
  

 
Abstract - This paper introduces a neural network training 

tool through computer networks. The following algorithms,  
such as neuron by neuron (NBN) [1][2], error back 
propagation (EBP), Levenberg Marquardt (LM) and its 
improved versions are implemented in two different 
computing methods, traditional forward-backward 
computation and newly developed forward-only computation. 
The training tool can handle not only conventional multilayer 
perceptron (MLP) networks, but also arbitrarily connected 
neuron (ACN) networks. There are several benefits that make 
this network training tool desirable. Network training process 
can be used remotely through any network connection or any 
operating system can be used to access the network training 
tool, making the application operating system independent. 
Also much less installation time and configuration time is 
required because the training tool locates on one central 
machine. Many users can access at the same time. Users can 
train and see the training results directly through networks.  
And the most important thing is the software producers can 
protect their intellectual property when network browsers are 
used as user interface.  
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I. INTRODUCTION 

Communication through computer networks has become 
a popular and efficient means of computing and simulation. 
Most companies and research institutions use networks to 
some extent on a regular basis [3][4]. Computer networks 
provide the ability to access all kinds of information which 
are available from all around the world, and intranet 
networks provide connectivity for a smaller, more isolated 
domain like a company or a school. Several tools of 
computer network programming are available today 
including Java, CGI (Common Gateway Interface)...CGI 
scripts utilize PERL, PHP, or other scripting languages.  

Several neural network trainer tools are available on the 
market. One of the freeware available tools is “Stuttgart 
Neural Network Simulator” is based on widely C platform 
and is distributed in both executable and source code 
version [5]. However the installation of this tool requires 
certain knowledge of compiling and setting up the 
application. Also, it is based on XGUI that is not freeware 
and still single type architecture- Unix architecture [6].  

The commercial neural network software called 
“Neurodesigner” is a product of CyberSoft [7]. Even 
though aiming to attract users by Java based windows 
interface, but this tool lacks some fundamental algorithms, 
like Levenberg Marquardt algorithm. MATLAB Neural 
Network Tool box contains basic training algorithms, such 

as EBP algorithm and LM algorithm, but they are limited 
for traditional multilayer perceptron networks, which are 
inefficient [8]. The commercial price also places a hurdle 
on educational use of such a tool.  

This paper will describe the power of network 
programming technology used to develop the neural 
network training tool which can be trained remotely 
through any computer network. Several network 
programming tools which are available today, include in 
Java, CGI, JavaScript, ActiveX, HTML, PERL, PHP [9] 
while HTML, JavaScript, PHP are used to develop in this 
particular application. The trainer has a user-friendly GUI 
(Graphical User Interface) and features include password 
protection and user accounts, local or remote files for 
training, training result hyperlinks and Error curve in the 
form of image.  

The PHP network programming language supports for 
dynamic web-pages. Its communication with web browser 
is accomplished through network connection. PHP has 
capability to process, extract data and receive request to 
execute the external execution files in the background. 
When the execution files finish, it will send the results back 
to the requesting clients. Moreover, HTML and JavaScript 
can be incorporated into PHP scripts very efficiently. This 
feature makes PHP more powerful for the web 
programming. HTML and JavaScript provide the front-end 
graphical user interface that allows users to input data, 
upload data files or click a button to start training.      

The training process can be described as Fig. 1: when 
clients upload all the input files and send a request to the 
server, the request will be processed and executed by PHP 
scripts on the server. After training, the server will send the 
results back to the local machine that made the request.  

 
Fig.1. Data Flow in Neural Network Trainer 
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II. OVERVIEW OF NEURAL NETWORK 
Artificial neural networks (ANN) are used in many 

industrial applications, such as nonlinear control [10][11], 
system analysis and diagnosis [12][13], VLSI design 
[14][15] and data classification [16][17]. It is easy to 
demonstrate that they can surplus human capabilities to 
recognize the complex patterns [18][19].  

Error back propagation (EBP) algorithm [20][21] is the 
most popular training method, however, it is not an efficient 
one because of its slow convergence and its low training 
stability. Based on EBP algorithm, lots of improvements 
are developed for better training [22][23], and some of them, 
such momentum [24], Quick-prop  and Resilient EBP [25], 
work well. 

Although complex computation for Jacobian/Hessian 
matrix is necessary during training process, Levenberg 
Marquardt (LM) algorithm [26] is considered as one of the 
most efficient algorithms for small and median sized 
training patterns. Also there are many good improved 
algorithms [27] based on LM algorithm for better training. 

