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by Sebastian Ruder

The current generation of neural network-based natural language processing models

excels at learning from large amounts of labelled data. Given these capabilities, natural

language processing is increasingly applied to new tasks, new domains, and new languages.

Current models, however, are sensitive to noise and adversarial examples and prone to

overfitting. This brittleness, together with the cost of attention, challenges the supervised

learning paradigm.

Transfer learning allows us to leverage knowledge acquired from related data in order to

improve performance on a target task. Implicit transfer learning in the form of pretrained

word representations has been a common component in natural language processing. In

this dissertation, we argue that more explicit transfer learning is key to deal with the

dearth of training data and to improve downstream performance of natural language

processing models. We show experimental results transferring knowledge from related

domains, tasks, and languages that support this hypothesis.

We make several contributions to transfer learning for natural language processing:

Firstly, we propose new methods to automatically select relevant data for supervised

and unsupervised domain adaptation. Secondly, we propose two novel architectures that

improve sharing in multi-task learning and outperform single-task learning as well as the

state-of-the-art. Thirdly, we analyze the limitations of current models for unsupervised

cross-lingual transfer and propose a method to mitigate them as well as a novel latent-

variable cross-lingual word embedding model. Finally, we propose a framework based on

fine-tuning language models for sequential transfer learning and analyze the adaptation

phase.
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Chapter 1

Introduction

1.1 Motivation

Language is often regarded as the hallmark of human intelligence. Developing systems

that can understand human language is thus one of the main obstacles on the quest

towards artificial general intelligence. This objective has driven research in artificial

intelligence and particularly in natural language processing and computational linguistics.

As language permeates every part of the human existence, natural language processing is

ultimately necessary for computers to achieve their full potential in augmenting human

intelligence.

Early symbolic approaches towards this elusive goal tried to capture the meaning of

text using rules written by humans. Such rule-based systems, however, were brittle and

limited to the particular domains they had been designed for [Winograd, 1972]. They

generally were unable to deal with unexpected or unseen inputs and ultimately proved

too restrictive to capture the intricacy of natural language [National Research Council

and Automatic Language Processing Advisory Committee, 1966].

Over the last 20 years, a statistical approach of natural language processing [Manning

et al., 1999] has become commonplace, which uses mathematical models to automatically

learn rules from data. Consequently, rather than writing rules, human effort was

channelled into creating features that tell a model what connections and relationships

in the data it should consider to make its prediction. Engineering features, however, is

time-consuming as features are generally task-specific and require domain expertise.

In the span of the past five years, deep neural networks [Krizhevsky et al., 2012a,

Goodfellow et al., 2016], a particular category of machine learning models, have become

the model of choice when learning from data. These models automatically learn a

1
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multi-layered hierarchy of features and thus reduce the need for feature engineering.

Human energy consequently has focused on determining the most suitable architecture

and training setting for each task.

In natural language processing as well as in many areas of machine learning, the standard

way to train a model is to annotate a large number of examples that are then provided

to the model, which learns a function that maps from inputs to outputs. This is known

as supervised learning. For every task such as analyzing the syntactic structure of a text,

disambiguating words, or translating a document, a new model is trained from scratch.

Knowledge from related tasks or domains is never combined and models always start

tabula rasa, from a random initialization.

Learning from such a blank state is antithetic to the way humans acquire language.

Human language learning does not occur in isolation but in a rich sensory environment.

Children learn language via interaction with their surroundings [Hayes et al., 2002] and

through continuous feedback and reinforcement [Bruner, 1985].

Nevertheless, recent deep neural network-based approaches have achieved remarkable

successes on a wide range of tasks by learning from hundreds of thousands to millions of

input–output pairs such as in machine translation [Wu et al., 2016]. Given these successes,

one might think that there is no need to stray from the paradigm of supervised learning,

that it is unnecessary to create algorithms inspired by human language acquisition. After

all, nature has served us well as an inspiration rather than a blueprint; for instance,

artificial neural networks are only loosely inspired by human cognition [Rumelhart et al.,

1986].

Recent studies [Jia and Liang, 2017, Belinkov and Bisk, 2018], however, show that current

algorithms are brittle in a way similar to early rule-based systems: They do not generalize

beyond the data they have seen during training. They conform to the characteristics of

the data they have been trained on and are not able to adapt when conditions change.

The needs of humans are complex and language is diverse; new tasks—from identifying

new precedents in legal documents, mining unseen drug interactions, to routing support

emails—are therefore constantly required to be solved using natural language processing.

Natural language processing also promises to help bridge the digital language divide1,

which leads to an inequality of information—and opportunity—online. To this end,

models need to be applied not only to English but to the world’s 6,000 languages.

In order to obtain a model that performs well on data that has not been seen before–

whether from a new task, domain, or language—, supervised learning requires a sufficient

1http://labs.theguardian.com/digital-language-divide/

http://labs.theguardian.com/digital-language-divide/
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number of examples to be labelled for every new setting. Given the plethora of languages,

tasks, and domains in the real world, manually annotating examples for every setting

is simply infeasible. Standard supervised learning thus breaks down in light of these

real-world challenges.

Transfer learning promises to ameliorate this failing by transferring knowledge from

related domains, tasks, and languages to the target setting. Indeed, transfer learning has

long been a latent part of many NLP systems. Many of the most fundamental advances

in NLP such as latent semantic analysis [Deerwester et al., 1990], Brown clusters [Brown

et al., 1993b], and pretrained word embeddings [Mikolov et al., 2013a] can be considered

as particular forms of transfer learning, as a means of transferring knowledge from a

general-purpose source task to a more specialized target task.

In this dissertation, we argue that framing the training of NLP models as transfer

learning rather than supervised learning can help unlock new potential that will allow

our models to generalize better. To this end, we develop novel models that transfer

across domains, tasks, and languages for a variety of scenarios. We demonstrate that our

models outperform both existing transfer learning methods as well as models that do not

transfer.

1.2 Research objectives

This thesis studies the problem of automatically learning representations that transfer

across tasks, domains, and languages with neural network-based methods for natural

language processing. The main hypothesis of this thesis is the following:

Deep neural networks in natural language processing that leverage existing relevant

information from related domains, tasks, and languages outperform models not using this

information across a wide range of tasks.

In other words, we argue that in most settings, transfer learning outperforms supervised

learning, with two caveats:

1. Transfer learning may be less helpful when already a sufficient number of training

examples are available.

2. Transfer learning may be less useful if no relevant information is available.

To address the first aspect, we analyze the few-shot capabilities of transfer learning

(§7.1.5). The second points hints at a recurring theme in this thesis: The success of

transfer learning is dependent on the similarity of the source setting to the target setting.



Introduction 4

Overall, we lay out five desiderata that will be addressed by the approaches proposed in

this thesis:

1. Overcoming a discrepancy between source and target setting: The method

should overcome a discrepancy between the source and target settings. Many ex-

isting methods only work well when source and target settings are similar. To

overcome this challenge, we propose methods that select relevant examples (§4.1),

leverage weak supervision (§5), flexibly share parameters across tasks (§6), learn

general-purpose representations (§7.1), and analyze task similarity (§7.2).

2. Inducing an inductive bias: The model should induce an inductive bias that

improves its ability to generalize. Inductive biases that we employ include semi-

supervised learning (§4.2, §6.2), multi-task learning (§4.2, §6) an orthogonality

constraint (§4.2, §6.1), weak supervision (§5), a matching prior (§5.2), hierarchical

relations (§6.1), and pretrained representations (§7).

3. Combining traditional and current approaches: The model should take

inspiration from classic work to overcome the limitations of state-of-the-art ap-

proaches. We propose two models that explicitly combine the best of both worlds,

the strengths of traditional and neural methods (§4.2, §5.2).

4. Transfer across the hierarchy of NLP tasks: The approach should transfer

knowledge across the hierarchy of NLP tasks. This includes sharing across low-

level and high-level tasks (§6.1), sharing between coarse-grained and fine-grained

sentiment tasks (§6.2), and transfer from a general-purpose task to a diverse set of

tasks (§7).

5. Generalization across many settings: The method should enable generalization

to many different settings. To test this, we evaluate each method across a wide

range of tasks (§4, §6, §7), domains (§4, §5.1, §6, §7), and languages (§5).

1.3 Contributions

Throughout this thesis, we will focus on the three main dimensions of transfer learning

for NLP: transfer across domains, transfer across tasks, and transfer across languages.

These three dimensions can be naturally separated into four different transfer learning

settings based on the nature of the source and target tasks and domains and the order of

learning: domain adaptation, cross-lingual learning, multi-task learning, and sequential

transfer learning. We show how the contributions in this thesis relate to these four

settings in Table 1.1.

The contributions in this thesis can be categorized based on their theoretical, practical,

and empirical impact. In terms of theoretical contributions,
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Figure 1.1: Contributions in this work.

• we present a taxonomy that reflects the most common transfer learning settings in

natural language processing (§3.1.3);

• we show that cross-lingual word embedding models that learn on the word level

optimize similar objectives (§3.5.4);

• we analyze the theoretical limitations of unsupervised cross-lingual embedding

models (§5.1);

• we show how existing cross-lingual embedding approaches can be viewed as a

latent-variable model (§5.2);

• and we propose a theoretical framework that generalizes over existing architectures

to multi-task learning (§6.1).

In terms of practical contributions,

• we present extensive reviews of the four most common transfer learning settings in

natural language processing: multi-task learning (§3.2), sequential transfer learning

(§3.3), domain adaptation (§3.4), and cross-lingual learning (§3.5);

• we propose a novel eigenvector-based metric to gauge the potential of unsupervised

bilingual dictionary induction between two languages (§5.1);

• we provide guidelines for adapting pretrained representations (§7.2);
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• and we open-source our code2.

We finally make the following empirical contributions:

• we present a model that automatically learns to select training examples that are

relevant for a particular target domain (§4.1);

• we adapt semi-supervised learning methods to neural networks and compare them

against state-of-the-art approaches (§4.2);

• we propose a more efficient semi-supervised learning method inspired by tri-training

(§4.2);

• we empirically analyze the limitations of unsupervised cross-lingual word embedding

models (§5.1);

• we present a novel latent-variable model for bilingual lexicon induction (§5.2);

• we present a novel multi-task learning model that automatically learns which layers

to share between different tasks (§6.1);

• we present a novel multi-task learning model that integrates information from

disparate label spaces (§6.2);

• we propose a novel framework for sequential transfer learning using pretrained

language models and novel fine-tuning techniques (§7.1);

• and we compare the two prevalent adaptation methods with state-of-the-art pre-

trained representations on a diverse range of tasks (§7.2).

1.4 Thesis outline

In Chapter 2, we provide an overview of background information that is relevant in order

to understand the contents of this thesis. We review fundamentals of probability and

information theory and machine learning. We furthermore discuss neural network-based

methods and tasks in natural language processing.

In Chapter 3, we define transfer learning and present a taxonomy for transfer learning for

NLP. We then review the four transfer learning scenarios in detail: domain adaptation,

cross-lingual learning, multi-task learning, and sequential transfer learning.

The following chapters focus on each of these scenarios. In each chapter, we will

present novel methods for the respective setting that outperform the state-of-the-art on

benchmark datasets.

Chapter 4 presents our work on data selection for domain adaptation. For supervised

domain adaptation, we propose an approach that uses Bayesian Optimization to learn a

2https://github.com/sebastianruder

https://github.com/sebastianruder
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policy for selecting relevant training examples from multiple domains. For unsupervised

domain adaptation, we adapt classic semi-supervised learning methods to neural networks

and propose a novel method inspired by tri-training. Both approaches aim to select

relevant examples that are either similar to the target domain or reliable and informative

according to the semi-supervised learning model.

In Chapter 5, we first analyze the limitations of unsupervised cross-lingual word embed-

ding models. We find that existing unsupervised approaches break down in the setting

where languages are dissimilar and provide a weakly supervised method to ameliorate

this. We furthermore propose a latent variable model with a regularizing matching prior

that works well for low-resource languages. In addition, we provide a new perspective on

existing cross-lingual word embedding models through the lens of latent variables.

In Chapter 6, we propose two novel architectures that improve sharing between tasks in

multi-task learning. In multi-task learning, current approaches such as hard parameter

sharing break down when tasks are dissimilar. Our first approach overcomes this by

allowing the model to learn to what degree information between tasks should be shared.

Our second approach incorporates information from the label spaces of other tasks.

In Chapter 7, we focus on the previously neglected adaptation phase in sequential

transfer learning. We first propose a novel framework based on language modelling and

new techniques for adaptation. We secondly analyze adaptation with state-of-the-art

pretrained representations. We find that task similarity plays an important role and

provide guidelines to the practitioner.

Chapter 8 finally contains our conclusion where we summarize our findings and provide

an outlook into the future.

1.5 Publications

The work in this dissertation primarily relates to the following peer-reviewed articles (in

order of publication):

1. Ruder, S. and Plank, B. (2017). Learning to select data for transfer learning

with Bayesian Optimization. In Proceedings of the 2017 Conference on Empirical

Methods in Natural Language Processing.

2. Augenstein, I.‡, Ruder, S.‡, and Søgaard, A. (2018). Multi-task Learning of

Pairwise Sequence Classification Tasks Over Disparate Label Spaces. In Proceedings

of NAACL-HLT 2018.

‡Equal contribution.
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3. Søgaard, A., Ruder, S. and Vulić, I. (2018). On the Limitations of Unsupervised

Bilingual Dictionary Induction. In Proceedings of ACL 2018.

4. Ruder, S. and Plank, B. (2018). Strong Baselines for Neural Semi-supervised

Learning under Domain Shift. In Proceedings of ACL 2018.

5. Howard, J.‡ and Ruder, S.‡ (2018). Universal Language Model Fine-tuning for

Text Classification. In Proceedings of ACL 2018.

6. Ruder, S.‡, Cotterell, R.‡, Kementchedjhieva, Y., and Søgaard, A. (2018). A Dis-

criminative Latent-Variable Model for Bilingual Lexicon Induction. In Proceedings

of EMNLP 2018.

7. Ruder, S., Bingel, J., Augenstein, I., and Søgaard, A. (2019). Latent Multi-task

Architecture Learning. In Proceedings of AAAI 2019.

8. Ruder, S., Vulić, I., and Søgaard, A. (2019). A Survey of Cross-lingual Word

Embedding Models. To be published in Journal of Artificial Intelligence Research.

The following preprints are also discussed:

9. Ruder, S. (2017). An Overview of Multi-Task Learning in Deep Neural Networks.

arXiv preprint arXiv:1706.05098.

10. Peters, M.‡, Ruder, S.‡, and Smith, N. A. (2019). To Tune or Not to Tune? Adapt-

ing Pretrained Representations to Diverse Tasks. arXiv preprint arXiv:1903.05987.

The following articles are related, but will not be extensively discussed in this thesis:

11. Ruder, S., Ghaffari, P., and Breslin, J. G. (2016). Towards a continuous modeling

of natural language domains. In Uphill Battles in Language Processing Workshop,

EMNLP 2016.

12. Ruder, S., Ghaffari, P., and Breslin, J. G. (2017). Knowledge Adaptation:

Teaching to Adapt. arXiv preprint arXiv:1702.02052.

13. Ruder, S., Ghaffari, P., and Breslin, J. G. (2017). Data Selection Strategies for

Multi-Domain Sentiment Analysis. arXiv preprint arXiv:1702.02426.

14. Kementchedjhieva, Y., Ruder, S., Cotterell, R., and Søgaard, A. (2018). General-

izing Procrustes Analysis for Better Bilingual Dictionary Induction. In Proceedings

of CoNLL 2018.

15. Sanh, V., Wolf, T., and Ruder, S. (2019). A Hierarchical Multi-task Approach

for Learning Embeddings from Semantic Tasks. In Proceedings of AAAI 2019.

Finally, while not directly related, the following articles have also been completed over

the course of the PhD:

16. Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv

preprint arXiv:1609.04747.
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17. Ruder, S., Ghaffari, P., and Breslin, J. G. (2016). A Hierarchical Model of Reviews

for Aspect-based Sentiment Analysis. In Proceedings of the 2016 Conference on

Empirical Methods in Natural Language Processing (EMNLP-16), pp. 999–1005.

18. Ruder, S., Ghaffari, P., and Breslin, J. G. (2016). INSIGHT-1 at SemEval-

2016 Task 4: Convolutional Neural Networks for Sentiment Classification and

Quantification. In Proceedings of the 10th International Workshop on Semantic

Evaluation (SemEval 2016), pp. 178–182.

19. Ruder, S., Ghaffari, P., and Breslin, J. G. (2016). INSIGHT-1 at SemEval-2016
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Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval

2016).
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Chapter 2

Background

This chapter provides background knowledge to set the stage for the subsequent chapters.

It reviews fundamentals of probability and information theory (§2.1) that form the

cornerstones of the techniques introduced throughout this thesis. It then introduces the

reader to machine learning (§2.2) together with its most elementary methods.

We subsequently delve into the particular type of machine learning models that will

be mostly used in this thesis, neural networks (§2.3). Finally, we give an overview of

common tasks in natural language processing (§2.4).

2.1 Probability and information theory

Probability theory provides us with the lingua franca to discuss and analyze many of

the methods presented throughout this thesis that are probabilistic in nature. Using

probability theory, we can make statements about how likely it is that an event will

occur given that other events already have occurred.1 Throughout this thesis, we will

seek to model such likelihoods computationally. Information theory similarly provides us

with tools to describe the information encoded in events and measures to characterize

a difference in information. The latter is a property that we often intend to minimize

using machine learning methods.

2.1.1 Probability basics

Random variable At the heart of probability theory are random variables, which are

functions that output specific values whose range depends on some underlying random

1Note that this is a frequentist interpretation of probability. From a Bayesian perspective, we would
be concerned with the degree of belief that an event will occur.

10
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process. For instance, a random variable X may take on the values x1 and x2. A random

variable has a probability distribution, which specifies with what probability it takes on

each of its values. Our goal in this thesis will generally be to define systems that allow

us to model the probability distribution of such random variables.

PMF and PDF A random variable can be discrete, which means that it takes on

a finite number of values. For discrete random variables, we define its probability

distribution with a probability mass function (PMF), typically denoted as P . The

probability mass function maps a value of a random variable to the probability of the

random variable taking on that value.

P (X = x1) thus indicates the probability of X taking on the value x1. If it is unambiguous

to which random variable an event belongs, we will use P (x1) instead. Every event

x ∈ X has a probability 0 ≤ P (x) ≤ 1. An impossible event has a probability of 0, while

an event that is guaranteed to happen has a probability of 1.

If a random variable is able to take on any value in an interval, it is said to be continuous

and we use a probability density function (PDF), usually designated as p to specify its

probability distribution. In contrast to PMFs, PDFs do not provide the probability of

a specific event. In fact, the probability of any specific point within the interval is 0.

We rather measure the probability of landing inside an infinitesimally small region with

volume δx with p(x)δx.

Both PMFs and PDFs are normalized : For a PMF, all probabilities must sum to 1, i.e.∑
x∈X P (x) = 1, while for a PDF, the probabilities must integrate to 1, i.e.

∫
x p(x)dx.

Joint, marginal, and conditional probability distribution A joint probability

distribution is a probability distribution over multiple random variables at the same time.

For events x ∈ X and y ∈ Y , P (X = x, Y = y) denotes the probability of both events

happening simultaneously. We typically write P (X = x, Y = y) as P (x, y) for brevity.

Given a joint probability distribution, a marginal probability distribution is the probability

distribution over a subset of the variables. Given P (X,Y ), we can calculate P (x) for all

x ∈ X with the sum rule of probability:

P (x) =
∑
y

P (x, y). (2.1)
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We essentially sum over the joint probabilities for all values of the variables that we are

not interested in. For continuous random variables, we integrate instead:

p(x) =

∫
y
p(x, y)dy. (2.2)

For making predictions about events, which is key for the models used in this thesis, we

require computing the probability of an event given that some other event has occurred,

also known as conditional probability. We denote the conditional probability of an event

y given an event x as P (y | x). We can define this probability as the joint probability of

the events divided by the marginal probability of the event that already occurred:

P (y | x) =
P (y, x)

P (x)
. (2.3)

By applying this definition repeatedly, we can decompose a joint probability distribution

over multiple random variables into a product of conditional distributions over only one

variable:

P (x, y, z) = P (x | y, z)P (y, z)

P (y, z) = P (y | z)P (z)

P (x, y, z) = P (x | y, z)P (y | z)P (z).

This formula is known as the chain rule or product rule of probability. For n events, it is

defined as follows:

P (x1, . . . , xn) = P (x1)
n∏
i=2

P (x2 | x1, . . . , xi−1). (2.4)

Independence Two random variables X and Y are independent if their joint prob-

ability distribution can be decomposed as a product of their individual probability

distributions, i.e. for all x ∈ X and y ∈ Y :

p(x, y) = p(x)p(y) (2.5)

Two random variables X and Y are said to be conditionally independent given a random

variable Z if we can decompose their joint probability distribution as conditional prob-

ability distributions, one involving X and the other involving Y , for all x ∈ X, y ∈ Y ,

and z ∈ Z:

p(x, y | z) = p(x | z)p(y | z). (2.6)
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Bayes’ Rule In machine learning, we often would like to estimate the probability of

P (y | x) given knowledge of P (x | y). If we also know P (y), we can derive P (y | x) using

Equation 2.3:

P (y | x) =
P (x, y)

P (x)

P (x, y) = P (x | y)P (y)

P (y | x) =
P (x | y)P (y)

P (x)
.

(2.7)

P (y | x) is known as the posterior probability of y, P (x | y) is the likelihood of x given

y, P (y) is the prior probability of y, and P (x) is the evidence. The last equation is also

known as Bayes’ rule and is at the heart of Bayesian methods for machine learning.

Bayesian Optimization (§4.1) is such a Bayesian approach. In the other chapters, we will

focus on frequentist methods that do not explicitly model the prior P (y). Our methods,

however, will often have a bias (§2.2.4) that implicitly expresses a prior belief such as via

regularization (§2.2.5).

Expectation In machine learning, we are often concerned with functions over random

variables. One particular quantity of interest is the value a function f(x) typically takes

on with regard to a probability distribution P (X) when x is drawn from P . This average

value is also known as expectation, expected value, or the mean µ of f(x) with respect to

P (x). For discrete variables, we can calculate the expectation via summation:

Ex∼P [f(x)] =
∑
x

P (x)f(x) (2.8)

where x ∼ P denotes that x is drawn from P . In essence, the expectation is the average

over all values of a function weighted with their probability. For continuous variables, we

again integrate:

Ex∼p[f(x)] =

∫
p(x)f(x)dx. (2.9)

For brevity, we will often write Ex[f(x)] when it is clear from which distribution x is

drawn and E[f(x)] if the random variable is also evident from context. If f(x) is the

identity, meaning f(x) = x, then the expectation is simply the mean of P :

µ =
∑
x

P (x)x

The linearity of expectation is a well-known property of the expectation, which states

that the expectation of a sum of random variables is equal to the sum of their individual
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expectations:

Ex[af(x) + bg(x)] = aEx[f(x)] + bEx[g(x)]. (2.10)

The sample mean sn is the average value, if we sample x from P (X) n times:

sn =
1

n

n∑
i=1

xi (2.11)

According to the law of large numbers, this sample average converges to the expectation

of P (X) as n→∞. Another useful property is given by the central limit theorem, which

states that as n gets larger the sampling distribution of
√
n(sn − Ex) approximates a

normal distribution (§2.1.2).

Variance Beyond the average value, we are also often interested in measuring how

much the values of a function f(x) vary from this mean value as we sample different

values of x from P . This quantity is known as variance of a function f(x) and is defined

as the expectation of the squared difference—or deviation—from its mean:

Var(f(x)) = E
[
(f(x)− E[f(x)])2

]
. (2.12)

By expanding the binomial, we obtain the common mnemonic for the variance as the

“mean of square minus square of mean”:

Var(f(x)) = E[f(x)2]− E[f(x)]2. (2.13)

The standard deviation is simply the square root of the variance and is typically denoted

as σ, while the variance is specified as σ2. As the expectation of a square, the variance

is always positive. Mean and variance are also known as first and second moment

respectively of a probability distribution.

Going beyond just a single random variable, we can use the measure of covariance to

gauge how much two random variables X and Y are linearly related:

Cov(X,Y ) = E
[
(X − E[X])(Y − E[Y ])

]
. (2.14)

Two variables that are independent have zero covariance and two variables that have

non-zero covariance are dependent.

The Pearson correlation coefficient, also known as Pearson’s r and commonly denoted

as ρ, measures how much two random variables X and Y are linearly correlated. It is

defined as the covariance of the two variables divided by the product of their standard
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deviations:

ρ(X,Y ) =
Cov(X,Y )

σXσY
(2.15)

We will use the Pearson correlation coefficient as a way of measuring how well the

predictions of our model correlate with the true values, such as for determining the

similarity between words (§7.1.4).

In machine learning, many of our variables are not scalars, but vectors. Covariance

extends naturally to vector random variables. The covariance matrix of a random vector

x ∈ Rn is an n× n matrix where

Cov(x)i,j = Cov(xi, xj) (2.16)

and the diagonal elements are simply the variance.

Canonical correlation analysis (CCA) is a method to find linear combinations of two

vector random variables X and Y that have maximum correlation with each other.

Specifically, we seek vectors a and b such that the random variables a>X and b>Y

maximize the correlation ρ(a>X,b>Y ). The solution can be computed using singular

value decomposition (SVD) on a correlation matrix. CCA has been used in domain

adaptation and to learn representations of words in one and multiple languages (§3.4.2.2,

§3.3.2.3, and §3.5.4.1 respectively).

2.1.2 Distributions

In machine learning, we will often make use of some common probability distributions.

The simplest probability distribution is the Bernoulli distribution, which is a discrete

distribution over a single binary random variable. It is defined by a parameter φ ∈ [0, 1],

which controls the probability of the random variable X being equal to 1: P (X = 1) = φ.

Conversely, P (X = 0) = 1−φ. Together, they yield the PMF of the Bernoulli distribution:

P (X = x) = φx(1− φ)1−x (2.17)

Throughout this thesis, binary classification, predicting one of two possible values, will be

a common evaluation task. For this task, the output random variable follows a Bernoulli

distribution. Logistic regression (see Equation 2.41) is a common example of a method

that employs such an output distribution.

