

Abstract - This paper introduces a neural network training

tool through computer networks. The following algorithms,
such as neuron by neuron (NBN) [1][2], error back
propagation (EBP), Levenberg Marquardt (LM) and its
improved versions are implemented in two different
computing methods, traditional forward-backward
computation and newly developed forward-only computation.
The training tool can handle not only conventional multilayer
perceptron (MLP) networks, but also arbitrarily connected
neuron (ACN) networks. There are several benefits that make
this network training tool desirable. Network training process
can be used remotely through any network connection or any
operating system can be used to access the network training
tool, making the application operating system independent.
Also much less installation time and configuration time is
required because the training tool locates on one central
machine. Many users can access at the same time. Users can
train and see the training results directly through networks.
And the most important thing is the software producers can
protect their intellectual property when network browsers are
used as user interface.

Keywords — neural networks, training tool

I. INTRODUCTION

Communication through computer networks has become
a popular and efficient means of computing and simulation.
Most companies and research institutions use networks to
some extent on a regular basis [3][4]. Computer networks
provide the ability to access all kinds of information which
are available from all around the world, and intranet
networks provide connectivity for a smaller, more isolated
domain like a company or a school. Several tools of
computer network programming are available today
including Java, CGI (Common Gateway Interface)...CGI
scripts utilize PERL, PHP, or other scripting languages.

Several neural network trainer tools are available on the
market. One of the freeware available tools is “Stuttgart
Neural Network Simulator” is based on widely C platform
and is distributed in both executable and source code
version [5]. However the installation of this tool requires
certain knowledge of compiling and setting up the
application. Also, it is based on XGUI that is not freeware
and still single type architecture- Unix architecture [6].

The commercial neural network software called
“Neurodesigner” is a product of CyberSoft [7]. Even
though aiming to attract users by Java based windows
interface, but this tool lacks some fundamental algorithms,
like Levenberg Marquardt algorithm. MATLAB Neural
Network Tool box contains basic training algorithms, such

as EBP algorithm and LM algorithm, but they are limited
for traditional multilayer perceptron networks, which are
inefficient [8]. The commercial price also places a hurdle
on educational use of such a tool.

This paper will describe the power of network
programming technology used to develop the neural
network training tool which can be trained remotely
through any computer network. Several network
programming tools which are available today, include in
Java, CGI, JavaScript, ActiveX, HTML, PERL, PHP [9]
while HTML, JavaScript, PHP are used to develop in this
particular application. The trainer has a user-friendly GUI
(Graphical User Interface) and features include password
protection and user accounts, local or remote files for
training, training result hyperlinks and Error curve in the
form of image.

The PHP network programming language supports for
dynamic web-pages. Its communication with web browser
is accomplished through network connection. PHP has
capability to process, extract data and receive request to
execute the external execution files in the background.
When the execution files finish, it will send the results back
to the requesting clients. Moreover, HTML and JavaScript
can be incorporated into PHP scripts very efficiently. This
feature makes PHP more powerful for the web
programming. HTML and JavaScript provide the front-end
graphical user interface that allows users to input data,
upload data files or click a button to start training.

The training process can be described as Fig. 1: when
clients upload all the input files and send a request to the
server, the request will be processed and executed by PHP
scripts on the server. After training, the server will send the
results back to the local machine that made the request.

Fig.1. Data Flow in Neural Network Trainer

Neural Network Trainer through Computer
Networks

Nam Pham†, Hao Yu†, Bogdan M. Wilamowski†, Fellow, IEEE
†Electrical and Computer Engineering, Auburn University, Alabama, US

nguyehu@auburn.edu hzy0004@auburn.edu wilam@ieee.org

2010 24th IEEE International Conference on Advanced Information Networking and Applications

1550-445X/10 $26.00 © 2010 IEEE

DOI 10.1109/AINA.2010.169

1203

II. OVERVIEW OF NEURAL NETWORK
Artificial neural networks (ANN) are used in many

industrial applications, such as nonlinear control [10][11],
system analysis and diagnosis [12][13], VLSI design
[14][15] and data classification [16][17]. It is easy to
demonstrate that they can surplus human capabilities to
recognize the complex patterns [18][19].

