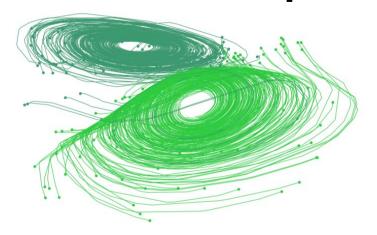
Neural Ordinary Differential Equations



Ricky T. Q. Chen*, Yulia Rubanova*, Jesse Bettencourt*, David Duvenaud
University of Toronto

Background: Ordinary Differential Equations (ODEs)

- Model the instantaneous change of a state.

$$\frac{dz(t)}{dt} = f(z(t), t) \qquad \text{(explicit form)}$$

Solving an initial value problem (IVP) corresponds to integration.

$$z(t) = z(t_0) + \int_{t_0}^{t} f(z(t), t)dt$$
 (solution is a trajectory)

Euler method approximates with small steps:

$$z(t+h) = z(t) + hf(z(t),t)$$

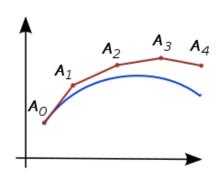
Residual Networks interpreted as an ODE Solver

- Hidden units look like: $z_{l+1} = F_l(z_l) = z_l + f_l(z_l)$
- Final output is the composition: $z_L = F_{L-1} \circ F_{L-2} \cdots \circ F_0(z_0)$

Residual Networks interpreted as an ODE Solver

- Hidden units look like: $z_{l+1} = F_l(z_l) = z_l + f_l(z_l)$
- Final output is the composition: $z_L = F_{L-1} \circ F_{L-2} \cdots \circ F_0(z_0)$

 This can be interpreted as an Euler discretization of an ODE.



- In the limit of smaller steps:
$$\frac{dz(t)}{dt} = \lim_{h \to 0} \frac{z_{t+h} - z_t}{h} = f(z_t)$$

Haber & Ruthotto (2017). E (2017).

Deep Learning as Discretized Differential Equations

Many deep learning networks can be interpreted as ODE solvers.

Network	Fixed-step Numerical Scheme
ResNet, RevNet, ResNeXt, etc.	Forward Euler
PolyNet	Approximation to Backward Euler
FractalNet	Runge-Kutta
DenseNet	Runge-Kutta

Lu et al. (2017) Chang et al. (2018) Zhu et al. (2018)

Deep Learning as Discretized Differential Equations

Many deep learning networks can be interpreted as ODE solvers.

Network	Fixed-step Numerical Scheme
ResNet, RevNet, ResNeXt, etc.	Forward Euler
PolyNet	Approximation to Backward Euler
FractalNet	Runge-Kutta
DenseNet	Runge-Kutta

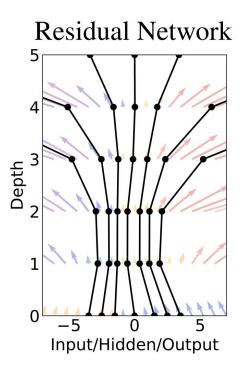
Lu et al. (2017) Chang et al. (2018) Zhu et al. (2018)

But:

- (1) What is the underlying dynamics?
- (2) Adaptive-step size solvers provide better error handling.

"Neural" Ordinary Differential Equations

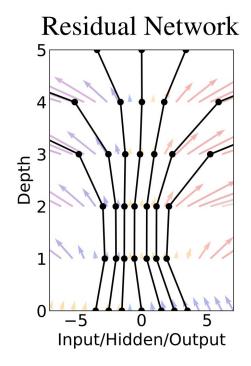
Instead of y = F(x),

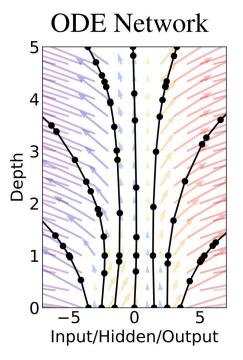


"Neural" Ordinary Differential Equations

Instead of y = F(x), solve y = z(T) given the initial condition z(0) = x.