The categorical distribution or multinoulli distribution generalizes the Bernoulli distri-

bution to a discrete random variable that can take on K different values. The output

random variable for multi-class classification tasks follows a categorical distribution.
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Both of the above are distributions over discrete random variables. The most commonly

used distribution over a continuous random variable is the Gaussian distribution or

normal distribution:

N (x;µ, σ2) =

√
1

2πσ2
exp(− 1

2σ2
(x− µ)2). (2.18)

In Section 5.2, we will use a Gaussian distribution to parameterize our model.

The final distribution that we will often employ is the empirical distribution P̂ of our

data. If our data is discrete, then we can simply use a multinoulli distribution where the

probability of each data point is its frequency during training:

P̂ (x) =
1

n

n∑
i=1

1xi=x (2.19)

where 1 is an indicator function that is 1 if xi = x and otherwise 0. If our data is

continuous, the empirical distribution is given by:

p̂(x) =
1

n

n∑
i=1

δ(x− xi) (2.20)

where δ(X) is the Dirac delta function, which is loosely defined so that
∫∞
−∞ δ(x)dx = 1,

δ(X = 0) = ∞ and δ(X) = 0 otherwise. In the empirical distribution, as we shift

δ(X) by −xi, we put probability mass of 1/n on each of the data points x1, . . . ,xn. We

will generally use the empirical or data generating distribution to approximate the true

underlying distribution that we would like to learn.

2.1.3 Information theory

Information theory [Shannon, 1948] was originally proposed to study the information

contained in signals passed through a noisy channel. It is now at the heart of many disci-

plines, among them machine learning. Throughout this thesis, we will use measures from

information theory to characterize the discrepancy between two probability distributions

in terms of the information that they encode. This will provide us with a measure of

“goodness” of the probability distribution that our model is learning compared to the

empirical distribution of the data.

Self-information and entropy A fundamental measure of information theory is

self-information, which allows us to determine the information content of an event x ∈ X:

I(x) = − logP (x) (2.21)
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where log is the natural logarithm with nat (short for ‘natural’) as unit.

Another core quantity of information theory is Shannon entropy, which gauges the

expected amount of information when an event x is drawn from a probability distribution

P :

H(x) = Ex∼P [I(x)] = −Ex∼P [logP (x)]. (2.22)

The Shannon entropy effectively measures how much uncertainty is contained in a

probability distribution.

We can extend the notion of entropy to two distributions and measure the relative entropy

of P (x) with respect to another probability distribution Q(x), which is defined as:

DKL(P ||Q) = Ex∼P
[

log
P (x)

Q(x)

]
= Ex∼P [logP (x)− logQ(X)]. (2.23)

This measure is also known as Kullback-Leibler divergence (KL divergence) or—less

commonly—as information gain. The KL divergence between two distribution is always

non-negative and zero if and only if the two distributions are equal.

Even though the Kullback-Leibler divergence is often used to measure the distance between

probability distributions, it is asymmetric, i.e. generally DKL(P ||Q) 6= DKL(Q||P ). A

symmetric alternative is the Jensen-Shannon (JS) divergence:

JSD(P ||Q) =
1

2
DKL(P ||M) +

1

2
DKL(Q||M) (2.24)

where M = 1
2(P + Q). We will describe the KL and JS divergences as measures of

distance between natural language domains (§3.4.2.1) and use them in our experiments

(§4.1).

Another quantity that is closely related to the KL divergence is the cross-entropy, which

is defined as follows:

H(P,Q) = −Ex∼P [logQ(X)]. (2.25)

By adding and subtracting Ex∼P [logP (x)] and using the linearity of expectation, we

obtain:

H(P,Q) = −Ex∼P [logP (x)] + Ex∼P [logP (x)]− Ex∼P [logQ(X)]

= −Ex∼P [logP (x)] + Ex∼P [logP (x)− logQ(X)]

The term on the left is now just the definition of entropy, while the term on the right is

the definition of the KL divergence between P and Q. Substituting the expressions from

Equations 2.22 and 2.23 respectively for these, we obtain a decomposition of cross-entropy
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as the sum of the entropy and KL divergence:

H(P,Q) = H(P ) +DKL(P ||Q) (2.26)

Pointwise mutual information (PMI) is another measure of the association between

the outcomes of two discrete random variables X and Y . Specifically, it measures the

discrepancy between their joint and the product of their individual probabilities:

PMI(x, y) = log
P (x, y)

P (x)P (y)
(2.27)

A classic approach in NLP is to compute the PMI between every pair of words in a

corpus, which is stored in a matrix. Latent semantic analysis [Deerwester et al., 1990]

(§3.3.2.3) can then be used to factorize such a matrix. Mutual information (MI), finally,

is the expected value of the PMI:

I(X;Y ) =
∑
y∈Y

∑
x∈X

PMI(x, y) (2.28)

We will use MI to characterize the association between learned representations and output

labels (§7.2).

2.2 Machine learning

In this section, we introduce the reader to machine learning, which builds mathematical

models from data. Many of the concepts introduced in this section will reappear

throughout the thesis, either forming the building blocks used in more advanced neural

network-based methods (§2.3) or supplying the theory that underpins many of the

proposed models. In particular, we will frequently revisit the topic of generalization in

machine learning (§2.2.4) as we will be seeking to create models that generalize to other

domains, tasks, and languages.

In machine learning, each input is typically represented as a vector x ∈ Rd of d features,

where each feature contains the value for a particular attribute of the data and each

example is assumed to be drawn independently from the data generating distribution

p̂data.2 An entire dataset can be seen as a matrix X ∈ Rn×d containing n examples, one

example in each row.

2We use the subscript ‘data’ to make the difference to the model distribution pmodel and the true
distribution p clear. We will drop the subscript in later sections.
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In supervised learning, for every input xi, the output is typically a separate label yi,

which can be arranged as a vector of labels y for the entire dataset. In unsupervised

learning, no designated labels are available. Two common categories of machine learning

tasks are classification and regression: In classification, the label yi belongs to one of a

predefined number of classes or categories. In regression, yi is a continuous number.

Classification further subsumes binary classification, multi-class classification, and multi-

label classification. Binary classification only deals with two classes, while multi-class

classification deals with more than two classes. Typically, every example xi only has one

correct label yi. In multi-label classification, every xi may be associated with multiple

labels.

In many scenarios throughout this thesis, the output may be more than a single number.

Tasks with more complex outputs, known as structured prediction, are common in natural

language processing and will be discussed in Section 2.4.

2.2.1 Maximum likelihood estimation

The most common way to design a machine learning algorithm is to use the principle

of maximum likelihood estimation (MLE). An MLE model is defined as a function

pmodel(x; θ) that maps an input x to a probability using a set of parameters θ. As the

true probability p(x) of an example x is unknown, we approximate the true probability

p(x) with the probability p̂data(x) under the empirical or data generating distribution.

The objective of MLE then is to bring the probability of our model pmodel(x; θ) as close

as possible to the empirical probability of the input p̂data(x). In other words, MLE seeks

to maximize the likelihood or probability of the data under the configuration of the model.

The maximum likelihood estimator is defined as

θ̂MLE = arg max
θ

pmodel(X; θ)

= arg max
θ

n∏
i=1

pmodel(xi; θ)

In practice, many of the probabilities in the product can be small, leading to underflow.

Taking the logarithm does not change the arg max, but transforms the product into a

sum, which results in a more convenient optimization problem [Goodfellow et al., 2016]:

θ̂MLE = arg max
θ

n∑
i=1

log pmodel(xi; θ). (2.29)
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As the arg max also does not change under division by a constant value, we can divide

by n to obtain an expectation with respect to the empirical distribution of the data p̂data

(see Equation 2.19):

θ̂MLE = arg max
θ

Ex∼p̂data [log pmodel(xi; θ)]. (2.30)

Rather than maximizing the likelihood of the data under the model, MLE can also be

seen as minimizing the dissimilarity between the empirical distribution p̂data and the

model distribution pmodel as measured by the KL divergence:

DKL(p̂data||pmodel) = Ex∼p̂data [log p̂data(x)− log pmodel(xi; θ)]. (2.31)

As the term on the left, log p̂data(x) is only a function of the data generating distribution

and not the model, we can train the model to minimize the KL divergence by only

minimizing the term on the right-hand side, − log pmodel(xi; θ). Minimizing a negative

term is the same as maximizing the term, so this objective is the same as the MLE

objective in Equation 2.30:

θ̂MLE = arg min
θ
−Ex∼p̂data [log pmodel(xi; θ)]. (2.32)

Furthermore, this objective is also the same as minimizing the cross-entropy defined in

Equation 2.25 between the empirical distribution p̂data and the model distribution pmodel:

θ̂MLE = arg min
θ

H(p̂data, pmodel). (2.33)

Cross-entropy is a common loss term in machine learning and the objective function that

is most commonly used in neural networks. Consequently, we will make frequent use of

it throughout this thesis.

Conditional maximum likelihood The MLE estimator pmodel(x; θ) discussed thus

far essentially does unsupervised learning as it only seeks to estimate the likelihood of the

data. For supervised learning, we instead need to estimate the conditional probability

P (y | x; θ) in order to predict the label y given x. The conditional maximum likelihood

estimator is:

θ̂MLE = arg max
θ

P (y |X; θ)

This can again be decomposed into:

θ̂MLE = arg max
θ

n∑
i=1

logP (y | xi; θ). (2.34)
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Point estimation The conditional maximum likelihood estimator is a point estimator :

It provides the single ‘best’ prediction ŷ for the true label y. A point estimator θ̂ is any

function of the data that seeks to model the true underlying parameter θ∗ of the data:

θ̂ = g(X) (2.35)

As the data is assumed to be generated from a random process and θ̂ is a function of the

data, θ̂ is itself a random variable.

2.2.2 Linear regression

The simplest example of a point estimator that maps from inputs to outputs is linear

regression, which aims to solve a regression problem. Linear regression models a condi-

tional probability distribution p(y | x): it takes as input a vector x ∈ Rd and aims to

predict the value of a scalar y ∈ R using a vector θ ∈ Rd of weights or parameters and

an intercept or bias term b ∈ R:

ŷ(x; θ) = θ>x + b (2.36)

where ŷ is the predicted value of y. The mapping from features to prediction is an affine

function, i.e. a linear function plus a constant.

Mean squared error In order to learn the weights θ, we can minimize the model’s

error, a task-specific measure of how far the model’s prediction ŷ differs from the true

value y. A common error measure is mean squared error, which is defined as:

MSE =
1

n

n∑
i=1

(ŷi − yi)2 (2.37)

Other commonly used terms for such an error measure are objective function, cost

function, and loss. We can view mean squared error also as maximum likelihood

estimation, specifically as the cross-entropy between the empirical distribution and a

Gaussian model. Let the conditional distribution p(y |x) modelled by linear regression be

parameterized by a Gaussian. The conditional maximum likelihood estimator as defined

in Equation 2.34 for linear regression is then:

θ̂MLE = arg max
θ

n∑
i=1

log p(y | xi; θ)

= arg max
θ

n∑
i=1

logN (y; ŷ(x; θ), σ2)
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where ŷ(x; θ) predicts the mean of the Gaussian and σ2 is a constant. Substituting the

definition of the Gaussian distribution from Equation 2.18, we obtain:

θ̂MLE = arg max
θ

n∑
i=1

log
[√ 1

2πσ2
exp(− 1

2σ2
(ŷi − yi)2)

]

Taking the logarithm of a product and as log eb = b, we get:

θ̂MLE = arg max
θ

n∑
i=1

1

2
log
( 1

2πσ2

)
− 1

2σ2
(ŷi − yi)2

Applying the linearity of summation yields:

θ̂MLE = arg max
θ

n

2
log
( 1

2πσ2

)
− 1

2σ2

n∑
i=1

(ŷi − yi)2

The right-most term is just the mean squared error. Substituting the definition of MSE

from Equation 2.37, we obtain:

θ̂MLE = arg max
θ

n

2
log
( 1

2πσ2

)
− n

2σ2
MSE

As n, π, and σ2 are constants, MLE requires only to maximize the negative MSE, which

is the same as minimizing the MSE.

Linear regression with mean squared error is also known as linear least squares. A

common way to find a solution is to view the problem as a matrix equation (omitting

the bias term):

Xθ = y (2.38)

The normal equation then minimizes the sum of the squared differences between the left

and the right side and yields the desired parameters θ:

X>Xθ̂ = X>y

θ̂ = (X>X)−1X>y
(2.39)

X>X is also known as normal matrix.

Logistic regression We can also apply linear regression to classification. In the case

of binary classification, we have two classes, class 0 and class 1. We can transform the

output of linear regression into a probability by ‘squashing’ it to be in the interval (0, 1)

using the sigmoid or logistic function σ, which is defined as:

σ(x) =
1

1 + e−x
(2.40)
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The probability produced by logistic regression is then calculated as follows:

p̂(y = 1 | x; θ) = ŷ = σ(θ>x). (2.41)

Specifying the probability of one of these classes determines the probability of the other

class, as the output random variable follows a Bernoulli distribution.

For multi-class classification, we learn a separate set of weights θi ∈ θ for the label yi

of the i-th class. We then use the softmax function to squash the values to obtain a

categorical distribution:

p̂(yi|x; θ) =
eθ
>
i x∑C

j=1 e
θ>j x

(2.42)

where the denominator is the so-called partition function that normalizes the distribution

by summing over the scores for all C classes.

We then calculate the cross-entropy between the empirical conditional probability p(y |x)

and the probability of our model p̂(y | x; θ) for each example x:

H(p, p̂; x) = −
C∑
i=1

p(yi | x) log p̂(yi | x; θ) (2.43)

For binary classification, this simplifies to:

H(p, p̂; x) = −(1− y) log(1− ŷ)− y log ŷ (2.44)

As our cost function J(θ), we minimize the average cross-entropy over all examples in

our data:

J(θ) =
1

n

n∑
i=1

H(p, p̂; xi) (2.45)

Other loss functions There are many different loss functions, which are useful for

particular applications. We will mention two loss functions here that will be used later.

The hinge loss or max-margin loss is defined as follows for multi-class classification:

Lh = max(0, δ − f(xp) + f(xn)) (2.46)

where δ is a positive constant, usually 1, f(·) is a model, and xp and xn are positive and

negative examples respectively. The hinge loss encourages the model to assign a score

for positive examples that is higher than the score for negative examples by the margin

δ. This loss is used in support vector machines (SVM) and also for learning monolingual

and cross-lingual word embeddings (§3.3.2.3, §3.5.4).
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The Huber loss is a piecewise loss function that is less sensitive to outliers than squared

error:

Lδ =


1
2(y − ŷ)2 for |y − ŷ| < δ

δ(|y − ŷ| − 1
2δ), otherwise.

(2.47)

It is quadratic for small differences between the label y and the prediction ŷ and linear for

large values. It is used to compute the proxy A distance in domain adaptation (§3.4.2.1).

In contrast to linear regression with mean squared error, there is typically no closed-form

solution to obtain the optimal weights for most loss functions. Instead, we iteratively

minimize the error of our model using an algorithm known as gradient descent.

2.2.3 Gradient descent

Gradient descent is an efficient method to minimize an objective function J(θ). It updates

the model’s parameters θ ∈ Rd in the opposite direction of the gradient ∇θJ(θ) of the

function. The gradient is the vector containing all the partial derivatives ∂
∂θi
J(θ). The

i-th element of the gradient is the partial derivative of J(θ) with respect to θi.

Gradient descent then updates the parameters:

θ = θ − η · ∇θJ(θ) (2.48)

where η is the learning rate that determines the magnitude of an update to our parameters.

In practice, η is one of the most important settings when training a model. To guarantee

convergence of the algorithm, the learning rate is often reduced or annealed over the

course of training. In Section 7.1, we propose a novel schedule for learning rate annealing

in transfer learning.

As we have seen previously, we typically minimize the expected value or average of an

error function over the empirical distribution of our data:

J(θ) = Ex,y∼pdataL(x, y, ŷθ) =
1

n

n∑
i=1

L(x, y, ŷ, θ). (2.49)

The gradient ∇θJ(θ)is thus:

∇θJ(θ) =
1

n

n∑
i=1

∇θL(xi, yi, ŷi, θ) (2.50)
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This is known as batch gradient descent and is expensive as for each update the gradient

needs to be computed for all examples in the data. Alternatively, stochastic gradient

descent iterates trough the data, computes the gradient, and performs an update for

each example i:

∇θJ(θ) ≈ ∇θL(xi, yi, ŷi, θ) (2.51)

While this is cheaper, the resulting gradient estimate is a lot more noisy. The most

common approach is to choose a middle ground and compute the gradient over a mini-

batch of m examples, which is commonly known as mini-batch gradient descent or

stochastic gradient descent with mini-batches:

∇θJ(θ) =
1

m

m∑
i=1

∇θL(xi, yi, ŷi, θ) (2.52)

The mini-batch size m typically ranges from 2 to a few hundred and enables training of

large models on datasets with hundreds of thousands or millions of examples. In practice,

mini-batch gradient descent is the default setting and is often referred to as stochastic

gradient descent as well.

While stochastic gradient descent works surprisingly well in practice and is the main way

to train neural networks, it has a few weaknesses: It does not remember its previous

steps and uses the same learning rate for all its parameters. We direct the reader to

[Ruder et al., 2016b] for an overview of momentum-based and adaptive learning rate

techniques that seek to ameliorate these deficiencies.

2.2.4 Generalization

The goal of machine learning is generalization, training a model that performs well on

new and previously unseen inputs. To this end, the available data X is typically split

into a part that is used for training, the training set and a second part reserved for

evaluating the model, the test set. Performance on the test set is then used as a proxy

for the model’s ability to generalize to new inputs.

This measure is responsible for the main tension in machine learning: During training,

we compute the training error, the error of the model on the training set, which we try

to minimize. The actual measure of interest, however, is the generalization error or test

error, the model’s performance on the test set, which it has never seen before. This is

also the main difference to optimization: While optimization seeks to find the minimum

that minimizes the training error, machine learning aims to minimize generalization

error.
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Train and test sets are typically assumed to be i.i.d.: Examples in each dataset are

independent from each other and train and tests sets are identically distributed, i.e. drawn

from the same probability distribution.

Bias-variance trade-off The goal to minimize a model’s generalization error gives

rise to two desiderata:

1. to minimize the training error;

2. and to minimize the gap between training and test error.

This dichotomy is also known as bias-variance trade-off. If the model is not able to

obtain a low error on the training set, it is said to have high bias. This is typically the

result of erroneous assumptions in the learning algorithm that cause it to miss relevant

relations in the data. On the other hand, if the gap between the training error and test

error is too large, the model has high variance. It is sensitive to small fluctuations and

models random noise in the training data rather than the true underlying distribution.

More formally, the bias of an estimator θ̂ is the expected difference between the value of

the parameter θ̂ and the true underlying value of the parameter θ∗ with regard to the

data generating distribution:

Bias(θ̂) = E[θ̂ − θ∗] (2.53)

The estimator θ̂ is unbiased if bias(θ̂) = 0. For instance, the sample mean is an unbiased

estimator of the mean of a distribution.

The variance of an estimator is simply its variance:

Var(θ̂) = E[θ̂2]− E[θ̂]2. (2.54)

By rearranging, we get:

E[θ̂2] = Var(θ̂) + E[θ̂]2. (2.55)

The square root of the variance of an estimator is called the standard error SE(θ̂).

To measure an estimator’s performance, we can compare the mean squared error of the

estimator θ̂ to the true parameter value θ∗:

MSE = E[(θ̂ − θ∗)2]

Expanding the binomial, we obtain:

MSE = E[θ̂2]− E[2θ̂θ∗] + E[θ∗2]
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We now replace E[θ̂2] and E[θ∗2] with the right-hand side of Equation 2.55 respectively:

MSE = Var(θ̂) + E[θ̂]2 − E[2θ̂θ∗] + Var(θ∗) + E[θ∗]2

We can now form another binomial expansion, reduce it to a binomial, and using the

linearity of expectation, we get:

MSE = Var(θ̂) + Var(θ∗) + (E[θ̂]2 − E[2θ̂θ∗] + E[θ∗]2)

= Var(θ̂) + Var(θ∗) + (E[θ̂]− E[θ∗])2

= Var(θ̂) + Var(θ∗) + E[θ̂ − θ∗]2

Var(θ) is the true variance σ2 of the parameter θ and the right-most term under the square

is the definition of the bias in Equation 2.53. Replacing both yields the bias-variance

decomposition for squared error:

MSE = Var(θ̂) + σ2 + Bias(θ̂)2 (2.56)

This decomposition sheds more light on the trade-off between bias and variance in

machine learning. The expected error of a model trained with mean squared error is thus

lower bounded by the sum of three terms:

• The square of the bias of the method, i.e. the error caused by the simplifying

assumptions inherent in the model.

• The variance of the method, i.e. how much its results vary across the mean.

• The variance of the true underlying distribution.

If a model has high bias it is also said to be underfitting. If a model has high variance, it

is known to be overfitting. A key factor that determines whether a model underfits or

overfits is its capacity, which is its ability to fit a variety of functions. One way to control

a model’s capacity is to choose an appropriate hypothesis space, the set of functions it

can choose from to find the solution. The hypothesis space of linear regression is the set

of all linear functions of its input. We can increase the capacity of linear regression by

generalizing it to include polynomials of degree k:

ŷ = b+

k∑
i=1

θ>i xi (2.57)

where θi ∈ Rd are additional weight vectors for each polynomial. A machine learning

model performs best when its capacity is appropriate for the task it is required to solve.

A commonly used heuristic is expressed by Occam’s razor, which states that among

competing hypotheses that explain known observations equally well, one should choose the
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“simplest”, which in this context refers to the model with the lowest capacity. However,

while simpler functions are more likely to generalize, we still require a hypothesis that is

sufficiently complex to achieve low training error.

In machine learning, the no free lunch theorem [Wolpert and Macready, 1997] states that

no algorithm is universally better than any other. Specifically, averaged over all possible

data generating distributions, every classification algorithm achieves the same error when

classifying previously unknown points. Our goal in practice is thus to bias the algorithm

towards distributions or relations in the data that we are more likely to encounter in the

real world and to design algorithms that perform well on particular tasks. Throughout

this thesis, we will use bias and inductive bias interchangeably to describe assumptions

that are encoded in a model about unseen data. We generally aim to develop models

with an inductive bias that is useful to generalize to novel domains, tasks, and languages.

Statistical learning theory provides theoretical bounds on the generalization error: In

particular, the difference between training error and generalisation error has been shown

to grow with the capacity of the model but shrink as the number of training examples

increases [Vapnik and Chervonenkis, 2015]. These bounds, however, are rarely used in

practice as they are quite loose and it is difficult to determine the capacity of deep neural

networks [Goodfellow et al., 2016]. Nevertheless, the generalisation behaviour of deep

neural networks is an active area of research.

In practice, a validation set is often used in addition to tune different settings of the

model, its hyper-parameters, such as the degree of the polynomial in logistic regression.

If the test set is too small, another technique called cross-validation is typically used.

Cross-validation repeats the training and test computations on different randomly chosen

splits of the data and averages the test error over these splits. The most common variation

is k-fold cross-validation, which splits the data into k subsets of equal size and repeats

training and evaluation k times, using k − 1 splits for training and the remaining one for

testing.

2.2.5 Regularization

Another way to modify a model’s capacity is to encourage the model to prefer certain

functions in its hypothesis space over others. The most common way to achieve this is

by adding a regularization term Σ(θ) to the cost function J(θ):

J(θ) = MSE + λΣ(θ) (2.58)
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where λ controls the strength of the regularization. If λ = 0, we impose no restriction. As

λ grows larger, the preference that we impose on the algorithm becomes more prominent.

The most popular forms of regularization leverage common vector norms. `1 regularization

places a penalty on the `1 norm, i.e. the sum of the absolute values of the weights and is

defined as follows:

Σ(θ) = ‖θ‖1 =
∑
i

|θi| (2.59)

where θi ∈ R. `1 regularization is also known as lasso (least absolute shrinkage and

selection operator) and is the most common way to induce sparsity in a solution as the

`1 norm will encourage most weights to become 0.

`2 regularization is defined as:

Σ(θ) = ‖θ‖22 (2.60)

where ‖θ‖2 =
√∑

i θ
2
i is the Euclidean norm or `2 norm. Somewhat counter-intuitively,

`2 regularization thus seeks to minimize the squared `2 norm as in practice, the squared

`2 norm is often more computationally convenient to work with than the `2 norm. For

instance, derivatives of the squared `2 norm with respect to each element of θ depend

only on the corresponding element, while derivatives of the `2 norm depend on the entire

vector [Goodfellow et al., 2016].

`2 regularization is also known as Tikhonov regularization, ridge regression, and weight

decay3. `2 regularization expresses a preference for smaller weights in a model.

Different forms of regularization may also be combined. The combination of `1 and `2

regularization is also known as elastic net regularization. It uses an α parameter to

balance the contributions of both regularizers:

Σ(θ) = α‖θ‖1 + (1− α)‖θ‖22. (2.61)

Besides the `1 and `2 norms, the only other norm that is used occasionally for regulariza-

tion is the `∞ norm or max norm, which penalizes only the maximum parameter value

:

‖θ‖∞ = max
i
|θi| (2.62)

In some scenarios, we are interested in imposing a norm on a weight matrix W ∈ Rm×n.

For this case, we use the matrix counterpart of the `2 norm, the Frobenius norm:

‖W‖F =

√∑
i,j

Wi,j
2 (2.63)

3Note that `2 regularization and weight decay are not equivalent under all conditions [Loshchilov and
Hutter, 2017a]



Background 30

The Frobenius norm is useful for instance to express the preference that two weight

matrices W1 and W2 should be orthogonal, i.e. W>
1 W2 = I. This is achieved by placing

the squared Frobenius norm on the matrix product:

Σ(W1,W2) = ‖W>
1 W2‖2F . (2.64)

This orthogonality constraint is a common component of current approaches to domain

adaptation (§3.4.2.2), which we use to encourage non-redundancy of the representations

of different layers (§4.2, 6.1).