Error back propagation (EBP) algorithm [20][21] is the
most popular training method, however, it is not an efficient
one because of its slow convergence and its low training
stability. Based on EBP algorithm, lots of improvements
are developed for better training [22][23], and some of them,
such momentum [24], Quick-prop and Resilient EBP [25],
work well.

Although complex computation for Jacobian/Hessian
matrix is necessary during training process, Levenberg
Marquardt (LM) algorithm [26] is considered as one of the
most efficient algorithms for small and median sized
training patterns. Also there are many good improved
algorithms [27] based on LM algorithm for better training.

Most of neural network training software which uses LM
algorithm (e.g. MATLAB Neural Network Toolbox) is not
able to train neural networks with arbitrary connections
between neurons. This deficiency was overcome by the
NBN algorithm [1].

Like EBP algorithm, multilayer perceptron (MLP)
networks are broadly accepted in practical applications
because they could be realized easily by programming.
However, MLP networks perform much less efficient
training than other structures, such as MLP with full
connections among layers (Bridged MLP) and fully
connected cascade (FCC) networks, to deal with the same
problems. For example, for parity-7 problem, it needs at
least 8 neurons for the standard MLP network to get a
solution (Fig. 2(a)), while, for BMLP and FCC networks,
only 4 and 3 neurons are required respectively (Fig. 2(b)
and (c)). For efficient training, BMLP and FCC networks
are better choices, but they also require more challenging
computation [8].

 (a) 7=7=1 MLP network (b) 7=3=1 BMLP network

(c) 3 neurons in FCC network

Fig.2. The least neurons required in different neural
network structures for parity-7

In this paper, the neural network trainer NBN 2.0 is

introduced as a powerful training tool. It contains EBP
algorithm, LM algorithm, neuron by neuron (NBN)
algorithm [1][2] and a improved NBN algorithm. Besides
the conventional forward-backward computation, a newly
developed forward-only (without error back propagation
process) computation is also implemented in the software.
Based on the neuron by neuron computing scheme, this tool
can handle arbitrarily connected cascade (FCC) networks.

In the section IV of this paper, the detailed information of
NBN is described, and the section V presents a practical
example how to use the NBN 2.0.

III. OVERVIEW OF NETWORK PROGRAMMING
Several network programming tools are available such as

Java, CGI, ActiveX, Java-script, VBScript, HTML, and
PERL. During software development, it is important to
justify which part of the software should run on the client
machine and which part should run on the server. CGI is
quite different from writing Java applets. Applets are
transferred though a network when requested and execution
is performed entirely on the client machine that made
request. In CGI much less information has to be passed to
the server and the server executes instructions based on the
given information and sends the results back to the local
machine that make the request. In case of neural network
trainer it only makes sense to use CGI for training process
because it is impossible to send the trainer through the
computer network every time it was requested, and this
would be extremely slow. Therefore, it is important to
develop methods which take advantage for networks. This
would require solving several issues, such as:

• Minimization of the amount of data which must be
sent by network

• Selection of programming tools used for various
tasks

• Development of user-friendly interface
• Security, privacy
• Portability of software used on servers and clients
• Task partitioning between the server and client

This training tool currently incorporates CGI, PHP,
HTML and Java-Script. CGI programming allows dynamic
web-page generation in a web browser. Communication
between the CGI program and the web browser is
accomplished through a network connection between the
web browser and a computer running an HTTP server. A
CGI program is executed on a server when it receives a

1204

request to process information from a web browser. The
server then decides if the request should be granted. If the
authorization is secured, the server executes the CGI
program and returns the results to the web browser that
requested.

PHP is a scripting language like PERL. In fact, its syntax
resembles PERL. The main difference lays in the set of
standard built-in libraries that support generation of HTML
code, processing data from and to the web server, and
handling cookies. The same functionality can be accessed
in PERL by inclusion of one or more libraries. PHP can be
used either as a classical CGI scripting language or as an
implementation of ASP technology [28]. Since certain
frequently used functionality is built in directly into the
language, it is more efficient to use. In general, any
specialized tool will be somewhat more efficient for one
particular task it was designed for, instead of other powerful
but general purpose tools.