Parameterize $\frac{d\mathbf{z}(t)}{dt} = f(\mathbf{z}(t), \theta(t))$





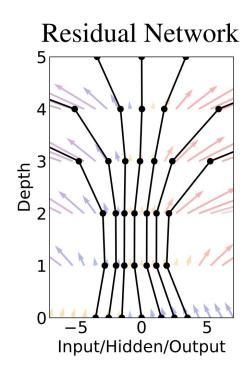
"Neural" Ordinary Differential Equations

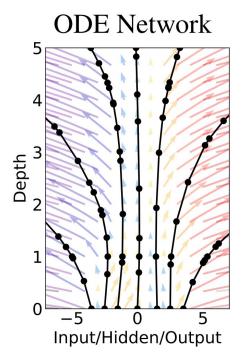
Instead of y = F(x), solve y = z(T) given the initial condition z(0) = x.

Parameterize
$$\frac{d\mathbf{z}(t)}{dt} = f(\mathbf{z}(t), \theta(t))$$

Solve the dynamic using any black-box ODE solver.

- Adaptive step size.
- Error estimate.
- O(1) memory learning.





Backprop without knowledge of the ODE Solver

Ultimately want to optimize some loss

$$L(z(T)) = L\left(z(t_0) + \int_{t_0}^T f(z(t), t, \theta) dt\right) = L\left(\text{ODESolve}(z(t_0), t_0, T, \theta)\right)$$

$$\frac{\partial L}{\partial \theta} = ?$$

Backprop without knowledge of the ODE Solver

Ultimately want to optimize some loss

$$L(z(T)) = L\left(z(t_0) + \int_{t_0}^T f(z(t), t, \theta)dt\right) = L\left(\text{ODESolve}(z(t_0), t_0, T, \theta)\right)$$

Naive approach: Know the solver. Backprop through the solver.

- Memory-intensive.
- Family of "implicit" solvers perform inner optimization.

Backprop without knowledge of the ODE Solver

Ultimately want to optimize some loss

$$L(z(T)) = L\left(z(t_0) + \int_{t_0}^T f(z(t), t, \theta)dt\right) = L\left(\text{ODESolve}(z(t_0), t_0, T, \theta)\right)$$

Naive approach: Know the solver. Backprop through the solver.

- Memory-intensive.
- Family of "implicit" solvers perform inner optimization.

Our approach: Adjoint sensitivity analysis. (Reverse-mode Autodiff.)

- Pontryagin (1962).
 - + Automatic differentiation.
 - + O(1) memory in backward pass.

Residual network. $a_t := \frac{\partial L}{\partial z_t}$ Adjoint method. Define: $a(t) := \frac{\partial L}{\partial z(t)}$

Forward: $z_{t+h} = z_t + hf(z_t)$

Backward: $a_t = a_{t+h} + ha_{t+h} \frac{\partial f(z_t)}{\partial z_t}$

Params: $\frac{\partial L}{\partial \theta} = h a_{t+h} \frac{\partial f(z(t), \theta)}{\partial \theta}$

Backward: $a_t = a_{t+h} + ha_{t+h} \frac{\partial f(z_t)}{\partial z_t}$

Params: $\frac{\partial L}{\partial \theta} = h a_{t+h} \frac{\partial f(z(t), \theta)}{\partial \theta}$

Residual network. $a_t := \frac{\partial L}{\partial z_t}$ Adjoint method. Define: $a(t) := \frac{\partial L}{\partial z(t)}$

Forward: $z_{t+h} = z_t + hf(z_t)$ Forward: $z(t+1) = z(t) + \int_{t}^{t+1} f(z(t)) dt$

Residual network.
$$a_t := \frac{\partial L}{\partial z_t}$$

Params: $\frac{\partial L}{\partial \theta} = ha_{t+h} \frac{\partial f(z(t), \theta)}{\partial \theta}$

Residual network. $a_t := \frac{\partial L}{\partial z_t}$ Adjoint method. Define: $a(t) := \frac{\partial L}{\partial z(t)}$

