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1 Introduction

1.1 About myself

Hello. I am Om Prabhu, currently an undergrad at the Department of Energy Science and Engineering, IIT
Bombay. If you have gone through my website (https://omprabhu31.github.io/) earlier, which is probably
where you found this document too, you will know that I am quite a bit into programming and tinkering with
code to try and do cool stuff. Additionally, I love playing video games, listening to music and engaging in a
little bit of creative writing as and when I get time. With this brief self-introduction, let us get into why I
decided to pursue this course.

1.2 A little bit about deep learning

As you probably know, deep learning has already transformed traditional internet businesses like web search
and advertising. Further, it is also helping in the creation of businesses and business products and even jobs.
Deep learning is making it into almost all types of industries ranging from healthcare and medical diagnosis to
personalized education, precision agriculture and many others.

Just as how electricity once transformed countless industries, AI today is on its way to doing the same. The
part of AI that is contributing to most of this transformation is deep learning. This is a technical course which
will teach us how to build neural networks and by the end of this course, we will be able to build a cat recognizer
(for some reason, there is this cat meme running around in the world of AI which will also be discussed later).
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2 Overview of Deep Learning

The terminology in AI is still not very well defined. For example, some people say that neural networks are a
subset of deep learning while others use the two words almost interchangeably. Through most of these notes,
we will refer to deep learning as being a science of building and training neural networks. With that said, let’s
look at what a neural network is.

2.1 Neural networks

Let us use an example of demand prediction to try and understand what neural networks really are. Suppose
a t-shirt company wants to know how many units they can expect to sell based on their selling price. The
required dataset might be a in the form of a demand curve, where the higher the price the lesser the demand.
This form of curve can be used to train what is perhaps the simplest possible neural network.

All this single-neuron network does is compute the curve shown and ‘learn’ it in order to map any value of price
to the appropriate value of demand. A single neuron can be thought of as a Lego brick, and a neural network
as a very complicated stack, often in multiple layers, of such bricks.

Let’s look at a more complicated example. Suppose that instead of just the price, we have more variables
like shipping cost, marketing cost and material. Then we will have multiple factors that influence demand like
affordability, consumer awareness and perceived quality. We might then have a slightly more complicated neural
net like the one below:

This slightly more complicated neural network maps the 4 input parameters to the output that is the demand.

From that the way in which we have discussed neural networks above, it appears as if we have to actually figure
out the key factors as affordability, awareness and perceived quality. However, things do not work this way.
One of the best things about neural networks is that we only have to provide it the input and the output − all
of the stuff in the middle, it figures out by itself. It automatically ‘learns’ and completely trains itself to find
the most accurate possible function that maps from the input to the output.
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Another little correction is that it seems like the first node takes in only price and shipping inputs and so on.
This is not the case. In practice, all nodes will be fed in with all the inputs and we let the individual neurons
decide how many inputs they want to use and how they use them.

2.2 Supervised learning with neural networks

Most of the value created through deep learning has been in applications of supervised learning. This is the
task of learning a function that maps an input to an output based on example input-output pairs (or A → B
mapping). This has turned out to be very profitable for many industries such as:

� online advertising: input is ad & user info using which the algorithm tries to figure out if the user is likely
to click on the ad

� computer vision: this is a very vast application area of AI (for example, input is an image and the
algorithm tries to figure out whether the image is part of a dataset of 1000 images)

� speech recognition: input an audio clip and output a text transcript based on the input

� machine translation: input text or documents in certain languages and receive a translated output

� autonomous driving: AI algorithm uses image & sensor info to figure out the position of nearby cars so it
can avoid them

It turns out that slightly different types of neural networks are useful for different applications. For example,
convolutional neural networks (CNN) are most commonly used for image applications while recurrent neural
networks (RNN) are better for processing sequential data such as audio. More complicated applications often
require the generation of custom neural network architecture.

Finally, supervised learning can be applied to both structured data (highly organized data such as tables,
spreadsheets and databases) as well as unstructured data (data in the form of images, audio, video and even
raw text).
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2.3 Why is deep learning taking off now?

The ideas for deep learning and neural networks have been around for decades. Why is it that they have taken
off only recently?

One of the major drivers of deep learning is scale. This refers to the ability of technology to train large sets of
neural networks to process huge amounts of data while also improving AI performance. This can be illustrated
through a graph as follows:

� for traditional deep learning systems, the data vs performance graph maxes out pretty early

� on training increasingly complex neural networks with higher amounts of data, performance keeps on
getting better for much longer

Hence to achieve the highest performance levels, we need two things. Firstly, it helps to have a lot of data.
Additionally, we need the ability to train large sets of neural networks. Earlier, it was almost as if AI systems
didn’t know what to do with huge amounts of data. Now, with fast & powerful CPUs and GPUs, it is possible
for us to train large neural networks with a high amount of data.

Another factor is that of algorithmic innovation in order to increase the training speeds of neural networks. One
of the major breakthroughs in this area has been the switch from sigmoid functions to ReLU functions:

It turns out that on the tapering ends of the sigmoid function, since the gradient is nearly zero, the parameters
hardly change and the training becomes very slow. In a ReLU curve, the gradient does not gradually shift to
zero, so there is no point where the learning speed of the network is very slow.

Fast computation is very important in deep learning, since the idea of training a neural network involves a lot
of iterating − basically we input the data, then train the neural network, then get feedback about how well the
neural network performed, and then make changes to the data and neural network and repeat the cycle over
and over until the neural network is trained well enough. Hence by reducing computation speeds, it leads to a
huge rise in productivity while building out neural networks for AI projects.

END OF WEEK 1

This is the end of the course notes for Week 1. Keep on reading further for notes from further weeks, or spend
some time gaining further insight into the previously discussed topics.
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3 Logistic Regression as a Neural Network

Now that we have an idea of what neural networks are and what they can do, let us dive into the basics of
neural network programming. Many of these ideas can be discussed using the concept of logistic regression.