Another common matrix norm is the nuclear norm or trace norm, which applies the `1

norm to the vector of singular values σi of matrix W:

‖W‖∗ =

min{m,n}∑
i=1

σi(W) (2.65)

The trace norm is the tightest convex relaxation of the rank of a matrix [Recht et al.,

2010], so can be useful to encourage a matrix to be low-rank. It has been frequently used

in multi-task learning (§3.2.5.1).

While we have focused on vector and matrix norms in this section, any approach that

implicitly or explicitly expresses a preference for particular solutions can be seen as

regularization. Throughout this thesis, defining different ways to express such preferences

via an appropriate inductive bias is one of the key themes (§1.2).

2.3 Neural networks

Neural networks have become the tool of choice in natural language processing in recent

years. In this section, we will give an overview of the fundamental building blocks used

in neural networks. Neural networks can be seen as compositions of functions. In fact,

we can view the basic machine learning models described so far, linear regression and

logistic regression, as simple instances of a neural network.

Recall that multi-class logistic regression consists of the following functions:

f(x) = Wx + b

g(y) = softmax(y)
(2.66)

where W ∈ RC×d, x ∈ Rd, b ∈ RC , y ∈ RC , C is the number of classes and d is the

dimensionality of the input. In the following, we will use W to designate a matrix of

weights, while θ 3W,b is the set of parameters of the model. Logistic regression can be
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seen as a composition of the functions f and g: g(f(x)) where f(·) is an affine function

and g(·) is an activation function, in this case the softmax function.

A neural network is a composition of multiple such affine functions interleaved with

non-linear activation functions. The softmax and sigmoid functions are common functions

used at the final or output layer of a neural network to obtain a categorical and Bernoulli

distribution respectively. Non-output layers are referred to as hidden layers. Linear

regression can be seen as a neural network without a hidden layer and a linear activation

function—the identity function—while logistic regression employs a non-linear activation

function. Neural networks are typically named according to the number of hidden layers.

A model with one hidden layer is known as a one-layer feed-forward neural network,

which is also known as a multilayer perceptron (MLP):

h = σ1(W1x + b1)

y = softmax(W2h + b2)
(2.67)

where σ1 is the activation function of the first hidden layer. Note that each layer is

parameterized with its own weight matrix W and bias vector b. Layers typically have

separate parameters, but different layers can also set their parameters to be the same,

which is referred to as tying or sharing of such parameters. Such parameter sharing

induces an inductive bias that can often help with generalization. We will see many

instances of parameter sharing throughout this thesis, such as in multi-task learning

(§3.2, §6).

Computing the output of one layer, e.g. h that is fed as input to subsequent layers, which

eventually produce the output of the entire network y is known as forward propagation.

As a composition of linear functions can be expressed as another linear function, the

expressiveness of deep neural networks mainly comes from its non-linear activation

functions.

Activation functions Besides the sigmoid (Equation 2.40) and softmax (Equation

2.42) functions that are mainly used at output layers, a common activation function for

hidden layers is the rectified linear unit (ReLU), which is defined as:

σ(x) = max(0,x). (2.68)

Another activation function that is less often used in practice is the hyperbolic tangent

or tanh function, which outputs values in the range (−1, 1):

σ(x) =
ex − e−x
ex + e−x

. (2.69)
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2.3.1 Layers and models

We will now detail the layers and models that are commonly applied to NLP tasks and

that will be used throughout this thesis.

Recurrent neural network As text is sequential, we will be using models that can

process a sequence of inputs. The most elementary neural network for sequential input

is the recurrent neural network [RNN; Elman, 1990]. An RNN can also be seen as a

feed-forward neural network with a dynamic number of hidden layers that are all set

to have the same parameters. Rather than being “deep”, the model is “wide” as it is

unrolled through time. In contrast to a regular feed-forward neural network, however, it

accepts a new input at every “layer” or time step. Specifically, the RNN maintains a

hidden state ht, which represents its “memory” of the contents of the sequence at each

time step t. At every time step, the RNN performs the following operation:

ht = σh(Whxt + Uhht−1 + bh)

yt = σy(Wyht + by)
(2.70)

where σh and σy are activation functions. The RNN applies a transformation Uh to

modify the previous hidden state ht−1 and a transformation Wh to the current input

xt, which yields the new hidden state ht. At every time step, the RNN furthermore

produces an output yt. In practice, the RNN has trouble learning over a large number

of time steps (§2.3.2).

Long-short term memory Long-short term memory [LSTM; Hochreiter and Schmid-

huber, 1997] networks are preferred compared to RNNs for dealing with sequential data

as they can retain information for longer time spans, which is necessary for modelling

long-term dependencies common in natural language. The LSTM can be seen as a

more sophisticated RNN cell that introduces mechanisms to decide what should be

“remembered” and “forgotten”. The LSTM augments the RNN with a forget gate ft, an

input gate it, and an output gate ot, which are all functions of the current input xt and

the previous hidden state ht. These gates interact with the previous cell state ct−1, the

current input, and the current cell state ct and enable the model to selectively retain or
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overwrite information. The entire model is defined as follows4:

ft = σg(Wfxt + Ufht−1 + bf )

it = σg(Wixt + Uiht−1 + bi)

ot = σg(Woxt + Uoht−1 + bo)

ct = ft ◦ ct−1 + it ◦ σc(Wcxt + Ucht−1 + bc)

ht = ot ◦ σh(ct)

(2.71)

where σg is the sigmoid activation function, σc and σh are the tanh activation function,

and ◦ is element-wise multiplication, also known as Hadamard product.

LSTM cells can be stacked in multiple layers. In most cases, we will use a bidirectional

LSTM [BiLSTM; Graves et al., 2013], which runs separate LSTMs forward and backward

over the sequence. The hidden state ht is the concatenation of the hidden states from

the forward and backward LSTMs at time step t:

ht = [hfwd; hbwd] (2.72)

Word embedding When applying neural networks to natural language tasks, each

word wi in the vocabulary V that occurs in the input text is typically mapped to a vector

xi, which is known as the word embedding of wi. The word embeddings are stored in

a word embedding matrix X ∈ R|V |×d. An input sequence of words w1, . . . , wT is thus

commonly represented as a sequence of the corresponding word embeddings x1, . . . ,xT ,

which is provided as input to a neural network.

Convolutional neural network Another commonly used neural network is the con-

volutional neural network [CNN; LeCun et al., 1998]. We will describe here its application

to natural language tasks [Kalchbrenner et al., 2014, Kim, 2014].

The convolutional layer slides filters of different window sizes over the concatenation of

input word embeddings [x1, . . . ,xT ] ∈ RT×d where [·, ·] designates concatenation and

d is the dimensionality of the word embeddings. Each filter with weights W ∈ Rkd

generates a new feature ci ∈ R for each window of k words xi:i+k−1 ∈ Rkd according to

the following operation5:

ci = σ(w · xi:i+k−1 + b) (2.73)

4The original LSTM did not include a forget gate, which was introduced by Gers et al. [1999].
5For brevity, we show both the filter and the windows as ‘flattened’ vectors as in [Kim, 2014]. If seen

as matrices, each filter would involve an elementwise multiplication and a sum.
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where b ∈ R is the bias term and σ is an activation function, most commonly ReLU.

Sliding the filter over each window of k words yields a feature map c ∈ RT−k+1:

c = [c1, . . . , cT−k+1] (2.74)

Each entry in the feature map is thus the result of performing a calculation that

considers only a small segment of the input sequence and that shares parameters with the

calculations to its left and right (by applying the same filter). Max-pooling is typically

applied to condense a feature map to its most important feature:

c̃ = max(c) (2.75)

The maximum values of the feature maps produced by all filters are concatenated to a

vector ĉ ∈ RC where C is the number of filters. This vector is then fed to the next layer

or an output layer. The CNN is an example of how parameter sharing can be used to

incorporate an inductive bias into a model: As each filter is applied to multiple windows,

the model learns to capture local features that are invariant to the location in the input.

Autoencoder An autoencoder is a neural network that is trained to reconstruct its

input by compression it first into a low-dimensional representation. In the simplest case

with one hidden layer, it uses an encoder to map the input x to a vector z:

z = σ(Wx + b) (2.76)

where σ is an activation function. A decoder then maps the latent representation back

to a reconstructed version of the original input x′:

x′ = σ′(W′z + b′) (2.77)

The model is trained to minimize a reconstruction loss such as the squared error between

the original and the reconstructed input:

L = ‖x− x′‖2 (2.78)

Autoencoders are commonly used to learn representations and have been used in sequential

transfer learning (§3.3.2.3), domain adaptation (§3.4.2.2), and cross-lingual learning

(§3.5.5).
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2.3.2 Back-propagation

Analogous to many machine learning models where closed-form solutions are not available,

neural networks are typically trained with stochastic gradient descent. As each model

consists of multiple layers, calculating the gradient of the loss function with regard

to the parameters ∇θJ(θ) is non-trivial. To compute the gradient, we use a dynamic

programming algorithm known as back-propagation [Rumelhart et al., 1986].

Back-propagation relies on the chain rule of calculus, which given functions y = g(x) and

z = f(g(x)) = f(y) defines the derivative dz
dx of z with respect to x as the derivative of z

with respect to y times the derivative of y with respect to x:

dz

dx
=
dz

dy

dy

dx
(2.79)

For vectors x ∈ Rm and y ∈ Rn and scalar z, we analogously obtain the partial derivative

of z with respect to xi as follows:

∂z

∂xi
=
∑
j

∂z

∂yj

∂yj
∂xi

(2.80)

In vector notation, the gradient of z with respect to x containing all partial derivatives

of z with respect to each xi can be determined using matrix-vector multiplication:

∇xz =
(∂y

∂x

)>
∇yz (2.81)

where ∂y
∂x ∈ Rn×m is the Jacobian matrix of g, the matrix containing all partial derivatives.

The back-propagation algorithm now performs such a Jacobian-gradient product for each

operation in our neural network graph [Goodfellow et al., 2016].

Let us first define a deep feed-forward neural network with L layers, with weight matrices

Wl and bias parameters bl where l ∈ {1, . . . , L}. The model takes an input x, produces

an output ŷ, and minimizes a cost function J = L(ŷ, y):

al = bl + Wlhl−1

hl = σl(al)

where h0 = x and ŷ = hL. Forward-propagation proceeds from the first layer, computing

the representation al that is then fed through an activation function σl, which yields a

hidden state al, which is provided to the next layer. This is repeated until the output is

ŷ and the loss J is calculated.

Back-propagation proceeds in backwards order: It starts by computing the gradient ∇ŷJ
of the loss function J with respect to the output ŷ. It then computes the gradient of the
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representation h(l) and a(l) for the last layer, from which it then obtains the gradients

on the parameters of the layer. It then continues until it arrives at the gradients of the

first layer. The gradient ∇ŷJ of the loss function with respect to the output is:

∇ŷJ = ∇ŷL(ŷ, y) (2.82)

If we use a squared error loss, then the gradient is simply:

∇ŷJ = ∇ŷ
1

2
(ŷ − y)2 = y − ŷ (2.83)

We can now obtain the gradient of the loss function with regard to the layer’s pre-

activation representation ∇alJ with the chain rule:

∇a(l)J =
(∂h(k)

∂a(k)

)>
∇ŷJ = σ′(a(l)) (2.84)

As our activation function is elementwise, we obtain:

∇alJ = σ′(al) ◦ ∇ŷJ (2.85)

This demonstrates why it is desirable for activation functions to be differentiable6. The

sigmoid activation function, for instance, has a convenient derivative:

σ′(x) = σ(x)(1− σ(x)) (2.86)

From this, we can now obtain the gradients of the model parameters based on each

parameter’s contribution:

∇blJ = ∇alJ

∇Wl
J = ∇alJ hl−1

>
(2.87)

We subsequently propagate the gradient to the next lower-level layer and repeat the

calculations:

∇hl−1
J = Wl

>∇Wl
J (2.88)

As we can see, in order to compute the gradient on a parameter, the gradients on all

computations that are the result of this parameter need to be known. For each layer, the

computed gradients are then used to update the corresponding parameters with gradient

descent.

6ReLU is mathematically differentiable everywhere except at 0. In practice, this does not cause
problems as the exact value of 0 occurs rarely and a right derivative and a left derivative are still available,
which can be used instead.
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When optimizing RNNs the gradient needs to be propagated through the past time

steps rather than through the depth of the model. Consequently, this is known as back-

propagation through time [BPTT; Werbos, 1988]. As the error cannot be back-propagated

indefinitely, it is generally propagated until a fixed length that is defined in advance.

Longer lengths should enable the model to learn longer-range dependencies.

A common issue encountered when optimizing RNNs in practice is known as exploding

or vanishing gradients. During forward propagation, the hidden state is multiplied many

times with the weight matrix, once per time step. During back-propagation, this leads to

the gradients being multiplied with the same values over and over. This causes the values

to either explode, i.e. become very large or vanish, i.e. become very small, rendering the

model unable to learn. Mitigating the exploding and vanishing gradient problem is one

of the motivations for the development of the LSTM.

2.4 Natural language processing

Natural language processing (NLP) aims to teach computers to understand natural

language. As the facility for language is abstract, we will take a more concrete view by

defining NLP by way of its tasks, which generally map a text to linguistic structures that

encode its meaning [Smith, 2011]. Examples of such structures can be seen in Table 2.1.

We will use the machine learning tools presented in the previous section to learn a

mathematical model of this mapping. Specifically, we will aim to train a model that can

map from an input x consisting of a sequence of words to an output y generally using the

principle of maximum likelihood estimation (§2.2.1) to find a set of parameters θ that

maximizes the conditional probability Pθ(y | x) of our model. We focus on discriminative

models that model the conditional probability directly from raw data rather than using a

generative model that learns the joint probability distribution P (x, y).

Bag-of-words In some contexts (§4), we will represent a text as a bag-of-words (BOW)

x ∈ R|V | where V is the vocabulary. Each entry xi corresponds to the number of

occurrences of the i-th word in the vocabulary in the text. This frequency may be

weighted with term frequency-inverse document frequency (tf-idf), which additionally

reflects how important a term is in a corpus, a collection of texts. An n-gram is a

contiguous sequence of n words in a text. In the standard BOW model, we consider only

unigrams, sequences of one word. We may additionally consider bigrams, sequences of two

words. The bag-of-words ignores grammar and word order. To capture compositionality

and dependencies in the input, throughout this thesis, our preferred way of representing
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Bilingual dictionary
Abramov hatte ein Auto Unfall

induction

Language modelling had a car accident -

Sentiment analysis Negative

Topic classification News

Dependency parsing

NER B-PERSON O O O O
SRL B-ARG0 B-V B-ARG1 I-ARG1 I-ARG1
Chunking O B-VP B-NP I-NP I-NP
POS tagging NNP VBD DT NN NN

Words Abramov had a car accident

Table 2.1: Annotations for all tasks discussed in this thesis for an example sentence
(bottom). Tasks are ordered roughly from low-level syntactic tasks (bottom) to high-level

semantic tasks (top).

a sequence of words w1, . . . , wT will be to encode it as a sequence of the corresponding

word embeddings x1, . . . ,xT .

Evaluation metrics NLP systems are typically evaluated with regard to their per-

formance on the test set of the specific task. For binary classification, accuracy is the

common evaluation measure, which is defined as follows:

Acc =
TP + TN

TP + TN + FP + FN
(2.89)

where TP , TN , FP , and FN are the number of true positives, true negatives, false

positives, and false negatives respectively. Intuitively, the number of true predictions is

divided by the number of all predictions. For multi-class classification, the F1 score is

used, which is the harmonic mean of precision and recall:

F1 = 2
P ·R
P +R

, P =
TP

TP + FP
, R =

TP

TP + FN
. (2.90)

The F1 metric balances precision, the fraction of correctly predicted instances and recall,

the fraction of correctly predicted instances out of all instances of the category. It

thus provides a good estimate of the overall quality of a model. Certain tasks may use

specialized evaluation metrics, which will be introduced with the corresponding task.

We will now review the main NLP tasks that will be tackled in this thesis. We show
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annotations for all tasks for an example sentence in Table 2.1.7 POS tagging, chunking,

named entity recognition (NER), and semantic role labelling (SRL) are sequence labelling

tasks, which seek to assign each word wi a corresponding label yi.

Part-of-speech (POS) tagging POS tagging is the task of tagging a word in a text

with its corresponding part-of-speech. A part-of-speech is a category of words with similar

grammatical properties. Common English parts of speech are noun, verb, adjective,

adverb, pronoun, preposition, conjunction, etc. Part-of-speech tagging is difficult as many

words can have multiple parts of speech. Parts of speech can be arbitrarily fine-grained

and are typically based on the chosen tag set. The most common tag set used by

the Penn Treebank [Marcus et al., 1993] comprises 36 tags8. However, POS tags vary

greatly between languages due to cross-lingual differences. The creation of a “universal”

tagset has been an ongoing development: Petrov et al. [2012] proposed a tag set of 12

coarse-grained categories, while the current tag set of the Universal Dependencies 2.0

[Nivre et al., 2016] contains 17 tags9. When applying a POS tagger to a new domain,

current models particularly struggle with word-tag combinations that have not been seen

before (§4.2.3.4).

Chunking Chunking, also known as shallow parsing, aims to identify continuous

spans of tokens that form syntactic units. Chunks are different from parts of speech as

they typically represent higher order structures such as noun phrases or verb phrases.

Approaches typically use BIO notation, which differentiates the beginning (B) and the

inside (I) of chunks. O is used for tokens that are not part of a chunk. Both POS

tagging and chunking act mostly on the grammatical and syntactic level, compared to

the following tasks, which capture more of the semantic and meaning-related aspects of

the text.

Named entity recognition (NER) NER is the task of detecting and tagging entities

in text with their corresponding type, such as PERSON or LOCATION. BIO notation

is also used for this task, with O representing non-entity tokens. Entity categories are

pre-defined and differ based on the application. Common categories are person names,

organizations, locations, time expressions, monetary values, etc. NER is a common

component of information extraction systems in many domains. Despite high numbers

(≈ 92–93 F1) on the canonical CoNLL-2003 newswire dataset [Sang and Meulder, 2003],

current NER systems do not generalize well to new domains. NER corpora for specialized

7Note that it is rare that a dataset provides multiple annotations per example.
8https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
9http://universaldependencies.org/u/pos/

https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
http://universaldependencies.org/u/pos/
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domains such as medical and biochemical articles [Kim et al., 2004, Krallinger et al.,

2013] have consequently been developed.

Semantic role labelling (SRL) SRL aims to model the predicate-argument structure

of a sentence. It assigns each word or phrase to its corresponding semantic role such

as an agent, goal, or result. The FrameNet project [Baker et al., 1998] defined the first

large lexicon consisting of frames such as Apply heat and associated roles, known as

frame elements such as Cook, Food, and Heating instrument. Predicates that evoke this

frame, e.g. “fry”, “bake”, and “boil” are known as lexical units. PropBank [Kingsbury

and Palmer, 2002] added a layer of semantic roles to the Penn Treebank. These semantic

roles are specific to each individual verb, but employ the same tags, which—inspired by

Dowty [1991]—start from Arg0 that roughly indicates a proto-Agent, to Arg1, which

designates a proto-Patient, etc., and are usually used in SRL applications.

Dependency parsing Dependency parsing is the task of extracting a dependency

parse of a sentence that represents its grammatical structure and defines the relationships

between “head” words and words, which modify those heads. Dependency parsing

differs from constituency parsing, which focuses on identifying phrases and the recursive

structure of a text. A typed dependency structure labels each relationship between

words, while an untyped dependency structure only indicates which words depend on each

other. Dependency parsing is used in many downstream applications such as coreference

resolution, question answering, and information extraction as the relations between the

head and its dependents serve as an approximation to the semantic relationships between

a predicate and its arguments.

Topic classification Topic classification and sentiment analysis are text classification

tasks. They assign a category not to every word but to contiguous sequences of words,

such as a sentence or document. Topic classification aims to assign topics that depend

on the chosen dataset, typically focusing on the news domain. As certain keywords

are often highly predictive of specific topics, word order is less important for this task.

Consequently, traditional BOW models with tf-idf weighted unigram and bigram features

are often employed as strong baselines.

Sentiment analysis Sentiment analysis is the task of classifying the polarity of a

given text. Usually this polarity is binary (positive or negative) or ternary (positive,

negative, or neutral). Most datasets belong to domains that contain a large number

of emotive texts such as movie and product reviews or tweets. In review domains, star
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ratings are generally used as a proxy for sentiment. Sentiment analysis has become one of

the most popular tasks in NLP. Variants of the task employ different notions of sentiment

and require determining the sentiment with respect to a particular target (§6.2).

Language modelling Language modelling aims to predict for each word in a text the

next word. It is generally known as an unsupervised learning problem, as it only requires

access to the raw text.10 Despite its simplicity, language modelling is fundamental to

many advances in NLP (§3.3.2.3) and has many concrete practical applications such as

intelligent keyboards, email response suggestion, spelling autocorrection, etc.

Bilingual dictionary induction Bilingual dictionary induction, which is also known

as word-level translation, aims to assign to each word in a source language, e.g. English,

its translation in a target language, such as German. The data that needs to be translated

is usually an unordered list of words such as the words in a dictionary rather than the

words in a sentence depicted here. Bilingual dictionary induction generally does not

account for polysemous words that have multiple translations. In addition, word lists

used for evaluation may be noisy as they are often automatically compiled based on word

alignment in parallel corpora.

The tasks in Table 2.1 are ordered roughly from low-level syntactic tasks that aim to

assign categories to particular grammatical or syntactic units to higher-level tasks that

require some knowledge about semantics, the meaning of the words and the sentence.

Throughout this thesis, we will develop methods that are applicable to multiple tasks in

this hierarchy and propose approaches that allow sharing of information among different

tasks (§1.2).

2.5 Conclusions

In this chapter, we have laid out background knowledge in probability and information

theory and machine learning that is necessary for the subsequent chapters. We have

also introduced the neural network methods and natural language processing tasks that

we will work with throughout this thesis. The last section on NLP in particular sets

the scene for the next chapter on transfer learning, where we will deal with transferring

knowledge across different NLP tasks. The next chapter will also discuss neural network

methods for particular transfer learning scenarios in-depth and provide more intuitions

around generalization in machine learning (§2.2.4).

10Depending on the definition, it can also be seen as self-supervised learning (§3.3.2).



Chapter 3

Transfer Learning

This chapter provides an overview of the literature of transfer learning in general and

for NLP in particular. It studies how machine learning models can be transferred to

data outside of their training distribution and specifically focuses on transfer across

different tasks, domains, and languages in NLP (§2.4). As transfer learning has been

used to refer to different areas in different contexts, we will first provide a definition of

transfer learning. Based on this definition, we will define a taxonomy and review the

four prevalent settings of transfer learning in NLP in the corresponding sections:

1. multi-task learning (§3.2);

2. sequential transfer learning (§3.3);

3. domain adaptation (§3.4);

4. and cross-lingual learning (§3.5).

3.1 Introduction

In the classic supervised learning scenario of machine learning depicted in Figure 3.1, if

we intend to train a model for some task and domain A, we assume that we are provided

with labelled data for the same task and domain. We can now train a model on this

dataset and expect it to perform well on unseen data of the same task and domain. In

other words, we expect our data to be i.i.d. (§2.2.4). When given data for some other

task or domain B, we require again labelled data of the same task or domain, which we

can use to train a new model that is expected to perform well on this type of data.

The traditional supervised learning paradigm breaks down when we do not have sufficient

labelled data for the desired task or domain to train a reliable model. Transfer learning

allows us to deal with this scenario by leveraging the data of some related task or domain,

42
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Figure 3.1: The traditional supervised learning setup in machine learning.

Figure 3.2: The transfer learning setup.

known as the source task and source domain. We store the knowledge gained in solving

the source task in the source domain and apply it to the target task and target domain

as can be seen in Figure 3.2.

In practice, we seek to transfer as much knowledge as we can from the source setting

to our target task or domain. This knowledge can take on various forms depending on

the task and data. In most cases throughout this thesis, it relates to the representations

learned by neural network models (§2.3).
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3.1.1 Definition

We now provide a definition of transfer learning following the notation of Pan and Yang

[2010] with binary document classification as a running example. Transfer learning

involves the concepts of a domain and a task. A domain D consists of a feature

space X and a marginal probability distribution P (X) over the feature space, where

X = {x1, · · · , xn} ∈ X . For document classification with a bag-of-words representation,

X is the space of all document representations, xi is the i-th term vector corresponding to

some document and X is the random variable associated with the sample of documents

used for training.

Given a domain D = {X , P (X)}, a task T consists of a label space Y , a prior distribution

P (Y ), and a conditional probability distribution P (Y |X) that is typically learned from

the training data consisting of pairs xi ∈ X and yi ∈ Y.1 In our document classification

example, Y is the set of all labels, i.e. {True, False} and yi is either True or False.

Given a source domain DS , a corresponding source task TS , as well as a target domain

DT and a target task TT , the objective of transfer learning now is to learn the target

conditional probability distribution PT (YT |XT ) in DT with the information gained from

DS and TS where DS 6= DT or TS 6= TT . Typically, either a limited number of labeled

target examples or a large number of unlabeled target examples are assumed to be

available.

As both the domain D and the task T are defined as tuples, the inequalities between the

different members of the tuple give rise to five transfer learning scenarios, which we will

discuss below.

3.1.2 Scenarios

Given source and target domains DS and DT where D = {X , P (X)} and source and

target tasks TS and TT where T = {Y, P (Y ), P (Y |X)} source and target conditions

can vary in five ways, which we will illustrate in the following using our document

classification example. The first three scenarios deal with a mismatch between the

source and target tasks, i.e. TS 6= TT , while the last two scenarios occur when there is a

discrepancy between source and target domains, i.e. DS 6= DT .

1. PS(YS) 6= PT (YT ). The prior distributions of the source and target tasks are

different, i.e. the documents have different label distributions. This is important in

1Note that the definition of Pan and Yang [2010] does not include the prior distribution P (Y ) for the
task.
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generative models, which model the prior explicitly [Chan and Ng, 2006, Finkel

and Manning, 2009], but has also been applied to discriminative models [Chelba

and Acero, 2006].

