). The following table 
shows a summary of the data:
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Variable Type Values
V1 OUTPUT -1; 1
V2 INPUT #1 b, a
V3 INPUT #2 continuous
V4 INPUT #3 continuous
V5 INPUT #4 u, y, l, t.
V6 INPUT #5 g, p, gg
V7 INPUT #6 c, d, cc, i, j, k, m, r, q, w, x, e, aa, ff
V8 INPUT #7 v, h, bb, j, n, z, dd, ff, o
V9 INPUT #8 continuous
V10 INPUT #9 t, f
V11 INPUT #10 t, f
V12 INPUT #11 continuous
V13 INPUT #12 t, f
V14 INPUT #13 g, p, s
V15 INPUT #14 continuous
V16 INPUT #15 continuous

For simplicity, we didn't use the inputs V5–V8 and V14 in order to not inflate the 
number of inputs too much. Further, we applied the following transformation:

Variable Type Values Conversion
V1 OUTPUT -1; 1 -
V2 INPUT #1 b, a b = 1, a = 0
V3 INPUT #2 continuous -
V4 INPUT #3 continuous -
V9 INPUT #8 continuous -
V10 INPUT #9 t, f t = 1, f = 0
V11 INPUT #10 t, f t = 1, f = 0
V12 INPUT #11 continuous -
V13 INPUT #12 t, f t = 1, f = 0
V15 INPUT #14 continuous -
V16 INPUT #15 continuous -
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The proposed neural net topology is shown in the following figure:

The number of examples stored is 690, but 37 of them have missing values. These 
37 records were discarded. Therefore, 653 examples were used to train and test the 
neural network. The dataset division was made as follows:

• Training: 583 records
• Test: 70 records

The Kohonen training algorithm to cluster similar behavior depends on some 
parameters, such as the following:

• Normalization type
• Learning rate

It is important to note that the Kohonen training algorithm is unsupervised. So, 
this algorithm is used when the output is not known. In the card example, there are 
output values in the dataset and they will be used here only to attest clustering.
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In this specific case, because the output is known, as classification, the clustering 
quality may be attested as follows:

• Sensitivity (true positive rate)
• Specificity (true negative rate)
• Accuracy

In a Java project, the calculations of these values are done through the Classification 
class, previously developed in Chapter 6, Classifying Disease Diagnosis.

It is a good practice to perform many experiments to try to find the best neural net 
for clustering customer profiles. Ten different experiments will be conducted, and 
the quality rates will be analyzed for each, as mentioned earlier. The following table 
summarizes the strategy that will be followed:

Experiment Learning Rate Normalization Type
1

0.1
MIN_MAX

2 MAX_MIN_EQUALIZED
3

0.3
MIN_MAX

4 MAX_MIN_EQUALIZED
5

0.5
MIN_MAX

6 MAX_MIN_EQUALIZED
7

0.7
MIN_MAX

8 MAX_MIN_EQUALIZED
9

0.9
MIN_MAX

10 MAX_MIN_EQUALIZED

The Card class was created to run each experiment. Regarding the training,  
we applied the Euclidian distance, as previously explained in Chapter 4,  
Self-Organizing Maps.

The following piece of code shows a bit of its implementation:

    Data cardDataInput = new Data("data", "card_inputs_training.csv");
    
    Data cardDataInputTestRNA  = new Data("data", "card_inputs_test.
csv");
    Data cardDataOutputTestRNA = new Data("data", "card_output_test.
csv");
  
    NormalizationTypesENUM NORMALIZATION_TYPE = Data.
NormalizationTypesENUM.MAX_MIN;
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  try {
    double[][] matrixInput = cardDataInput.rawData2Matrix( 
cardDataInput );
    
    double[][] matrixInputTestRNA = cardDataInput.rawData2Matrix( 
cardDataInputTestRNA );
    
    double[][] matrixOutput = cardDataInput.rawData2Matrix( 
cardDataOutputTestRNA );
    
    double[][] matrixInputNorm = cardDataInput.normalize(matrixInput, 
NORMALIZATION_TYPE);
    
    double[][] matrixInputTestRNANorm = cardDataInput.
normalize(matrixInputTestRNA, NORMALIZATION_TYPE);
    
    NeuralNet n1 = new NeuralNet();
    n1 = n1.initNet(10, 0, 0, 2);
    
    n1.setTrainSet( matrixInputNorm );
    
    n1.setValidationSet( matrixInputTestRNANorm );
    n1.setRealMatrixOutputSet( matrixOutput );
    
    n1.setMaxEpochs(100);
    n1.setLearningRate(0.1);
    n1.setTrainType(TrainingTypesENUM.KOHONEN);
    n1.setKohonenCaseStudy( KohonenCaseStudyENUM.CARD );
    
    NeuralNet n1Trained = new NeuralNet();
    
    n1Trained = n1.trainNet( n1 );
    
    System.out.println();
    System.out.println("---------KOHONEN TEST---------");

    ArrayList<double[][]> listOfArraysToJoin = new ArrayList<double[]
[]>();
    
    double[][] matrixReal = n1Trained.getRealMatrixOutputSet();
    double[][] matrixEstimated = n1Trained.netValidation(n1Trained);
    
    listOfArraysToJoin.add( matrixReal );
    litOfArraysToJoin.add( matrixEstimated );
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    double[][] matrixOutputsJoined = new Data().
joinArrays(listOfArraysToJoin);
    
    //CONFUSION MATRIX
    Classification classif = new Classification();
    
    double[][] confusionMatrix = classif.
calculateConfusionMatrix(-1.0, matrixOutputsJoined);
    classif.printConfusionMatrix(confusionMatrix);
    
    //SENSITIVITY
    System.out.println("SENSITIVITY = " + classif.calculateSensitivity
(confusionMatrix));
    
    //SPECIFICITY
    System.out.println("SPECIFICITY = " + classif.calculateSpecificity
(confusionMatrix));

    //ACCURACY
    System.out.println("ACCURACY    = " + classif.calculateAccuracy(co
nfusionMatrix));
    
  } catch (IOException e) {
    e.printStackTrace();
  }

After running each experiment using the Card class and saving the accuracy rates, 
it is possible to observe that experiments 1 and 6 have the same accuracy. Data from 
the first experiment was normalized with the MIN_MAX method and data from the 
second experiment with MAX_MIN_EQUALIZED.