Forward: $z_{t+h} = z_t + hf(z_t)$ Forward: $z(t+1) = z(t) + \int_{t}^{t+1} f(z(t)) dt$

Backward: $a_t = a_{t+h} + ha_{t+h} \frac{\partial f(z_t)}{\partial z_t}$ Backward: $\underline{a(t)} = a(t+1) + \int_{t+1}^t a(t) \frac{\partial f(z(t))}{\partial z(t)} dt$ Adjoint State Adjoint DiffEq

Residual network.
$$a_t := \frac{\partial L}{\partial z_t}$$

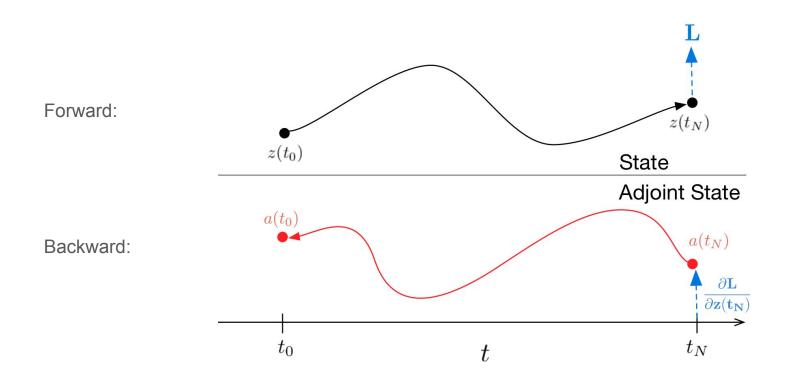
Residual network. $a_t := \frac{\partial L}{\partial z_t}$ Adjoint method. Define: $a(t) := \frac{\partial L}{\partial z(t)}$

Forward: $z_{t+h} = z_t + hf(z_t)$ Forward: $z(t+1) = z(t) + \int_{t}^{t+1} f(z(t)) dt$

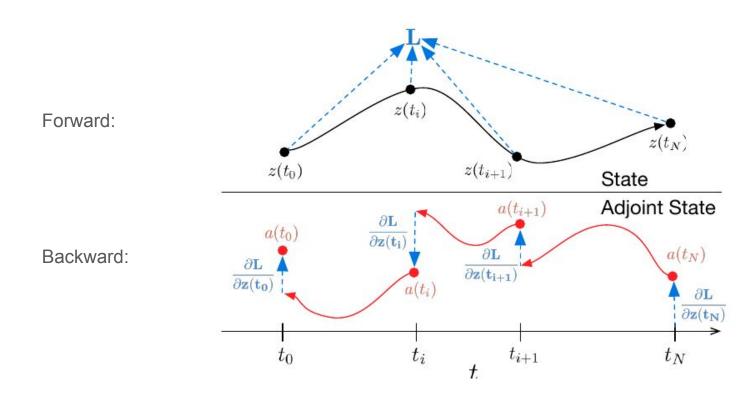
Backward: $a_t = a_{t+h} + ha_{t+h} \frac{\partial f(z_t)}{\partial z_t}$ | Backward: $a(t) = a(t+1) + \int_{t+1}^t a(t) \frac{\partial f(z(t))}{\partial z(t)} dt$ Adjoint State

Params: $\frac{\partial L}{\partial \theta} = h a_{t+h} \frac{\partial f(z(t), \theta)}{\partial \theta}$ Params: $\frac{\partial L}{\partial \theta} = \int_{t}^{t+1} a(t) \frac{\partial f(z(t), \theta)}{\partial \theta} dt$

A Differentiable Primitive for AutoDiff



A Differentiable Primitive for AutoDiff



A Differentiable Primitive for AutoDiff

Don't need to store layer activations for reverse pass - just follow dynamics in reverse!