IV. NEURAL NETWORK TRAINER
The NBN 2.0 [29][30] is developed based on Visual

Studio 6.0 using C++ language hosting on server and
communicating with clients through PHP scripts. Its main
interface is shown in Fig. 3. In the following part of this
section, a detailed instruction of the training tool is
presented.

Fig.3. The user interface of NBN 2.0

A. Training Algorithms
Up to now, the training tool is developed with six

different types of training algorithms.
• Error Back Propagation (EBP)

This is an improved EBP algorithm [31], with
momentum and multiple learning constants. The
momentum is introduced to adjust weight vector using the
information from the previous iteration. Therefore, the
update rule of the improved EBP algorithm can be
described as

() -1kk wgw k Δ+−−=Δ ηηααα 1}...,{ 321 (1)
where: k is the index of iterations; g is the gradient vector;
∆w is the weight change; η is the momentum; {α1, α2… α3}
are multiple learning constants. For every iteration, the
most optimal learning constant will be picked out by
comparison of training errors.
• Levenberg Marquardt (LM)

Original LM algorithm with update rule [32]:

() kkk gIHw 1−+−=Δ μ (2)
where: H is the Hessian matrix; I is the identity matrix and
μ is the combination coefficient. The original LM algorithm
is only used for MLP networks.
• Neuron By Neuron (NBN)

This is the improved LM algorithm, with advantages: (1)
ability of training arbitrarily connected neural networks
[1][2]; (2) without Jacobian matrix computation and
storage [33].
• Error Back Propagation, forward-only (EBP, forward
only)
 This is the EBP algorithm with different computation
routings from traditional backpropagation computation.
• Neuron By Neuron, forward-only (NBN, forward only)
 This is the NBN algorithm with forward-only
computation process.
• Neuron By Neuron, improved (NBN-improved)
 This is a newly developing algorithm derived from EBP
algorithm and Newton algorithm. It’s designed to do only
one matrix inversion for each iteration during training.
With this property, it’s supposed to compute faster than LM
algorithm. At the same time, by inheriting gradient
searching ability from EBP algorithm, the proposed
algorithm also can perform stable training.

The drop-down box is used to select training algorithms
as Fig.4.

Fig.4. Training Algorithms

B. File Instruction
The neural network interface will receive the request

from users with uploading files and input parameters to
generate the data files and then send the command to the
training software locating on server. There are two files
required for training process: topology file and training data
file and the users have to use “Browse” buttons as in Fig.5
to upload two these files. These two files have to follow
certain syntax so that the training tool can make sense in the
correct way.

1205

Fig.5. Uploading Files

• Topology file
The topology files are named “*.in”, and they are mainly

used to construct neural network topologies for training.
The topology files consist of four parts: topology design,
weight initialization (optional), neuron type instruction and
training data specification.

The topology design is aimed to create the neural
structures. The general command is “n [b] [type] [a1 a2 …
an]”, which means inputs neurons indexed with a1,a2…,an
are connected to neuron b with a specified neural type
(bipolar, unipolar or linear). Fig. 6 presents the topology
file for the neural networks shown in Fig. 2.

(a) 7=7=1 MLP network

(b) 7=3=1 MLP-FCL network

(c) 3 neurons FCC network

Fig.6. Topology design for networks shown in Fig. 2;

all neurons are bipolar neurons.

The weight initialization part is used to specify the initial
weights for training and this part is optional. If there is no
weight initialization in the topology file, the trainer will
generate the initial weights randomly (from -1 to 1) before
training. The general command is “w [wbias] [w1 w2 … wn]”,

corresponding to the topology design. Fig. 7 shows the
example of weight initialization for the parity-3 problem
with 2 neurons in FCN network. “//” sign in the topology
file is understood as the comment by the trainer.

Fig.7. Weight initialization for parity-3 problem with

2 neurons in FCN network.

In the neuron type instruction part, three different types

of neurons are defined. They are bipolar (“mbip”), unipolar
(mu) and linear (“mlin”). Bipolar neurons have positive or
negative outputs, while unipolar neurons only have positive
outputs. The outputs of both bipolar and unipolar neurons
are no more than 1. If the desired outputs are larger than 1,
the linear neurons are considered to be the output neurons.
The general command is “.model [mbip/mu/mlin]
fun=[bip/uni/lin], gain=[value]”. “gain” is the parameter of
related activation functions (Fig. 8).