NOTE: Throughout the document, there will be extensive use of the following notation:

1. a single input feature vector has dimension nx

2. a single training example is represented by (x, y) → x ∈ Rnx , y ∈ {0, 1}

3. a training set comprises m (or mtrain) training examples, i.e. {(x(1), y(1)), (x(2), y(2)), . . . , (x(m), y(m))}

4. a test set similarly contains m (or mtest) test examples

5. to put all training examples x into a more compact notation, we define a matrix X ∈ Rnx×m as follows:

X =


...

...
...

x(1) x(2) · · · x(m)

...
...

...


6. to put all output labels y into a more compact notation, we define a matrix Y ∈ R1×m as follows:

Y =
[
y(1) y(2) · · · y(m)

]
7. terms of the form x(i), y(i), etc are associated with the ith training example

3.1 Derivatives (optional)

Throughout this document, there will be a lot of differential calculus (i.e. the calculus of derivatives). Let us get
somewhat familiar with derivatives before we move on to other concepts. This is by no means a comprehensive
guide on differential calculus, for which you may look through some of the resources at the end of this section.

Consider this simple function f(a) = 3a. Let a = 2, then f(a) = 6. Let’s
now change a by a very small amount, maybe a = 2.001. Then we get
f(a) = 6.003.

Now if we construct a triangle as in the diagram, we see that ‘nudging’ a
to the right by 0.001 causes f(a) to increase by 0.003. For each 1 unit of
change in a, there is a corresponding change of 3 units in f(a).

We say that the slope, or derivative, of the function f(a) is 3. More specif-
ically, it is the derivative of the function with respect to a at a = 2. More
formally, we define the derivative of a function at a specific point as the rate
of change of the function value at that point. Mathematically, we can write
this as

df(a)

da
= 3 = f ′(a)

The function represented above is a typical linear function − its derivative
at any point along the function is constant. Let us take a more complicated
example, f(a) = a2. At a = 2, f(a) = 4. Now, on changing a = 2.001, we
get f(a) = 4.004001 ≈ 4.004.

Constructing a similar triangle, we can conclude that the slope of the func-
tion at a = 2 is 4. What about at a = 5?

At a = 5, f(a) = 25 while at a = 5.001, f(a) = 25.010001 ≈ 25.01. Again
by a quick computation, the slope of the function at a = 5 comes out to
be 10.

As it happens, the derivative of the function f(a) = a2 at any given point
on the function is 2a.

This description of derivatives might make it look like they are an approximation, but this is not the case.
In practice, the amount by which a is changed is infinitesimally small, which gives rise to another concept in
calculus known as limits (will not be discussed here).
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If you wish to know more about derivatives and/or limits, feel free to go through the resources listed below. A
expertise in differential calculus is not desired, but a working knowledge always helps:

� Limits and Continuity (by Khan Academy)

� Derivatives: Definition and Basic Rules (by Khan Academy)

� Derivatives: Chain Rule and Other Advanced Topics (by Khan Academy)

� Application of Derivatives (by Khan Academy)

� Calculus for Beginners - MIT Mathematics

� Online Calculus Textbook - MIT OpenCourseWare

� Mathematics StackExchange - Tags (Calculus)

3.2 Binary classification

Logistic regression is an algorithm for binary classification. An example of binary classification is taking in an
input of an image and classifying it as a cat or not a cat. Let’s look at how images are represented in computers.

Humans perceive images by their subtle features. A computer looks at an image as an array of pixels. A computer
stores 3 separate matrices, each the size of the pixel map (i.e. 1920×1080, 1024×768, etc), corresponding to
the RGB channels of the image. To process images, a computer ‘unpacks’ the pixel intensity values to create
what is known as a feature vector.

We just take all the red pixel values and list them one
by one, followed by the green pixel values and then
the blue pixel values, as shown below:

x =



253
144

...
14
125

...
165
187

...


Suppose we have a 64×64 image. The resulting fea-
ture vector will have 64×64×3 (12288) dimensions.

We usually use nx (sometimes n for convenience to represent the dimensions of the input feature vector x.
Our goal in binary classification is to input a nx−dimensional feature vector corresponding to a pixel map and
output either a 0 or 1.

3.3 Logistic regression

Logistic regression is an algorithm where the output labels y in a supervised learning problem are all either 0
or 1 (i.e. for binary classification problems).

Let us continue with the earlier example of classifying images of cats. Given an input feature vector x, we want
an algorithm to output an estimate ŷ of y (i.e. the chance that y = 1 given the input image). More formally,

Given x, want ŷ = P (y = 1 | x)

Given that x ∈ Rnx , the parameters of the logistic regression will be w ∈ Rnx , b ∈ R. So given an input x and
the parameters w & b, how do we generate the output ŷ ∈ R?

One thing we could try (that doesn’t work) is letting ŷ = wTx + b. This is, in fact, what we do in linear
regression. This doesn’t work for binary classification because we want ŷ to be the chance that y = 1, i.e.
ŷ ∈ [0, 1]. Since the range of wTx is not definite, it is very difficult to enforce the restrictions on ŷ.
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Instead what we do in logistic regression is ŷ = σ(wTx+b), where
σ is the sigmoid function (shown in the diagram alongside, ignore
the φ(z) notation). Defining z = wTx+ b,

σ(z) =
1

1 + e−z

If z is a large positive number, e−z → 0, ∴ σ(z)→ 1
If z is a large negative number, e−z →∞, ∴ σ(z)→ 0

We have now seen the logistic regression model in quite a bit of
detail. However, to train the parameters w and b, we need to
define a cost function.