Experiment Accuracy
1 0.9142857142857143
2 0.6285714285714286
3 0.3714285714285714
4 0.6000000000000000
5 0.5857142857142857
6 0.9142857142857143
7 0.0857142857142857
8 0.3714285714285714
9 0.4142857142857143
10 0.5857142857142857
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The following table displays the confusion matrix, sensitivity, and specificity of 
experiments 1 and 6. Again, please note that it is possible to observe the equivalence 
between the neural nets in both experiments. Only 6 patterns from 70 (less than 10%) 
could not be clustered correctly.

Experiment Confusion Matrix Sensitivity Specificity

1
31.0 |  2.0
 4.0 | 33.0

0.8857142857142 0.9428571428571

6
31.0 |  2.0
 4.0 | 33.0

0.8857142857142 0.9428571428571

Summary
In this chapter, we discussed an application of customer profiling using the Kohonen 
neural network. Unlike the classification task, the clustering task does not consider 
any previous knowledge on the desired output; instead, it is desirable that the neural 
network finds the clusters. However, we've seen that the validation techniques may 
include external validation, which is a comparison with what could be understood as 
the "target output." Customer profiling is important because it gives more accurate 
and clean information about customers to a business owner, without the "human 
interference" in pointing which customers are in some groups or which ones in 
others, as in the case of supervised learning. This is the advantage of unsupervised 
learning, enabling the data to draw results solely by itself.

In the next chapter, we are going to present another interesting application of neural 
networks: digit recognition in images. It is a way to know in practice how pattern 
recognition works with a neural net.
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Pattern Recognition  
(OCR Case)

We have seen so far that neural networks show an amazing capability in learning 
through data in both supervised and unsupervised ways. In this chapter, we present 
an additional case of pattern recognition involving an example of Optical Character 
Recognition (OCR). Neural networks can be trained to strictly recognize text 
characters written in an image file. A brief review of classification and clusterization 
is covered prior to presenting the application itself. In this chapter, we will cover the 
following topics:

• Pattern Recognition
 ° Defined Classes
 ° Undefined Classes

• Neural Networks in Pattern Recognition
 ° Kohonen and MLP

• The OCR Problem
 ° Preprocessing and Class Definitions

• Implementation in Java
 ° Digit Recognition



Pattern Recognition (OCR Case)

[ 152 ]

What is pattern recognition all about?
Patterns are a bunch of data and elements that look similar to each other, and can 
occur systematically and repeat from time to time. Pattern recognition is a task that 
can be performed mainly by unsupervised learning using clusterization; however, 
when there is labeled data or defined classes of data, this task can be performed by 
supervised methods. We as humans perform this task more often than we can imagine. 
When we see objects and recognize them as belonging to a certain class, we are indeed 
recognizing a pattern. Also, when we analyze charts, discrete events, and time series, 
we might find evidence of some sequence of events that repeat systematically under 
certain conditions. In summary, patterns can be learned by data observations.

Examples of pattern recognition tasks include the following:

• Shape recognition
• Object classification
• Behavior clustering
• Voice recognition
• OCR
• Chemical reaction taxonomy

Definition of classes among tons of data
In a list of classes that has been predefined for a specific domain, each class is 
considered to be a pattern; therefore, every data record or occurrence is assigned one 
of these predefined classes.

Classes can usually be predefined by an expert or on 
the basis of the previous knowledge of the application 
domain. Also, it is desirable to apply defined classes when 
we want the data to be classified strictly into one of the 
predefined classes.

One illustrated example for pattern recognition using defined classes is animal 
recognition by images, as shown in the following figure. The pattern recognizer 
however should be trained to catch all the characteristics that formally define the 
classes. In the example, eight figures of animals are shown, belonging to two classes: 
mammals and birds. Since this is a supervised mode of learning, the neural network 
should be provided with a sufficient number of images that allow it to properly 
classify new images.
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Of course, sometimes, the classification may fail mainly due to similar hidden 
patterns in the images that neural networks may catch and due to the small 
nuances present in the shapes. For example, a dolphin has flippers, but it is still a 
mammal. Sometimes, in order to obtain a better classification, it is necessary to apply 
preprocessing and ensure that the neural network will receive the appropriate data 
that would allow for classification.

What if the undefined classes are undefined?
When data are unlabeled and there is no predefined set of classes, it is a scenario for 
unsupervised learning. Shape recognition is a good example since shapes may be 
flexible and have an infinite number of edges, vertices, or bindings, as shown in the 
following figure:
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In the preceding image, we can see some types of shapes and we want to arrange 
them such that the similar ones can be grouped into the same cluster. Based on the 
shape information that is present in the images, it is likely for the pattern recognizer 
to classify the rectangle, the square, and the right triangle into the same group. 
However, if the information were presented to the pattern recognizer, not as an 
image, but as a graph with edges and vertices coordinates, the classification might 
have changed a little.

In summary, the pattern recognition task may use both supervised and unsupervised 
modes of learning, basically depending on the objective of recognition.

External validation
In some cases, there is already an expected result for clustering, as in the example of 
plant clustering. This is called external validation. One may apply a neural network 
with unsupervised learning to cluster data that is already assigned a value. The 
major difference against the classification lies in the fact that the target outputs are 
not considered, so the algorithm itself is expected to draw a borderline based only on 
the data.

How to apply neural networks in pattern 
recognition
For pattern recognition, the neural network architectures that can be applied are 
the MLPs (supervised) and the Kohonen network (unsupervised). In the first case, 
the problem should be set up as a classification problem, that is, the data should be 
transformed into the X-Y dataset, where for every data record in X, there should be 
a corresponding class in Y. As stated in Chapter 3, Handling Perceptrons, and Chapter 
6, Classifying Disease Diagnosis, the output of the neural network for classification 
problems should have all of the possible classes, and this may require preprocessing 
of the output records.
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For the other case, the unsupervised learning, there is no need to apply labels on the 
output; however, the input data should be properly structured as well. To remind 
the reader, the schemas of both neural networks are shown in the following figure:

Preprocessing the data
In pattern recognition, we have to deal with all possible types of data, as well as  
in clustering:

• Numerical
 ° Continuous or real
 ° Discrete

• Categorical
 ° Ordinal
 ° Unscaled

However, here, we have the possibility to perform pattern recognition on 
multimedia content, such as images and videos. So, how should multimedia be 
handled? The answer to this question lies in the way these contents are stored in 
files. Images, for example, are written with a representation of small colored points 
called pixels. Each color can be coded in an RGB notation where the intensity of 
red, green, and blue defines every color that the human eye is able to see. Therefore, 
an image of dimensions 100 × 100 would have 10,000 pixels, each one having three 
values for red, green, and blue, yielding a total of 30,000 points. This is a challenge 
for image processing in neural networks.
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Some methods, which will be reviewed in the next chapter, may reduce this huge 
number of dimensions. Then, an image can be treated as a big matrix of numerical 
continuous values.