2. PS(YS |XS) 6= PT (YT |XT ). The conditional probability distributions of the source

and target tasks are different, i.e. source and target documents are unbalanced with

regard to their classes. This scenario is quite common in practice and approaches

such as over-sampling, under-sampling, or SMOTE [Chawla et al., 2002] are widely

used.

3. YS 6= YT . The label spaces between the two tasks are different, i.e. documents need

to be assigned different labels in the target task. In this case, the most important

other distinction is whether the tasks are learned sequentially or simultaneously.

Learning multiple tasks at the same time is known as multi-task learning (§3.2),

while we will use sequential transfer learning (§3.3) to denote the sequential case.

In practice, this scenario usually occurs with scenario 1 and 2, as it is extremely

rare for two different tasks to have different label spaces, but the same prior and

conditional probability distributions.2

4. PS(XS) 6= PT (XT ). The marginal probability distributions of source and target

domain are different, e.g. the documents discuss different topics. This scenario

is generally known as domain adaptation (§3.4). Domain adaptation typically

also requires tackling scenarios 1 and 2, as domains may differ in the prior and

conditional distributions of their labels.

5. XS 6= XT . The feature spaces of the source and target domain are different, i.e. the

documents are written in two different languages. In the context of natural language

processing, we will refer to this scenario as cross-lingual learning or cross-lingual

adaptation (§3.5).3

The setting when the source task is different from the target task is typically known as

inductive transfer learning, while in the transductive transfer learning setting source and

target tasks are the same.

3.1.3 Taxonomy

We now define a taxonomy for transfer learning for NLP based on these scenarios.

Specifically, we adapt the taxonomy of Pan and Yang [2010] to the transfer learning

2The exception is if there exists a 1:1 mapping between source and target labels. This, however,
renders the problem trivial and transfer unnecessary.

3The boundaries between scenarios 4 and 5 may sometimes appear blurred, as domains such as legal
documents and social media posts have very different vocabularies. However, in scenario 5, we generally
assume corresponding pairs of source and target features. Once we know the mapping f : XS → XT , we
have PS(f(XS)) = PT (XT ); in scenario 4, there is no such mapping. We discuss methods to learn such a
mapping in Section 3.5.
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Figure 3.3: A taxonomy for transfer learning for NLP.

scenarios that are most commonly encountered in NLP. In particular, we make the

following changes to their taxonomy:

• We add the NLP-specific setting of cross-lingual learning.

• We omit the sample selection bias / covariance shift setting that corresponds to

scenario 2 as this typically treated as a special case of domain adaptation (§3.4.3.1).

• We introduce the term sequential transfer learning to highlight the difference

to multi-task learning. We treat self-taught learning [Raina et al., 2007] and

unsupervised transfer learning [Dai et al., 2008] as instances of this category.

The complete taxonomy for transfer learning for NLP can be seen in Figure 3.3. We will

review approaches of these four transfer learning settings in the following. Meta-learning

and lifelong learning can both be seen as instances of sequential transfer learning and

will be discussed in the corresponding section.
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3.2 Multi-task learning

∗ Multi-task learning (MTL) has led to successes in many applications of machine learning,

from natural language processing [Collobert and Weston, 2008] and speech recognition

[Deng et al., 2013] to computer vision [Girshick, 2015] and drug discovery [Ramsundar

et al., 2015]. This section aims to give a general overview of MTL, particularly in deep

neural networks. We will initially motivate MTL from different perspectives (§3.2.2). We

will then introduce the two most frequently employed methods for MTL in Deep Learning

(§3.2.3). Subsequently, we will describe mechanisms that illustrate why MTL works in

practice (§3.2.4). We will provide context for more recent approaches by discussing the

literature in MTL (§3.2.5). Finally, we will talk about commonly used types of auxiliary

tasks and discuss what makes a good auxiliary task for MTL (§3.2.6).

3.2.1 Introduction

Machine learning generally involves training a model to perform a single task. By focusing

on one task, however, we risk omitting information that might help us do better on

the metric of interest. Specifically, we ignore knowledge that comes from the training

signals of related tasks. Alternatively, by sharing representations between related tasks,

we can enable our model to generalize better on our original task. This approach is

called multi-task learning. Specifically, “MTL improves generalization by leveraging the

domain-specific information contained in the training signals of related tasks” [Caruana,

1998].

MTL is also known as joint learning, learning to learn, and learning with auxiliary tasks.

Generally, as soon an optimization problem involves more than one loss function, we

are effectively doing multi-task learning (in contrast to single-task learning). In such

scenarios, it helps to think about what we are trying to do explicitly in terms of MTL

and to draw insights from it. Even if we are only optimizing one loss as is the typical

case, chances are there is an auxiliary task that could help improve performance on our

main task.

3.2.2 Motivation

We can motivate multi-task learning in different ways: Biologically, we can see multi-task

learning as being inspired by human learning. For learning new tasks, we often apply the

knowledge we have acquired by learning related tasks. For instance, a baby first learns

∗This section is adapted from: Ruder, S. (2017). An Overview of Multi-Task Learning in Deep
Neural Networks. arXiv preprint arXiv:1706.05098.
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to recognize faces and can then apply this knowledge to recognize other objects [Wallis

and Bülthoff, 1999].

From a pedagogical perspective, we often learn tasks first that provide us with the

necessary skills to master more complex techniques. This is true for learning the proper

way of falling in martial arts as much as learning a language [Brown and Lee, 1994].

Finally, we can motivate multi-task learning from a machine learning point of view:

Multi-task learning introduces an inductive bias provided by the auxiliary tasks, which

cause the model to prefer hypotheses that explain more than one task [Caruana, 1993].

As we will see shortly, this generally leads to solutions that generalize better.

3.2.3 Two methods for MTL in neural networks

So far, we have focused on theoretical motivations for MTL. To make the ideas of

MTL more concrete, we will now look at the two most commonly used ways to perform

multi-task learning in deep neural networks. In the context of deep learning, multi-task

learning is typically done with either hard or soft parameter sharing of hidden layers.

Figure 3.4: Hard parameter sharing

Hard parameter sharing Hard parameter sharing is the most commonly used ap-

proach to MTL in neural networks and goes back to Caruana [1993]. It is generally

applied by sharing the hidden layers between all tasks, while keeping several task-specific

output layers as can be seen in Figure 3.4.

Hard parameter sharing greatly reduces the risk of overfitting. In fact, Baxter [1997]

showed that the risk of overfitting the shared parameters is an order T smaller than

overfitting the task-specific output layers where T is the number of tasks. This makes

sense intuitively: The more tasks we are learning simultaneously, the more our model

has to find a representation that captures all of the tasks and the smaller is our chance

of overfitting on the original task.
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Soft parameter sharing In soft parameter sharing on the other hand, each task has

its own model with its own parameters. The distance between the parameters of the

model is then regularized in order to encourage the parameters to be similar, as shown

in Figure 3.5. Duong et al. [2015b] for instance use `2 distance for regularization, while

Yang and Hospedales [2017] use the trace norm.

Figure 3.5: Soft parameter sharing

The constraints used for soft parameter sharing in deep neural networks have been greatly

inspired by regularization techniques for MTL that have been developed for other models,

which we will soon discuss.

3.2.4 Why does MTL work?

Even though an inductive bias obtained through multi-task learning seems intuitively

plausible, in order to understand MTL better, we need to look at the mechanisms that

underlie it. Most of these have first been proposed by Caruana [1998]. For all examples,

we will assume that we have two related tasks A and B, which rely on a common hidden

layer representation F .

Implicit data augmentation MTL effectively increases the sample size that we are

using for training our model. As all tasks are at least somewhat noisy, when training a

model on some task A, our aim is to learn a good representation for task A that ideally

ignores the data-dependent noise and generalizes well. As different tasks have different

noise patterns, a model that learns two tasks simultaneously is able to learn a more

general representation. Learning just task A bears the risk of overfitting to task A, while

learning A and B jointly enables the model to obtain a better representation F through

averaging the noise patterns.
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Attention focusing If a task is very noisy or data is limited and high-dimensional, it

can be difficult for a model to differentiate between relevant and irrelevant features. MTL

can help the model focus its attention on those features that actually matter as other

tasks will provide additional evidence for the relevance or irrelevance of those features.

Eavesdropping Some features G are easy to learn for some task B, while being difficult

to learn for another task A. This might either be because A interacts with the features

in a more complex way or because other features are impeding the model’s ability to

learn G. Through MTL, we can allow the model to eavesdrop, i.e. learn G through task

B. The easiest way to do this is through hints [Abu-Mostafa, 1990], which directly train

the model to predict the most important features.

Representation bias MTL biases the model to prefer representations that other tasks

also prefer. This will also help the model to generalize to new tasks in the future as a

hypothesis space that performs well for a sufficiently large number of training tasks will

also perform well for learning novel tasks, as long as they are from the same environment

[Baxter, 2000].

Regularization Finally, MTL acts as a regularizer by introducing an inductive bias.

As such, it reduces the risk of overfitting as well as the Rademacher complexity of the

model, which is its ability to fit random noise [Søgaard and Goldberg, 2016].

3.2.5 MTL in non-neural models

In order to better understand MTL in deep neural networks, we will now look to the

existing literature on MTL for linear models, kernel methods, and Bayesian algorithms.

In particular, we will discuss two main ideas that have been pervasive throughout the

history of multi-task learning:

1. enforcing sparsity across tasks through norm regularization;

2. and modelling the relationships between tasks.

Most of these approaches, as they are based on regularization, can be seen as forms of

soft parameter sharing. Many classic methods are based on the idea that tasks should

share a small set of active features that are common across tasks.

Many MTL approaches in the literature deal with homogeneous multi-task learning :

They assume that all tasks are associated with a single output, e.g. the multi-class

MNIST dataset is typically cast as 10 binary classification tasks. More recent approaches
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deal with a more realistic, heterogeneous multi-task learning setting where each task

corresponds to a unique set of outputs such as distinct NLP tasks (§2.4) that are learned

jointly.

3.2.5.1 Block-sparse regularization

Notation In order to better connect the following approaches, let us first introduce

some notation. We have T tasks. For each task t, we have a model mt with parameters

at of dimensionality d. We can write the parameters as a column vector at:

at =


a1,t

...

ad,t


>

We now stack these column vectors a1, . . . , aT column by column to form a matrix

A ∈ Rd×T . The i-th row of A then contains the parameter ai,· corresponding to the i-th

feature of the model for every task, while the j-th column of A contains the parameters

a·,j corresponding to the j-th model.

Many existing methods make the assumption that a sparse set of features are shared

across tasks [Argyriou and Pontil, 2007]. In terms of our task parameter matrix A, this

means that all but a few rows are 0, which corresponds to only a few features being used

across all tasks. In order to enforce this, they generalize the `1 norm (§2.2.5) to the

MTL setting. Recall that the `1 norm, also known as lasso, is a constraint on the sum of

the parameters, which forces all but a few parameters to be exactly 0.

While in the single-task setting, the `1 norm is computed based on the parameter vector

at of the respective task t, for MTL we compute it over our task parameter matrix

A. In order to do this, we first compute an `q norm across each row ai containing

the parameter corresponding to the i-th feature across all tasks, which yields a vector

b =
[
‖a1‖q . . . ‖ad‖q

]
∈ Rd. We then compute the `1 norm of this vector, which forces all

but a few entries of b, i.e. rows in A to be 0.

Block-sparse regularization As we can see, depending on what constraint we would

like to place on each row, we can use a different `q. In general, we refer to these mixed-

norm constraints as `1/`q norms. They are also known as block-sparse regularization,

as they lead to entire rows of A being set to 0. Zhang and Huang [2008] use `1/`∞

regularization, while Argyriou and Pontil [2007] use a mixed `1/`2 norm. The latter is

also known as group lasso and was first proposed by Yuan and Lin [2006].
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Argyriou and Pontil [2007] also show that the problem of optimizing the non-convex

group lasso can be made convex by penalizing the trace norm of A, which forces A to be

low-rank and thereby constrains the column parameter vectors a·,1, . . . , a·,t to live in a

low-dimensional subspace. Lounici et al. [2009] furthermore establish upper bounds for

using the group lasso in multi-task learning.

As much as this block-sparse regularization is intuitively plausible, it is very dependent

on the extent to which the features are shared across tasks. Negahban and Wainwright

[2008] show that if features do not overlap by much, `1/`q regularization might actually

be worse than element-wise `1 regularization.

For this reason, Jalali et al. [2010] improve upon block-sparse models by proposing

a method that combines block-sparse and element-wise sparse regularization. They

decompose the task parameter matrix A into two matrices B and S where A = B+S. B

is then enforced to be block-sparse using `1/`∞ regularization, while S is made element-

wise sparse using lasso. Recently, Liu et al. [2016b] propose a distributed version of

group-sparse regularization.

A related approach is the structural learning method by Ando and Zhang [2005a] who

learn a common structure shared by multiple related tasks from a large number of

automatically generated auxiliary classification problems. In the case of chunking, one

choice is to treat the word at each position as an auxiliary label [Ando and Zhang, 2005b].

More generally, certain features may be masked and auxiliary classifiers are then learned

to predict these based on the observed input. Structural correspondence learning is a

successful application of this method to domain adaptation (§3.4.2.2). The idea is also

related to self-supervised learning (§3.3.2) and—more recently—masked language models

(§3.3.2.3).

3.2.5.2 Learning task relationships

While the group-sparsity constraint forces our model to only consider a few features,

these features are largely used across all tasks. All of the previous approaches thus

assume that the tasks used in multi-task learning are closely related. However, each

task might not be closely related to all of the available tasks. In those cases, sharing

information with an unrelated task might actually hurt performance.

Clustering of tasks Rather than sparsity, we would thus like to leverage prior knowl-

edge indicating that some tasks are related while others are not. In this scenario, a

constraint that enforces a clustering of tasks might be more appropriate. Evgeniou et al.
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[2005] assume that the task parameters are put together into K different clusters where

Ck indicates the tasks in each cluster. The task parameters in the k-th cluster are then

encouraged to be close to the cluster mean āk = (
∑

t∈Ck a·,t)/|Ck|:

Ω =
K∑
k=1

∑
t∈Ck

ρt‖a·,t − āk‖2 + ρ‖āk‖2 (3.1)

where ρt trades of the proximity of each task parameter vector a·,t towards its cluster

mean āk and ρ controls the magnitude of the cluster means. They apply this constraint

to kernel methods, but it is equally applicable to linear models. This constraint, however,

requires that the number of clusters is known in advance.

A similar constraint for SVMs was also proposed by Evgeniou and Pontil [2004]. Their

constraint is inspired by Bayesian methods and seeks to make all models close to some

mean model. In SVMs, the loss thus trades off having a large margin for each SVM with

being close to the mean model.

Jacob et al. [2009] make the assumptions underlying cluster regularization more explicit

by decomposing the penalty into three separate norms:

1. A global penalty which measures how large our column parameter vectors are on

average: Ωmean(A) = ‖ā‖2 where ā is the average weight vector of all tasks.

2. A measure of between-cluster variance that measures how close to each other the

clusters are: Ωbetween(A) =
∑K

k=1 |Ck|‖āk − ā‖2.

3. A measure of within-cluster variance that gauges how compact each cluster is:

Ωwithin =
∑K

k=1

∑
t∈Ck ‖a·,t − āk‖.

The final constraint then is the weighted sum of the three norms:

Ω(A) = λ1Ωmean(A) + λ2Ωbetween(A) + λ3Ωwithin(A)

As this constraint assumes clusters are known in advance, they introduce a convex

relaxation of the above penalty that allows to learn the clusters at the same time.

In another scenario, tasks might not occur in clusters but have an inherent structure. Kim

and Xing [2010] extend the group lasso to deal with tasks that occur in a tree structure,

while Chen et al. [2010] apply it to tasks with graph structures. While the previous

approaches to modelling the relationship between tasks employ norm regularization,

Thrun [1996] were the first ones who presented a task clustering algorithm using k-nearest

neighbours.



Transfer Learning 54

Bayesian methods Much other work on learning task relationships for multi-task

learning uses Bayesian methods: Heskes [2000] propose a Bayesian neural network for

multi-task learning by placing a prior on the model parameters to encourage similar

parameters across tasks. Lawrence and Platt [2004] extend Gaussian processes (GP) to

MTL by inferring parameters for a shared covariance matrix. As this is computationally

very expensive, they adopt a sparse approximation scheme that greedily selects the most

informative examples. Yu et al. [2005] also use GP for MTL by assuming that all models

are sampled from a common prior.

Bakker and Heskes [2003] place a Gaussian as a prior distribution on each task-specific

layer. In order to encourage similarity between different tasks, they propose to make the

mean task-dependent and introduce a clustering of the tasks using a mixture distribution.

Importantly, they require task characteristics that define the clusters and the number of

mixtures to be specified in advance.

Building on this, Xue et al. [2007] draw the distribution from a Dirichlet process and

enable the model to learn the similarity between tasks as well as the number of clusters.

They then share the same model among all tasks in the same cluster. Daumé III [2009]

proposes a hierarchical Bayesian model, which learns a latent task hierarchy, while Zhang

and Yeung [2010] use a GP-based regularization for MTL and extend a previous GP-based

approach to be more computationally feasible in larger settings.

Online multi-task learning Other approaches focus on the online multi-task learning

setting: Cavallanti et al. [2010] adapt some existing methods such as the approach by

Evgeniou et al. [2005] to the online setting. They also propose a MTL extension of the

regularized Perceptron, which encodes task relatedness in a matrix. They use different

forms of regularization to bias this task relatedness matrix, e.g. the closeness of the task

characteristic vectors or the dimension of the spanned subspace. Importantly, similar to

some earlier approaches, they require the task characteristics that make up this matrix

to be provided in advance. Saha et al. [2011] then extend the previous approach by

learning the task relationship matrix.

Grouping of tasks Kang et al. [2011] assume that tasks form disjoint groups and that

the tasks within each group lie in a low-dimensional subspace. Within each group, tasks

share the same feature representation whose parameters are learned jointly together with

the group assignment matrix using an alternating minimization scheme. However, a total

disjointness between groups might not be the ideal way, as the tasks might still share

some features that are helpful for prediction.
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Kumar and Daumé III [2012] in turn allow two tasks from different groups to overlap by

assuming that there exist a small number of latent basis tasks. They then model the

parameter vector at of every actual task t as a linear combination of these: at = Lst

where L ∈ Rk×d is a matrix containing the parameter vectors of k latent tasks, while

st ∈ Rk is a vector containing the coefficients of the linear combination. In addition,

they constrain the linear combination to be sparse in the latent tasks; the overlap in the

sparsity patterns between two tasks then controls the amount of sharing between these.

Finally, Crammer and Mansour [2012] learn a small pool of shared hypotheses and then

map each task to a single hypothesis.

3.2.6 Auxiliary tasks

MTL is a natural fit in situations where we are interested in obtaining predictions for

multiple tasks at once. Such scenarios are common for instance in finance or economics

forecasting where we might want to predict the value of many possibly related indicators;

marketing where multiple consumer preferences are modelled at once [Allenby and Rossi,

1998]; or in bioinformatics where we might want to predict symptoms for multiple diseases

simultaneously. In scenarios such as drug discovery, where tens or hundreds of active

compounds should be predicted, MTL accuracy increases continuously with the number

of tasks [Ramsundar et al., 2015].

In many situations, however, we only care about performance on one task. In this

section, we will thus look at how main and auxiliary tasks should interact to maximize

performance and how we can find a suitable auxiliary task in order to reap the benefits

of multi-task learning.

What layers should tasks share? One of the main considerations in using multi-

task learning with deep neural networks is to determine which layers should be shared.

In NLP, recent work focused on finding better task hierarchies for multi-task learning:

Søgaard and Goldberg [2016] show that low-level tasks such as POS tagging and NER

should be supervised at lower layers when used as auxiliary tasks. Building on this

finding, Hashimoto et al. [2017] pre-define a hierarchical architecture consisting of several

NLP tasks as a joint model for multi-task learning. In [Sanh et al., 2019], we propose

a hierarchical architecture for semantic tasks. Yang et al. [2017b] enumerate different

ways layers can be shared across two sequence tagging tasks. Rather than constraining

a model to a certain sharing structure, Misra et al. [2016] use what they refer to as

cross-stitch units to learn a linear combination of the output of the previous layers. In

Chapter 6, we will build on such approaches and propose models that automatically

learn a hierarchy as well as custom sharing structures.
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How should the tasks interact during training? In multi-task learning, mini-

batches from different tasks are typically sampled uniformly at random. As multi-task

learning minimizes a weighted sum of task losses 1
T

∑T
i=1 λiLi where T is the number of

tasks, choosing appropriate weights λ for each task is crucial. These weights can be tuned

on a validation set just as any other hyper-parameter. The default choice, which works

reasonably well in practice is to weigh all tasks equally by setting λ1 = . . . = λT = c

where c is an arbitrary constant. More principled approaches are possible such as using

uncertainty to weigh the task losses [Kendall et al., 2018].

Alternatively, we can modify the sampling of tasks. Given two tasks T1 and T2 that are

sampled with probabilities p1 and p2 respectively, if p1 = 2p2, we are effectively weighing

T1 with λ1 = 2λ2 as examples are seen twice as often. Adjusting the sampling ratio of

different tasks thus has the same effect as assigning different weights. Kiperwasser and

Ballesteros [2018] propose different predefined sampling schedules. In Sanh et al. [2019],

we propose a proportional sampling strategy, which samples mini-batches proportional

to the number of training examples of a task.

As multi-task learning becomes a common tool, sampling strategies will become more

elaborate. In particular, as schedules are used that adjust the sampling strategy over the

course of training, multi-task learning and sequential transfer learning will move closer

together (§3.3.1).

What auxiliary tasks are helpful? Finding an auxiliary task is largely based on

the assumption that the auxiliary task should be related to the main task in some way

and that it should be helpful for predicting the main task.

However, we still do not have a good notion of when two tasks should be considered

similar or related. Caruana [1998] defines two tasks to be similar if they use the same

features to make a decision. Baxter [2000] argues only theoretically that related tasks

share a common optimal hypothesis class, i.e. have the same inductive bias. Ben-David

and Schuller [2003] propose that two tasks are F-related if the data for both tasks can

be generated from a fixed probability distribution using a set of transformations F .

While this allows to reason over tasks where different sensors collect data for the same

classification problem, e.g. object recognition with data from cameras with different

angles and lighting conditions, it is not applicable to tasks that do not deal with the same

problem. Xue et al. [2007] finally argue that two tasks are similar if their classification

boundaries, i.e. parameter vectors are close.

Recent work [Alonso and Plank, 2017] has found auxiliary tasks with compact and

uniform label distributions to be preferable for sequence tagging problems in NLP, which
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we have confirmed in experiments (§6.1). [Bingel and Søgaard, 2017] find that such tasks

with uniform label distributions are less likely to get stuck in suboptimal minima and

observe that gains are more likely for main tasks that quickly plateau with non-plateauing

auxiliary tasks. The most comprehensive study on task relatedness to this date has

been done in computer vision (CV), albeit for sequential transfer learning: Zamir et al.

[2018] propose a task taxonomy that organizes 26 CV tasks based on how well a model

pretrained on one task transfers to another task. In the following, we will provide

guidelines for choosing a suitable auxiliary task and review the most common types of

auxiliary tasks used in NLP.

3.2.6.1 Common types of auxiliary tasks

The most common types of auxiliary tasks can be broadly categorized into four types

based on the source of supervision and the amount of information that the model needs

to predict, from a few bits to millions of bits per sample:

1. Statistical: This category of auxiliary tasks requires predicting low-level informa-

tion related to the statistics of the input data, which are typically a few bits per

sample.

2. Selective unsupervised: Selective unsupervised auxiliary tasks selectively predict

certain parts of the input. They typically require predicting 10s to 100s of bits for

some samples.

3. Supervised: Supervised auxiliary tasks leverage data from a related or adversarial

task or additional supervision that is closely linked to the data, such as the inverse

task, a coarse-grained variant, and features that are either unhelpful or only

available after prediction. Supervised auxiliary tasks require predicting 10s to

10,000s bits per sample.

4. Unsupervised: These auxiliary tasks generally require predicting all parts of the

input, which can amount to millions of bits per sample.

Statistical auxiliary tasks

Statistical auxiliary tasks involve predicting certain underlying statistics of the data.

Caruana [1998] uses tasks that predict different statistics of the road, such as its intensity

as auxiliary tasks for predicting the steering direction in a self-driving car. Plank et al.

[2016] predict the log frequency of a word as an auxiliary task for sequence tagging.

Intuitively, this makes the representation predictive of frequency, which encourages the

model to not share representations between common and rare words, which benefits the

handling of rare tokens. For text-to-speech, Arik et al. [2017] jointly predict the phoneme
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duration and frequency profile. Another facet of this auxiliary task is to predict attributes

of the user, such as their gender, which has been shown to be beneficial for predicting

mental health conditions [Benton et al., 2017] or other demographic information [Roy,

2017]. We can think of other statistics that might be beneficial for a model to encode,

such as the frequency of POS tags, parsing structures, or entities, the preferences of

users, a sentence’s coverage for summarization, or a user’s website usage patterns.

Selective unsupervised auxiliary tasks

As mentioned before, MTL can be used to learn features that might not be easy to

learn just using the original task. An effective way to achieve this is to use selective

unsupervised auxiliary tasks. A prominent example of such auxiliary tasks are hints

[Abu-Mostafa, 1990], i.e. predicting the features as an auxiliary task. Such hints can

focus the model’s attention on these characteristics by encouraging it explicitly to predict

them. For sentiment analysis, Yu and Jiang [2016] predict whether the sentence contains

a positive or negative domain-independent sentiment word, which sensitizes the model

towards the sentiment of the words in the sentence. For name error detection, Cheng

et al. [2015] predict if a sentence contains a name. Hints are also useful for focusing

a model’s attention. For learning to steer [Caruana, 1998], a single-task model might

typically ignore lane markings as these make up only a small part of the image and are

not always present. Predicting lane markings as auxiliary task, however, forces the model

to learn to represent them; this knowledge can then also be used for the main task. Hints

are useful whenever a task includes certain highly predictive terms or features and are a

common source of distant supervision (§3.3.2.1).