3.4 Cost function in logistic regression

To train the parameters of our logistic regression model, we have a training set of m training examples. Given
{(x(1), y(1)), (x(2), y(2)), . . . , (x(m), y(m))}, we want to find parameters w and b so that ŷ(i) ≈ y(i). To recap,

ŷ(i) = σ(z(i)) =
1

1 + e−z(i)
where z(i) = wTx(i) + b

Let us now see a loss/error function we can use to measure how well our algorithm is doing. One thing we

could do (that, again, doesn’t work) is define L(ŷ, y) =
1

2
(ŷ − y)2. In practice, this leads to the optimization

becoming non-convex (i.e. we end up with multiple local optima), so gradient descent (discussed in the next
section) may not find the global optimum.

Instead, we define a different loss function to get a convex optimization problem.

L(ŷ, y) = −(y log ŷ + (1− y) log(1− ŷ))

On first sight, it seems this function was conjured from thin air. Here’s some intuition for why it makes sense.
If we use a squared error, then we would want the squared error to be as small as possible. Similarly, we also
want the above loss function to be as small as possible. Let’s look at 2 cases:

� if y = 1: L(ŷ, y) = − log ŷ =⇒ log ŷ to be large =⇒ ŷ to be large

But since ŷ is a sigmoid function, it is always 6 1. Hence, if y = 1, we want ŷ to be as close to 1 as possible.

� if y = 0: L(ŷ, y) = − log(1− ŷ) =⇒ (1− log ŷ) to be large =⇒ log ŷ to be small =⇒ ŷ to be small

But ŷ can never be smaller than 0. Hence, if y = 0, we want ŷ to be as close to 0 as possible. One may argue
that there are many such functions which roughly satisfy the 2 conditions above. We will discuss later why we
choose a loss function with this particular form.

Finally, the loss function above is designed with respect to a single training example, i.e. it measures how well
our algorithm is doing on a single example. Now let us define the cost function, which measures how well our
algorithm is doing on the entire training set.

The cost function J , which is applied to parameters w & b, is just the simple average of the loss function applied
to each of the training examples.

J(w, b) =
1

m

m∑
i=1

L(ŷ(i), y(i)) = − 1

m

m∑
i=1

[
y(i) log ŷ(i) + (1− y(i)) log(1− ŷ(i))

]
Using this, we try to find parameters w & b that minimize the overall costs function J .

3.5 Gradient descent

Up till now, we’ve seen the logistic regression model, the loss and cost functions for the parameters of the
algorithm. Let us now see how the gradient descent algorithm can be used to train the parameters w & b on a
training set. From the previous section, we have the cost function

J(w, b) =
1

m

m∑
i=1

L(ŷ(i), y(i)) = − 1

m

m∑
i=1

[
y(i) log ŷ(i) + (1− y(i)) log(1− ŷ(i))

]
We naturally want to find w, b that minimize J(w, b). We do this using what is known as the gradient descent
algorithm. Here’s an illustration of gradient descent.
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Note that, in practice, w is of a much higher dimension, but for
illustrative purposes let’s assume it is a single real number. As
seen, J(w, b) has a single global optimum, and we want to find
w, b corresponding to this minimum.

To do this, we first initialize w & b to some value (for convenience,
we usually initialize them both to 0).

After this, what the gradient descent algorithm does is take a step
in the steepest downhill direction. There can multiple iterations
of the gradient descent cycle until the point the algorithm decides
that it has reached the global optimum.

This gives us a brief overview of how gradient descent works. Let’s dive deeper into the details. Consider a
one-dimensional plot with only w as the parameter.

The gradient descent algorithm repeatedly carries out the follow-
ing update until it converges to the global optimum value:

w ≡ w − α
(

dJ(w)

dw

)
where α is the learning rate, which controls how big each step in
the gradient descent is.

No matter where we initialize the value of w, the gradient descent
algorithm will always reach the global optimum at some point.

Since we actually have a function J in 2 parameters, the loop of gradient descent becomes as follows:

w ≡ w − α
(
∂J(w, b)

∂w

)
; b ≡ b− α

(
∂J(w, b)

∂b

)
When we actually get down to coding such and algorithm, we will use the following (mathematically inconsistent)
notation:

dw ≡ ∂J(w, b)

∂w
; db ≡ ∂J(w, b)

∂b
−→ w ≡ w − αdw; b ≡ b− αdb

3.6 Computation graph

The computations of a neural network are organized in terms of a forward pass, in which we compute the
output of the neural network, and a backward pass, in which we compute the derivatives. The computation
graph explains why it is organized this way. To illustrate it, let’s take a very simple example.

Let’s say we want to compute a function J(a, b, c) = 3(a + bc). There are 3 steps involved in computing this
function. First, we compute the value of bc and maybe store that in a variable u. Then we compute v = a+ u
and finally, we compute J = 3×v. We might construct a computation graph that might look like the one below.

The computation graph comes in handy when there is some dis-
tinguished output variable J that we want to optimize. And in
case of logistic regression, J is the cost function.

What we saw just now was the use of a forward pass to compute
the value of J . Now let us see what a backward pass looks like
and how it can be used to compute derivatives.

3.6.1 Derivatives with a computation graph

Say we want to compute the derivative of J wrt v. Since J = 3v, the value of the derivative is 3 (at all points,
not just at v = 11). We’ve essentially performed one step of the backward pass (or back propagation).

Let’s see what happens with
dJ

da
. Say we change the value of a from 5 to 5.001. Subsequently, v is changed from

11 to 11.001, and J from 33 to 33.003. Again, we see that every unit of change in a causes 3 units of change in

J . Similarly, we can compute that
dJ

du
= 3.
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3.6.2 The chain rule for derivatives

Finally let us consider the derivative of J wrt b. Say we change the value of b from 3 to 3.001. Note that the
value of u is not only affected by b but also by c. Hence, the value of u will change to 6.002, that of v to 11.002

and that of J to 33.006. So, the value of
dJ

db
is 6, right? Well, yes and no.