For simplicity, in this chapter, we discuss only grayscale images with small 
dimensions.

The OCR problem
Many documents are now being scanned and stored as images, making necessary the 
task of converting these documents back into text, for a computer to apply editing 
and text processing. However, this feature involves a number of challenges:

• Variety of text fonts
• Text size
• Image noise
• Manuscripts

In spite of these, humans can easily interpret and read even the text written in a  
bad-quality image. This can be explained by the fact that humans are already familiar 
with the text characters and the words in their language. Somehow, the algorithm 
must become acquainted with these elements (characters, digits, signalization, and so 
on), in order to successfully recognize text in images.

Simplifying the task – digit recognition
Although there are a variety of tools available in the market for OCR, it is still a 
big challenge for an algorithm to properly recognize text in images. So, we will 
be restricting our application to a small domain and deal with relatively simple 
problems. Therefore, in this chapter, we will implement a neural network to 
recognize the digits 0 to 9 represented in images. Also, the images will have 
standardized and small dimensions, for the sake of simplicity.
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Approach to digit representation
We applied the standard dimension of 5 × 5 (25 pixels) in grayscale images, resulting 
in 25 grayscale values for each image, as shown in the following figure:

In the preceding image, we have a shape of a circle representing the digit 0 at the left 
and a corresponding matrix with gray values for the same digit, in grayscale.

We apply this preprocessing in order to represent all the 10 digits in this application.

Let the coding begin!
To recognize optical characters, we produced data to train and to test the neural 
network. In this example, we considered digits from zero to nine. According to the 
pixel layout, two versions of each digit data were created, one to train and the other 
to test. Classification techniques presented in Chapter 3, Handling Perceptrons, and 
Chapter 6, Classifying Disease Diagnosis will be used here.
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Generating data
Numbers from zero and nine were represented by matrices in the following figure. 
Black pixels are typified by the value one and white pixels by the value zero. All pixel 
values between zero and one are on grayscale. The first dataset is to train the neural 
network, and the second one is for testing. It's possible to detect some random noise in 
the test dataset. We performed this procedure deliberately to verify the generalization.

Training dataset

Test dataset
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Each matrix row was merged into vectors (Dtrain / Dtest) to form a pattern that will be 
used to train and test the neural network. Therefore, the input layer of the neural 
network will be composed of 26 neurons. The following tables show this data:

Training Input Dataset
Dtrain(0) = [1,0,1,1,1,0,1,0,0,0,1,1,0,0,0,1,1,0,0,0,1,0,1,1,1,0]
Dtrain(1) = [1,0,0,1,0,0,0,1,1,0,0,1,0,1,0,0,0,0,1,0,0,0,0,1,0,0]
Dtrain(2) = [1,1,1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,1,1,1,1,1]
Dtrain(3) = [1,1,1,1,1,1,0,0,0,0,1,0,1,1,1,1,0,0,0,0,1,1,1,1,1,1]
Dtrain(4) = [1,1,0,0,0,1,1,0,0,0,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0,1]
Dtrain(5) = [1,0,1,1,1,0,0,1,0,0,0,0,1,1,1,0,0,0,0,1,0,0,1,1,1,0]
Dtrain(6) = [1,0,1,1,1,0,1,0,0,0,0,1,1,1,1,1,1,0,0,0,1,0,1,1,1,0]
Dtrain(7) = [1,0,1,1,1,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1]
Dtrain(8) = [1,0,1,1,1,0,1,0,0,0,1,1,1,1,1,1,1,0,0,0,1,0,1,1,1,0]
Dtrain(9) = [1,0,1,1,1,0,1,0,0,0,1,0,1,1,1,1,0,0,0,0,1,0,0,0,0,1]

Test Input Dataset
Dtest(0) = [1,0.5,1,1,1,0.5,1,0,0,0,1,1,0,0,0,1,1,0,0,0,1,0.5,1,1,1,0.5]
Dtest(1) = [1,0,0,1,0,0,0,0.5,1,0,0,0.25,0,1,0,0,0,0,1,0,0,0,0,1,0,0]
Dtest(2) = [1,1,1,1,1,1,0.2,0,0,0,1,1,1,1,1,1,1,0,0,0,0.2,1,1,1,1,1]
Dtest(3) = [1,0.5,1,1,1,1,0,0,0,0,1,0,0,1,1,1,0,0,0,0,1,0.5,1,1,1,1]
Dtest(4) = [1,0.5,0,0.5,0,1,1,0,0,0,1,1,1,1,1,0.5,0,0,0,0,1,0.5,0,0,0,1]
Dtest(5) = [1,0,1,1,0.5,0,0,1,0,0,0,0,1,1,1,0,0,0,0,0.5,0.5,0,0.5,1,1,0]
Dtest(6) = [1,0,1,1,0.1,0,1,0,0,0,0,1,1,1,1,1,0.5,0,0,0,0.5,0,1,1,1,0]
Dtest(7) = [1,0,1,1,0.5,0.5,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0.5,0,0,0,0.5]
Dtest(8) = [1,0,0.9,1,0.9,0,0.7,0,0,0,0.8,1,1,0.5,1,1,0.8,0,0,0,0.7,0,0.8,1,0.8,0]
Dtest(9) = [1,0,1,1,0.5,0,0.5,0,0,0,1,0,0.5,1,1,1,0,0,0,0,1,0,0,0,0,0.5]
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The output dataset was represented by 10 patterns. Each one has a more expressive 
value (1) and the rest are zero. Therefore, the output layer of the neural network will 
have 10 neurons, as shown in the following table:

Output Dataset
Out(0) = [0,0,0,0,0,0,0,0,0,1]
Out(1) = [1,0,0,0,0,0,0,0,0,0]
Out(2) = [0,1,0,0,0,0,0,0,0,0]
Out(3) = [0,0,1,0,0,0,0,0,0,0]
Out(4) = [0,0,0,1,0,0,0,0,0,0]
Out(5) = [0,0,0,0,1,0,0,0,0,0]
Out(6) = [0,0,0,0,0,1,0,0,0,0]
Out(7) = [0,0,0,0,0,0,1,0,0,0]
Out(8) = [0,0,0,0,0,0,0,1,0,0]
Out(9) = [0,0,0,0,0,0,0,0,1,0]