Most of neural network training software which uses LM 
algorithm (e.g. MATLAB Neural Network Toolbox) is not 
able to train neural networks with arbitrary connections 
between neurons. This deficiency was overcome by the 
NBN algorithm [1]. 

Like EBP algorithm, multilayer perceptron (MLP) 
networks are broadly accepted in practical applications 
because they could be realized easily by programming. 
However, MLP networks perform much less efficient 
training than other structures, such as MLP with full 
connections among layers (Bridged MLP) and fully 
connected cascade (FCC) networks, to deal with the same 
problems. For example, for parity-7 problem, it needs at 
least 8 neurons for the standard MLP network to get a 
solution (Fig. 2(a)), while, for BMLP and FCC networks, 
only 4 and 3 neurons are required respectively (Fig. 2(b) 
and (c)). For efficient training, BMLP and FCC networks 
are better choices, but they also require more challenging 
computation [8]. 

 

 
   (a) 7=7=1 MLP network     (b) 7=3=1 BMLP network 
 

 
(c) 3 neurons in FCC network 

Fig.2. The least neurons required in different neural  
network structures for parity-7 

 
In this paper, the neural network trainer NBN 2.0 is 

introduced as a powerful training tool. It contains EBP 
algorithm, LM algorithm, neuron by neuron (NBN) 
algorithm [1][2] and a improved NBN algorithm. Besides 
the conventional forward-backward computation, a newly 
developed forward-only (without error back propagation 
process) computation is also implemented in the software. 
Based on the neuron by neuron computing scheme, this tool 
can handle arbitrarily connected cascade (FCC) networks. 

In the section IV of this paper, the detailed information of 
NBN is described, and the section V presents a practical 
example how to use the NBN 2.0.   

III. OVERVIEW OF NETWORK PROGRAMMING 
Several network programming tools are available such as 

Java, CGI, ActiveX, Java-script, VBScript, HTML, and 
PERL. During software development, it is important to 
justify which part of the software should run on the client 
machine and which part should run on the server. CGI is 
quite different from writing Java applets. Applets are 
transferred though a network when requested and execution 
is performed entirely on the client machine that made 
request. In CGI much less information has to be passed to 
the server and the server executes instructions based on the 
given information and sends the results back to the local 
machine that make the request. In case of neural network 
trainer it only makes sense to use CGI for training process 
because it is impossible to send the trainer through the 
computer network every time it was requested, and this 
would be extremely slow. Therefore, it is important to 
develop methods which take advantage for networks. This 
would require solving several issues, such as:  

• Minimization of the amount of data which must be 
sent by network  

• Selection of programming tools used for various 
tasks 

• Development of user-friendly interface 
• Security, privacy 
• Portability of software used on servers and clients 
• Task partitioning between the server and client 

This training tool currently incorporates CGI, PHP, 
HTML and Java-Script. CGI programming allows dynamic 
web-page generation in a web browser. Communication 
between the CGI program and the web browser is 
accomplished through a network connection between the 
web browser and a computer running an HTTP server. A 
CGI program is executed on a server when it receives a 
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request to process information from a web browser. The 
server then decides if the request should be granted. If the 
authorization is secured, the server executes the CGI 
program and returns the results to the web browser that 
requested.  

PHP is a scripting language like PERL. In fact, its syntax 
resembles PERL. The main difference lays in the set of 
standard built-in libraries that support generation of HTML 
code, processing data from and to the web server, and 
handling cookies. The same functionality can be accessed 
in PERL by inclusion of one or more libraries. PHP can be 
used either as a classical CGI scripting language or as an 
implementation of ASP technology [28]. Since certain 
frequently used functionality is built in directly into the 
language, it is more efficient to use. In general, any 
specialized tool will be somewhat more efficient for one 
particular task it was designed for, instead of other powerful 
but general purpose tools.  

IV. NEURAL NETWORK TRAINER 
The NBN 2.0 [29][30] is developed based on Visual 

Studio 6.0 using C++ language hosting on server and 
communicating with clients through PHP scripts. Its main 
interface is shown in Fig. 3. In the following part of this 
section, a detailed instruction of the training tool is 
presented. 