Let’s think of it this way. What if b = 3 and c = 3? We get u = 9, v = 14 and J = 42. Changing b from 3 to
3.001 would change u from 9 to 9.003, v from 14 to 14.003 and finally, J from 42 to 42.009. Now it seems like
dJ

db
= 9. How did this happen? It seems like the value of c affects the derivative term

dJ

db
and indeed, it is so.

We can look at it as changing b changes u first. This change in u causes a change in v. Finally, the change in v
causes a change in J . This is where the chain rule for derivatives comes in. According to the chain rule,

dJ

db
=
∂J

∂v
× ∂v

∂u
× ∂u

∂b

We can verify this by quickly computing the values of the individual derivatives and multiplying them. It
is important to clarify here itself that even though the chain rule makes it look like derivatives compute like
ordinary fractions, this is NOT the case.

With this understanding of the chain rule, now the term ‘backward propagation’ really starts to make sense.
To find the derivative of J wrt b, we ‘propagate backwards’ from J to v, then from v to u and finally, from u
to b. This concept might seem trivial now, but it helps quite a lot in the context of logistic regression.

NOTE: Whenever we use computation graphs, there will usually be an output variable that we want to
optimize. Hence, a lot of the computation will be about calculating the derivative of the output variable (J)
with respect to some other variable (let’s call it var). When we implement it in code, we will have to assign
the derivative a variable name. While we could name it something like dFinalOutput/dVar or dJ/dvar, these
are not good variable names. For our convenience, we will name the variable as simply dvar. For example, if
we want to compute dJ/da, we will name the derivative variable da. This convention will be used in further
sections where we will actually code algorithms in Python.

3.7 Computation graphs for logistic regression

As a brief recap for the previous sections, we had setup logistic regression as follows:

z = wTx+ b; ŷ = a = σ(z)

L(a, y) = −[y log a+ (1− y) log(1− a)]

J(w, b) =
1

m

m∑
i=1

L(a(i), y(i)) = − 1

m

m∑
i=1

[
y(i) log a(i) + (1− y(i)) log(1− a(i))

]
3.7.1 Gradient descent for a single training example

For this example, let’s say that we have only 2 feature values x1, x2. To compute z, we will need w1, w1, b in
addition to x1, x2. We can set up the forward propagation steps of our computation graph as follows:

w1, w2, b −→ z = wT
1 x1 + wT

2 x2 + b −→ ŷ = a = σ(z) −→ L(a, y)

We want to modify the parameters w1, w2, b in order to reduce the loss L(a, y). This will require us to go
through backward propagation to compute the derivatives of L wrt w1, w2, b. To do this, we follow these steps:

�

∂L(a, y)

∂a
= −y

a
+

1− y
1− a

(while writing code, the variable name for
∂L(a, y)

∂a
will be simply da)

�

∂L(a, y)

∂z
=
∂L(a, y)

∂a
× ∂a

∂z
= a− y (again the variable name for

∂L(a, y)

∂z
will be dz)

�

∂L(a, y)

∂w1
= x1(a− y);

∂L(a, y)

∂w2
= x2(a− y);

∂L(a, y)

∂b
= a− y (variable names dw1, dw2, db)
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3.7.2 Derivation of
∂L
∂z

(optional)

Let us explore the derivation of the expression for
∂L
∂z

in a much greater detail:

Proof. Step 1:
∂L
∂a

L = −[y log a+ (1− y) log(1− a)]

∴
∂L
∂a

= −
[
y

d log a

da

]
−
[
(1− y)

d log(1− a)

da

]
∴
∂L
∂a

= −
[
y × 1

a

]
−
[
(1− y)× 1

1− a
× (−1)

]

∴
∂L(a, y)

∂a
= −y

a
+

1− y
1− a

(1)

Step 2:
∂a

∂z

a = σ(z) =⇒ ∂a

∂z
=
∂σ(z)

∂z

∴
∂a

∂z
=

∂

∂z

(
1

1 + e−z

)
∴
∂a

∂z
= − 1

(1 + e−z)2
(−e−z) =

e−z

(1 + e−z)2

∴
∂a

∂z
=

1

1 + e−z

(
1− 1

1 + e−z

)
= σ(z)(1− σ(z))

∴
∂a

∂z
= a(1− a) (2)

Step 3:
∂L
∂z

(from (1) & (2), using the chain rule for derivatives)

∂L
∂z

=
∂L
∂a
× ∂a

∂z

∴
∂L
∂z

=

[
−y
a

+
1− y
1− a

]
× a(1− a)

∴
∂L
∂z

=
a− y
a(1− a)

× a(1− a)

∴
∂L
∂z

= a− y

�

3.7.3 Gradient descent on m examples

Now let us look at how to use the computation graph to carry out gradient descent for an entire training set. A

single training example will now be represented by (x(i), y(i)) with parameters w
(i)
1 , w

(i)
2 , b(i). The cost function

is the simple average of all the losses over the training set, and the same follows for the cost function as well, i.e

∂J(w, b)

∂w1
=

1

m

m∑
i=1

∂L(a(i), y(i))

∂w
(i)
1

;
∂J(w, b)

∂w2
=

1

m

m∑
i=1

∂L(a(i), y(i))

∂w
(i)
2

;
∂J(w, b)

∂b
=

1

m

m∑
i=1

∂L(a(i), y(i))

∂b(i)

What we need to do is compute the derivatives on all the individual training examples and average them over
the training set to be able to carry out gradient descent. Let’s take all of this and wrap it into a concrete
algorithm until when we should implement the gradient descent (variable names are to be comprehended as
defined earlier):

� initialise J=0, dw1=0, dw2=0, db=0

12



� using a for loop, compute the derivatives corresponding to each training example and add them up − a
very rough sample program would look like this (obviously, it is far from complete)

> J,db = 0,0

for k in range(n_x):

dw[k] = 0

for i in range(m):

z[i] = w[i]*x[i] + b

a[i] = sigma(z[i])

J += -(y[i]*math.log(a[i]) + (1-y[i])*math.log(1-a[i]))

dz[i] = a[i] - y[i]

for k in range(n_x):

dw[k] += x[k,i]dz[i]

db += dz[i]

J/=m

for k in range(n_x):

dw[k]/=m

db/=m

When implementing deep learning algorithms, it is found that having explicit for loops greatly slows down the
learning speed of the algorithm. As we move to bigger and bigger datasets, it becomes even more cumbersome.
Hence, to avoid using explicit for loops, there is a set of techniques called vectorization.