Building the neural network
So, in this application, our neural network shall have 25 inputs and 10 outputs, so we 
varied the number of hidden neurons. We created a class called Digit in the package 
ocr to handle this application. The neural network architecture was designed with the 
following parameters and represented by the following figure:

• Neural network type: MLP
• Training algorithm: Backpropagation
• Number of hidden layers: 1
• Number of neurons in the hidden layer: 18
• Number of epochs: 6000
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Testing and redesigning – trial and error
Now, as has been done in other case studies presented previously, let's find the best 
neural network topology training several nets. The strategy to do that is summarized 
in the following table:

Experiment Learning Rate Activation Functions

1 0.5
Hidden layer: SIGLOG
Output layer: SIGLOG

2
0.7

Hidden layer: SIGLOG
Output layer: SIGLOG

3
0.9

Hidden layer: SIGLOG
Output layer: SIGLOG

4
0.5

Hidden layer: SIGLOG
Output layer: HYPERTAN

5
0.7

Hidden layer: SIGLOG
Output layer: HYPERTAN

6
0.9

Hidden layer: SIGLOG
Output layer: HYPERTAN
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Experiment Learning Rate Activation Functions
7

0.5
Hidden layer: SIGLOG
Output layer: LINEAR

8
0.7

Hidden layer: SIGLOG
Output layer: LINEAR

9
0.9

Hidden layer: SIGLOG
Output layer: LINEAR

The following piece of code of the Digit class defines how to create a neural network 
to read from digit data:

  Data ocrDataInput  = new Data("data\\ocr", "ocr_traning_inputs.csv");
  Data ocrDataOutput = new Data("data\\ocr", "ocr_traning_outputs.csv");
  //read the data points coded in a csv file
  Data ocrDataInputTestRNA  = new Data("data\\ocr", "ocr_test_inputs.csv");
  Data ocrDataOutputTestRNA = new Data("data\\ocr", "ocr_test_outputs.csv");
    
  // convert these files into matrices
  double[][] matrixInput  = ocrDataInput.rawData2Matrix( ocrDataInput );
  double[][] matrixOutput = ocrDataOutput.rawData2Matrix( ocrDataOutput );
      
  //creates a neural network 
  NeuralNet n1 = new NeuralNet();
  //25 inputs, 1 hidden layer, 18 hidden neurons and 10 outputs
      n1 = n1.initNet(25, 1, 18, 10);
      
      n1.setTrainSet( matrixInput );
      n1.setRealMatrixOutputSet( matrixOutput );
      
//set the training parameters
      n1.setMaxEpochs(6000);
      n1.setTargetError(0.00001);
      n1.setLearningRate( 0.7 );
      n1.setTrainType(TrainingTypesENUM.BACKPROPAGATION);
      n1.setActivationFnc(ActivationFncENUM.SIGLOG);

      n1.setActivationFncOutputLayer(ActivationFncENUM.SIGLOG);
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Results
After running each experiment using the Digit class and saving the MSE values 
(according to the following table), we can observe that experiments 2 and 4 have the 
lowest MSE values. The differences between these two experiments are the learning 
rate and the activation function used in the output layer.

Experiment MSE Training Rate
1 0.03007294436333284
2 0.02004457991277001
3 0.03002653392502009
4 0.00119817123282438
5 0.06351562546547934
6 0.23755154264016012
7 0.19155179860965179
8 1.73485602025775039
9 44.1822391373913359

The MSE evolution over the training epochs is plotted in the following figures. It is 
interesting to note that the curve of experiment 2 stabilizes near the 750th epoch, as 
shown in the following figure:
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However, the curve of experiment 4 keeps varying until the 6000th epoch, as shown 
in the following figure:

We have already explained that only the MSE value should not be considered to 
attest to neural net quality. Accordingly, the test dataset was used to verify the 
neural network generalization capacity. A comparison between the real output with 
noise and the neural net estimated output of experiments 2 and 4 is depicted in the 
following table. It is possible to conclude that the neural network weights obtained 
by experiment 4 are able to better recognize digits from zero to nine even if the 
images present pixels noisier than those obtained by experiment 2. While experiment 
2 erroneously classified three patterns, experiment 4 classified all patterns correctly.
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Output Comparison
Real Output (Test Dataset) Digit

0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  1.00  
1.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
0.00  1.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
0.00  0.00  1.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
0.00  0.00  0.00  1.00  0.00  0.00  0.00  0.00  0.00  0.00  
0.00  0.00  0.00  0.00  1.00  0.00  0.00  0.00  0.00  0.00  
0.00  0.00  0.00  0.00  0.00  1.00  0.00  0.00  0.00  0.00  
0.00  0.00  0.00  0.00  0.00  0.00  1.00  0.00  0.00  0.00  
0.00  0.00  0.00  0.00  0.00  0.00  0.00  1.00  0.00  0.00  
0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  1.00  0.00

0
1
2
3
4
5
6
7
8
9

Estimated Output (Test Dataset) – Experiment 2 Digit
0.00  0.00  0.00  0.00  0.00  0.01  0.02  0.00  0.00  0.97  
0.97  0.00  0.00  0.00  0.03  0.00  0.00  0.00  0.00  0.00  
0.00  0.00  0.00  0.02  0.00  0.00  0.00  0.01  0.00  0.00  
0.00  0.00  0.00  0.02  0.00  0.00  0.20  0.00  0.00  0.00  
0.00  0.00  0.00  0.96  0.00  0.00  0.00  0.02  0.00  0.00  
0.01  0.00  0.00  0.00  0.98  0.01  0.00  0.00  0.00  0.00  
0.01  0.00  0.00  0.00  0.00  0.56  0.00  0.07  0.00  0.00  
0.00  0.00  0.00  0.00  0.66  0.00  0.14  0.00  0.00  0.00  
0.00  0.00  0.00  0.00  0.00  0.03  0.00  0.93  0.00  0.01  
0.00  0.00  0.00  0.00  0.01  0.00  0.00  0.01  0.96  0.00  

0  (OK)
1  (OK)
4  (ERR)
7  (ERR)
4  (OK)
5  (OK)
6  (OK)
5  (ERR)
8  (OK)
9  (OK)