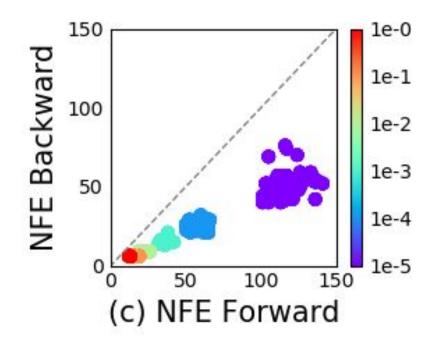
Table 1: Performance on MNIST. †From LeCun et al. (1998).

	Test Error	Memory	Time
1-Layer MLP [†]	1.60%	-	_
ResNet	0.41%	$\mathcal{O}(L)$	$\mathcal{O}(L)$
RK-Net	0.47%	$\mathcal{O}(ilde{L})$	$\mathcal{O}(\tilde{L})$
ODE-Net	0.42%	$\mathcal{O}(1)$	$\mathcal{O}(ilde{L})$

Reversible networks (Gomez et al. 2018) also only require O(1)-memory, but require very specific neural network architectures with partitioned dimensions.

Reverse versus Forward Cost

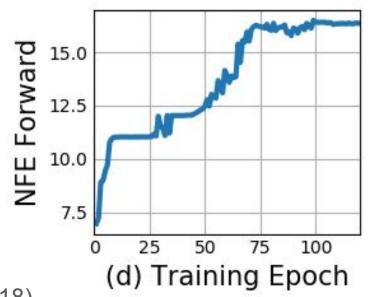
- Empirically, reverse pass roughly half as expensive as forward pass.
- Adapts to instance difficulty.
- Num evaluations can be viewed as number of layers in neural nets.



NFE = Number of Function Evaluations.

Dynamics Become Increasingly Complex

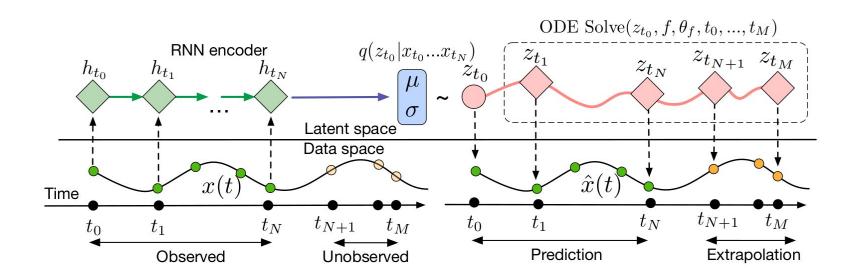
- Dynamics become more demanding to compute during training.
- Adapts computation time according to complexity of diffeq.



In contrast, Chang et al. (ICLR 2018) explicitly add layers during training.

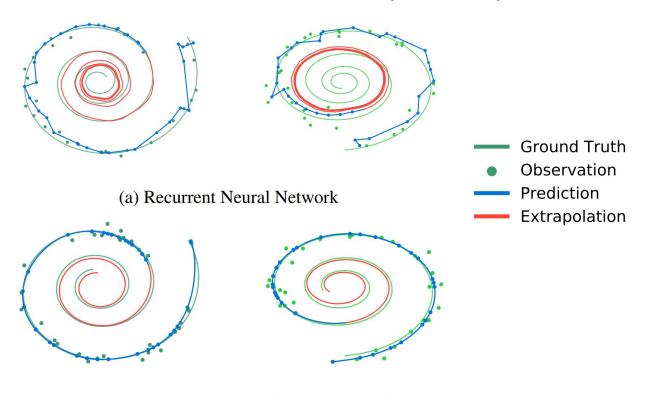
Continuous-time RNNs for Time Series Modeling

- We often want arbitrary measurement times, ie. <u>irregular time intervals</u>.
- Can do VAE-style inference with a latent ODE.



ODEs vs Recurrent Neural Networks (RNNs)

- RNNs learn very stiff dynamics, have exploding gradients.
- Whereas ODEs are guaranteed to be smooth.