Fig.8. Activation functions of unipolar neuron with

different “gain” values; for bipolar and linear
neurons, “gain” plays the same roles as in unipolar
neurons

The training data specification part is used to set the

name of training pattern file, in order to get correct training
data. The general command is “datafile=[file name]”.

• Training pattern file
The training pattern files include input patterns and

related desired outputs. In a training pattern file, the number
of rows is equal to the number of patterns, while the number
of columns is equal to the sum of the number of inputs and
the number of outputs. However, only with the data in the
training pattern file, one can’t tell the number of inputs and
the number of outputs, so the neural topology should be
considered together in order to decide those two parameters
(Fig. 9). The training pattern files are specified in the
topology files as mentioned above, and it should have the
same route as the related topology files.

1206

Fig.9. Get the number of inputs and the number of

outputs from the data file and topology

C. Parameter Settings
All parameters can be edited in the user interface Fig. 10

with the blanks written in HTML form and Java-Script.
There are three main parameters: training times, max-error,
max-iteration have to be filled in. These values must be the
number. If users do not put these parameters in the proper
forms, the warning message will pop up. If these
parameters are left with the blanks, the trainer will
automatically assign their values by zeros. Besides these
parameters, there are other parameters with default values
which will dynamically pop up for inputting data of
“combination coefficient”, “scale constant”, “momentum
constant”, “learning constant”, “alpha constant”, “beta
constant”, “gamma constant” which depends on the
selected algorithm when users click the “Set parameters”
button.

Fig.10. Input Parameters

“Clear all data” button is used to clear all old data set and

start again with a new set.

TABLE 1: PARAMETERS FOR TRAINING
Parameters Descriptions
alpha Learning constant for EBP
momentum Momentum for EBP
scale Parameter for LM/NBN
mu Parameter for LM/NBN
po alpha Parameter for NBN improved
po beta Parameter for NBN improved
po gama Parameter for NBN improved
max error Maximum error
max iteration Maximum iteration for training
Training times The number of training trials

D. Training Information
Instantaneous training data are presented in this area,

including SSE and cost iterations for current training,
average iteration and time spent in solving the same
problems, and the success rate for multiple times training.
These parameters have default values “0s”, are disabled and
only updated after each training process.

Fig.11. Training Information

E. Plot Area
This area is used to depict the sum squared error (SSE)

during training. The log scaled vertical axis presents SSE
values from 0.0001 to 10000, while the horizontal axis,
which is linearly scaled automatically with the coefficient
at the bottom of plotting area (“×[value]” in Fig. 3), shows
the number of iterations cost for training. The plot is
provided in bmp format, widely recognized by most of
popular web browsers. All plots are dynamically generated.

The “Submit data” button allows the training tool to
check all inputs. This is very necessary because the network
trainer can’t handle all types of formats of files and input
parameters which can affect the training success. All
submitted data is saved into the database and the trainer will
automatically retrieve these data from the database and
initialize them as the next data set.

When all the requirements are fulfilled and set up
properly the button “Start training” will appear. Otherwise,
it will not and the training tool will send the error warnings
back to the clients. The training process can be long or short
depending on the convergence of the selected algorithm,
the complication of network structure, the input parameters
and the speed of network. If the training process is
successful the training result will be generated. The training
result file is used to store training information and the
results such as training algorithm, training pattern file,
topology, parameters, initial weights, result weights and
training results will be saved after the training process
finishes. The name of the training result file is generated
automatically according to the name of the training file and
hyperlinked right above the Graphical Users Interface. If
the training process gets errors the “Error” hyperlink will
appear instead of the “Training Result” hyperlink.

V. EXAMPLE
This example will present all steps of training process

with parity-4 problem. Two input files include parity4.in,
parity4.dat, selected algorithm is NBN with parameter

1207

training times= 500, max-error= 0.001, max-iteration= 500,
combination coefficient= 0.01, scale constant=10.