 

 
Fig.3. The user interface of NBN 2.0 

A. Training Algorithms 
Up to now, the training tool is developed with six 

different types of training algorithms. 
• Error Back Propagation (EBP) 

This is an improved EBP algorithm [31], with 
momentum and multiple learning constants. The 
momentum is introduced to adjust weight vector using the 
information from the previous iteration. Therefore, the 
update rule of the improved EBP algorithm can be 
described as 

( ) -1kk wgw k Δ+−−=Δ ηηααα 1}...,{ 321        (1) 
where: k is the index of  iterations; g is the gradient vector; 
∆w is the weight change; η is the momentum; {α1, α2… α3} 
are multiple learning constants. For every iteration, the 
most optimal learning constant will be picked out by 
comparison of training errors. 
• Levenberg Marquardt (LM) 

Original LM algorithm with update rule [32]: 

( ) kkk gIHw 1−+−=Δ μ                   (2) 
where: H is the Hessian matrix; I is the identity matrix and 
μ is the combination coefficient. The original LM algorithm 
is only used for MLP networks. 
• Neuron By Neuron (NBN) 

This is the improved LM algorithm, with advantages: (1) 
ability of training arbitrarily connected neural networks 
[1][2]; (2) without Jacobian matrix computation and 
storage [33]. 
• Error Back Propagation, forward-only (EBP, forward 
only) 
 This is the EBP algorithm with different computation 
routings from traditional backpropagation computation. 
• Neuron By Neuron, forward-only (NBN, forward only) 
 This is the NBN algorithm with forward-only 
computation process. 
• Neuron By Neuron, improved (NBN-improved) 
 This is a newly developing algorithm derived from EBP 
algorithm and Newton algorithm. It’s designed to do only 
one matrix inversion for each iteration during training. 
With this property, it’s supposed to compute faster than LM 
algorithm. At the same time, by inheriting gradient 
searching ability from EBP algorithm, the proposed 
algorithm also can perform stable training. 

The drop-down box is used to select training algorithms 
as Fig.4. 

 

 
Fig.4. Training Algorithms 

B. File Instruction 
The neural network interface will receive the request 

from users with uploading files and input parameters to 
generate the data files and then send the command to the 
training software locating on server. There are two files 
required for training process: topology file and training data 
file and the users have to use “Browse” buttons as in Fig.5 
to upload two these files. These two files have to follow 
certain syntax so that the training tool can make sense in the 
correct way. 
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Fig.5. Uploading Files 

 
• Topology file 
The topology files are named “*.in”, and they are mainly 

used to construct neural network topologies for training. 
The topology files consist of four parts: topology design, 
weight initialization (optional), neuron type instruction and 
training data specification. 

The topology design is aimed to create the neural 
structures. The general command is “n [b] [type] [a1 a2 … 
an]”, which means inputs neurons indexed with a1,a2…,an 
are connected to neuron b with a specified neural type 
(bipolar, unipolar or linear). Fig. 6 presents the topology 
file for the neural networks shown in Fig. 2. 

 
(a) 7=7=1 MLP network 

 

 
(b) 7=3=1 MLP-FCL network 

 

 
(c) 3 neurons FCC network 

 
Fig.6.  Topology design for networks shown in Fig. 2; 

all neurons are bipolar neurons. 
 

The weight initialization part is used to specify the initial 
weights for training and this part is optional. If there is no 
weight initialization in the topology file, the trainer will 
generate the initial weights randomly (from -1 to 1) before 
training. The general command is “w [wbias] [w1 w2 … wn]”, 

corresponding to the topology design. Fig. 7 shows the 
example of weight initialization for the parity-3 problem 
with 2 neurons in FCN network. “//” sign in the topology 
file is understood as the comment by the trainer.   

 

 
Fig.7. Weight initialization for parity-3 problem with 

2 neurons in FCN network. 
 
In the neuron type instruction part, three different types 

of neurons are defined. They are bipolar (“mbip”), unipolar 
(mu) and linear (“mlin”). Bipolar neurons have positive or 
negative outputs, while unipolar neurons only have positive 
outputs. The outputs of both bipolar and unipolar neurons 
are no more than 1. If the desired outputs are larger than 1, 
the linear neurons are considered to be the output neurons. 
The general command is “.model [mbip/mu/mlin] 
fun=[bip/uni/lin], gain=[value]”. “gain” is the parameter of 
related activation functions (Fig. 8). 

 

 
Fig.8. Activation functions of unipolar neuron with 

different “gain” values; for bipolar and linear 
neurons, “gain” plays the same roles as in unipolar 
neurons 

 
The training data specification part is used to set the 

name of training pattern file, in order to get correct training 
data. The general command is “datafile=[file name]”. 