(b) Latent Neural Ordinary Differential Equation

Instantaneous Change of variables (iCOV):

- For a Lipschitz continuous function f

$$\frac{dh}{dt} = f(h(t), t) \implies \frac{\partial \log p(h(t))}{\partial t} = -\operatorname{tr}\left(\frac{\partial f}{\partial h(t)}\right)$$

Instantaneous Change of variables (iCOV):

- For a Lipschitz continuous function f

$$\frac{dh}{dt} = f(h(t), t) \implies \frac{\partial \log p(h(t))}{\partial t} = -\operatorname{tr}\left(\frac{\partial f}{\partial h(t)}\right)$$

- In other words,

$$h(t_0) = x, h(t_1) = z \implies \log p(x) = \log p(z) + \int_{t_0}^{t_1} \operatorname{tr}\left(\frac{\partial f}{\partial h(t)}\right)$$

Instantaneous Change of variables (iCOV):

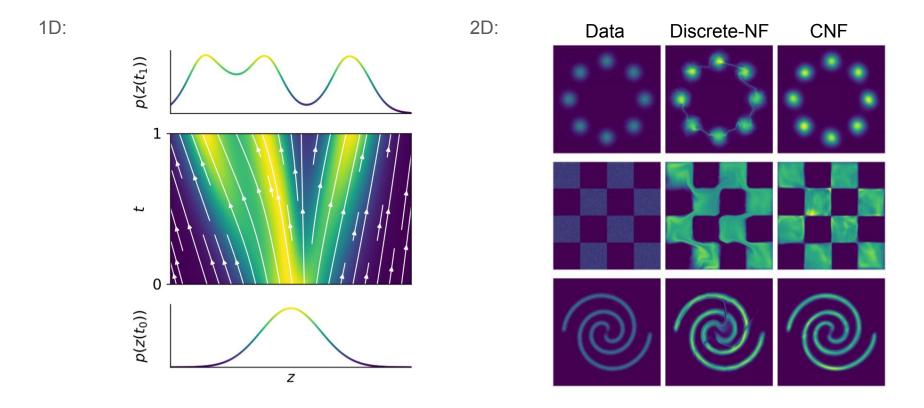
- For a Lipschitz continuous function f

$$\frac{dh}{dt} = f(h(t), t) \implies \frac{\partial \log p(h(t))}{\partial t} = -\operatorname{tr}\left(\frac{\partial f}{\partial h(t)}\right)$$

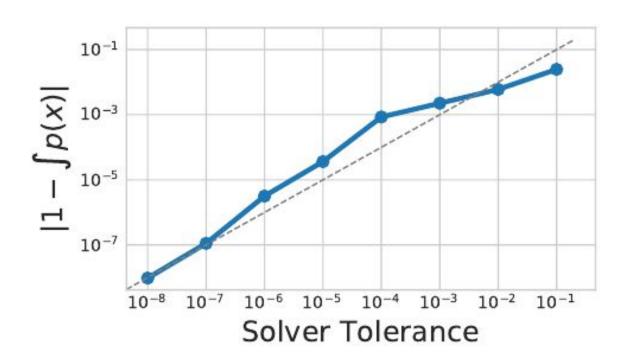
- In other words,

$$h(t_0) = x, h(t_1) = z \implies \log p(x) = \log p(z) + \int_{t_0}^{t_1} \operatorname{tr}\left(\frac{\partial f}{\partial h(t)}\right)$$

With an invertible F:
$$F(x) = z \implies \log p(x) = \log p(z) + \log \left| \frac{\partial F}{\partial x} \right|$$



Is the ODE being correctly solved?



Stochastic Unbiased Log Density

$$\log p(x) = \log p(z) + \int_{t_0}^{t_1} \operatorname{tr}\left(\frac{\partial f}{\partial h(t)}\right) \in \mathcal{O}(D^2)$$

Stochastic Unbiased Log Density

$$\log p(x) = \log p(z) + \int_{t_0}^{t_1} \operatorname{tr}\left(\frac{\partial f}{\partial h(t)}\right) \in \mathcal{O}(D^2)$$

Can further reduce time complexity using **stochastic** estimators.