Supervised auxiliary tasks

Related task Using a related supervised task as an auxiliary task for MTL is the

classical choice. Prominent examples include Zhang et al. [2014] using head pose

estimation and facial attribute inference as auxiliary tasks for facial landmark detection;

Liu et al. [2015] jointly learning query classification and web search; and Girshick [2015]

jointly performing object detection and region proposal, i.e. predicting the coordinates

of an object in an image. As using an existing related task is by far the most common

choice, we will discuss common related tasks used in NLP in Section 3.2.6.2.

Adversarial In some circumstances, we have access to a task that is opposite of what

we want to achieve. This data can be leveraged using an adversarial loss, which does

not seek to minimize but maximize the training error. This loss is commonly used in
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domain adaptation and will be further discussed in Section 3.4.2.2. An adversarial loss

can be added to many tasks in order to learn task-independent representations [Liu

et al., 2017]. It can also be used with a statistical or selective unsupervised auxiliary

task to ignore certain features of the input that have been found to be detrimental

to generalization, such as word frequency information [Gong et al., 2018]. Finally, an

adversarial auxiliary task might also help to combat bias and ensure more privacy by

encouraging the model to learn representations, which do not contain information that

would allow the reconstruction of sensitive user attributes [Li et al., 2018b, Elazar and

Goldberg, 2018].

Learning the inverse Another auxiliary task that might be useful in many circum-

stances is to learn the inverse of the task together with the main task. A popular

example of this framework is CycleGAN [Zhu et al., 2017], which can generate photos

from paintings. An inverse auxiliary loss, however, is applicable to many other tasks:

MT might be the most intuitive, as every translation direction such as English→French

directly provides data for the inverse direction, as Xia et al. [2016] demonstrate. Enforcing

cycle-consistency enables unsupervised MT [Lample et al., 2018b]. Xia et al. [2017] show

that this has applications not only to MT, but also to image classification (with image

generation as its inverse) and sentiment classification (paired with sentence generation).

For multimodal translation, Elliott and Kádár [2017] jointly learn an inverse task by pre-

dicting image representations. It is not difficult to think of inverse complements for many

other tasks: Entailment↔hypothesis generation; video captioning↔video generation;

speech recognition↔speech synthesis, etc.

Quantization smoothing For many tasks, the training objective is quantized, i.e.

while a continuous scale might be more plausible, labels are available as a discrete set.

This is the case in many scenarios that require human assessment for data gathering,

such as predicting the risk of a disease (e.g. low, medium, high) or sentiment analysis

(positive, neutral, negative). Using less quantized auxiliary tasks might help in these

cases, as they might be learned more easily due to their objective being smoother. For

instance, Balikas and Moura [2017] jointly learn fine-grained and coarse-grained sentiment

analysis.

Predicting inputs In some scenarios, it is impractical to use some features as inputs

as they are unhelpful for predicting the desired objective. However, they might still be

able to guide the learning of the task. In those cases, the features can be used as outputs

rather than inputs. Caruana and de Sa [1997] present several problems where this is

applicable.
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Using the future to predict the present In many situations, some features only

become available after the predictions are supposed to be made. For instance, for self-

driving cars, more accurate measurements of obstacles and lane markings can be made

only once the car is passing them. Caruana [1998] also gives the example of pneumonia

prediction, after which the results of additional medical trials will be available. For these

examples, the additional data cannot be used as features as it will not be available as

input at runtime. However, it can be used as an auxiliary task to impart additional

knowledge to the model during training.

Unsupervised auxiliary tasks

Representation learning The goal of an auxiliary task in MTL is to enable the

model to learn representations that are shared or helpful for the main task. All auxiliary

tasks discussed so far do this implicitly: They are closely related to the main task, so

that learning them likely allows the model to learn beneficial representations. On the

other hand, a model can also be trained explicitly with an unsupervised task that is

known to induce general-purpose representations such as language modelling [Rei, 2017].

Such general-purpose tasks will be further discussed in Section 3.3.2.

Conditioning the initial state Finally, one representation that is particularly useful

to learn is the representation of the initial state of a sequence model. The initial state of

a recurrent neural network is typically initialized to a 0 vector, but may also be learned.

In both cases, however, it is independent of the sequence and thus unable to adapt. Weng

et al. [2017] propose to add a suitable bias to the initial encoder and decoder states for

NMT by training it with a variant of language modelling, predicting the bag-of-words of

the sentence.

3.2.6.2 Related tasks used in NLP

We will now look in more detail at existing NLP tasks, which have been used as auxiliary

tasks to improve the performance of a main task.

Speech recognition Recent multi-task learning approaches for automatic speech

recognition (ASR) typically use additional supervision signals that are available in the

speech recognition pipeline as auxiliary tasks to train an ASR model end-to-end. Phonetic

recognition and frame-level state classification can be used as auxiliary tasks to induce

helpful intermediate representations. Toshniwal et al. [2017] find that positioning the
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auxiliary loss at an intermediate layer improves performance. Similarly, Arik et al. [2017]

predict the phoneme duration and frequency profile as auxiliary tasks for speech synthesis.

Machine translation The main benefit MTL has brought to machine translation

(MT) are models that can simultaneously encode and translate to multiple languages,

which can not only improve performance, but also enable zero-shot translation: Dong

et al. [2015] jointly train the decoders; Zoph and Knight [2016] jointly train the encoders,

while Johnson et al. [2016] jointly train both encoders and decoders; finally, Malaviya

et al. [2017] train one model to translate from 1017 languages into English.

Other tasks have also shown to be useful for MT: Luong et al. [2016] show gains using

parsing and image captioning as auxiliary tasks; Niehues and Cho [2017] combine NMT

with POS tagging and NER; Wu et al. [2017] jointly model the target word sequence

and its dependency tree structure; finally, Kiperwasser and Ballesteros [2018] use POS

tagging and dependency parsing.

Multilingual tasks Similarly to MT, it can often be beneficial to jointly train models

for different languages: Gains have been shown for dependency parsing [Duong et al.,

2015b, Ammar et al., 2016a], named entity recognition [Gillick et al., 2016], part-of-

speech tagging [Fang and Cohn, 2017], document classification [Pappas and Popescu-belis,

2017], discourse segmentation [Braud et al., 2017], sequence tagging [Yang et al., 2016],

and semantic role labelling [Mulcaire et al., 2018]. Many of these approaches rely on

cross-lingual word embeddings (§3.5) for initialization.

Language grounding For grounding language in images or videos, it is often useful

to enable the model to learn causal relationships in the data. For video captioning,

Pasunuru and Bansal [2017] jointly perform next-frame and entailment prediction, while

Hermann et al. [2017] predict the next frame and the words that represent the visual

state for language learning in a simulated environment.

Semantic parsing For a task where multiple label sets or formalisms are available

such as for semantic parsing, an interesting MTL strategy is to learn these formalisms

together: To this end, Guo et al. [2016] jointly train on multi-typed treebanks; Peng

et al. [2017] learn three semantic dependency graph formalisms simultaneously; Fan et al.

[2017a] jointly learn different Alexa-based semantic parsing formalisms; Zhao and Huang

[2017] jointly train a syntactic and a discourse parser; and Hershcovich et al. [2018] train

on four semantic parsing representations. For more shallow semantic parsing such as
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frame-semantic argument identification, Swayamdipta et al. [2017, 2018] predict whether

an n-gram is syntactically meaningful, i.e. a syntactic constituent.

Representation learning Rather than learning representations based on a single loss,

intuitively, representations should become more general as more tasks are used to learn

them. As an example of this strategy, Hashimoto et al. [2017] jointly train a model on

multiple NLP tasks, while Jernite et al. [2017] propose several discourse-based artificial

auxiliary tasks for sentence representation learning. Other multi-task representation

learning approaches will be discussed in Section 3.3.2.4.

Question answering For question answering (QA) and reading comprehension, it is

beneficial to learn the different parts of a more complex end-to-end model together: Choi

et al. [2017] jointly learn a sentence selection and answer generation model, while Wang

et al. [2017] jointly train a ranking and reader model for open-domain QA.

Information retrieval For relation extraction, information related to different rela-

tions or roles can often be shared. To this end, Jiang [2009] jointly learn linear models

between different relation types; Liu et al. [2015] jointly train domain classification and

web search ranking; Yang and Mitchell [2017] jointly predict semantic role labels and

relations; Katiyar and Cardie [2017] jointly extract entities and relations; and in [Sanh

et al., 2019], we jointly learn coreference resolution, relation extraction, entity mention

detection, and NER.

Chunking Chunking has been shown to benefit from being jointly trained with low-

level tasks such as POS tagging [Collobert and Weston, 2008, Søgaard and Goldberg,

2016, Ruder et al., 2019a].

3.2.7 Summary

In this section, we have reviewed both the historic literature in multi-task learning as well

as more recent work on MTL applied to NLP. We have provided insights on why MTL

works and shared practical tips on choosing an auxiliary task. The discussed multi-task

learning methods and particularly sharing of parameters are core to many approaches in

other transfer learning scenarios discussed in this chapter. In the next section, we will

present the closely related sequential transfer learning paradigm, which trains models

sequentially rather than simultaneously.
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3.3 Sequential transfer learning

This section gives an overview of sequential transfer learning, arguably the most frequently

used transfer learning scenario in natural language processing and machine learning. We

will discuss the most common scenario involving a source and target task (§3.3.2). In this

context, we will present common distantly supervised (§3.3.2.1), supervised (§3.3.2.2), and

unsupervised (§3.3.2.3) source tasks including fundamental methods in natural language

processing. We will then discuss common architectures (§3.3.2.5) and transfer methods

(§3.3.3). Subsequently, we will talk about the setting using multiple tasks (§3.3.4) and

finally review evaluation scenarios (§3.3.5).

3.3.1 Introduction

We define sequential transfer learning as the setting where source and target tasks are

different and training is performed in sequence. That means, models are not optimized

jointly as in multi-task learning but each task is learned separately. The goal of sequential

transfer learning is to transfer information from the model trained on the source task to

improve performance of the target model. For this reason, sequential transfer learning

is also sometimes known as model transfer [Wang and Zheng, 2015]. Compared to

multi-task learning, sequential transfer learning is useful mainly in three scenarios:

(a) data for the tasks is not available at the same time;

(b) the source task contains much more data than the target task;

(c) adaptation to many target tasks is necessary.

Generally, sequential transfer learning is expensive when training the source model, but

enables fast adaptation to a target task, while multi-task learning may be expensive when

training the target model. Despite these differences, both inductive transfer learning

methods are in fact closely related.

Multi-task learning vs. sequential transfer learning Multi-task learning and

sequential transfer learning can be seen as being on opposite sides of a spectrum. Assume

we have two tasks T1 and T2 that are trained during the intervals [t1, t2] and [t3, t4]

respectively where t1 < t2, t3 < t4, and t1 ≤ t3. In the typical multi-task learning setting,

t1 = t3 and t2 = t4. In other words, both tasks commence and conclude training at the

same time. In sequential transfer learning on the other hand, t2 < t3, the second task

is only trained once training of the first task has terminated. Between these extremes,

different curricula are possible where t3 < t2, which can be seen in the spectrum in

Figure 3.6. Curriculum learning [Bengio et al., 2009] is a related technique that imposes
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Figure 3.6: The inductive transfer learning spectrum with multi-task learning and
sequential transfer learning at opposite ends. By progressively overlapping the training
intervals of two tasks, multi-task learning gradually transforms into sequential transfer

learning.

an order (usually based on a notion of difficulty) on the training examples of a single

task.

This view is still overly simplistic as particularly in sequential transfer learning with

multiple tasks (§3.3.4), it may be useful to occasionally revisit an already learned task

so that it is not forgotten. As it becomes more commonplace to train an algorithm on

multiple tasks, we expect the areas of multi-task learning and sequential transfer learning

to converge.

Sequential transfer learning stages Sequential transfer learning typically consists

of two stages: A pretraining phase and an adaptation phase. In the pretraining phase,

the model is trained on the source task. In the adaptation phase, the knowledge of

the trained model is transferred to the target task. While the pretraining phase may

be expensive, it only needs to be performed once. In contrast, the adaptation phase is

typically very efficient, which makes sequential transfer learning very useful in practice.

To maximize the usefulness of sequential transfer learning, it is common to choose a source

task that will enable learning a representation that will not only help for a specific target

task, but that will be useful for a wide range of target tasks. The pursuit of such universal

representations is a long-standing challenge in representation learning and has recently

received increasing attention. Due to the no free lunch theorem (§2.2.4), obtaining a

representation that will help for all possible tasks is impossible. However, staying within

the space of NLP tasks and assuming that leveraging the underlying structure of language

will help us generalize, we can expect that we can do significantly better than training

from scratch. To illustrate the impact of such universal representations, we draw a

comparison to computer vision.
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Sequential transfer learning in computer vision Sequential transfer learning is

ubiquitous in computer vision where it is commonly practised in the form of pretraining

on the ImageNet dataset [Deng et al., 2009]. As ImageNet became a common benchmark

in computer vision [Krizhevsky et al., 2012b], researchers realized that the weights learned

in state-of-the-art models could serve as universal representations that enable learning

with as few as one example of the target task [Donahue et al., 2014]. Pretrained ImageNet

models have been used to achieve state-of-the-art results in tasks such as object detection

[He et al., 2017], semantic segmentation [Zhao et al., 2017], human pose estimation

[Papandreou et al., 2017], and video recognition [Carreira and Zisserman, 2017]. At the

same time, they have enabled the application of models to domains where the number of

training examples is small and annotation is expensive. Transfer learning via pretraining

on ImageNet is in fact so effective in CV that not using it is now considered foolhardy

[Mahajan et al., 2018].1

NLP has so far not had an ImageNet moment [Ruder, 2018], signifying the availability

of a comparably powerful source of universal representations. However, as we will see in

the following, such representations may just be in reach.

3.3.2 Pretraining

Similar to the choice of an auxiliary task in multi-task learning (§3.2.6), a pretraining

task should capture properties that might be useful for a number of target tasks. We

consider a pretraining task to be universal if it helps on most NLP tasks.2

A good pretraining task provides access to a large amount of data for training the model.

As unlabelled data is relatively easily accessible in most cases, the main differentiator

between pretraining tasks is the source of supervision. We will distinguish three sources,

in order of ease of obtaining the training data:

1. No supervision: No supervision is the easiest to obtain as it only requires access

to the raw form of the data such as the unlabelled text.

2. Distant supervision: Distant supervision [Mintz et al., 2009] uses heuristics and

domain expertise to automatically obtain large amounts of noisily supervised data.

3. Traditional supervision: Traditional supervision finally requires manually la-

belling each training example.

1Note that recent results suggest that ImageNet pretraining may not be useful for some specialized
classification tasks [Kornblith et al., 2018] and mainly speeds up training for larger datasets [He et al.,
2018a]. These studies, however, still emphasize the general utility of ImageNet pretraining.

2We say most instead of all as we can generally construct adversarial tasks that can be thought to
be in the space of NLP tasks and that test for the non-existence of a property. For instance, we might
define the goal of a task as being invariant to demographic information. Even if trained to ignore it, this
property is nevertheless encoded in pretrained representations [Elazar and Goldberg, 2018].
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Self-supervised learning is a technique closely related to distant supervision. Both require

domain expertise to define the way the labels are generated. The main distinction is that

in distant supervision, only certain instances are assigned labels that are often noisy and

based on predefined patterns, while self-supervision automatically generates labels for all

training examples. Self-supervision is mainly used in computer vision where pretraining

tasks include predicting the position of patches in an image [Doersch et al., 2015] or

predicting colour from gray scale values [Zhang et al., 2016a]. Language modelling is

sometimes referred to as self-supervised learning rather than unsupervised learning [Xu

et al., 2009].

While we focus on the above three sources of supervision, other forms of supervision are

possible: Different heuristics can be combined to obtain more accurate labels [Ratner

et al., 2016] and models pretrained on different tasks can be used to label more data

[Vinyals et al., 2015]. In addition, multiple sources of supervision can be combined

(§3.3.2.4).

3.3.2.1 Distantly supervised pretraining

Distant supervision was first proposed for training models for relation extraction where

any sentence that contains a pair of entities that participate in a known Freebase relation

was assumed to be an example of that relation [Mintz et al., 2009]. Another successful

application of distant supervision is sentiment analysis on Twitter data [Go et al., 2009].

Typically, models are trained to predict emoticons in a large corpus of Twitter messages.

More recently, emoticon prediction is used as a pretraining task for deep neural networks

[Severyn and Moschitti, 2015], which enables training models on millions of tweets. Felbo

et al. [2017] scale up this strategy to predict a large number of emojis on more than a

billion tweets. They apply their pretrained model not only to sentiment analysis, but also

to emotion and sarcasm detection tasks, demonstrating that a specialized pretraining

task can be useful for an array of related target tasks. We can similarly imagine distantly

supervised tasks that endow the model with capabilities that are useful for certain

categories of target tasks.

Distantly supervised pretraining tasks bear a striking resemblance to useful auxiliary

tasks for multi-task learning. In particular, many of them can be seen as providing

hints (§3.2.6.1). This has the effect of encouraging the model to concentrate on aspects

that only make up a small part of its input, which would likely be ignored by a purely

unsupervised model. In this vein, Yang et al. [2017a] pretrain a word segmentation model

by predicting punctuation, while Ziser and Reichart [2018] pretrain a model to predict

pivot unigrams or bigrams.



Transfer Learning 67

Another source of distant supervision that might be missed by unsupervised methods are

discourse markers that indicate specific inter-sentence relations. Such a pretraining task

makes the model more sensitive to how different sentences relate to each other, which

can in turn improve its representation of the meaning of a sentence. Jernite et al. [2017]

propose to predict conjunctions, while Nie et al. [2017] predict discourse markers such as

“but” and “because”.

3.3.2.2 Supervised pretraining

Compared to distantly supervised approaches, which use heuristics that are particularly

suited to a certain category of tasks, supervised pretraining leverages existing tasks

and datasets. In some cases existing tasks are chosen that are suitable for a particular

downstream task: Zoph et al. [2016] train a machine translation model on a high-resource

language pair and then transfer this model to a low-resource language pair. Yang

et al. [2017a] pretrain a POS tagging model and apply it to word segmentation. Other

approaches [Min et al., 2017, Golub et al., 2017, Wiese et al., 2017] pretrain a model on

the large open-domain Stanford Question Answering Dataset (SQuAD) and transfer it

to a more specialized QA domain.

Recent approaches employ different supervised tasks with large datasets to learn general-

purpose representations. These methods select a task that is thought to require general

knowledge about the structure of language. Examples of such universal supervised

pretraining tasks are predicting definitions in a dictionary [Hill et al., 2016b], paraphrasing

[Wieting et al., 2016], natural language inference [Conneau et al., 2017], translation

[McCann et al., 2017], constituency parsing [Subramanian et al., 2018], and image

captioning [Kiela et al., 2018a].

While the ImageNet task is supervised, it is questionable whether a supervised pretraining

task that is inherently limited by the cost of annotation is the right choice for natural

language processing given the multiple levels of meaning (§2.4) and the cornucopia of

domains, tasks, and languages that NLP requires dealing with.

3.3.2.3 Unsupervised pretraining

Unsupervised pretraining, in contrast, is a much more scalable approach and closer to the

way humans learn, without requiring millions of labelled examples [Carey and Bartlett,

1978, Pinker, 2013]. In theory, it is more general than supervised learning. Supervised

learning just requires the model to capture in its representations whatever is necessary to

the given task, discarding everything else. Unsupervised pretraining, conversely, should
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allow the model to capture more general aspects of the structure and meaning of language

that should then also be more transferable.

Unsupervised pretraining has also been referred to as self-taught learning [Raina et al.,

2007] and unsupervised transfer learning [Dai et al., 2008]. Both leverage unlabelled

data to learn representations, but differ in whether the target task is supervised or

unsupervised. Raina et al. [2007] use sparse coding to learn a set of basis vectors from

unlabelled data. They then solve a least squares problem to express an example as a

sparse linear combination of these bases. Dai et al. [2008] use auxiliary unlabelled data

to cluster target data. As their method clusters both data simultaneously, their approach

is a multi-task rather than a sequential transfer learning method.

Unsupervised pretraining has a long history in natural language processing. Many of

the most fundamental approaches in NLP can be considered as forms of unsupervised

pretraining. Most methods focus on learning representations of words from unlabelled

data. These methods broadly fall into two categories:

(a) Methods that use a variant of the task of language modelling (§2.4).

(b) Methods that use matrix factorization to factorize a word-word co-occurrence

matrix.3

In the following, we will first review seminal approaches for pretraining word representa-

tions, then discuss more recent word embedding methods, and finally look at the latest

generation of deep pretrained models.

Traditional word representations

Latent Semantic Analysis (LSA) Latent Semantic Analysis [Deerwester et al., 1990]

has been one of the most widely used methods for learning dense representations of words.

Given a sparse word-word co-occurrence matrix C obtained from a corpus, a common

approach is to first replace every entry in C with its pointwise mutual information (PMI)

[Church and Hanks, 1990] score (§2.1.3), thus yielding a PMI matrix P.4 We factorize

P using singular value decomposition (SVD), which decomposes P into the product of

three matrices:

P = UΣV> (3.2)

where U and V are in column orthonormal form and Σ is a diagonal matrix of singular

values. We subsequently obtain the word embedding matrix X by reducing the word

3As Levy and Goldberg [2014] observe, some language modelling variants implicitly perform matrix
factorization of a co-occurrence matrix. This distinction may thus not be as clear-cut.

4Positive PMI is used by Levy et al. [2017].
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representations to dimensionality k the following way:

X = UkΣk (3.3)

where Σk is the diagonal matrix containing the top k singular values and Uk is obtained by

selecting the corresponding columns from U. LSA is a form of dimensionality reduction;

while using co-occurrence counts of words as features directly is impractical, reducing

them to a lower dimension enables their use in many applications. Closely related to LSA

is canonical correlation analysis (CCA), which has also been used to learn representations

of words [Dhillon et al., 2011].

Brown clustering One problem with classic language models is that features are

extremely sparse as many word pairs are never observed in a corpus. Brown clustering

[Brown et al., 1992] is a seminal unsupervised pretraining technique in NLP that seeks to

combat this sparsity by assigning every word to one out of C classes. Using a class-based

bigram model, the conditional probability that a word follows another word can be

decomposed as the product of the class transition probabilities P (ci+1 | ci) and the word

emission probability P (wi+1|ci):

P (wi+1|wi) = P (ci+1 | ci)P (wi+1|ci) (3.4)

where ci is the class of wi, the i-th word in the data.5 The authors propose a greedy

hierarchical agglomerative clustering algorithm for finding a hard class assignment for

each word: The algorithm initially assigns each word to its own class. It then iteratively

merges classes so that the average mutual information is maximized until C classes

remain. In a post-processing step, words are re-arranged if moving them to a new class

increases the average mutual information of the partition. The result of the method is a

binary tree that includes the words as its leafs. The path to each word, which consists of

the concatenated binary codes is then used as feature in a downstream task. Despite

only relying on bigram counts, Brown clusters reveal similar relations as later neural

approaches, such as grouping words together with the same morphological stem, e.g.

performed, perform, performs, and performing and clustering related words with different

stems, such as attorney, counsel, trial, court, and judge.

Brown clusters have been applied to a wide range of tasks such as NER [Miller et al., 2004,

Ratinov and Roth, 2009] and dependency parsing [Koo et al., 2008, Suzuki et al., 2009].

More recently, they have also been found to be an important signal for part-of-speech

tagging on Twitter [Owoputi et al., 2013] and cross-lingual NER [Mayhew et al., 2017].

5Note that this is very similar to a hidden Markov model.
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Latent dirichlet allocation (LDA) LDA [Blei et al., 2003] is a generative proba-

bilistic model of a document that represents each topic as a mixture over latent topics,

with each topic being represented as a distribution over words. The parameters of LDA

are usually estimated using Gibbs sampling [Porteous et al., 2008]. The most common

use case for LDA is to explore the topics in a corpus. However, the posterior Dirichlet

parameters, i.e. the distribution over topics can also be used as the representation of

a document for text classification [Blei et al., 2003]. Conversely, we can also use the

distribution over topics for each word as the word representation.

LDA is the only seminal unsupervised pretraining technique that does not clearly belong

to either the language models nor to the matrix factorization methods. On closer

inspection, LDA can be seen as a form of dimensionality reduction and is thus related

to matrix factorization approaches. As a latent variable model, LDA is also similar to

HMMs, which can be used as language models.

Pretrained HMM language models Despite not having been widely adopted, the

use of latent variable HMM language models to learn representations for sequence

labelling [Huang and Yates, 2009, 2010a,b] is the closest non-neural analogue to the

current prevailing approach of pretraining language models. Huang and Yates [2009]

train a latent variable model HMM on an unlabelled corpus to learn the probability

of a word appearing before and after another word. They then use these probability

distribution as features for the left and right contexts in a sequence labelling model.

LSA is applied to these context vectors to obtain a dense representation. Huang and

Yates [2010a] adapt these learned representations to semantic role labelling. Huang and

Yates [2010b] use a Factorial HMM with multiple hidden layers in order to capture more

aspects of the word representations. This approach is conceptually strikingly similar to

the multi-layered neural network language models used these days.6

Word embeddings

All previous approaches learn representations of words that are then used as features

in downstream models. The following approaches learn dense word representations

with neural networks. In this context, such representations are also known as word

embeddings. A common argument for word embeddings is that they are low-dimensional,

dense, and more expressive than traditional approaches [Baroni et al., 2014]. However,

classic approaches such as LSA also induce dense representations and—provided the

6Huang and Yates [2010b] describe their approach in a way that would not look out of place in a
contemporary paper using neural language models. In their own words: “By adding in multiple hidden
layers to our sequence model, we aim to learn a multi-dimensional representation that may help us to
capture word features from multiple perspectives.”
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settings are the same—are competitive with more recent neural approaches [Levy et al.,

2015].

Collobert and Weston (C&W) In a seminal paper, Collobert and Weston [2008]

learn word embeddings by training a neural network on a corpus C to output a higher

score for a correct word sequence than for an incorrect one. For this purpose, they use a

max-margin loss (see Equation 2.46):

LMMHL =

|C|−C∑
i=C

∑
w′∈V

max(0, 1−f([wi−C , . . . , wi, . . . , wi+C ])+f([wi−C , . . . , w
′, . . . , wi+C ]))

(3.5)

The outer sum iterates over all words in the corpus C, while the inner sum iterates over all

words in the vocabulary. Each word sequence consists of a center word wi and a window

of C words to its left and right. f(·) is a neural network that outputs a score given a

word sequence and is trained to output a higher score for a word sequence occurring in

the corpus (the left term) than a word sequence where the center word is replaced by an

arbitrary word w′ from the vocabulary (the right term).