• Training pattern file 
The training pattern files include input patterns and 

related desired outputs. In a training pattern file, the number 
of rows is equal to the number of patterns, while the number 
of columns is equal to the sum of the number of inputs and 
the number of outputs. However, only with the data in the  
training pattern file, one can’t tell the number of inputs and 
the number of outputs, so the neural topology should be 
considered together in order to decide those two parameters 
(Fig. 9). The training pattern files are specified in the 
topology files as mentioned above, and it should have the 
same route as the related topology files. 
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Fig.9. Get the number of inputs and the number of 

outputs from the data file and topology 
 

C. Parameter Settings 
All parameters can be edited in the user interface Fig. 10 

with the blanks written in HTML form and Java-Script. 
There are three main parameters: training times, max-error, 
max-iteration have to be filled in. These values must be the 
number. If users do not put these parameters in the proper 
forms, the warning message will pop up. If these 
parameters are left with the blanks, the trainer will 
automatically assign their values by zeros. Besides these 
parameters, there are other parameters with default values 
which will dynamically pop up for inputting data of  
“combination coefficient”, “scale constant”, “momentum 
constant”, “learning constant”, “alpha constant”, “beta 
constant”, “gamma constant” which depends on the 
selected algorithm when users click the “Set parameters” 
button. 

 
Fig.10. Input Parameters 

 
“Clear all data” button is used to clear all old data set and 

start again with a new set. 
 

TABLE 1: PARAMETERS FOR TRAINING 
Parameters Descriptions 
alpha Learning constant for EBP 
momentum Momentum for EBP 
scale Parameter for LM/NBN 
mu Parameter for LM/NBN 
po alpha Parameter for NBN improved 
po beta Parameter for NBN improved 
po gama Parameter for NBN improved 
max error Maximum error 
max iteration Maximum iteration for training 
Training times The number of training trials 

 

D. Training Information 
Instantaneous training data are presented in this area, 

including SSE and cost iterations for current training, 
average iteration and time spent in solving the same 
problems, and the success rate for multiple times training. 
These parameters have default values “0s”, are disabled and 
only updated after each training process.  

 
Fig.11. Training Information 

 

E. Plot Area 
This area is used to depict the sum squared error (SSE) 

during training. The log scaled vertical axis presents SSE 
values from 0.0001 to 10000, while the horizontal axis, 
which is linearly scaled automatically with the coefficient 
at the bottom of plotting area (“×[value]” in Fig. 3), shows 
the number of iterations cost for training. The plot is 
provided in bmp format, widely recognized by most of 
popular web browsers. All plots are dynamically generated. 

The “Submit data” button allows the training tool to 
check all inputs. This is very necessary because the network 
trainer can’t handle all types of formats of files and input 
parameters which can affect the training success. All 
submitted data is saved into the database and the trainer will 
automatically retrieve these data from the database and 
initialize them as the next data set. 

When all the requirements are fulfilled and set up 
properly the button “Start training” will appear. Otherwise, 
it will not and the training tool will send the error warnings 
back to the clients. The training process can be long or short 
depending on the convergence of the selected algorithm, 
the complication of network structure, the input parameters 
and the speed of network. If the training process is 
successful the training result will be generated. The training 
result file is used to store training information and the 
results such as training algorithm, training pattern file, 
topology, parameters, initial weights, result weights and 
training results will be saved after the training process 
finishes. The name of the training result file is generated 
automatically according to the name of the training file and 
hyperlinked right above the Graphical Users Interface. If 
the training process gets errors the “Error” hyperlink will 
appear instead of the “Training Result” hyperlink. 

V. EXAMPLE 
This example will present all steps of training process 

with parity-4 problem.  Two input files include parity4.in, 
parity4.dat, selected algorithm is NBN with parameter 
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training times= 500, max-error= 0.001, max-iteration= 500, 
combination coefficient= 0.01, scale constant=10. 

• Input files 
 

 
Fig.12. Parity4.in (topology) 
 

 
Fig.13. Parity4.dat (training data) 

 
• Input parameters 

 

 
Fig.14. Input Parameters 

 
• Output plot 

 

 
Fig.15. Output Plot 

 
• Training result  

 

 
Fig.16. Training Results 

 
• Training Information 

 

 
Fig.17. Training Information 

VI. CONCLUSION 
In this paper, the training tool NBN 2.0 through 

computer networks is introduced for neural network 
training. This trainer contains both first order and second 
order training algorithms, which are implemented by 
traditional forward-backward computation and a newly 
developed forward-only computation respectively. It can 
handle not only MLP networks, but also ACN networks 
well. With the detailed instructions and example presented 
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in the paper, one can get familiar with this useful tool for 
neural network training. The NBN 2.0 is available at 
http://131.204.128.91/NNTrainer/index.php, and it will be 
updated from time to time. 
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