$$\operatorname{tr}(A) = \mathbb{E}[\underbrace{v^T A v}] \quad \text{if } \mathbb{E}[vv^T] = I$$

$$\int_{t_0}^{t_1} \operatorname{tr}\left(\frac{\partial f}{\partial h(t)}\right) = \int_{t_0}^{t_1} \underbrace{\mathbb{E}\left[v^T \frac{\partial f}{\partial h(t)}v\right]}_{\text{Not an ODE}} = \mathbb{E}\left[\int_{t_0}^{t_1} v^T \frac{\partial f}{\partial h(t)}v\right] \in \mathcal{O}(D)$$

Grathwohl et al. (2019)

FFJORD - Stochastic Continuous Flows

MNIST - Model Samples

CIFAR10 - Model Samples

Variational Autoencoders with FFJORD

$$\begin{aligned} \text{ELBO}(x) &= \mathbb{E}_{q(z|x)}[\log p(x|z) + \log p(z) - \log q(z|x)] \\ &= \mathbb{E}_{p(v)q(z|x)}[\log p(x|z) + \log p(z) - \log q(z|x,v)] \end{aligned}$$

	MNIST	Omniglot	Frey Faces	Caltech Silhouettes
No Flow	$86.55 \pm .06$	$104.28\pm.39$	$4.53\pm.02$	$110.80 \pm .46$
Planar	$86.06 \pm .31$	$102.65\pm.42$	$4.40\pm.06$	$109.66\pm.42$
IAF	$84.20 \pm .17$	$102.41\pm.04$	$4.47\pm.05$	$111.58\pm.38$
Sylvester	$83.32 \pm .06$	$99.00\pm.04$	$4.45\pm.04$	$104.62\pm.29$
FFJORD	$82.82\pm.01$	$98.33 \pm .09$	$\textbf{4.39} \pm .01$	$104.03\pm.43$

ODE Solving as a Modeling Primitive

Adaptive-step solvers with O(1) memory backprop.

github.com/rtqichen/torchdiffeq

Future directions we're currently working on:

- Latent Stochastic Differential Equations.
- Network architectures suited for ODEs.
- Regularization of dynamics to require fewer evaluations.

Co-authors:

Yulia Rubanova

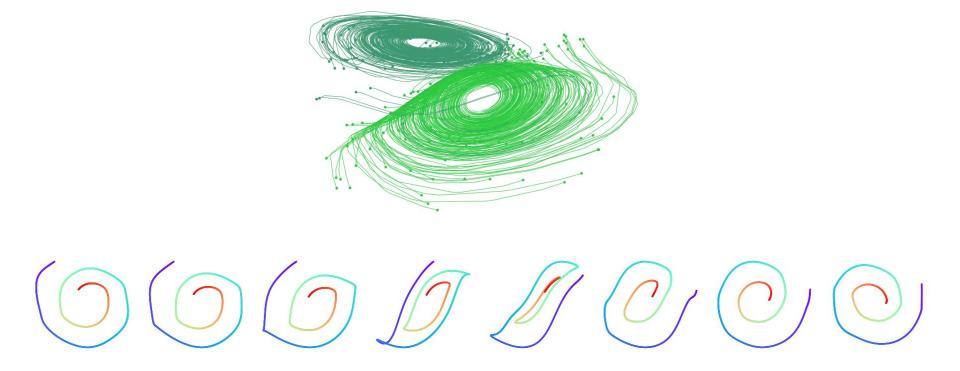
Jesse Bettencourt

David Duvenaud

Thanks!