Skip-gram with negative sampling (SGNS) Skip-gram with negative sampling

[Mikolov et al., 2013a] is arguably the most popular method to learn word embeddings

due to its training efficiency and robustness [Levy et al., 2015]. SGNS approximates

a language model but focuses on learning efficient word representations rather than

accurately modelling word probabilities. It induces representations that are good at

predicting surrounding context words given a target word wt. The objective is shown

in Figure 3.7. To this end, it minimizes the negative log-likelihood of the training data

under the following skip-gram objective:

LSGNS = − 1

|C|

|C|∑
t=1

∑
−C≤j≤C,j 6=0

log P (wt+j | wt) (3.6)

P (wt+j | wt) is computed using the softmax function:

P (wt+j | wt) =
exp(x̃t+j

>xt)∑|V |
i=1 exp(x̃i>xt)

(3.7)

where xi and x̃i are the word and context word embeddings of word wi respectively. The

skip-gram architecture can be seen as a neural network without a hidden layer. The word

embedding xi of the input word wi is then the same as the hidden state of the model.
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This word embedding xi is fed into a softmax layer, where each word has a separate

representation x̃i, which represents how it behaves in the context of the input word.7

Generally, xi is used as the final word representation, although combining both xi and

x̃i can be beneficial [Levy et al., 2015].

Figure 3.7: The skip-gram
model

Figure 3.8: The continuous bag-
of-words model

As the partition function in the denominator of the softmax is expensive to compute, SGNS

uses negative sampling, which approximates the softmax to make it computationally more

efficient. Negative sampling is a simplification of noise contrastive estimation [Gutmann

and Hyvärinen, 2012], which was applied to language modeling by Mnih and Teh [2012].

Similar to noise contrastive estimation, negative sampling trains the model to distinguish

a target word wt from negative samples drawn from a noise distribution Pn. In this

regard, it is similar to the C&W model as defined above, which ranks true sentences

above noisy sentences. Negative sampling is defined as follows:

P (wt+j | wt) = log σ(x̃t+j
>xt) +

k∑
i=1

Ewi∼Pn log σ(−x̃i
>xt) (3.8)

where σ is the sigmoid function and k is the number of negative samples. The distribution

Pn is empirically set to the unigram distribution raised to the 3/4th power. Levy and

Goldberg [2014] observe that negative sampling does not in fact minimize the negative

log-likelihood of the training data as in Equation 3.6, but rather implicitly factorizes a

shifted PMI matrix, very similar to LSA.

7Word and context word need to have distinct representations as words hardly appear in the context
of themselves. With no hidden layer, the only way for x̃i

>xi to have a low score is if x̃i and xi are
different vectors [Goldberg and Levy, 2014]. Conversely, in deep language models, xi and x̃i are often
constrained to be the same [Inan et al., 2016].
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Continuous bag-of-words (CBOW) Continuous bag-of-words can be seen as the

inverse of the skip-gram architecture: The model receives as input a window of C context

words and seeks to predict the target word wt by minimizing the CBOW objective:

LCBOW = − 1

|C|

|C|∑
t=1

log P (wt | wt−C , . . . , wt−1, wt+1, . . . , wt+C)

P (wt | wt−C , . . . , wt+C) =
exp(x̃t

>xs)∑|V |
i=1 exp(x̃i>xs)

(3.9)

where xs is the sum of the word embeddings of the words wt−C , . . . , wt+C , i.e. xs =∑
−C≤j≤C,j 6=0 xt+j . This is depicted in Figure 3.8. The CBOW architecture is typically

also trained with negative sampling for the same reason as the skip-gram model.

Many extensions to the SGNS and CBOW models have been proposed over the years.

Le and Mikolov [2014] extend SGNS and CBOW to model paragraphs and documents by

adding a vector that represents the paragraph. Depending on the model, this vector is used

to either predict the centre word or the context words. Bojanowski et al. [2017] extend

SGNS by representing each word as a bag of character n-grams, which is particularly

useful for modelling words in morphologically rich languages. Pagliardini et al. [2018]

extend CBOW with compositional n-gram features.

Global vectors (GloVe) Global vectors [Pennington et al., 2014] learn word repre-

sentations via matrix factorization. GloVe minimizes the difference between the dot

product of the embeddings of a word wi and its context word ct and the logarithm of

their number of co-occurrences within a certain window size8:

LGloVe =

|V |∑
i,j=1

f(Cij)(xi
>x̃j + bi + b̃j − log Cij)

2 (3.10)

where bi and b̃j are the biases corresponding to word wi and its context word wj , Cij

captures the number of times word wi occurs with context word wj , and f(·) is a weighting

function that assigns relatively lower weight to rare and frequent co-occurrences.

Deep pretrained representations

All the presented neural network-based methods so far are shallow models that trade

expressiveness for efficiency. In order to be scalable, they use a neural network without a

hidden layer. This, however, limits the relations they can capture.

8GloVe favors slightly larger window sizes (up to 10 words to the right and to the left of the target
word) compared to SGNS [Levy et al., 2015].
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In analogy to computer vision, using word embeddings is akin to initializing an image

model with pretrained representations that only encode edges: they will be helpful for

many tasks, but they fail to capture higher-level information that might be even more

useful [Ruder, 2018]. A model initialized with word embeddings needs to learn from

scratch not only to disambiguate words, but also to derive meaning from a sequence

of words. This is the core aspect of language understanding, and it requires modelling

complex language phenomena such as compositionality, polysemy, anaphora, long-term

dependencies, agreement, negation, and many more. It should thus come as no surprise

that NLP models initialized with these shallow representations still require a huge number

of examples to achieve good performance.

At the core of recent advances is one key paradigm shift: going from just initializing the

first layer of our models to pretraining the entire model with hierarchical representations.

If learning word vectors is like only learning edges, these approaches are like learning

the full hierarchy of features, from edges to shapes to high-level semantic concepts. The

following models consequently use deep neural networks to learn representations. Another

advantage of such models is that document representations can be easily obtained as the

hidden state of the model.

Autoencoding Dai and Le [2015] propose to pretrain an LSTM autoencoder that

reconstructs the words in a sentence. Compared to language modelling, which makes a

prediction for every word, the autoencoder first processes all words in a sentence and

then predicts all words of the input sequence without receiving more information. The

autoencoder objective is thus conceptually easier than the language modelling objective

as the model does not need to “look into the future” but merely needs to “remember the

past”. Hill et al. [2016a] propose to use a denoising autoencoder instead. This model

makes the task more challenging by adding noise to the input, which should make the

learned representations more robust. The noise consists of randomly deleting words and

randomly scrambling non-overlapping bigrams.

Skip-thoughts Instead of reconstructing the words in a sentence, skip-thoughts [Kiros

et al., 2015] trains an RNN to reconstruct the words in the preceding and succeeding

sentences. Skip-thoughts can thus be seen as an extension of SGNS to the sentence

level. This notably requires training on longer documents consisting of ordered sentences.

While being conceptually simple, the original skip-thoughts takes weeks to train.

Hill et al. [2016a] propose a cheaper variant that sums the word embeddings of the input

sentence, while Jernite et al. [2017] present discourse-based objectives that can be used

as cheaper alternatives. Their first objective trains a model to predict whether two
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sentences have been switched. They frame next-sentence prediction as a classification task

where given the first three sentences of a paragraph the model must choose the sentence

immediately following among five candidates from later in the paragraph. Logeswaran

and Lee [2018] similarly propose a more efficient formulation of skip-thoughts, which

replaces the decoder with a classifier that chooses the target sentence from a set of

candidate sentences. Devlin et al. [2018] further reduce next-sentence prediction to a

binary classification task of predicting whether a sentence follows another sentence.

Pretrained language models While many of the earlier approaches such as Brown

clustering, SGNS, and CBOW are variants of a language model, they were all proposed

as approximations to make language modelling more computationally feasible with

limited computational resources. With the increase in compute in recent years, it

has now become feasible to pretrain deep neural language models. Dai and Le [2015]

first proposed to pretrain language models, but only considered training on in-domain

documents, which limited their approach. Peters et al. [2017] pretrain a language model

for sequence labelling tasks, while Ramachandran et al. [2017] apply a language model

to summarization and machine translation.

Peters et al. [2018a] first show that a pretrained language model is useful for a wide variety

of NLP tasks. Radford et al. [2018] train a deeper model on more data. Devlin et al. [2018]

introduce a masked language model objective, which randomly masks some words in the

input and then predicts only the masked tokens. In contrast to a denoising autoencoder,

only the masked words rather than the entire input are reconstructed. Compared to

other pretraining tasks such as translation, skip-thoughts, and autoencoding, language

modelling is more sample-efficient and performs best on syntactic tasks [Zhang and

Bowman, 2018]. In Section 7.1, we present a pretrained language model that has achieved

state-of-the-art performance on a range of text classification tasks.

The rise of pretrained language models has major implications for transfer learning for

NLP. Pretrained language models have achieved improvements between 10-20% on a

wide variety of tasks, some of which have been studied for decades. Pretrained language

models can help with domain adaptation [Joshi et al., 2018] and enable few-shot and

zero-shot learning [Howard and Ruder, 2018, Radford et al., 2018].

In addition, representations from pretrained language models capture hierarchical features

that are analogous to ones captured by ImageNet models in computer vision [Krizhevsky

et al., 2012b]: the word embedding layer captures morphological information; lower

layers capture local syntax, while the upper layers capture longer range semantics such

as coreference [Peters et al., 2018b]. Pretrained language model representations have also

been shown to implicitly learn logic rules [Krishna et al., 2018].
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3.3.2.4 Multi-task pretraining

Distantly supervised, supervised, and unsupervised pretraining tasks are not at odds but

can complement each other. Using multi-task learning (§3.2), a model can be trained on

multiple tasks at once. Pretraining on multiple tasks might help make representations

more general, as a hypothesis space that performs well on a sufficiently large number of

tasks is also expected to perform well on learning novel tasks from the same environment

[Baxter, 2000]. Subramanian et al. [2018] perform multi-task pretraining on skip-thoughts,

machine translation, constituency parsing, and natural language inference. Similarly,

Cer et al. [2018] combine pretraining on skip-thoughts, response prediction, and natural

language inference, while Devlin et al. [2018] combine masked language modelling with

next-sentence prediction.

3.3.2.5 Architectures

While reliable word representations can be learned with shallow approaches such as

SGNS and GloVe, most NLP tasks require representations of sentences and documents.

Nevertheless, simple architectures such as an average of pretrained word embeddings are

surprisingly strong baselines for sentence and document-level representations. Wieting

et al. [2016] find that training a model based on an average of word vectors outperforms

more complex architectures on their paraphrase pretraining task. Arora et al. [2017]

propose to additionally subtract the principal component from a weighted average of

pretrained word embeddings, while Chen [2017] propose to add noise to the average of

pretrained embeddings. Another conceptually simple architecture is the deep averaging

network [DAN; Iyyer et al., 2015], which averages word vectors, followed by two hidden

layers. Cer et al. [2018] use DAN for pretraining and achieve similar performance

compared to a more complex model.

While such simple models are fast to train, recent developments show that deeper models

outperform shallow models and scale with the amount of training data and depth of the

network. Wieting and Gimpel [2017] show that LSTMs outperform an average of word

vectors on paraphrase pretraining and propose a hybrid model that combines the two.

Conneau et al. [2017] experiment with different models and find that a BiLSTM that

condenses hidden representations with max-pooling performs best. Kiros and Chan [2018]

propose a more lightweight version of this model by using convolutions and a dynamic

weighting of embeddings instead of recurrent connections. Recently, the Transformer

[Vaswani et al., 2017], an architecture that is based on self-attention has shown convincing

results [Radford et al., 2018, Cer et al., 2018, Devlin et al., 2018].
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3.3.3 Adaptation

The previous section focused on different methods for the first stage of sequential transfer

learning. Work on the second stage, the adaptation phase, has been a lot scarcer. In

general, there are two main ways to adapt a pretrained model to a target task: feature

extraction and fine-tuning. Feature extraction uses pretrained representations as features

that are provided as input to a separate model, while fine-tuning trains a pretrained

model directly on data of the target task.

Feature extraction In feature extraction, a model’s weights are ‘frozen’ and the

pretrained representations are used in a downstream model similar to classic feature-

based approaches [Koehn et al., 2003]. For instance, pre-trained word representations

can be provided as additional input to a model [Turian et al., 2010]. Another common

approach is to train a linear classifier on top of a pretrained document representation

[Klementiev et al., 2012b].

Fine-tuning In contrast, fine-tuning involves updating the pretrained representations.

In this case, the pretrained representations are effectively used as initialization for the

parameters of the model on the downstream task. In contrast, no gradients are propagated

through the frozen pretrained parameters in the feature-based approach.

Feature extraction has the benefit that existing task-specific models can be reused. In

addition, when the same data needs to be used repeatedly, either for different tasks or

many iterations of training, extracting features once is cheaper than fine-tuning. On the

other hand, fine-tuning is convenient as it requires minimal task-specific modifications

and allows us to adapt a single general-purpose model to many tasks.

Fine-tuned word embeddings have generally been found to perform better than their

static counterparts [Kim, 2014]. A downside of fine-tuning word embeddings is that only

parameters of words that are seen during training are updated, while the embeddings of

other words become stale. This can be harmful if the training set is very small or the

test set contains many OOV words such as in reading comprehension [Dhingra et al.,

2017]. When using frozen embeddings, unseen words can still be initialized with their

pretrained representation if one is available. Freezing word embeddings may also be

useful when training data is noisy, such as in annotation projection [Plank et al., 2018].

In [Peters et al., 2019], we compare feature extraction and fine-tuning with state-of-the-art

pretrained representations. We find that both generally achieve similar performance, but

that fine-tuning performs better when source and target tasks are similar, while feature

extraction performs better when source and target tasks are distant.



Transfer Learning 78

Residual adapters Rather than adding parameters to the top of a pretrained model,

a recent strategy inserts parameters between the layers of a pretrained model. These

residual adapters are layers of different designs [Rebuffi et al., 2017, 2018] that have a

small number of parameters compared to the entire model and are connected via residual

connections with the rest of the network. During adaptation, only the adapters are fine-

tuned. The residual connection enable the model to ignore the adapters in case they are

not helpful for the downstream task. Similar to feature extraction, adapters enable reuse

of the same pretrained parameters for many tasks, while—similar to fine-tuning—they

only add a small number of task-specific parameters.

3.3.3.1 Fine-tuning settings

However, work has been scarce on how fine-tuning should be done. In computer vision, it

is common to freeze most of the network and fine-tune only the top layers of the model

[Long et al., 2015b]. As NLP models are typically more shallow than their computer

vision counterparts, Felbo et al. [2017] propose chain-thaw, which trains one layer at

a time, analogous to layer-wise pretraining in deep belief nets [Hinton et al., 2006]. In

Section 7.1, we propose gradual unfreezing, a method that unfreezes one layer at a time

until the entire network is trained jointly.

Using a learning rate that is lower than the learning rate used for training the base model

is typically recommended for fine-tuning so as not to update the parameters too much.

However, not much work has looked into how this learning rate should be selected. To

this end, we propose a new learning rate schedule for fine-tuning in Section 7.1.

Another way to encourage the new parameters not to deviate too much from existing

ones is to use an appropriate regularizer. A simple way to enforce this is to place an

`2 regularizer on the difference between the pretrained and the new model parameters

[Wiese et al., 2017]. Such a constraint can be seen as a sequential version of soft

parameter sharing in multi-task learning (§3.2.3). A more advanced version applies

the regularizer selectively to parameters that were important to the previous task, for

instance using the Fisher information matrix [Kirkpatrick et al., 2017]. Rather than

regularizing the parameters of the new model, the predictions of the fine-tuned model

can also be encouraged to stay close to the predictions of the pretrained model, using e.g.

cross-entropy [Riemer et al., 2017]. This is similar to distillation [Hinton et al., 2015] but

has the downside that source and target tasks must be of the same type.
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3.3.3.2 A framework for adaptation

While feature extraction and fine-tuning each have their benefits, we can also view

them see as two instances of the same framework. Let us assume we are provided with

a pretrained source model with parameters θS and LS layers. In order to adapt this

pretrained model to a different target task, we need to add a number of task-specific

parameters θT consisting of LT layers. These can be a linear classification layer [Howard

and Ruder, 2018], special tokens [Devlin et al., 2018], or an entirely separate model

[Peters et al., 2018a]. The parameters of the adapted model are then θA = θS ∪ θT with

LA = LS +LT layers where LS and LT contain layers in the intervals [1, LS ] and (LS , LA]

respectively.

The key hyper-parameter of the adaptation process is the learning rate η, which is set

to a lower value than the one used during pretraining so as not to distort the learned

parameters too much. In addition, η may change during adaptation if a learning rate

schedule is used. η may also vary based on the layer as different layers encode different

information [Howard and Ruder, 2018] and a different η may be necessary for source and

target model parameters θS and θT respectively. Let η
(l)
t thus be the learning rate of

the adapted model’s l-th layer at iteration t. In this framework, feature extraction and

fine-tuning can be defined as follows.

Feature extraction Feature extraction corresponds to the case where

η
(l)
t = 0, ∀l ∈ [1, LS ] ∀t. (3.11)

In other words, feature extraction sets the learning rate of layers of the source model θS

to 0, thereby preventing parameters updates, and only trains the task-specific parameters

θS .

Fine-tuning Fine-tuning on the other hand requires updating at least one of the source

layers during adaptation:

η
(l)
t > 0, ∃l ∈ [1, LS ] ∃t. (3.12)

Fine-tuning only the last layers [Long et al., 2015a] and unfreezing schedules such as

chain-thaw [Felbo et al., 2017] and gradual unfreezing [Howard and Ruder, 2018] that

keep lower layers frozen during early epochs are special cases of this.

The framework demonstrates that feature extraction and fine-tuning are not two distinct

choices, but two extremes of a spectrum. One part that has not been analyzed previously

is the role of the task-specific parameters θT . In Section 7.2, we find that adding many
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task-specific parameters with fine-tuning achieves worse performance, while adding many

parameters with feature extraction is beneficial.

3.3.4 Lifelong learning

The previous sections focused on sequential transfer learning with one source and one

target task. Sequential transfer learning, however, is not limited to two tasks. When

applied to many tasks, it is commonly known as lifelong learning [Thrun, 1996, 1998].

Lifelong learning has received occasional interest in the NLP community. Learning to

learn and meta-learning are sometimes used synonymously. Here, we will treat lifelong

learning as the high-level setting, which refers to learning multiple tasks in sequence and

discuss meta-learning as a method to achieve this.

In sequential transfer learning with two tasks, there is a clear distinction between source

and target task. We want to leverage information from the source task to perform well

on the target task. In lifelong learning, there is no such distinction. We are provided

with T tasks in sequential order and we learn each one after the other. Crucially, we

assume access to some form of knowledge base (KB), where we store the information

acquired for each task and which we can use to solve the next task. According to Thrun

[1998], “the acquisition, representation and transfer of domain knowledge are the key

scientific concerns that arise in lifelong learning”. Silver et al. [2013] present a general

review of lifelong learning and outline essential ingredients, challenges, and benefits. In

contrast, we focus on approaches with application to NLP.

A lifelong learning model consists of two core components: a knowledge base and a

learner. The knowledge base stores information of the past tasks and is used by the

learner to solve the next task. Approaches typically store this information in one of three

forms, from low-level to high-level:

1. Functional: Individual training examples for each task are stored. This allows us

to treat the lifelong learning setting as multi-task learning, but does not enable

abstraction over past tasks. In addition, this setting becomes more expensive as

new tasks are added. Nevertheless, due to its simplicity, it is the most commonly

used setting.

2. Relational: Information is stored in the form of concepts, patterns, and relations

extracted from previous tasks. This enables much higher-level abstraction, but

requires models that can reason over relations.

3. Representational: Past information is stored in the form of parameters learned

by a model. These can also be past hidden states of the model on data of previous
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tasks, although the number of hidden states increases linearly with the number of

examples.

Memory-based approaches In a classic paper, Thrun [1996] presents several algo-

rithms for a simple lifelong learning problem where each task is a binary classification

task that involves identifying a particular concept in an image, such as a dog. Each task

aims to learn a function fT from a training set XT , which contains positive and negative

examples of the concept. The training sets of the previous tasks X1, . . . , XT−1 are called

support sets as they can aid with learning fT . In a first proposed approach, the supports

sets are used to learn a representation that minimizes the distance between examples of

the same concept and maximizes the distance between a concept and a negative example

using a max-margin loss.

In a second approach, they learn a distance function that given two examples returns

whether they belong to the same concept. In both cases, inference is done with a

memory-based approach, such as k-nearest neighbours, with the KB storing all support

sets. In these formulations, for a new task, a new representation or function needs to be

learned from scratch, which make these methods similar to multi-task learning.

Thrun and O’Sullivan [1996] propose to cluster tasks. To this end, they determine how

well task-specific distance metrics transfer across tasks via cross-validation. They then

maximize the average performance of distance metrics across task clusters, with each

task cluster having one distance metric. For a new task, the most related task cluster is

identified and the distance metric of that cluster is used.

The early approaches proposed by Thrun [1996] learn a metric space and then leverage

non-parametric memory-based models such as k-nearest neighbours for inference. Such

approaches are very similar to models relying on attention [Bahdanau et al., 2015] and

memory-based neural networks [Weston et al., 2015, Kumar et al., 2016a].

In this vein, Vinyals et al. [2016] propose matching networks, a neural network-based

model that learns to embed concepts into a joint space for few-shot learning. It then uses

attention over the examples in the support set of each class to identify a new image. Snell

et al. [2017] propose prototypical networks, an extension of the former model, which uses

prototypes rather than the entire support sets for inference. The prototypes are defined

simply as the mean of the embeddings of the examples in the support set of each class.

Ren et al. [2018] extend prototypical networks to the semi-supervised setting. Matching

networks and prototypical networks are also often cited as examples of meta-learning,

which will be discussed in the end of this section.



Transfer Learning 82

Kaiser et al. [2017] propose a memory module consisting of key-value pairs that can

be added to different models for lifelong learning. The memory module thus effectively

functions as the KB, which stores relevant information of past tasks. Lopez-Paz and

Ranzato [2017] similarly propose to store examples of past tasks in an episodic memory.

When training the model on a new task, they place inequality constraints on the model

to ensure that the adapted model does not perform worse on data of the past tasks.

Sprechmann et al. [2018] also store examples in a memory. At test time, the memory is

used to dynamically update the parameters of the model.

Rusu et al. [2016] propose progressive networks, which consists of multiple “columns” of

neural networks. Every column is a neural network that is trained on a task and then

frozen. A new column is added for each new task, with lateral connections connecting

each layer in the new column with the preceding layer of all previously learned columns.

The model can be seen as a multi-task learning model that allows each task to converge

before moving on to a new task (§3.3.1); alternatively, it can be seen as an extension of

feature extraction to the lifelong setting. A deficiency of progressive networks is that

the number of parameters scales linearly with the number of tasks. Schwarz et al. [2018]

mitigate this weakness with Progress & Compress, which learns in a cycle of active

learning (progression) followed by consolidation (compression). Rather than having a

column for each previous task, the approach uses a single network as a KB and an active

column that learns the current task. After learning, the active column is distilled into

the KB with a modified version of elastic weight consolidation [Kirkpatrick et al., 2017].

Lifelong learning as online multi-task learning Lifelong learning can also be seen

as an online form of multi-task learning. In this sense, many lifelong learning methods

extend or build upon classic multi-task learning approaches (§3.2.5.2).

Ruvolo and Eaton [2013] propose an Efficient Lifelong Learning Algorithm (ELLA), an

online variant of the multi-task learning model by Kumar and Daumé III [2012], which

assumes a small number of latent basis tasks. The parameter vector of each task is then

modelled as a linear combination of these. The optimization in this model, however,

depends on the training examples of all tasks. Ruvolo and Eaton [2013] remove this

dependency by approximating the optimization with a second-order Taylor expansion.

In addition, task vectors are only updated when training data of the corresponding task

is encountered. Ammar et al. [2014] extend this approach to policy gradient methods in

reinforcement learning.

Lifelong information extraction A particular application area where lifelong learn-

ing has been applied in NLP is the continuous extraction of information from web corpora.
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Banko and Etzioni [2007] propose an agent that leverages OpenIE and WordNet and

learns in several steps: Given a concept, it uses extraction patterns to obtain new concept

classes. In a second abstraction step, it seeks to derive more general relations for the facts

extracted with OpenIE and the available concepts. In addition, they propose several

search strategies to guide the agent towards which concepts and relations it should

explore next.

In another case study of lifelong learning, Carlson et al. [2010] propose a “never-ending

language learner” (NELL) that continuously learns to extract more information from

the web. The extracted information is stored in a KB, which is initially seeded with

an ontology and examples for each predicate. Facts are extracted from the web using

different subcomponents and only the most supported facts are integrated into the KB.

At the next iteration, the subcomponents are retrained using the updated KB and used

to extract more facts in a semi-supervised way. As in semi-supervised learning (§3.4.4),

it is important that models make uncorrelated errors and that they rely on different

views. This method is also similar to multi-task learning, as many functions are learned

jointly. Mitchell et al. [2018] extend NELL with word and relation embeddings, which

are used in a separate relation classification module.

Lifelong sentiment analysis Another common application area for lifelong learning

in NLP is sentiment analysis. Chen et al. [2015] propose a Naive Bayes approach for

lifelong sentiment analysis. In their KB, they store how often each word occurred in

positive and negative documents in the past domains. The KB also counts for each word

the number of tasks where it is more likely to have positive or negative sentiment. This

information is then used to regularize the Naive Bayes model when training on a new

task.

For aspect-based sentiment analysis, Wang et al. [2016] apply a lifelong topic modelling

method [Chen and Liu, 2014]. The method consists of three steps: LDA is first run to

produce a set of prior topics. In a second step, prior knowledge sets are mined for each

topic. Finally, the prior knowledge sets are used to guide the generation of better topics.