Estimated Output (Test Dataset) – Experiment 4 Digit
 0.00  0.16  0.09  0.06  0.06   0.01  0.11 -0.27 -0.09  0.97
 1.00  0.00  0.09  0.13  0.21 -0.22  0.42  0.19  0.34  0.14
 0.00  0.99  0.04  0.05  0.07  0.10  0.14  0.18  0.22  0.25
 0.01  0.03  0.81  0.06  0.09   0.03  0.74 -0.03 -0.03 -0.12
 0.02 -0.11 -0.10  0.94  0.08  0.08  0.11  0.85  0.09  0.06
 0.02 -0.01  0.10  0.06  1.00  0.11  0.10  0.11  0.10  0.06
-0.00 -0.07 -0.05  0.22  0.09   1.00  0.20  0.11  0.26  0.20
 0.51 -0.05  0.25  0.09  0.96  0.22  0.99  0.25  0.34  0.34
 0.00  0.04  0.04  0.04  0.05  0.06  0.05  0.98  0.03  0.07
 0.00  0.01  0.05  0.01  0.02  0.00  0.04  0.03  1.00  0.02

0  (OK)
1  (OK)
2  (OK)
3  (OK)
4  (OK)
5  (OK)
6  (OK)
7  (OK)
8  (OK)
9  (OK)
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Summary
In this chapter, we've seen the power of neural networks with respect to recognizing 
digits from zero to nine in images. Although the coding of the digits was very small 
in 5 × 5 images, it was important to see the concept in practice. Neural networks are 
capable of learning from data, and provided that real-world representations can be 
transformed into data, it is reasonable to state that character recognition is a very 
good example of the application of pattern recognition. The application here can be 
extended to any type of characters, under the condition that the neural network be 
presented all the predefined characters.

The next chapter will explore all the content seen in this book so far to present the 
reader with some options for the optimization and improvement of the neural 
network application, concluding the outline designed for this book.
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Neural Network Optimization 
and Adaptation

In this chapter, the reader will be presented with techniques that help to optimize 
neural networks, thereby favoring its best performance. Tasks such as input 
selection, dataset separation and filtering, and choice of the number of hidden 
neurons are examples of what can be adjusted to improve a neural network's 
performance. Furthermore, this chapter focuses on methods for adapting neural 
networks to real-time data. Two implementations of these techniques are presented 
here. Application problems will be selected for exercises. This chapter deals with  
the following:

• Input selection
 ° Dimensionality reduction
 ° Data filtering

• Structure selection
 ° Pruning

• Online retraining
 ° Stochastic online learning

• Adaptive neural networks
 ° Adaptive resonance theory
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Common issues in neural network 
implementations
When developing a neural network application, it is quite common to face problems 
regarding how accurate the results are. The source of these problems can be various:

• bad input selection
• noisy data
• very big dataset
• unsuitable structure
• inadequate number of hidden neurons
• inadequate learning rate
• insufficient stop condition; and/or
• bad dataset segmentation

The design of a neural network application sometimes requires a lot of patience 
and trial-and-error methods. There is no methodology stating specifically the 
number of hidden units and/or which architecture should be used, but there are 
recommendations on how to properly choose these parameters. Another issue 
that programmers may face is a long training time, which often causes the neural 
network to not learn the data. No matter how long the training runs, the neural 
network won't converge.

Designing a neural network requires the programmer or 
designer to test and redesign the neural structure as many 
times as needed, until an acceptable result is obtained.

On the other hand, one may wish to improve the results. A neural network can learn 
until the learning algorithm reaches the stop condition, either the number of epochs 
or the mean squared error. Even so, sometimes, the results are either inaccurate or not 
generalized. This will require a redesign of the neural structure as well as the dataset.

Input selection
One of the key tasks in designing a neural network application is to select 
appropriate inputs. For the unsupervised case, one wishes to use only relevant 
variables on which the neural network will find the patterns. For the supervised 
case, there is a need to map the outputs to the inputs, so one needs to choose only the 
input variables that somewhat influence the output.
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Data correlation
One strategy that helps in selecting good inputs in the supervised case is the 
correlation between data series. A correlation between data series is a measure of 
how one data sequence reacts or influences the other. Suppose that we have one 
dataset containing a number of data series from which we choose one to be an 
output. Now, we need to select the inputs from the remaining variables.

We then evaluate the influence of one variable at a time on the output in order to 
decide whether to include it as an input or not. The Pearson coefficient is one of the 
most used variables:

Where Sx(k)y(k) denotes the covariance between the x and the y variables:

The correlation takes values from -1 to 1, where values close to +1 indicate a positive 
correlation, values near -1 indicate a negative correlation, and values near 0 indicate 
no correlation at all.

To exemplify, let's see the following three charts of the two variables X and Y:

In the first chart, to the left, visually, one can see that as one variable decreases, the 
other increases its value (corr.: -0.8). The middle chart shows the case when the two 
variables vary in the same direction, therefore a positive correlation (corr.: +0.7). 
The third chart, to the right, shows a case where there is no correlation between the 
variables (corr.: -0.1).
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There is no threshold rule as to which correlation should be taken into account as 
a limit; it depends on the application. While absolute correlation values greater 
than 0.5 may be suitable for one application, in others, values near 0.2 may add a 
significant contribution.

Dimensionality reduction
Another interesting point is regarding the removal of redundant data. Sometimes, 
this is desired when there is a lot of available data in both unsupervised and 
supervised learning. To exemplify, let's see the following chart of two variables:

It can be seen that both X and Y variables share the same shape, so this can be 
interpreted as a redundancy, as both variables are carrying almost the same 
information because of the high positive correlation. Thus, one can consider a 
technique called Principal Component Analysis (PCA), which is a good approach 
for dealing with these cases.

The result of PCA will be a new variable summarizing the previous two (or more) 
variables. Basically, the original data series are subtracted by the mean and then 
multiplied by the transposed eigenvectors of the covariance matrix:

Where SXY denotes the covariance between the variables X and Y.

The derived new data will then be as follows:
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Let's see now how a new variable would look like in a chart, compared to the 
original variables:

Data filtering
Noisy and bad data are also a source of problems in neural network applications; 
that's why we need to filter data. One of the common data filtering techniques can 
be performed by excluding the records that exceed the usual range. For example, 
temperature values are between -40 and 40, so a value like 50 would be considered 
an outlier and could be taken out.