Extra Slides

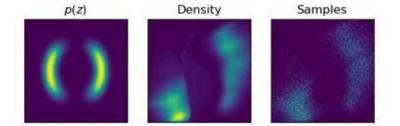
Latent Space Visualizations

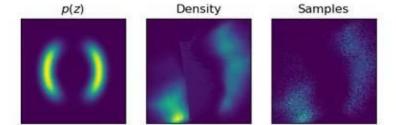


```
def grad_odeint(yt, func, y0, t, func_args, **kwargs):
    # Extended from "Scalable Inference of Ordinary Differential
    # Equation Models of Biochemical Processes", Sec. 2.4.2
    # Fabian Froehlich, Carolin Loos, Jan Hasenauer, 2017
    # https://arxiv.org/abs/1711.08079
    T_{\nu} D = np. shape(vt)
    flat args, unflatten = flatten(func args)
    def flat func(v, t, flat args):
        return func(y, t, *unflatten(flat args))
    def unpack(x):
                       vip y, vip t, vip args
        return x[0:D], x[D:2*D], x[2*D], x[2*D+1:]
    def augmented_dynamics(augmented_state, t, flat_args):
        # Orginal system augmented with vjp_y, vjp_t and vjp_args.
        y, vjp_y, _, _ = unpack(augmented_state)
        vip all, dv dt = make vip(flat func, argnum=(0, 1, 2))(v, t, flat args)
        vjp_y, vjp_t, vjp_args = vjp_all(-vjp_y)
        return np.hstack((dy_dt, vjp_y, vjp_t, vjp_args))
    def vjp all(q):
        vjp_y = q[-1, :]
        vip t0 = 0
        time_vjp_list = []
        vjp_args = np.zeros(np.size(flat_args))
        for i in range(T - 1, 0, -1):
            # Compute effect of moving measurement time.
            vip cur t = np.dot(func(yt[i, :], t[i], *func args), g[i, :])
            time vjp list.append(vjp cur t)
            vip t0 = vip t0 - vip cur t
            # Run augmented system backwards to the previous observation.
            aug_y0 = np.hstack((yt[i, :], vjp_y, vjp_t0, vjp_args))
            aug ans = odeint(augmented dynamics, aug v0.
                             np.array([t[i], t[i - 1]]), tuple((flat_args,)), **kwargs)
            _, vjp_y, vjp_t0, vjp_args = unpack(aug ans[1])
           # Add gradient from current output.
           vip v = vip v + q[i - 1, :]
        time vjp list.append(vjp t0)
        vjp times = np.hstack(time vjp list)[::-1]
        return None, vjp_y, vjp_times, unflatten(vjp_args)
    return vjp_all
```

- Released an implementation of reverse-mode autodiff through black-box ODE solvers.
- Solves a system of size 2D + K + 1.
- In contrast, forward-mode implementation solves a system of size D^2 + KD.
- Tensorflow has Dormand-Prince-Shampine Runge-Kutta 5(4) implemented, but uses naive autodiff for backpropagation.

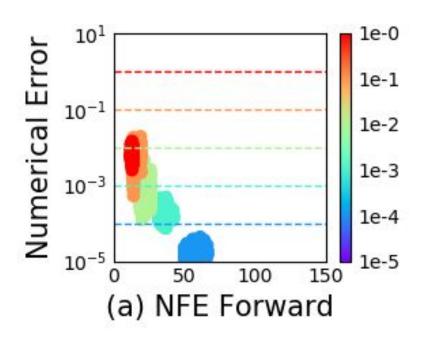
How much precision is needed?





Explicit Error Control

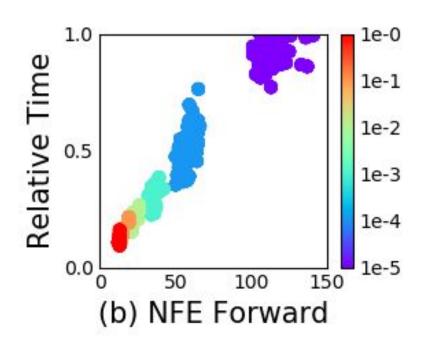
- More fine-grained control than low-precision floats.
- Cost scales with instance difficulty.



NFE = Number of Function Evaluations.

Computation Depends on Complexity of Dynamics

 Time cost is dominated by evaluation of dynamics f.



NFE = Number of Function Evaluations.

Why not use an ODE solver as modeling primitive?

- Solving an ODE is expensive.

Future Directions

- Stochastic differential equations and Random ODEs. Approximates stochastic gradient descent.
- Scaling up ODE solvers with machine learning.
- Partial differential equations.
- Graphics, physics, simulations.