• Input files

Fig.12. Parity4.in (topology)

Fig.13. Parity4.dat (training data)

• Input parameters

Fig.14. Input Parameters

• Output plot

Fig.15. Output Plot

• Training result

Fig.16. Training Results

• Training Information

Fig.17. Training Information

VI. CONCLUSION
In this paper, the training tool NBN 2.0 through

computer networks is introduced for neural network
training. This trainer contains both first order and second
order training algorithms, which are implemented by
traditional forward-backward computation and a newly
developed forward-only computation respectively. It can
handle not only MLP networks, but also ACN networks
well. With the detailed instructions and example presented

1208

in the paper, one can get familiar with this useful tool for
neural network training. The NBN 2.0 is available at
http://131.204.128.91/NNTrainer/index.php, and it will be
updated from time to time.

REFERENCES
[1] B. M. Wilamowski, N. Cotton, J. Hewlett, O. Kaynak, “Neural

network trainer with second order learning algorithms”. Proc.
International Conference on Intelligent Engineering Systems, June
29 2007-July 1 2007, pp. 127-132.

[2] Wilamowski, B.M. Cotton, N.J. Kaynak, O. Dundar, G.,
“Computing Gradient Vector and Jacobian Matrix in Arbitrarily
Connected Neural Networks”, IEEE Trans. on Industrial
Electronics, vol. 55, no. 10, pp. 3784-3790, Oct. 2008.

[3] B. M. Wilamowski, John Regnier, Aleksander Malimowski, “SIP-
Spice Intranet Package”, IEEE International Conference on
Industrial Electronics, pp.192-195, June 7-10 1998.

[4] B. M. Wilamowski, A. Malinowski, and J. Regnier, “SPICE based
Circuit Analysis using Web Pages”, ASEE 2000 Annual Conference,
St. Louis, MO, CD-ROM session 2520, June 18 to Aug 2, 2000.

[5] Stuttgart Neural Network Simulator, URL from May 2002:
http://www-ra.informatik.uni-tuebingen.de/SNNS/.

[6] M. Manic, B. M. Wilamowski, and A. Malinowski, “Internet based
Neural Network Online Simulation Tool”, Proc. of the 28th Annual
Conference of the IEEE Industrial Electronics Society, pp.
2870-2874, Sevilla, Spain, Nov 5-8, 2002.

[7] Neurodesigner- comprehensive neural network software, URL from
May 2002: http://www.neurodesigner.com/

[8] B. M. Wilamowski, Neural Network Architectures and Learning
Algorithms, IEEE Industrial Electronics Magazine, vol. 3, no 4,
pp. 56-63, 2009.

[9] A. Malinowski, B. M. Wilamowski, "Internet Technology as a Tool
for Solving Engineering Problems ", The 27th Annual Conference of
the IEEE Industrial Electronics Society (tutorial) pp. 1622-1630,
Denver CO, Nov 29-Dec 2, 2001.

[10] J. A. Farrell, M. M. Polycarpou, "Adaptive Approximation Based
Control: Unifying Neural, Fuzzy and Traditional Adaptive
Approximation Approaches, " IEEE Trans. on Neural Networks, vol.
19, no. 4, pp. 731-732, April 2008.

[11] G. Colin, Y. Chamaillard, G. Bloch, G. Corde, "Neural Control of
Fast Nonlinear Systems—Application to a Turbocharged SI Engine
With VCT," IEEE Trans. on Neural Networks, vol. 18, no. 4, pp.
1101-1114, April 2007.

[12] S. Khomfoi, L. M. Tolbert, “Fault diagnostic system for a multilevel
inverter using a neural network”. IEEE Trans. Power Electron., vol.
22, no. 3, pp. 1062-1069, May 2007.

[13] J. F. Martins, V. Ferno Pires, A. J. Pires, “Unsupervised
neural-network-based algorithm for an on-line diagnosis of
three-phase induction motor stator fault”. IEEE Trans. Ind.
Electron., vol. 54, no. 1, pp. 259-264, Feb. 2007.

[14] K. Cameron, A. Murray, "Minimizing the Effect of Process
Mismatch in a Neuromorphic System Using
Spike-Timing-Dependent Adaptation," IEEE Trans. on Neural
Networks, vol. 19, no. 5, pp. 899-913, May 2008.

[15] G. Indiveri, E. Chicca, R. Douglas, "A VLSI array of low-power
spiking neurons and bistable synapses with spike-timing dependent
plasticity," IEEE Trans. on Neural Networks, vol. 17, no. 1, pp.
211-221, Jan 2006.