3.8 Explaining the cost function (optional)

In Section 3.4, we defined the cost function for logistic regression. Let us try to reason out why we use that
particular form of function.To recap, we defined

ŷ = σ(wTx+ b) and ŷ = P (y = 1 | x)

In other words,
if y = 1 : P (y | x) = ŷ
if y = 0 : P (y | x) = 1− ŷ

}
−→ P (y | x) = ŷy(1− ŷ)(1−y)

We want to maximize the probability that our approximation ŷ = y. Instead of optimizing the above probability
function, what we can rather do is maximise logP (y | x), which is much easier to differentiate. Note that we
can do this since the log function is a monotonically increasing function. On computing logP (y | x), the result
is exactly the negative of what we have in the loss function. Maximising logP (y | x) results in maximising the
probability function and minimizing the loss function.

How about the cost function? Assuming that we’ve drawn the training examples independently, then the
probability of all the examples is simply the product of the individual probabilities, i.e.

Ptrain =

m∏
i=1

P (y(i) | x(i))

Maximising this function is equivalent to maximising the individual probabilities, for which again we resort to
maximising logP (y(i) | x(i)) rather than P (y(i) | x(i)).

logPtrain =

m∑
i=1

logP (y(i) | x(i)) = −
m∑
i=1

L(ŷ(i), y(i))

This now starts to look like the form of the cost function. Now, since we want to minimize the cost, we take the
negative of logPtrain. And finally, to make sure that our quantities are better scaled, we divide by m (we can
work without this, but the value of the function may sometimes get too high for large datasets). This brings us
to our final form of the cost function

J(w, b) =
1

m

m∑
i=1

L(a(i), y(i)) = − 1

m

m∑
i=1

[
y(i) log a(i) + (1− y(i)) log(1− a(i))

]

END OF WEEK 2 - MODULE 1

This is the end of the course notes for Module 1 from Week 2. Keep on reading further for the notes for Module
2, or spend some time gaining further insight into the previously discussed topics.
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4 Python and Vectorization

Vectorization is a technique used to get rid of excessive for loops in programs. This is especially important
in deep learning because the presence of for loops in deep learning algorithms significantly increases the time
that it takes the code to run. With small datasets, this might be okay but with larger ones, it can take days on
end and this really slows down the training process.

4.1 Vectorization

In logistic regression, we needed to compute z = wTx+ b, where w, x ∈ Rnx . A non-vectorized implementation
of this computation would involve something like this:

> z=0

for i in range[1,n_x]:

z += w_i*x_i

z += b

In contrast, a vectorized implementation of the same using the numpy library for Python would involve a much
simpler and faster piece of code:

> z = np.dot(w,x) + b

We could actually try a speed test with both the codes by getting them to multiply one million terms from 2
random arrays:

import time import time

import numpy as np import numpy as np

a = np.random.rand(1000000) c=0

b = np.random.rand(1000000)

initial = time.time() a = np.random.rand(1000000)

c = np.dot(a,b) b = np.random.rand(1000000)

final = time.time() initial = time.time()

for i in range(1000000):

print("Vectorized version:" + str(1000* c += a[i]*b[i]

(final-initial)) + "ms") final = time.time()

print("For loop:" + str(1000*

(final-initial) + "ms")

Not only is the vectorized version shorter, it runs about 400 times faster than the code using a for loop. The
speed difference would be same regardless if the programs are run on a CPU or GPU, since they have similar
parallelization instructions (known as SIMD instructions). Using built-in functions instead of explicit loops, it
enables the processors to take much more advantage of parallelism to perform computations faster.

The rule of thumb to keep in mind when programming neural networks is to avoid using explicit for loops
whenever possible.

4.2 Vectorizing logistic regression

Previously we tried to code the algorithm for logistic regression using 2 for-loops. The resulting loops looked
like this:

> J,db = 0,0

for k in range(n_x):

dw[k] = 0

for i in range(m):

z[i] = w[i]*x[i] + b

a[i] = sigma(z[i])

J += -(y[i]*math.log(a[i]) + (1-y[i])*math.log(1-a[i]))

dz[i] = a[i] - y[i]

for k in range(n_x):

dw[k] += x[k,i]dz[i]

db += dz[i]
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J/=m

for k in range(n_x):

dw[k]/=m

db/=m

It turns out that we can easily get rid of the nested for loop in the code. This can be done by getting rid of
individual vectors dw1, dw2 and so on into a single numpy vector dw. The code may look something like this:

> J,db = 0,0

dw = np.zeros((n_x,1))

for i in range(m):

z[i] = w[i]*x[i] + b

a[i] = sigma(z[i])

J += -(y[i]*math.log(a[i]) + (1-y[i])*math.log(1-a[i]))

dz[i] = a[i] - y[i]

dw += x[i]dz[i]

db += dz[i]

J/=m

dw/=m

db/=m

We’ve gone from having 2 for loops to just one. Though, we still loop over the individual training examples.