Wang et al. [2016] use this method to identify similar aspects in past domains and mine

terms that frequently co-occur across multiple domains, which are then incorporated into

the inference process. For aspect extraction, Liu et al. [2016a] propose to first extract

an initial set of aspects using high-precision rules. In a second step, they recommend

additional aspects extracted with high-recall rules based on similarity and association.

Shu et al. [2017] adapt a CRF for aspect extraction. They use patterns of common

dependency relations as features that occur with aspects seen in past domains. Once the
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model learns about new aspects, new patterns can be generated, which can help with

extracting new aspects.

Meta-learning Meta-learning usually trains a model that is a level higher than the

model that is typically optimized. A common strategy for meta-learning is to have a

separate controller that modulates the learning of the base model.

Andrychowicz et al. [2016] apply this paradigm to optimization and train an LSTM

controller to perform gradient descent. Ha et al. [2017] propose a “hypernetwork” that

is trained to generate the weights of a neural network that is applied to another task.

Chen et al. [2018] use a shared meta-LSTM to control the parameters of private layers

in multi-task learning, while Wolf et al. [2018] use a higher-level LSTM to update the

weights of a language model. These approaches can also be thought of as having a

hierarchical model that reasons on different time-scales or abstraction levels. Such

weights are sometimes referred to as fast weights and slow weights [Ba et al., 2016] in

analogy to synapses operating at many different time-scales.

Another recently proposed strategy is to perform a form of meta-optimization, which

learns model parameters that allow for more effective learning of a new task. Essentially,

this strategy arrives at a parameter initialization that can easily be fine-tuned on a new

task. The first approach in this line is model-agnostic meta-learning [MAML; Finn et al.,

2017]. MAML, however, requires differentiating through the optimization process, which

makes it costly for tasks with many update steps. Nichol and Schulman [2018] propose

Reptile, a more scalable variant that repeatedly samples a task, trains on it, and then

moves the initialization closer to the trained weights of that task. MAML has been

applied to semantic parsing [Huang et al., 2018] and low-resource machine translation

[Gu et al., 2018] in NLP.

Sequential transfer learning with fine-tuning can similarly be seen as aiming to find a

good initialization that facilitates learning the target task. While meta-learning aims to

learn such an initialization explicitly by repeatedly simulating the adaptation scenario,

pretraining implicitly finds such an initialization by training with a general-purpose

pretraining task. Meta-learning approaches are mainly applied to few-shot learning, as

repeatedly fine-tuning on large datasets is expensive. In addition, in order to find an

initialization that is applicable to an arbitrary target task, a diverse number of tasks

from the environment need to be sampled during training, which is costly as it requires

first to create relevant tasks and then to gather annotations.
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3.3.5 Evaluation scenarios

In sequential transfer learning, in most cases the most important metric is the performance

on the target task or forward transfer [Lopez-Paz and Ranzato, 2017]. In the lifelong

setting, forward transfer applies to all future tasks. Positive forward transfer takes place

when the performance on a previous task improves the performance on a future task. We

observe negative forward transfer also known as negative transfer if the past experience

impedes the learning of a new task.

Negative transfer is a key problem in domain adaptation [Rosenstein et al., 2005] where

transfer between dissimilar domains e.g. according to proxy A distance (§3.4.2.1) leads

to worse performance [Blitzer et al., 2007]. As such, it is a key obstacle that we seek to

overcome by selecting more relevant and informative training examples (§4).

Negative transfer is also common in multi-task learning. Alonso and Plank [2017] for

instance found MTL with hard parameter sharing only useful in one out of five tasks. To

this end, we design our multi-task learning models to enable flexible sharing of parameters

so that even if tasks are not similar, performance will not deteriorate (§6). As a result,

our models outperform single-task learning in almost all cases.

In some settings, we also care about how well we perform on the previous tasks, which

is known as backward transfer. We get positive backward transfer if we do better on a

previous task after having trained on a new task. In contrast, negative backward transfer

takes place when we do worse on previous tasks after having trained on new tasks. This

phenomenon is a common occurrence when training on multiple tasks and is also known

as catastrophic forgetting.

3.3.6 Summary

In this section, we have described sequential transfer learning, which is—due to its ease of

use—the prevalent form of transfer learning with neural networks. We have discussed the

pretraining and adaptation phases as well as sequential transfer learning with multiple

tasks. The reviewed evaluation metrics are relevant for many other transfer learning

scenarios. Mitigating negative transfer plays an important role in domain adaptation,

which aims to bridge dissimilar domains and will be discussed in the next section.
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3.4 Domain adaptation

Domain adaptation is useful when applying machine learning models to the real world.

In the following, we will study the three main types of domain adaptation methods that

have been applied in NLP:

1. representation approaches (§3.4.2);

2. data weighting and selection methods (§3.4.3);

3. and self-labelling approaches (§3.4.4).

Domain adaptation is usually studied in the setting with a single source domain. However,

approaches for dealing with multiple source domains have also been proposed (§3.4.5).

3.4.1 Introduction

In machine learning training and test data are typically assumed to be i.i.d. (§2.2.4).

This assumption, however, breaks down when models are applied to the real world where

the distribution of the data differs from the data seen during training. This gives rise to

the problem of domain adaptation, which deals with adapting from a training distribution

to a different distribution at test time.

Most existing datasets do not accurately evaluate the robustness of our models as they

only challenge a model’s ability to interpolate; with a sufficient number of examples, a

model can be expected to do well on examples that are similar to the ones it has seen

before. In order to test how well a model actually generalizes, it needs to be able to

extrapolate to examples that are outside of its training distribution.

For an overview of classic domain adaptation approaches, we refer the reader to the

surveys of Jiang [2008] and Margolis [2011]. For a more recent overview of domain

adaptation for computer vision, refer to [Patel and Gopalan, 2015] and [Csurka, 2017].

In this section, we will focus mainly on domain adaptation for NLP.

Recall that in domain adaptation, the marginal probability distributions PS and PT of the

source domain DS and target domain DT are different. Compared to sequential transfer

learning, domain adaptation seeks to learn representations that are beneficial for a

particular target domain rather than being useful in general. Whereas sequential transfer

learning requires access to labelled instances of the target task, domain adaptation

is generally studied in the unsupervised setting where a sufficient number of labelled

examples in the source domain and only unlabelled examples in the target domain are

assumed to be available. A subset of methods study the supervised case where a small

number of labelled target instances are available. Domain adaptation techniques have
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also been applied to the cross-lingual setting where the feature spaces between the two

domains are different, which is also known as heterogeneous domain adaptation [Zhou

et al., 2014, 2015].

3.4.2 Representation approaches

Representation approaches try to change the underlying representation of the data.

Approaches either try to identify features that are common in both domains based

on a notion of domain similarity (§3.4.2.1) or try to represent both data in a shared

low-dimensional space (§3.4.2.2). Furthermore, recent work has seen a combination of

both strategies.

3.4.2.1 Distribution similarity approaches

The key tenant of distribution similarity approaches is to make the feature distributions

of source and target domains as similar as possible. A naive way to achieve this in

NLP is to simply ignore features that do not occur in the target data. Aue and Gamon

[2005] and Margolis et al. [2010] apply this strategy to sentiment analysis and speech

act classification respectively. Dredze et al. [2007] did not find the approach useful for

parsing.

Many of the distribution similarity approaches rely on a measure of distance between the

source and target domain. Here, we briefly review the most commonly used measures.

For clarity, we redefine the KL and JS divergences (see Equations 2.23 and 2.24) in terms

of source and target domain distributions. Recall that in practice, we can approximate

the expectation Ex∼P [x] with the sample mean 1
|X|
∑

x∈X x (see Equation 2.11).

Kullback-Leibler (KL) divergence The Kullback-Leibler divergence between a

source domain distribution and a target domain distribution PT is defined as follows:

DKL(PS ||PT ) = Ex∼PS [logPS(x)− logPT (x)]. (3.13)

The KL divergence is a special case of an f -divergence, a general divergence measure

between probability distributions, also known as Csiszár’s f -divergence [Csiszár, 1967] or

Ali-Silvey distance [Ali and Silvey, 1966].
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Jensen-Shannon (JS) divergence The Jensen-Shannon divergence is a symmetric

version of the KL divergence:

JSD(PS ||PT ) =
1

2
DKL(PS ||M) +

1

2
DKL(PT ||M) (3.14)

where M = 1
2(PS + PT ).

Rényi divergence The Rényi divergence [Rényi, 1961] is defined as:

DR =
1

α− 1
Ex∼PS [logPS(x)α − logPT (x)α−1]. (3.15)

where 0 < α <∞ and α 6= 1. In the limit α→ 1 the Rényi divergence is equivalent to

the KL divergence. The above divergence measures are parametric, i.e. they require

assumptions about the functional form of the underlying distribution in the form of

parameters.9 In comparison, the following measures require no such assumptions.

Maximum Mean Discrepancy (MMD) MMD [Borgwardt et al., 2006, Gretton

et al., 2012] is a distance function between the sample means of two distributions PS and

PT based on a mapping to a Reproducing Kernel Hilbert Space (RKHS) H. Approaches

generally employ an empirical estimate of the MMD, which is defined as:

MMD(PS , PT ) =
∥∥∥Ex∼PS [f(x)]− Ex∼PT [f(x)]

∥∥∥
H

(3.16)

where f(·) : X → H, i.e. f(·) maps an example x to the RKHS. In practice, the mapping

is obtained using an appropriately chosen kernel such as an RBF kernel [Bousmalis

et al., 2016] or a neural network [Tzeng et al., 2014]. In this case, MMD can be seen as

measuring the distance between the means of embeddings of XS and XT .

Wasserstein distance The Wasserstein distance [Arjovsky et al., 2017] or Earth

Mover’s distance measures the minimum “cost” of transforming one distribution into the

other. It can be approximated as follows:

W (PS , PT ) = maxEx∼PS [f(x)]− Ex∼PT [f(x)] (3.17)

where the function f(·) can again be parameterized by a neural network. The theory

requires f to be a 1-Lipschitz continuous function, i.e. a function with absolute value

bounded by 1. In the original paper, this is achieved by clipping the weights. Gulrajani

9They can be approximated in non-parametric ways, e.g. using k-nearest neighbours [Poczos et al.,
2011].
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et al. [2017] improve on this by directly constraining the gradient to be close to 1. MMD

and Wasserstein distance look similar and are—in fact—both members of the same family

of integral probability metrics [Müller, 1997]10.

Proxy A distance The A distance [Kifer et al., 2004] is defined as follows:

dA(PS , PT ) = 2 sup
A∈A
|PS(A)− PT (A)| (3.18)

where X is a feature space and A is a collection of subsets of X . Intuitively, the A distance

is the largest change in probability of a subset from source to target. Ben-David et al.

[2007] show that computing the A distance for a finite sample is the same as minimizing

the empirical risk of a classifier that is trained to differentiate between examples drawn

from PS and PT . In practice, they compute a proxy A distance, which they define as:

pdA(PS , PT ) =
100

|XS |+ |XT |
∑

x,y∈XS+XT

1− Lδ(x, y) (3.19)

where Lδ is the Huber loss (see Equation 2.47) and y = 1 if x ∈ XS and y = 0 if x ∈ XT .

If the loss is large, the proxy A distance is close to 0 or negative, which indicates that

the domains are indistinguishable using a linear classifier. If the domains are maximally

different, the loss is 0 and the proxy A distance is 100; a classifier is thus easily able to

tell them apart.

Blitzer et al. [2007] use the proxy A distance to characterise domains for sentiment

analysis and find a correlation with the adaptation loss. Intuitively, the more distant

two domains are in terms of a classifier’s ability to differentiate them, the harder it is

to adapt from one to the other. Ben-David et al. [2007] use the proxy A distance to

analyse the representations learned by different methods. They conclude that a good

domain adaptation method induces a representation that maximally confuses a domain

classifier. This desideratum of maximal confusion has become more influential with

recent deep learning-based methods, as we will see in the next section. Ravi et al. [2008]

use different domain characteristics to predict the performance of a parser on a target

domain, while Van Asch and Daelemans [2010] compare different distance metrics for

predicting cross-domain performance. They find that Rényi divergence with α = 0.99

performs best.

For distributional similarity approaches, the most common strategy is to use a repre-

sentation that minimizes the distance between the representations of the two domains,

10Integral probability metrics use a class of witness functions to distinguish between PS and PT
[Binkowski et al., 2018]. For Wasserstein distance, this is the class of 1-Lipschitz functions, while for
MMD this is the unit ball in H.
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while at the same time maximizing the performance on the source domain data. Satpal

and Sarawagi [2007] use this strategy to select features for conditional random fields,

with the distance measure being the sum of distances between sample means for each

feature. Arnold et al. [2007] use a similar distance measure, but scale rather than penalize

features in maximum entropy classifiers. Pan et al. [2008], Chen et al. [2009], and Pan

et al. [2011] minimize the MMD between the source and target feature distributions.

3.4.2.2 Latent feature learning

Latent feature learning methods aim to project the data into a low-dimensional space

with the intention that this space makes the domains more similar as it is calculated

based on the features of both the source and the target domain. Many approaches [Ando,

2004, Huang and Yates, 2009, Ciaramita and Chapelle, 2010, Pan et al., 2010] have used

SVD for this projection, with mixed results. Guo et al. [2009] use LDA, while Blitzer

et al. [2009] use CCA.

Blitzer et al. [2006, 2007] introduce structural correspondence learning (SCL). SCL

applies block-sparse multi-task learning models (§3.2.5.1), specifically the idea of [Ando

and Zhang, 2005a,b] to use multiple auxiliary classifiers to domain adaptation. In SCL,

each task involves the prediction of a pivot feature with a linear classifier whose weights

are stored in the column of a matrix. These pivot features can either be manually

defined or automatically selected based on high mutual information with the label.

SVD is then performed on the resulting matrix and the top singular vectors are used

as the representation. SCL has been applied to cross-lingual sentiment classification

[Prettenhofer and Stein, 2010, Wei and Pal, 2010], conversation summarization [Sandu

et al., 2010], and entity recognition [Ciaramita and Chapelle, 2010], among other tasks.

Tan and Cheng [2009] and Ji et al. [2011] proposed improved versions of SCL based

on feature and example weighting and learning separate predictors for each domain

respectively.

In another classic method, Daumé III [2007] proposes EasyAdapt, which uses source

and target domain kernel functions φS(x) and φT (x) to map the representation of an

example x to an augmented embedding space:

φS(x) = 〈x,x,0〉, φT (x) = 〈x,0,x〉 (3.20)

Both domains share the first part of the embedding space, while the second and third

part are specific to source and target domain respectively. This should enable the model

to identify both shared and domain-specific features. While being appealing due to its

simplicity, the approach is restricted to the supervised domain adaptation setting. In an
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earlier method, Daumé III and Marcu [2006] augment the feature space of maximum

entropy models by adding automatically learned indicator variables that indicate whether

the example was drawn from the in-domain or the general-domain distribution. Daumé

III et al. [2010] later extend EasyAdapt to the unsupervised setting by requiring that

source and target hypothesis agree on unlabelled data, which is achieved by the feature

map φU (x) = 〈0,x,−x〉.

Sun et al. [2016] offer another pre-processing method that is applicable to unsupervised

domain adaptation. Their approach aligns the distributions of source and target features

by aligning the covariances. It then whitens the source data and re-colors it with the

target covariance—both common preprocessing methods in CV. Lynn et al. [2017] propose

a continuous extension of EasyAdapt to adapt to real-valued user factors. In a similar

user-centric setting, Michel and Neubig [2018] propose to adapt the bias of the output

softmax to a particular user for machine translation.

Dai et al. [2009] and Pan et al. [2010] both construct a graph based on co-occurrence

statistics of the features and perform spectral clustering on this graph to induce a new

feature representation. Ponomareva and Thelwall [2012] compare two graph algorithms,

one based on node ranking and the other solving a graph optimisation problem and find

that they are competitive with state-of-the-art approaches.

Neural network-based methods Glorot et al. [2011] proposed the first approach that

applied a deep neural network to learn a common representation for domain adaptation.

Their proposed model is a stacked denoising autoencoder (SDA) that is trained to

reconstruct the input example. In a second step, a linear SVM is trained on the latent

representation of the source domain training examples. Chen et al. [2012] proposed a

marginalized denoising autoencoder (MDA) to address the high computational cost of

the original model. Zhou et al. [2016a] propose to enforce a notion of cycle consistency

(§3.2.6.1) by learning a transformation from target domain examples to the source

domain and vice versa in a deep autoencoder. Ziser and Reichart [2017] combine SCL

and autoencoders. The model learns to encode non-pivot features so that pivot features

can be reconstructed from the induced representation.

Several approaches present more task-specific solutions. Schnabel and Schütze [2014]

proposed distributional domain-agnostic features for part-of-speech tagging. Yin et al.

[2015] propose to update the distributional features of the previous model in an online

setting as new data comes in. Yang and Eisenstein [2014] propose a dropout variant that

drops out all but one feature per template for part-of-speech tagging. Søgaard [2013]

employs a similar mechanism in a Structured Perceptron where an adversary corrupts

the most predictive features for part-of-speech tagging. Ma et al. [2014] use a neural
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network to learn a latent representation from both words as well as sparse features for

part-of-speech tagging. Qu et al. [2016] propose a model for NER that not only adapts

to a domain but also to a label mismatch. They first learn a CRF on source data and

then train a neural network that learns the correlation between source and target types

for NER.

The most influential recent direction has been to combine the minimization of the

distance between two domains of distributional similarity approaches with the embedding

capabilities of latent feature learning approaches. An early approach in this line is

by Tzeng et al. [2014] who add a bottleneck layer to an existing architecture. The

bottleneck layer is then regularized to minimize the MMD between source and target

domain representations. A similar approach by Zhuang et al. [2015] minimizes the KL

divergence between the representations of source and target domain learned with a deep

autoencoder. Wang et al. [2018b] minimize a label-aware extension of MMD between

the source and target domain hidden representations in an LSTM for medical NER. He

et al. [2018b] minimize the MMD between the source and target domain and then apply

semi-supervised learning techniques to the domain-invariant representation.

Domain-adversarial approaches The most widely used approach in this line employs

an adversarial loss [Ganin and Lempitsky, 2015, Ganin et al., 2016]. It can be seen

as a multi-task learning model where an auxiliary classifier is trained to predict the

domain of the input example (§3.2.6.1). Importantly, the gradients of this classifier are

reversed. This encourages the model to learn representations that will maximally confuse

the classifier and will not allow it to differentiate between the domains. Csurka and

Chidlovskii [2016] propose to adapt this domain-adversarial loss for use with denoising

autencoders so that it can be computed in closed form with MDA.

The domain-adversarial loss has been used for many NLP tasks, such as relevancy

detection of social media posts during a crisis [Alam et al., 2018], language identification

[Li et al., 2018a], relation extraction [Fu et al., 2017], and duplicate question detection

[Shah et al., 2018]. Minimizing the model’s loss while confusing the domain classifier

is similar to the minimax game in generative adversarial networks [Goodfellow et al.,

2014], which can be seen as minimizing the JS divergence between source distribution PS

and target distribution PT [Arjovsky et al., 2017]. Alternatively, a similar result can be

achieved by minimizing the Wasserstein distance between the source and target domain

distributions, which can lead to more stable training [Shah et al., 2018].

Bousmalis et al. [2016] introduce an orthogonality constraint that has found frequent

application in later work. This constraint encourages independence between domain-

specific or private and general or shared representations in the encoder. Kim et al. [2017a]
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combine many of the previous advances, specifically the autoencoder reconstruction loss,

the domain-adversarial loss, and the orthogonality constraint in a single BiLSTM. Liu

et al. [2018b] similarly combine adversarial training, attention, self-attention, and a

memory network that stores training examples.

Building on the model by Bousmalis et al. [2016], Li et al. [2018a] propose a domain-

generative model that computes the private representation using a single CNN rather

than several domain-specific CNNs. In addition, the private representation is used to

predict the domain, which further encourages a split between domain-specific and general

aspects of the representation.

Multi-task learning Much of the work on domain adaptation is related to ideas from

multi-task learning (§3.2.5.2). The framework of Daumé III [2007] is similar to regularized

multi-task learning algorithm [Evgeniou and Pontil, 2004], which represents each task

parameter as a sum of a mean parameter and its deviation from this mean. Lu et al.

[2016] propose a framework that generalizes both and enables tuning of hyper-parameters

to avoid negative transfer. Inspired by this framework, Lu and Zheng [2017] propose

to learn cross-domain word embeddings by first learning embeddings for the source

domain and then learning target domain word embeddings by encouraging words that

are frequent in both domains to have similar representations. Kim et al. [2016] propose

neural extensions of EasyAdapt that train multiple LSTMs where one captures global

patterns, while the others capture domain-specific information.

Multi-task learning is often employed as a useful tool in domain adaptation, for instance

by using an auxiliary domain classifier [Ganin and Lempitsky, 2015]. SCL in particular

uses an array of auxiliary classifiers. Yu and Jiang [2016] propose a model inspired

by SCL that uses the prediction of whether the input sentence contains a positive or

negative domain-independent sentiment word as auxiliary tasks during learning.

In many cases, the boundaries between supervised domain adaptation and multi-task

learning become blurred as multi-domain datasets originally designed for domain adap-

tation [Blitzer et al., 2006] are appropriated for multi-task learning and domains are

treated as separate tasks [Long and Wang, 2015, Liu et al., 2017]. Such multi-task models,

however, cannot be easily extended to unsupervised domain adaptation.

3.4.3 Weighting and selecting data

Rather than assigning a measure of importance to particular features or learning a

new representation that focuses on particular aspects of the domains, other approaches

perform weighting (§3.4.3.1) and selection (§3.4.3.2) at the instance level.
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3.4.3.1 Instance weighting

In machine learning, we typically minimize the expected error of some loss function L
with regard to the empirical distribution of our data (§2.2.2):

J(θ) = Ex,y∼Pdata
L(x, y, θ) =

n∑
i=1

Pdata(x, y)L(x, y, θ). (3.21)

In the domain adaptation setting, we would like to do the same for examples sampled

from the target domain:

J(θ) =

n∑
i=1

PT (x, y)L(x, y, θ). (3.22)

However, we do not have access to labelled examples from the target domain and only

have examples from the source domain at our disposal. We can instead expand Equation

3.22 by multiplying and dividing by the empirical source domain distribution PS(x, y):

J(θ) =
n∑
i=1

PT (x, y)

PS(x, y)
PS(x, y)L(x, y, θ). (3.23)

We can now write this again as an expectation over the empirical source domain distri-

bution:

J(θ) = Ex,y∼PS
PT (x, y)

PS(x, y)
L(x, y, θ). (3.24)

For a principled instance weighting method for domain adaptation, we would thus need to

weight each example from the source domain with PT (x,y)
PS(x,y) . In practice, exact computation

of this term is infeasible, mainly because no target domain examples are available to

compute PT (x, y). Existing approaches thus make simplifying assumptions by assuming

that the conditional probability distributions between source and target domain are

equal. In particular, one category of approaches tackles the scenario of class imbalance

and assumes PT (X | Y ) = PS(X | Y ). The other category deals with covariate shift,

where PT (Y |X) = PS(Y |X). These approaches are reviewed in [Jiang, 2008] and will

not be discussed further here as they deal with a weaker form of domain adaptation.

For the more interesting setting where PT (Y | X) differs from PS(Y | X), Jiang and

Zhai [2007] propose a set of heuristics, which, however, require access to some labelled

instances of the target domain. They first propose to remove “misleading” source domain

examples where PT (y |x) differs from PS(y | x) too much. Secondly, they propose to

assign higher weight to the labelled target instances.

Other instance weighting approaches compute the weights for each example by minimizing

the distance between the weight-corrected source domain and target domain examples.
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Huang et al. [2007] minimize MMD, while Sugiyama et al. [2008] and Tsuboi et al. [2009]

minimize the KL divergence. Similar to the computation of the proxy A distance, Bickel

et al. [2007] use the probabilities produced by a domain classifier as instance weights. In

their case, both the domain classifier and the task model are learned jointly. Søgaard

and Haulrich [2011] and Plank et al. [2014] similarly use instance weights based on the

probabilities of a domain classifier, which, however is trained separately. Foster et al.

[2010] weight phrase pairs in MT based on features that indicate whether they belong to

general language or are similar to the target domain.

3.4.3.2 Instance selection

Instance weighting approaches can be seen as performing “soft” data selection. Examples

with a weight w = 0 are ignored, w = 1 means normal treatment, and w > 1 and w < 1

indicates increased or reduced attention respectively. Imposing a hard selection is both

more efficient and makes it easier to ignore examples that are potentially harmful. Most

of the discussed approaches select examples by first obtaining a weight or relevance score

for each example as in instance weighting. They then define a threshold and discard all

examples whose score is lower than this threshold.

Plank and van Noord [2011] show that using similarity metrics based on topic represen-

tations works well for data selection for parsing. They find that JS divergence is the

best similarity metric for word-based selection and that automatic selection performs

better than selection based on human gerne and topic labels for WSJ data. Remus [2012]

similarly uses JS divergence for data selection for sentiment analysis.

Xia et al. [2015] use PCA to obtain a representation of the data. They then use Hotelling’s

T 2 statistic [Hotelling, 1992], which indicates how much a sample deviates from the PCA

space, as distance metric to select examples. In [Ruder et al., 2017a], we study different

data selection metrics and representations for sentiment analysis. In [Ruder et al., 2017b],

we propose a new data selection metric inspired by the clustering assumption in semi-

supervised learning. We define the maximum cluster difference (MCD) as the absolute

difference in similarity of an example’s representation h with the cluster centroids of

the positive and negative classes cp and cp, i.e. the mean representation of all examples

assigned to the respective cluster by the model:

MCD = |cos(cp, h)− cos(cn, h)|. (3.25)

The measure is motivated by the observation that incorrect predictions are frequent

along the decision boundary—where the distance to both cluster centroids is small (low

MCD)—but frequent along cluster edges—where the distance to the corresponding cluster
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centroid is small but the distance to the other cluster centroid is large (large MCD). Guo

et al. [2018] use the same metric to weight their mixture-of-experts model. In Section

4.1, we go beyond hand-crafted measures and automatically learn a data selection metric

using Bayesian Optimization.