[16] B. Vigdor, B. Lerner, "Accurate and Fast Off and Online Fuzzy
ARTMAP-Based Image Classification With Application to Genetic
Abnormality Diagnosis," IEEE Trans. on Neural Networks, vol. 17,
no. 5, pp. 1288-1300, May 2006.

[17] M. Kyperountas, A. Tefas, I. Pitas, "Weighted Piecewise LDA for
Solving the Small Sample Size Problem in Face Verification," IEEE
Trans. on Neural Networks, vol. 18, no. 2, pp. 506-519, Feb 2007.

[18] Jafarzadegan, M. , Mirzaei, H. , “A new ensemble based classifier
using feature transformation for hand recoognition”, Human System
Interactions, 2008 Conference on, pp. 749-754, May, 2008.

[19] Mroczek, T. , Paja, W. , Piatek, L. , Wrzesie, M. ,”Classification and
synthesis of medical images in the domain of melanocytic skin
lesions”, Human System Interactions, 2008 Conference on, pp.
705-709, May, 2008.

[20] Rumelhart D. E., G. E. Hinton, R. J. Williams, “Learning
representations by back-propagating errors”. Nature, vol. 323, pp.
533-536, 1986.

[21] Werbos P. J., “Back-propagation: Past and Future”. Proceeding of
International Conference on Neural Networks, San Diego, CA, 1,
343-354, 1988.

[22] Yinyin Liu, J.A. Starzyk, Zhen Zhu, "Optimized Approximation
Algorithm in Neural Networks Without Overfitting," IEEE Trans. on
Neural Networks, vol. 19, no. 6, pp. 983-995, June 2008.

[23] S. Ferrari, M. Jensenius, "A Constrained Optimization Approach to
Preserving Prior Knowledge During Incremental Training," IEEE
Trans. on Neural Networks, vol. 19, no. 6, pp. 996-1009, June 2008.

[24] V.V. Phansalkar, P.S. Sastry, "Analysis of the back-propagation
algorithm with momentum," IEEE Trans. on Neural Networks, vol.
5, no. 3, pp. 505-506, March 1994.

[25] M. Riedmiller, H. Braun, “A direct adaptive method for faster
backpropagation learning: The RPROP algorithm”. Proc.
International Conference on Neural Networks, San Francisco, CA,
1993, pp. 586-591.

[26] K. Levenberg, “A method for the solution of certain problems in
least squares”. Quarterly of Applied Machematics, 5, pp. 164-168,
1944.

[27] A. Toledo, M. Pinzolas, J.J. Ibarrola, G. Lera, "Improvement of the
neighborhood based Levenberg-Marquardt algorithm by local
adaptation of the learning coefficient," IEEE Trans. on Neural
Networks, vol. 16, no. 4, pp. 988-992, April 2005.

[28] Aleksander Malinowski, Bogdan Wilamowski, “Internet
Technology as a Tool for Solving Engineering Problems”, The 27th
Annual Conference of the IEEE Industrial Electronics Society, pp
1622-1630, November 29- December 2, 2001.

[29] Hao Yu and B. M. Wilamowski, “C++ Implementation of Neural
Networks Trainer”, 13-th International Conference on Intelligent
Engineering Systems, INES-09, Barbados, April 16-18, 2009.

[30] Hao Yu and B. M. Wilamowski, “Efficient and reliable training of
neural networks”, in Proc. 2nd IEEE Human System Interaction
Conf. HSI 2009, Catania, Italy, May 21-23, 2009, pp. 109-115.

[31] Robert Hecht-Nielsen, “Theory of the Back Propagation Neural
Network”. Proc. 1989 IEEE IJCNN, 1593-1605, IEEE Press, New
York, 1989.

[32] Hagan, M.T. Menhaj, M.B., “Training feedforward networks with
the Marquardt algorithm”. IEEE Trans. on Neural Networks, vol. 5,
no. 6, pp. 989-993, Nov. 1994.

[33] Wilamowski M. Bogdan, Hao Yu, “Improved computation for
Levenberg Marquardt Training”, IEEE Trans. on Neural Networks
(accepted).

1209