4.2.1 Vectorizing the forward propagation steps

The forward propagation steps require to first find z(i) = wTx(i) + b and then a(i) = σ(z(i)). It turns out we
can do this without an explicit for loop. Let us first see how to compute z(i). Remember we defined a matrix
X ∈ Rnx×m as

X =


...

...
...

x(1) x(2) · · · x(m)

...
...

...


Let us now define 2 other matrices Z,B ∈ R1×m as

Z =
[
z(1) z(2) · · · z(m)

]
;B =

[
b b · · · b

]
Using these 2 matrices, we can express the system of equations z(i) = wTx(i) + b in a single matrix equation,
which translate into a single line of code:

z(1) = wTx(1) + b
z(2) = wTx(2) + b

...
z(m) = wTx(m) + b

 −→ Z = wTX +B −→ z = np.dot(w.T,x)+b

There is one subtlety in the above piece of code. We don’t explicitly need to define b as a 1×m vector. Even if
b is defined as a real number, given that the term np.dot(w.T,x) is of dimension 1×m, Python automatically
expands b out into a vector of the same dimension. This operation is also known as ‘broadcasting’ in Python.

Finally, we would like to compute the variables a(i). We can define a matrix A ∈ R1×m similar to how we
defined Z. We can then implement a vector-valued sigmoid function to output A (this will be discussed in a
later section):

A =
[
a(1) a(2) · · · a(m)

]
= σ(Z)

4.2.2 Vectorizing the gradient output of logistic regression

We have effectively rid our program of the first 2 statements in the for loop. Now let’s see how to vectorize
the gradient calculations. Let us first see how to do this for dz(i) = a(i) − y(i). Similar to the process in the
forward propagation steps, we define a new matrix dZ ∈ R1×m as

dZ =
[
dz(1) dz(2) · · · dz(m)

]
= A− Y
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We got rid of the for loop which calculated dw[k] by initializing dw as a single numpy zero vector. But we still
have the for loop over the m examples in the training set. Let’s now attempt to vectorize all these operations
and get rid of this for loop as well.

Step 1: for db, we initialize it as db=0 and then add dz[i] to it in each iteration of the for loop

db += dz[1]

db += dz[2]
...

db += dz[m]

followed by db /= m

 −→ db = np.sum(dZ)/m

Step 2: for dw, we again initialize it as 0 and then add x[i]dz[i] in each iteration of the for loop

dw += x[1]dz[1]

dw += x[2]dz[2]
...

dw += x[m]dz[m]

followed by dz /= m

 −→ dw = np.dot(x,dZ.T)/m

Now that we have vectorized the code for all parameters, it’s time to put it all together into a single program.
This is our original, highly inefficient non-vectorized implementation:

> J,db = 0,0

for k in range(n_x):

dw[k] = 0

for i in range(m):

z[i] = w[i]*x[i] + b

a[i] = sigma(z[i])

J += -(y[i]*math.log(a[i]) + (1-y[i])*math.log(1-a[i]))

dz[i] = a[i] - y[i]

for k in range(n_x):

dw[k] += x[k,i]dz[i]

db += dz[i]

J/=m

for k in range(n_x):

dw[k]/=m

db/=m

A vectorized version of the same would look like this:

> Z = np.dot(w.t,x) + b

A = sigma(Z)

dZ = A - Y

dw = np.dot(x,dZ.T)/m

db = np.sum(dZ)/m

w = w - alpha*dw

b = b - alpha*db

We have successfully implemented one iteration of gradient descent without using any for loops. However, note
that for multiple gradient descents, we will have to loop over the number of iterations.

4.3 Broadcasting in python

We have briefly used broadcasting in the previous sections to
make our code run faster. Let us explore it in a little more detail
using the following example. The adjoining matrix contains the
number of calories from carbohydrates, proteins and fats per 100g
for 4 different foods. Let’s say we want to calculate the % of
calories from carbohydrates, proteins and fats for all the 4 foods.

We might start out by summing the calories in individual columns. Then, we would calculate each of the %
respectively by dividing each term by its corresponding total. Using the above vectorization techniques, we can
perform the above task in 2 lines of code.
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> import numpy as np

A = np.array([56.0, 0.0, 4.4, 68.0],

[1.2, 104.0. 52.0, 8.0],

[1.8, 135.0, 99.0, 0.9])

cal = A.sum(axis=0) # axis = 0 --> sum vertically; axis=1 --> sum horizontally

percentage = 100*A/cal

print(percentage)

The line percentage = 100*A/cal is an example of broadcasting in python. What we have essentially done is
divide a 3× 4 matrix by a 1× 4 matrix. This type of broadcasting works with both column vectors as well as
row vectors. Let’s go through another example. If we try to perform the following addition in Python,

1
2
3
4

+ 100 −→


1
2
3
4

+


100
100
100
100

 =


101
102
103
104


We saw this type of broadcasting in our earlier code for logistic regression with the line Z = np.dot(w.t,x)+b.

4.4 Python and numpy vectors

The numpy library in Python allows for broadcasting. As we have already seen, this can make our code a whole
lot shorter. However, this may also lead to certain hard-to-find bugs in the code if one is not really familiar
with how broadcasting works. Some of the most common bugs occur with rank 1 arrays.

> import numpy as np

a = np.random.randn(5)

print(a.shape)

print(a) # prints out the array

print(a.T) # still prints out the same array

print(np.dot(a,a.T)) # prints a single number instead of a matrix

The first line prints out (5,), indicating that the array is of rank 1. This type of data structure does not
behaves consistently as either a row vector or as a column vector. Its transpose is the same itself. This can lead
to some unexpected results with multiplication, etc.

To avoid this, it is better to initialise a = np.random.randn(5,1). Another alternative is to force the dimension
using assert(a.shape == (5,1)). If, for some reason, you end up using a rank 1 array, it can be reshaped as
a.reshape(5,1).