The three-sigma rule is a good and effective measure for filtering. It consists  
of filtering the values that are beyond three times the standard deviation from  
the mean:

Structure selection
To choose an adequate structure for a neural network is also a very important step. 
However, this is often done empirically, since there is no rule on how many hidden 
units a neural network should have. The only measure on how many units are 
adequate is the neural network performance. One assumes that if the general error is 
low enough, then the structure is suitable. Nevertheless, they might have a smaller 
structure that could yield the same result.

In this context, there are basically two methodologies: constructive and pruning. 
The construction consists of starting with only the input and the output layers, then 
adding new neurons at a hidden layer, until a good result can be obtained. The 
destructive approach, also known as pruning, works on a bigger structure on which 
the neurons having few contributions to the output, are taken out.
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The construction approach is depicted in the following figure:

Pruning is the way back; when given a high number of neurons, one wishes to 
"prune" those whose sensitivity is very low, which means that its contribution to the 
error is minimal, as shown in the following figure:

Online retraining
During the learning process, it is important to design how the training should be 
performed. Two basic approaches are batch and incremental learning.
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In batch learning, all the records are fed to the network, so it can evaluate the error 
and then update the weights.

In incremental learning, the update is performed after each record has been sent to 
the network.

Both approaches work well and have advantages and disadvantages. While batch 
learning can used for a less often, though more directed weight update, incremental 
learning provides a way for a finely tuned weight adjustment. In this context, it is 
possible to design a mode of learning that enables the network to learn continually.
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Stochastic online learning
Offline learning means that the neural network learns while not in "operation." Every 
neural network application is supposed to work in an environment, and in order to 
be at production, it should be properly trained. Offline training is suitable to put the 
network into operation, since its outputs may vary over large ranges of values, which 
would certainly compromise the system, if it is in operation. However, when it comes 
to online learning, there are restrictions. While in offline learning, it's possible to use 
cross-validation and bootstrapping to predict errors, in online learning, this can't be 
done since there's no "training dataset" anymore. However, one would need online 
training when some improvement in the neural network's performance is desired.

A stochastic method is used when online learning is performed. This algorithm to 
improve neural network training is composed of two main features: random choice 
of samples for training and variation of the learning rate in runtime (online). This 
training method has been used when noise is found in the objective function. It 
helps to escape the local minimum (one of the best solutions) and to reach the global 
minimum (the best solution).

The pseudo algorithm is as follows:

Initialize the weights.
   Initialize the learning rate.
   Repeat the following steps:
      Randomly select one (or possibly more) case(s)
         from the population.
      Update the weights by subtracting the gradient
         times the learning rate.
      Reduce the learning rate according to an
         appropriate schedule.

The Source code of the pseudo algorithm can be found at 
ftp://ftp.sas.com/pub/neural/FAQ2.html#A_styles.

Implementation
In the Java project, it has created the BackpropagationOnline class inside the learn 
package. The differences between this algorithm and classic backpropagation 
was programmed by changing the train() method and adding two new methods: 
generateIndexRandomList() and reduceLearningRate(). The first one generates 
a random list of indexes to be used in the training step, and the second one executes 
the learning rate online variation according to the following heuristic:

private double reduceLearningRate(NeuralNet n, double percentage) {
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    double newLearningRate = n.getLearningRate() * 
                    ((100.0 - percentage) / 100.0);
    
    if(newLearningRate < 0.1) {
      newLearningRate = 1.0;
    }
    
    return newLearningRate;
  }

The train() method was also modified to comply with the pseudo algorithm 
presented earlier. The following code is the main part of this method:

ArrayList<Integer> indexRandomList = generateIndexRandomList(rows);

while(getMse() > n.getTargetError()) {
  
  if ( epoch >= n.getMaxEpochs() ) break;
  
    double sumErrors = 0.0;
    
    for (int rows_i = 0; rows_i < rows; rows_i++) {
    
      n = forward( n, indexRandomList.get(rows_i) );
      
      n = backpropagation( n, indexRandomList.get(rows_i) );
    
      sumErrors = sumErrors + n.getErrorMean();
      
      n.setLearningRate( reduceLearningRate( n, n.getLearningRatePerce
ntageReduce() ) );
    
    }
    
    setMse( sumErrors / rows );
    
    n.getListOfMSE().add( getMse() );
    
    
    epoch++;
    
    }
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Application
We have used data from previous chapters to test this new way to train neural 
nets. This chapter uses the same neural net topology that was defined in Chapter 5, 
Forecasting Weather, and Chapter 8, Pattern Recognition (OCR Case). The first one is the 
forecast weather problem, and the second one is the OCR. The following table shows 
the comparison of results.

Values Forecast weather OCR
Classic backpropagation learning rate 0.5 0.5
Classic backpropagation MSE value 0.2877786584 0.0011981712
On-line backpropagation learning rate

Found:  0.15 Found:  0.40
On-line backpropagation MSE value 0.4618623052 9.977909980E-6

The following graph shows the MSE evolution found after the new training method. 
It takes into consideration the forecast weather data. The curve has a saw shape 
because of the variation of the learning rate. Besides, it's very similar to the curve 
shown in Chapter 5, Forecasting Weather.
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On the other hand, the following graph was produced using the OCR data and 
shows that the training process was faster and stopped near the 900th epoch because 
it had a very small MSE error. It's important to remember that in Chapter 8, Pattern 
Recognition (OCR Case), the training process was slower and continued until the 
6000th epoch.

Other experiments were also conducted: train neural nets with the backpropagation 
algorithm, considering the learning rate found by using an online approach. The 
MSE values decreased in both problems.
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The forecast weather MSE was about 0.206 against 0.287 (found in Chapter 5, 
Forecasting Weather). It's shown in the following figure:

The OCR MSE was about 8.663E-6 against 0.001 (found in Chapter 8, Pattern 
Recognition (OCR Case)). It's possible to see this in the following figure:
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Another important observation is based on the fact that the training process shown 
in the preceding figure is almost terminated in the 3000th epoch. Therefore, it's faster 
and better than the training process discussed in Chapter 8, Pattern Recognition (OCR 
Case), using the same algorithm.

Adaptive neural networks
Analogous to human learning, neural networks may also work in order to not forget 
the previous knowledge. Using the traditional approaches for neural learning, this 
is nearly impossible because of the fact that every training involves replacing all 
the connections already made with the new ones, thereby "forgetting" the previous 
knowledge, thus arises a need to make the neural networks adapt to new knowledge 
by incrementing instead of replacing their current knowledge. To address this issue, 
we are going to explore a method called adaptive resonance theory (ART).

Adaptive resonance theory
The question that drove the development of this theory was the following: "How can 
an adaptive system remain plastic to a significant input and yet maintain the stability for 
irrelevant inputs?" In other words: "How to retain the previously learned information 
while learning new information?"

We've seen that the competitive learning in unsupervised learning deals with pattern 
recognition, wherein similar inputs yield similar outputs or fire the same neurons. 
In an ART topology, the resonance comes in when the information is being retrieved 
from the network, by providing the feedback from the competitive layer and the 
input layer. So, while the network receives the data to learn, there is an oscillation 
resulting from the feedback between the competitive and the input layers. This 
oscillation stabilizes when the pattern is fully developed inside the neural network. 
This resonance then reinforces the stored pattern.
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Implementation
A new class called ART has been created in the som package. The following table 
describes the methods of this class:

Class name: ART
Attributes

private int SIZE_OF_INPUT_LAYER; Global variable to store the number of 
neurons in the input layer

private int SIZE_OF_OUTPUT_LAYER; Global variable to store the number of 
neurons in the output layer

Methods
public NeuralNet train(NeuralNet 
n)

Method to train the neural net based on 
the ART algorithm
Parameters: Neural net object to train
Returns: Trained neural net object

private void 
initGlobalVars(NeuralNet n)

Method to initialize global variables
Parameters: Neural net object
Returns: -

private NeuralNet 
initNet(NeuralNet n)

Method to initialize neural net weights
Parameters: Neural net object
Returns: Neural net object with the 
initialized weights

private int 
calcWinnerNeuron(NeuralNet n, int 
row_i, double[][] patterns)

Method to calculate the winner neuron
Parameters: Neural net object, row of the 
training set, training set patterns
Returns: Index of the winner neuron

private NeuralNet 
setNetOutput(NeuralNet n, int 
winnerNeuron)

Method to attribute the neural net output
Parameters: Neural net object, index of 
winner neuron
Returns: Neural net object with the output 
attributes

private boolean 
vigilanceTest(NeuralNet n, int 
row_i)

Method to verify whether the neural net 
has learned or not
Parameters: Neural net object, row of the 
training set
Returns: True if the neural net learned and 
false if not
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private NeuralNet 
fixWeights(NeuralNet n, int 
row_i, int winnerNeuron)

Method to fix the weights of the neural net
Parameters: Neural net object, row of the 
training set, index of the winner neuron
Returns: Neural net object with the 
weights fixed

Class Implementation with Java: file ART.java

The training method is shown in the following code. It's possible to notice that 
first, the global variables and the neural net are initialized. After that, the number 
of training sets and the training patterns are stored, and then, the training process 
begins. The first step of this process is to calculate the index of the winner neuron; 
the second is to make an attribution of the neural net output. The next step involves 
verifying whether the neural net has learned or not. If it has learned, then the 
weights are fixed, and if not, another training sample is presented to the net.

public NeuralNet train(NeuralNet n){
  
  this.initGlobalVars( n );
  
  n = this.initNet( n );
  
  int rows = n.getTrainSet().length;
  
  double[][] trainPatterns = n.getTrainSet();
  
  for (int epoch = 0; epoch < n.getMaxEpochs(); epoch++) {
    
    for (int row_i = 0; row_i < rows; row_i++) {
    
      int winnerNeuron = this.calcWinnerNeuron( n, row_i, 
trainPatterns );
      
      n = this.setNetOutput( n, winnerNeuron );
      
      boolean isMatched = this.vigilanceTest( n, row_i );
      
      if ( isMatched ) {
        n = this.fixWeights(n, row_i, winnerNeuron);
      }
      
    }
    
  }

  return n;
  
  }
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Summary
In this chapter, we've discussed a few topics that make a neural network work better, 
either by improving its accuracy or by extending its knowledge. These techniques 
help a lot in designing solutions with artificial neural networks. The reader is 
welcome to apply this framework in any desired task that neural networks can be 
used on, in order to explore the enhanced power that these structures can have. Even 
simple details such as selecting the input data may influence the entire learning 
process, as well as the filtering of bad data or the elimination of redundant variables. 
We demonstrated in two implementations, two strategies that help to improve the 
performance of a neural network: stochastic online learning and adaptive resonance 
theory. These methodologies enable the network to extend its knowledge and 
therefore, adapt to new changing environments.



[ 183 ]

Setting up the NetBeans 
Environment

This appendix shows a step-by-step procedure of how to set up the development 
environment for the NetBeans IDE.

Download and install NetBeans
Before downloading and installing NetBeans, make sure 
that you have installed the JDK (Java Development Kit), 
which can be downloaded from https://www.oracle.
com/java/index.html.
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Follow these steps to download and install NetBeans:

1. NetBeans can be freely downloaded at the project's site https://netbeans.
org/downloads/index.html (shown in the following figure); choose the 
installer that is to be downloaded according to your operation system, as 
shown in the drop-down list platform:

2. You can select from the versions displayed in the web page. For the  
projects in this book, the Java SE version fits very well; in addition, it is the 
smallest and lightest version as well. The download should start shortly; in 
every case, you can click on the download it here button, as shown in the 
following screenshot:
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3. After the download, you should run the netbeans-<version>-javase-<your_
os>.exe executable file. The following screen appears. You can perform the 
standard installation then. When executing the installer, it tells you about the 
size of the installation and the version. You can then click on the Next button.
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4. You must accept the license agreement by marking the checkbox, as shown in 
the following screenshot, and then click on the Next button:

5. Then, you can select the folders where the program will be installed or you 
can just leave the default folders, as indicated in the following screenshot:
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6. Now, we're ready to install. You may the click on the Check for Updates 
checkbox and just click on the Install button.

7. After the installation, you may click on the NetBeans icon on the desktop to 
run NetBeans. An initial page will open:
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Setting up the NetBeans environment
To set up the NetBeans environment, you need to perform the following steps:

1. The NetBeans environment already provides options to create and open new 
projects. Now, let's create a new project by selecting the menu File | New 
Project. In the dialog window that opens, make sure that you have selected 
the Java Project with Existing Sources project template and then click on 
Next, as shown in the following screenshot:

2. Then, you can choose a name for the project, the name NeuralNetPackt_ch01 
is mere a suggestion, and you are free to choose the name you want.
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3. In the next screen, you can select the folder where the source codes are stored:
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4. In the file, open the dialog that opens, browse to the folder where the files are 
stored, and select it.