END OF WEEK 2 - MODULE 2

This is the end of the course notes for Week 2. Keep on reading further for the notes from further weeks, or
spend some time gaining further insight into the previously discussed topics.
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5 Shallow Neural Networks

In the previous section, we saw how to implement a single iteration of logistic regression, i.e. a neural network
with a single node. The node computed 2 variables z and a.

Most often, neural networks will have multiple nodes distributed between multiple ‘hidden’ layers. Let us see
an example of a neural network with one hidden node:

Each of the individual neurons corresponds to a computation of z and a:

� the first stack of nodes will receive an input as W [1], b[1], x

z[1] = W [1]x+ b[1] −→ a[1] = σ(z[1])

� the second layer (a single node) will receive input W [2], b[2], a[1] from the first layer and follow a similar
computation

z[2] = W [2]a[1] + b[2] −→ a[2] = σ(z[2]) −→ L(a[2], y)

NOTE: The above notation will be used throughout the next sections. This notation W [i], b[i], a[i] corresponds
to different layers in the neural network and is not to be confused with W (i), b(i), a(i), which corresponds to
individual training examples.

5.1 Neural network representation

Now that we have seen the basic representation of a neural network, let us explore a neural network with a
single hidden layer in a little more detail.

The input features x1, x2, x3 stacked vertically form the input
layer of the neural network. Similarly, the final layer (in this
case, just a single node) forms the output layer and is responsible
for generating the predicted value ŷ.

In the middle, we have the hidden layer of the neural network.
The training dataset contains values from both the input layer as
well as the output layer. However, the true values for the middle
nodes are not observed in the training set, and hence the term
‘hidden’.

Let us now introduce a little more notation with reference to the
diagram alongside:

� initially we used the vector X to denote the input features→ an alternative notation for the input features
is a[0] = X

The term a stands for activations and refers to the values that different layers in the neural network pass on to
subsequent layers.

� the next layer will, in turn, generate a set of activations a[1] = {a[1]1 , a
[1]
2 , a

[1]
3 , a

[1]
4 }

� the final layer will generate a value a[2], a real number, which corresponds to ŷ
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5.2 Computing the output of a neural network

In logistic regression, we had a single node which computed z = wTx + b and a = σ(z). A neural network
just does this a lot more times. Consider the first node in the hidden layer of the network in Section 5.1. It

computes z
[1]
1 = w

[1]
1

T
x + b

[1]
1 and a

[1]
1 = σ(z

[1]
1 ). Similarly, the second layer computes z

[1]
2 = w

[1]
2

T
x + b

[1]
2 and

a
[1]
2 = σ(z

[1]
2 ), and so on. Naturally, using a for loop in such a case is inefficient, and even more so when the

number of nodes increases. Let’s see how we can vectorize the set of 4 equations corresponding to the middle
layer.

Let’s start with computing z as a vector. We define the vector Z [1] and matrices W [1], B[1] as

Z [1] =


· · · w

[1]T
1 · · ·

· · · w
[1]T
2 · · ·

· · · w
[1]T
3 · · ·

· · · w
[1]T
4 · · ·


x1x2
x3

+


b
[1]
1

b
[1]
2

b
[1]
3

b
[1]
4

 = W [1]x+B[1] =


w

[1]T
1 x+ b

[1]
1

w
[1]T
2 x+ b

[1]
2

w
[1]T
3 x+ b

[1]
3

w
[1]T
4 x+ b

[1]
4

 =


z
[1]
1

z
[1]
2

z
[1]
3

z
[1]
4


Finally we define another vector A[1] = σ(Z [1]) which simply stacks up all the values a

[1]
1 , a

[1]
2 , a

[1]
3 , a

[1]
4 . The

computation in the final node is very similar, except for a change in the layer index.

5.3 Vectorization across multiple examples

The previous section dealt with computing the output of a neural network for a single example. Let’s how try
to compute the output over an entire training set.

x −→ a[2] = ŷ


x(1) −→ a[2](1) = ŷ(1)

x(2) −→ a[2](2) = ŷ(2)

...
x(m) −→ a[2](m) = ŷ(m)

We now have to refine the matrices Z [1] and A[1] so that we vertically span over the number of nodes in the
hidden layer and horizontally span across the number of training examples:

X = A[0]


...

...
...

x(1) x(2) · · · x(m)

...
...

...

 ;Z [1] =


...

...
...

z[1](1) z[1](2) · · · z[1](m)

...
...

...

 ;A[1] =


...

...
...

a[1](1) a[1](2) · · · a[1](m)

...
...

...


The implementation of this into code is very similar to what we did with logistic regression − only the matrices
are of a bigger order. The final vector equations we now have are:

Z [1] = W [1]TX + b[1] −→ A[1] = σ(Z [1])

Z [2] = W [2]TA[1] + b[2] −→ A[2] = σ(Z [2])

5.4 Activation functions

An activation function is the function that passes on parameters from one layer of a neural network to the next.
For example, in our example, the function A[1] = σ(Z [1]) is the activation function. Up till now, we have been
using the sigmoid function as the activation function. There are many other choices and sometimes, these can
work much better.

Generally we choose non-linear sigmoid functions. We do this because otherwise, ŷ would just be a linear
computation of the input features. While working with many hidden layers, if the activation function is just a
linear combination of the input, it makes the purpose of having multiple layers redundant since the output is
so predictable and can just be hardcoded.

In fact, in our current example, if we use the linear activation function g(z) = z for the hidden layer, then the
model is no more expressive that standard logistic regression without any hidden layer.