5. Once you've selected the folder, you can click on the Open button and then 
the next button in the parent window. Now, a list of includes and excludes is 
displayed. You can just leave it as is and click on the Finish button.
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6. And we're done! Now, you are ready to work on the codes of each chapter in 
your NetBeans installation.

Importing a project
The following are the steps to import a project in NetBeans:

1. NetBeans offers an option to import an existing project, whether created on 
NetBeans or Eclipse. You can go to the menu File | Import Project and select 
the appropriate option.
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If you already have Eclipse installed and you want to import it into 
NetBeans, just select the folder for the workspace location and click on OK.

2. Select the project you want to import and click on the Finish button.
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3. And the project is imported successfully.

4. If you want to import from a Zip file, you can choose the From Zip option 
by navigating to File | Import Project. Just make sure that the Zip file was 
created from the NetBeans project.
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Programming and running code with 
NetBeans
After going through all the previous steps, you are able to start Java programming. 
The next screenshot shows you the structure of the NetBeans environment:

The following are the details of the NetBeans environment's sections:

• Projects: This section is displayed on the left-hand side of the packages and 
classes that compose the Java project

• Code: This is shown in the middle of the screen and brings the code you 
should interact with

• Run the code: As displayed in the button indicated on the screen
• Debug the code: To debug the code, select the Debug menu and then choose 

a file to debug (or press Ctrl + Shift + F5)

We recommend you to run the IDE as an administrator, 
but it is not necessary.
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Debugging with NetBeans
To debug a Java program in NetBeans, you just select a project to debug or the class 
file itself, as shown in the following screenshot:

To debug line-by-line, you should add a breakpoint. So, you can place a breakpoint 
by clicking on the corresponding line number. Let's add a breakpoint in the 
beginning of the main method.
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Use the following commands to debug line-by-line on the source code:

• F5: This is used to step into the method
• F6: This is used to step over the method
• F7: This is used to return to the step
• F8: This is used to resume debugging
• Ctrl + F2: This is used to terminate the debug

To inspect the value of a variable, just right-click on the code screen and select the 
New Watch option (or just press Ctrl + Shift + F7). Insert the name of the variable or 
expression you want to watch and click on Ok. You can see at the bottom of the screen 
a section called variables, where all the user custom expressions and relevant variables 
are displayed with their current values, as shown in the following screenshot:
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In the preceding case, n is an object, so you can expand all its attributes by clicking 
on the + sign on the left-hand side. And there you are; all the attributes are shown  
as follows:
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Setting Up the Eclipse 
Environment

This appendix shows you a step-by-step procedure of how to set up your 
development environment if you want to use the Eclipse IDE.

Download and install Eclipse
Before downloading and installing Eclipse, ensure that you 
have installed its JDK (Java Development Kit), accessing 
https://www.oracle.com/java/index.html.
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The following are the steps to install Eclipse:

1. Access http://www.eclipse.org/downloads (shown in the following 
figure); choose Eclipse Installer to download the installer according to your 
operating system. Recently, the Eclipse team made the installation process 
easier through Eclipse Installer.

2. The web page represented in the following screenshot appears after this. 
You should click on the Download button. The best mirror to download is 
selected automatically, but if you want to choose another one, you may do so 
at the bottom of the page.
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3. After the download, you should run the eclipse-inst-<your_os>.exe 
executable file. The following screen appears after this. As we will not 
develop web applications, you should click on the first option, that is,  
Eclipse IDE for Java Developers.
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4. Now, you should select the installation folder and decide whether you  
want to create the start menu entry and desktop shortcut. Then, click on  
the INSTALL button.

5. You must accept the license by clicking on the Accept Now button.
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6. Finally, the installation process begins.

7. After the installation, you may click on the LAUNCH button to run Eclipse.
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Setting up the Eclipse environment
Follow the next steps to set up the environment:

1. In the next step, we choose the workspace folder where your projects will be 
placed. If you mark the Use this as the default and do not ask again option, 
then the next time you run Eclipse, it will not be necessary to inform the 
workspace folder again. Now, click on the OK button.

2. The welcome screen is displayed and you are ready to start the  
Java programming.
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Importing a project
Before importing the project, make sure that you unzip it in 
a folder you know.

The following are the steps to import a project in Eclipse:

1. To import a project that is already developed in your Eclipse IDE, navigate  
to File | Import.
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2. After the import prompt is displayed, you should expand the General option, 
choose Existing Projects into Workspace, and click on the Next button.
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3. Now, click on the Browse… button to search for the project unzip folder. 
After that, do not forget to mark the Search for nested projects option and 
click on the Finish button.
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4. In this step, you should close the welcome screen, and you will see in 
Package explorer the project you've imported to Eclipse.

5. If you see a JRE version error, you should open the Problems tab. Right-click 
on Unbound classpath container…, and choose Quick Fix. The next screen 
will be exhibited.
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6. Now, click on the Select a system library to use… option and the Finish button. 
The Edit Library window appears, and you should select the Workspace 
default JRE (jre1.8.0_40) option then and click on the Finish button.
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Programming and running code with the 
Eclipse IDE

Make sure that you run the Eclipse IDE as an administrator.

After all the previous steps, you are now able to start Java programming. The next 
screenshot shows the structure of Eclipse:

The following are the four sections of Eclipse:

• Package Explorer: This section is displayed on the left-hand side of the 
packages and classes that compose the Java project

• Code: This is shown in the middle of the screen and brings the code that you 
should interact with
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• Run the code: There are many ways to run code. Perhaps, the easiest one is 
the play button indicated by arrow A

• Debug the code: There are also many ways to debug code. The easiest one is 
the bug button appointed by arrow B.

When you click on the button to run the code, it runs in the Console tab, as shown in 
the following screenshot:

Debugging with the Eclipse IDE
To debug a Java class using the Eclipse IDE, you must create a breakpoint. It can 
be made by simply double-clicking near the line number (a blue round will be 
displayed). Then, when you click on the debug button to run the debugging process, 
the execution of the class will stop right on the line marked with the breakpoint, and 
you may type the following keys on the keyboard:

• F5: This is used to step into a method
• F6: This is used to step over a method
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• F7: This is used to step return
• F8: This is used to resume debugging
• Ctrl + F2: This is used to terminate the debug

The following screenshot shows the Eclipse debug screen. There is an important 
section in this screen on the right-top corner named Variables that shows the 
variables and its respective current values.
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