We can replace the function σ(Z [1]) with a different general function g(Z [1]) which is non-linear. One example
of a function that almost always performs better than the sigmoid is the tanh function. The formula for the
tanh function is

tanh(z) =
ez − e−z

ez + e−z
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It turns out that applying tanh as the activation function for the middle layer almost always leads to better
results than using the sigmoid. This is because, since the values lie between −1 and 1, the mean of the data
lies closer to 0 than to 0.5. This actually makes the learning for the next layer easier. One exception to when
sigmoid would be a more preferable choice is during binary classification, where we want the output predictions
to be between 0 and 1.

One disadvantage of both the sigmoid and tanh function is that for very large and small z, the slope of the
function ends up very close to 0, which can slow down gradient descent. This brings us to another popular
activation function called the ReLU (rectified linear unit).

The ReLU function is defined as R(z) = max(0, z). Technically, the deriva-
tive of this function at z = 0 is not defined, but the odds of running into
the exact case z = 0 are extremely small. To handle for that case, we can
artificially define it to be either 0 or 1 without affecting the accuracy much.
The ReLU is increasingly becoming the default choice of activation function.

One disadvantage of the ReLU is that the derivative is zero for all z < 0.
This can be rectified by changing the slope to a very subtle angle − this
type of ReLU is called the ‘leaky’ ReLU. However, despite it working better
than the ReLU, it is not used as much.

NOTE: Linear activation functions are usually not preferred in hidden layers, but one of the rare applications
of linear activation functions is in compression algorithms. Linear activation functions are also somewhat
commonly used in the output layer since the final range of y and ŷ are the same.

5.5 Gradient descent for neural networks

We have seen how to vectorize the forward propagation steps for out neural network. Let’s now get into back
propagation using gradient descent, for which we need to first define the gradients of various activation functions.
For an activation function a = g(z), with a little bit of calculus, we can prove the following results:

g(z) = σ(z) =
1

1 + e−z
−→ g′(z) = a(1− a)

g(z) = tanh(z) =
ez − e−z

ez + e−z
−→ g′(z) = (1 + a)(1− a)

g(z) = max(0, z) −→ g′(z) =

{
0 if z < 0
1 if z > 0

g(z) = max(0.01z, z) −→ g′(z) =

{
0.01 if z < 0
1 if z > 0

Note that for the ReLU and leaky ReLU functions we can set the derivative at z = 0 to be either 0 or 1, without
affecting the accuracy of the algorithm much. Now that we have defined the derivatives of the various activation
functions, let’s get into implementing gradient descent.

We have the input parameters X,W [1], b[1],W [2] and b[2]. Let us define n[1], n[2] as the number of nodes in the
hidden layer and the output layer respectively. X is of dimension (nx, n

[1]), or (n[0], n[1]) for a more consistent
notation. The dimensions of W [1], b[1],W [2], b[2] are (n[1], n[0]), (n[1], 1), (n[2], n[1]), (n[2], 1) respectively. Let us
assume, for now, that we are performing binary classification. Then, the loss and cost functions will have a very
similar form to that we used in case of logistic regression earlier:

J(W [1], b[1],W [2], b[2]) =
1

m

m∑
i=1

L(ŷ, y) =
1

m

m∑
i=1

L(a[2], y)

To then carry out gradient descent, we need to compute the gradients
dJ

dW [1]
,

dJ

db[1]
,

dJ

dW [2]
,

dJ

db[2]
. After this is

done, we would need to update the parameters on each iteration using

W [1] = W [1] − α
(

dJ

dW [1]

)
; b[1] = b[1] − α

(
dJ

db[1]

)
;W [2] = W [2] − α

(
dJ

dW [2]

)
; b[2] = b[2] − α

(
dJ

db[2]

)
Let us finally express the gradient descent algorithm as a bunch of equations (keep in mind that any notation

of the form dZ [1] actually means
dJ

dZ [1]

)
. We use the sigmoid as the activation function for the output layer,

and a function g[1](Z [1]) for the hidden layer.
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Forward Propagation Back Propagation

Z [1] = W [1]TX + b[1] dZ [2] = A[2] − Y

A[1] = σ(Z [1]) dW [2] =
1

m
np.dot(dZ [2], A[1].T)

Z [2] = W [2]TA[1] + b[2] db[2] =
1

m
np.sum(dZ [2],axis=1,keepdims=True)

A[2] = σ(Z [2]) dZ [1] = np.dot(W [2].T,dZ [2])× g[1]′(Z [1])

dW [1] =
1

m
np.dot(dZ [1], X.T)

db[1] =
1

m
np.sum(dZ [1],axis=1,keepdims=True)

5.6 Initialization of variables

In our implementation of logistic regression, we initialised the variables all to 0. In the case of neural networks,
this won’t work. Consider a neural network with 2 input features and 2 hidden units.

Let’s say we initialize W [1],W [2], b[1] all to null matrices. It turns out
that initialising b[1] to 0 is okay, but it is a problem in case of W [1]

and W [2]. This is because then, z
[1]
1 = z

[1]
2 =⇒ a

[1]
1 = a

[1]
2 , since

both of the nodes are computing the same activation function. Due to

this, during back propagation, we get the result that dz
[1]
1 = dz

[1]
2 . So

essentially, the 2 nodes are now identical (or symmetric).

By mathematical induction over the number of iterations, it can be proven that both the nodes compute exactly
the same function during each iteration. Hence, there is really no point to having more than one hidden unit.
We want them to be computing different functions.

A solution to this is to initialize the parameters to random values i.e. w[1] = np.random.randn((2,2))*0.01

and so on. We multiply by a small factor to ensure that w, hence z, and hence a are small enough to not end
up on the flat parts of the activation function curve.

END OF WEEK 3

This is the end of the course notes for Week 3. Keep on reading further for the notes from further weeks, or
spend some time gaining further insight into the previously discussed topics.
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6 Deep Neural Networks

(This section is currently in the works. Expect it to be up within a week’s time.)
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