Data selection is particularly common in machine translation. Moore and Lewis [2010] use

the difference between the cross-entropies of domain-specific and general n-gram language

models as the score for each sentence. Axelrod et al. [2011] propose to additionally

sum cross-entropy differences over each side of the corpus. Duh et al. [2013] use neural

language models instead. Mirkin and Besacier [2014] explore data selection techniques

and propose methods to address both similarity and coverage considerations. More

recently, van der Wees et al. [2017] investigate data selection for neural MT and propose

to vary the selected data between training epochs. Language model perplexity was also

used to select training data for dependency parsing [Søgaard, 2011]. In general, there are

fewer studies on data selection for other tasks, e.g., constituent parsing [McClosky et al.,

2010], dependency parsing [Plank and van Noord, 2011, Søgaard, 2011] and sentiment

analysis [Remus, 2012].

Both instance weighting and instance selection are closely related to semi-supervised

learning, in particular self-labelling approaches, which will be discussed in the next section.

While instance weighting and selection are typically performed as a pre-processing step,

self-labelling approaches aim to select useful examples and estimate likely labels jointly

during training.

3.4.4 Self-labelling approaches

Semi-supervised learning, learning from both labelled and unlabelled data has a long

history. For an overview, refer to [Zhu, 2005] and [Chapelle et al., 2006]. Self-labelling

approaches are a particular category of semi-supervised learning approaches that train a

model on labelled examples and then use this model to assign pseudo or proxy labels

to unlabelled examples. In the next iteration, these labels are then used to estimate a

better model.

While semi-supervised learning approaches generally assume i.i.d. data, many of them

have been used in scenarios with a domain shift. In the following section, we first detail

different self-labelling approaches and then explore how they have been applied to domain

adaptation.
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3.4.4.1 Self-training

Self-training [Yarowsky, 1995, McClosky et al., 2006a] is one of the earliest and simplest

approaches to semi-supervised learning. As the name implies, self-training leverages a

model’s own predictions on unlabelled data in order to obtain additional information that

can be used during training. Typically, unlabelled examples with confident predictions

(i.e. that have a probability higher than a threshold) are used as labelled instances during

the next iteration.

Self-training has been used for domain adaptation for parsing [Roark and Bacchiani, 2003,

McClosky et al., 2006b, Reichart and Rappoport, 2007, Sagae and Tsujii, 2007, Sagae,

2010, Petrov and McDonald, 2012], conversation summarization [Sandu et al., 2010],

named entity recognition [Ciaramita and Chapelle, 2010], sentiment analysis [He and

Zhou, 2011], and other tasks. Its main downside is that the model is not able to correct

its own mistakes and errors are amplified, an effect that is increased under domain shift.

Self-training is closely connected to the Expectation Maximization (EM) algorithm, which

we use for learning a bilingual lexicon (§5.2). In the domain adaptation setting, EM can

be used both as “soft” and “hard” EM, with the main difference being that hard EM

computes a hard assignment of hidden variables in the E step, whereas soft EM computes

a distribution. Dai et al. [2007] and Tan et al. [2009] both use EM for adapting a Naive

Bayes classifier for sentiment analysis. The former use the KL divergence between the

source and target distributions to determine the trade-off between source and target data

terms, while the latter gradually increase the weight of the target domain data.

3.4.4.2 Multi-view training

Multi-view training aims to train different models with different views of the data. These

views can differ in various ways such as in the features they use, in the architectures of

the models, or in the data on which the models are trained. Ideally the views complement

each other and the models can collaborate in improving each other’s performance.

Co-training Co-training [Blum and Mitchell, 1998] is a classic multi-view training

method, which makes comparatively strong assumptions. It requires that the data can

be represented using two conditionally independent feature sets and that each feature set

is sufficient to train a good model. After the initial models are trained on their respective

feature sets, at each iteration, only inputs that are confident according to exactly one

of the two models are moved to the training set of the other model. One model thus

provides the labels to the inputs on which the other model is uncertain.
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In the original co-training paper [Blum and Mitchell, 1998], co-training is used to classify

web pages using the text on the page as one view and the anchor text of hyperlinks on

other pages pointing to the page as the other view. Nigam and Ghani [2000] propose

Co-EM, a combination of EM and Co-training that alternately uses one model to assign

labels to all the unlabelled data, from which the second model learns from. As two

conditionally independent views are not always available, Chen et al. [2011b] propose

pseudo-multiview regularization in order to split the features into two mutually exclusive

views so that co-training is effective. To this end, pseudo-multiview regularization

constrains the models so that at least one of them has a zero weight for each feature.

This is similar to an orthogonality constraint [Bousmalis et al., 2016] (§3.4.2.2). A second

constraint requires the models to be confident on different subsets of the unlabeled data.

Chen et al. [2011a] use pseudo-multiview regularization to adapt co-training to domain

adaptation.

Democratic Co-learning Rather than treating different feature sets as views, demo-

cratic co-learning [Zhou and Goldman, 2004] employs models with different inductive

biases. These can be different network architectures in the case of neural networks or

completely different learning algorithms.

Tri-training Tri-training [Zhou and Li, 2005] is one of the best known multi-view

training methods. It can be seen as an instantiation of democratic co-learning, which

leverages the agreement of three independently trained models to reduce the bias of

predictions on unlabeled data. The main requirement for tri-training is that the initial

models are diverse, which can be achieved using different model architectures as in

democratic co-learning. The most common way to obtain diversity for tri-training is to

obtain different variations of the original training data using bootstrap sampling. The

three models are then trained on these bootstrap samples. An unlabelled data point

is added to the training set of a model if the other two models and agree on its label.

Training stops when the classifiers do not change anymore.

Søgaard and Rishøj [2010] and Søgaard [2010] incorporate disagreement into tri-training,

which they apply to both dependency parsing and POS tagging, while Huang et al. [2010]

use tri-training for word alignment in machine translation. In [Ruder and Plank, 2018], we

propose multi-task tri-training, a more efficient extension of tri-training. Self-training and

tri-training will be discussed further in Section 4.2 where we find that classic tri-training

is a strong baseline for neural semi-supervised learning with and without domain shift

for NLP and that it outperforms even recent state-of-the-art methods. In a similar vein,

Oliver et al. [2018] analyze several state-of-the-art semi-supervised learning models and
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find that performance degrades severely under a domain shift. More recently, Clark et al.

[2018] propose a similar approach that uses auxiliary classifiers with restricted views of

the input.

3.4.5 Multi-source domain adaptation

Multi-source domain adaptation is a special case of the regular unsupervised domain

adaptation setting where data from not one but multiple source domains are available

for training.

Combining source models The simplest method in this setting is to combine the

training data from all source domains to train a single model, which is used by Aue

and Gamon [2005] as a baseline. Alternatively, a separate model can be trained for

each source domain and the models can be combined. Training each base model can be

seen as a separate case of domain adaptation. For combining the classifiers, techniques

from ensembling can be used. Aue and Gamon [2005] use stacking [Džeroski and Ženko,

2004] for combination, which trains a meta-model on the outputs of the base models.

This approach is also used by Li and Zong [2008b]. Li and Zong [2008a] combine the

ensemble approach with self-training: The ensemble model is used to assign pseudo

labels to unlabelled examples, which are then used for training the base models during

subsequent iterations.

Mansour [2009] propose to use a linear combination of the base models weighted based on

the target distribution and provide theoretical guarantees for this rule. Chattopadhyay

et al. [2012] similarly combine base models based on a linear combination. Blitzer et al.

[2008] also propose learning bounds in the multi-source setting. Duan et al. [2009] learn

a least-squares SVM with additional smoothness and sparsity constraints on top of base

models. McClosky et al. [2010] train a meta-model that predicts the performance of

source domain models based on features of the domain. Given a new target domain,

the base models are then interpolated based on scores produced by the meta-model.

Bollegala et al. [2011] construct a sentiment sensitive thesaurus from multiple source

domains, which is then used to expand the feature vectors of a sentiment classifier.

Yoshida et al. [2011] propose a Bayesian model that associates each word with three

factors: its domain label, whether it is general or domain-specific, and its polarity. Wu

and Huang [2016] train both a shared sentiment model and domain-specific models using

multi-task learning. The model also integrates an automatically learned sentiment graph.

In a second step, a target domain model is learned based on the target domain’s similarity
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to the source domains. The final classifier then is a linear combination of the target

domain and the global shared model.

Neural network-based methods In more recent deep neural network approaches,

Yang and Eisenstein [2015] learn embeddings for each feature for POS tagging based

on an adapted SGNS. Each example is additionally associated with a vector of binary

domain attributes, which is crossed with each feature. Kim et al. [2017b] use attention

based on the base models’ representation for an example to compute their interpolation

weights. Su and Yan [2017] frame semantic parsing as paraphrasing by converting logical

forms to canonical natural language utterances. They then train a sequence-to-sequence

model with attention on the source domains and fine-tune it on target domain data.

Chen and Cardie [2018] extend the model of Bousmalis et al. [2016] to the multi-domain

case. Rather than being a binary predictor, the domain classifier now has a multinomial

output. In [Ruder et al., 2017b], we propose to weight source domain models with the

similarity of the corresponding source domain to the target domain. Similar to earlier

methods, Guo et al. [2018] express the target model as a mixture of source domain

experts. We finally learn to select instances from multiple source domains in Section 4.1.

3.4.6 Summary

In this section, we have reviewed the most common domain adaptation methods relying

on representations, instance weighting and selection, and semi-supervised learning. We

have also discussed how these approaches can be extended to incorporate multiple source

domains. Domain adaptation typically assumes that the feature spaces rely on the same

features. In NLP, this means that domains use words of the same language. In the

following section, we will describe the most common method for cross-lingual adaptation

where source and target domain belong to different languages.

3.5 Cross-lingual learning

∗ While different approaches for learning across languages are possible, we focus on

learning cross-lingual word embeddings, which has recently received increasing attention.

Cross-lingual representations of words enable us to reason about word meaning in

multilingual contexts and are a key facilitator of cross-lingual transfer when developing

natural language processing models for low-resource languages. In this section, we

∗This section is adapted from: Ruder, S., Vulić, I., and Søgaard, A. (2019). A Survey of Cross-lingual
Word Embedding Models. To be published in Journal of Artificial Intelligence Research.
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provide a comprehensive typology of cross-lingual word embedding models. We compare

their data requirements and objective functions. The recurring theme of this section is

that many of the models presented in the literature optimize for similar objectives, and

that seemingly different models are often equivalent and differ only in the optimization

strategy and hyper-parameters.

3.5.1 Introduction

The usefulness of monolingual word embeddings (§3.3.2.3) together with a public aware-

ness of the digital language divide1 and the availability of multilingual benchmarks Hovy

et al. [2006], Sylak-Glassman et al. [2015], Nivre et al. [2016] has made cross-lingual

transfer a popular research topic. The need to transfer lexical knowledge across languages

has given rise to cross-lingual word embedding models, i.e., cross-lingual representations

of words in a joint embedding space, as illustrated in Figure 3.9.

Many of the high-level ideas that motivate current research in this area pre-date the

popular introduction of word embeddings. This includes work on learning cross-lingual

word representations from seed lexica, parallel data, or document-aligned data, as well

as ideas on learning from limited bilingual supervision. We direct the reader to [Ruder

et al., 2019b] for an overview of the history of this area.

Cross-lingual word embeddings are appealing for two reasons: First, they enable us

to compare the meaning of words across languages, which is key to bilingual lexicon

induction, machine translation, or cross-lingual information retrieval, for example. Second,

cross-lingual word embeddings enable model transfer between languages, e.g., between

resource-rich and low-resource languages, by providing a common representation space.

Figure 3.9: A shared embedding space between two languages Luong et al. [2015]

1E.g., http://labs.theguardian.com/digital-language-divide/

http://labs.theguardian.com/digital-language-divide/
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Many models for learning cross-lingual embeddings have been proposed in recent years.

In this section, we will give a comprehensive overview of existing cross-lingual word

embedding models. We will show the similarities and differences between these approaches.

To facilitate this, we first introduce a common notation and terminology (§3.5.2). We

then motivate and present a typology of cross-lingual embedding models (§3.5.3). The

typology is based on the main differentiating aspect of cross-lingual embedding models:

the nature of the data they require, in particular the type of alignment across languages

(alignment of words, sentences, or documents), and whether data is assumed to be parallel

or just comparable (about the same topic). The typology allows us to outline similarities

and differences more concisely, but also starkly contrasts focal points of research with

fruitful directions that have so far gone mostly unexplored.

We discuss the three types of alignments for learning cross-lingual word embeddings in

each of the following sections:

1. word-level alignment (§3.5.4);

2. sentence-level alignment (§3.5.5);

3. and document-level alignment (§3.5.6).

We finally discuss evaluation scenarios (§3.5.7) and provide a conclusion (§3.5.8).

3.5.2 Notation and terminology

For clarity, we show all notation used throughout this survey in Table 3.1. Let Xl ∈
R|V l|×d be a word embedding matrix that is learned for the l-th of L languages where V l

is the corresponding vocabulary and d is the dimensionality of the word embeddings. We

will furthermore refer to Xl
i,:, that is, the word embedding of the i-th word in language l

with the shorthand xli or xi if the language is unambiguous. We will refer to the word

corresponding to the i-th word embedding xi as wi. Some monolingual word embedding

models use a separate embedding for words that occur in the context of other words. We

will use x̃i as the embedding of the i-th context word and detail its meaning in the next

section. Most approaches only deal with two languages, a source language S and a target

language T .

Some approaches learn a matrix WS→T that can be used to transform the word embedding

matrix XS of the source language S to that of the target language T . We will designate

such a matrix by WS→T ∈ Rd×d and W if the language pairing is unambiguous. These

approaches often use n source words and their translations as seed words. In addition,

we will use τ as a function that maps from source words wSi to their translation wTi :
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Symbol Meaning

X word embedding matrix
V vocabulary
d word embedding dimensionality

Xl
i,: / xli / xi word embedding of the i-th word in language l

x̃i word embedding of the i-th context word
wi word pertaining to embedding xi
S source language
T target language

WS→T / W learned transformation matrix between space of S and T
n number of words used as seed words for learning W
τ function mapping from source words to their translations

CS monolingual co-occurrence matrix in language S
C size of context window around a center word
C corpus of words / aligned sentences used for training

AS→T cross-lingual co-occurrence matrix / alignment matrix
sentSi i-th sentence in language S

ySi representation of i-th sentence in language S
docSi i-th document in language S

zSi representation of i-th document in language S
XS XS is kept fixed during optimization

L1︸︷︷︸
1

+ L2︸︷︷︸
2

L1 is optimized before L2

Table 3.1: Notation related to cross-lingual word embeddings

τ : V S → V T . Approaches that learn a transformation matrix are usually referred to as

offline or mapping methods.

Some approaches require a monolingual word-word co-occurrence matrix CS in language

S. In such a matrix, every row corresponds to a word wSi and every column corresponds

to a context word wSj . CS
ij then captures the number of times word wi occurs with

context word wj usually within a window of size C to the left and right of word wi. In a

cross-lingual context, we obtain a matrix of alignment counts AS→T ∈ R|V T |×|V S |, where

each element AS→T
ij captures the number of times the i−th word in language T was

aligned with the j-th word in language S, with each row normalized to 1.

Finally, as some approaches rely on pairs of aligned sentences, we designate sentS1 , . . . , sent
S
n

as sentences in source language S with representations yS1 , . . . ,y
S
n , and analogously refer to

their aligned sentences in the target language T as sentT1 , . . . , sent
T
n with representations

yT1 , . . . ,y
T
n . We adopt an analogous notation for representations obtained by approaches

based on alignments of documents in S and T : docS1 , . . . , doc
S
n and docT1 , . . . , doc

T
n with

document representations zS1 , . . . , z
S
n and zT1 , . . . , z

T
n respectively.

Different notations make similar approaches appear different. Using the same notation

across our survey facilitates recognizing similarities between the various cross-lingual
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word embedding models. Specifically, we intend to demonstrate that cross-lingual word

embedding models are trained by minimizing roughly the same objective functions, and

that differences in objective are unlikely to explain the observed performance differences

Levy et al. [2017].

The class of objective functions minimized by most cross-lingual word embedding methods

(if not all), can be formulated as follows:

J = L1 + . . .+ LL + Ω (3.26)

where Ll is the monolingual loss of the l-th language and Ω is a regularization term.

A similar loss was also defined by Upadhyay et al. [2016]. In this section, we will aim

to condense the difference between approaches into a regularization term and detail

underlying assumptions.

Importantly, how this objective function is optimized is a key differentiating factor

between approaches. As the joint optimization of multiple non-convex losses is difficult,

most approaches take a step-wise approach and optimize one loss at a time while keeping

certain variables fixed. In most cases, we will thus use a more explicit formulation such

as the one below, which makes clear in what order the losses are optimized and which

variables they depend on:

J = L(XS) + L(XT )︸ ︷︷ ︸
1

+ Ω(XS ,XT ,W)︸ ︷︷ ︸
2

(3.27)

The underbraces indicate that the two monolingual loss terms on the left, which depend

on XS and XT respectively, are optimized first. Subsequently, Ω is optimized, which

depends on XS ,XT ,W. Underlined variables are kept fixed during optimization of the

loss. The monolingual objectives are optimized by training one of several monolingual

embedding models (§3.3.2.3) on a monolingual corpus.

3.5.3 A typology for cross-lingual word embedding models

Recent work on cross-lingual embedding models suggests that the actual choice of

bilingual supervision signal—that is, the data a method requires to learn to align a

cross-lingual representation space—is more important for the final model performance

than the actual underlying architecture Levy et al. [2017]. Similar conclusions can

be drawn from empirical work in comparing different cross-lingual embedding models

Upadhyay et al. [2016]. In other words, large differences between models typically stem

from their data requirements, while other fine-grained differences are artifacts of the

chosen architecture, hyper-parameters, and additional tricks and fine-tuning employed.
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Parallel Comparable

Word Dictionaries Images
Sentence Translations Captions
Document - Wikipedia

Table 3.2: Nature and alignment level of bilingual data sources required by cross-lingual
embedding models.

(a) Word, par. (b) Word, comp. (c) Sentence, par. (d) Sentence,
comp.

(e) Doc., comp.

Figure 3.10: Examples for the nature and type of alignment of data sources. Par.:
parallel. Comp.: comparable. Doc.: document. From left to right, word-level parallel
alignment with a bilingual lexicon (3.10a); word-level comparable alignment using images
from Google Image Search (3.10b); sentence-level parallel alignment with translations
(3.10c); sentence-level comparable alignment using translations of image captions (3.10d);

and document-level comparable alignment using similar documents (3.10e).

This directly mirrors the argument raised by Levy et al. [2015] regarding monolingual

embedding models: They observe that the architecture is less important as long as the

models are trained under identical conditions on the same type (and amount) of data.

We therefore base our typology on the data requirements of the cross-lingual word

embedding methods. Methods differ with regard to the data they employ along the

following two dimensions:

1. Type of alignment: Methods use different types of bilingual supervision signals

(at the level of words, sentences, or documents), which introduce stronger or weaker

supervision.

2. Comparability: Methods require either parallel data sources, that is, exact

translations in different languages or comparable data that is only similar in some

way.

There are three different types of possible alignments. We discuss the typical data sources

for both parallel and comparable data based on the following alignment signals:

1. Word alignment: Most approaches use parallel word-aligned data in the form of

bilingual or cross-lingual dictionary with pairs of translations between words in

different languages [Mikolov et al., 2013c, Faruqui and Dyer, 2014]. Comparable

word-aligned data, even though more plentiful, has been leveraged less often and
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typically involves other modalities such as images [Bergsma and Van Durme, 2011,

Kiela et al., 2015].

2. Sentence alignment: Sentence alignment requires a parallel corpus, as commonly

used in MT. Methods typically use the Europarl corpus [Koehn, 2005], which

consists of sentence-aligned text from the proceedings of the European parliament,

and is perhaps the most common source of training data for MT models [Hermann

and Blunsom, 2013, Lauly et al., 2013]. Other methods use available word-level

alignment information [Zou et al., 2013, Shi et al., 2015]. There has been some

work on extracting parallel data from comparable corpora [Munteanu and Marcu,

2006], but no-one has so far trained cross-lingual word embeddings on such data.

Comparable data with sentence alignment may again leverage another modality,

such as captions of the same image or similar images in different languages, which

are not translations of each other [Calixto et al., 2017, Gella et al., 2017].

3. Document alignment: Parallel document-aligned data requires documents in

different languages that are translations of each other. This is rare, as parallel

documents typically consist of aligned sentences [Hermann and Blunsom, 2014].

Comparable document-aligned data is more common and can occur in the form of

documents that are topic-aligned (e.g. Wikipedia) or class-aligned (e.g. sentiment

analysis and multi-class classification datasets) [Vulić and Moens, 2013, Mogadala

and Rettinger, 2016].

We summarize the different types of data required by cross-lingual embedding models

along these two dimensions in Table 3.2 and provide examples for each in Figure 3.10.

We present our complete typology of cross-lingual embedding models in Table 3.3, aiming

to provide an exhaustive overview by classifying each model (we are aware of) into one

of the corresponding model types. We also provide a more detailed overview of the

monolingual objectives and regularization terms used by every approach towards the end

of this section in Table 3.5.

3.5.4 Word-level alignment models

In the following, we will now discuss different types of the current generation of cross-

lingual embedding models, starting with models based on word-level alignment. Among

these, models based on parallel data are more common, while there are only a few

approaches focusing on comparable data (§3.5.4.2).

3.5.4.1 Word alignment methods with parallel data

We distinguish three methods that use parallel word-aligned data:
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Parallel Comparable

Word

Mikolov et al. (2013) Bergsma and Van Durme (2011)
Dinu et al. (2015) Vulić et al. (2016)
Lazaridou et al. (2015) Kiela et al. (2015)
Xing et al. (2015) Vulić et al. (2016)
Zhang et al. (2016) Gouws and Søgaard (2015)
Artexte et al. (2016) Duong et al. (2015)
Smith et al. (2016)
Vulić and Korhonen (2016)
Artexte et al. (2017)
Hauer et al. (2017)
Mrkšić et al. (2017)
Faruqui and Dyer (2014)
Lu et al. (2015)
Ammar et al. (2016)
Xiao and Guo (2014)
Gouws and Søgaard (2015)
Duong et al. (2016)
Adams et al. (2017)
Klementiev et al. (2012)
Kočiský et al. (2014)

Sentence

Zou et al. (2013) Calixto et al. (2017)
Shi et al. (2015) Gella et al. (2017)
Gardner et al. (2015)
Vyas and Carpuat (2016)
Guo et al. (2015)
Hermann and Blunsom (2013)
Hermann and Blunsom (2014)
Soyer et al. (2015)
Lauly et al. (2013)
Chandar et al. (2014)
Gouws et al. (2015)
Luong et al. (2015)
Coulmance et al. (2015)
Pham et al. (2015)
Levy et al. (2017)
Rajendran et al. (2016)

Document

Vulić and Moens (2016)
Vulić and Moens (2013)
Vulić and Moens (2014)
Søgaard et al. (2015)
Mogadala and Rettinger (2016)

Table 3.3: Cross-lingual embedding models ordered by data requirements.
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a) Mapping-based approaches that first train monolingual word representations

independently on large monolingual corpora and then seek to learn a transformation

matrix that maps representations in one language to the representations of the

other language. They learn this transformation from word alignments or bilingual

dictionaries.

b) Pseudo-multi-lingual corpora-based approaches that use monolingual word

embedding methods on automatically constructed (or corrupted) corpora that

contain words from both the source and the target language.

c) Joint methods that take parallel text as input and minimize the source and target

language monolingual losses jointly with the cross-lingual regularization term.

We will show that these approaches are mostly equivalent, except for the order in which

the loss terms are optimized.

Figure 3.11: Similar geometric relations between numbers and animals in English and
Spanish [Mikolov et al., 2013c]. Embeddings are projected into two dimensions using

PCA and spaces have been rotated to emphasize the correspondence.

Mapping-based approaches

Minimizing mean squared error Mikolov et al. [2013c] notice that the geometric

relations that hold between words are similar across languages: for instance, numbers and

animals in English show a similar geometric constellation as their Spanish counterparts,

as illustrated in Figure 3.11. This suggests that it is possible to transform the vector

space of a source language S to the vector space of the target language t by learning a

linear projection with a transformation matrix W.

They use the n = 5000 most frequent words from the source language wS1 , . . . , w
S
n and

their translations wT1 , . . . , w
T
n as seed words. They then learn W using stochastic gradient

descent by minimising the MSE (§2.2.2) between the previously learned monolingual
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representations of the source seed word xSi that is transformed using W and its translation

xTi in the bilingual dictionary:

ΩMSE =

n∑
i=1

‖WxSi − xTi ‖2 (3.28)

This can also be written in matrix form as minimizing the squared Frobenius norm of

the residual matrix:

ΩMSE = ‖WXS −XT ‖2F (3.29)

where XS and XT are the embedding matrices of the seed words in the source and

target language respectively. In this form, it is also known as the orthogonal Procrustes

problem or Procrustes Analysis and has an analytical solution based on SVD: X+ =

(XS>XS)−1XS> as W = X+XT [Artetxe et al., 2016].

In our notation, the MSE mapping approach can be seen as optimizing the following

objective:

J = LSGNS(XS) + LSGNS(XT )︸ ︷︷ ︸
1

+ ΩMSE(XS ,XT ,W)︸ ︷︷ ︸
2

(3.30)

First, each of the monolingual losses is optimized independently. Second, the regulariza-

tion term ΩMSE is optimized while keeping the induced monolingual embeddings fixed.

Several extensions to the basic mapping model as framed by Mikolov et al. [2013c] have

been proposed.

Max-margin with intruders Dinu et al. [2015] discover that using MSE as the sub-

objecive for learning a projection matrix leads to the issue of hubness: some words tend

to appear as nearest neighbours of many other words (i.e., they are hubs). As translations

are typically generated by choosing the nearest neighbour of a source embedding, hubs

reduce the quality of the embedding space. They propose a globally corrected neighbour

retrieval method to overcome this issue. Lazaridou et al. [2015] show that optimizing a

max-margin loss (§2.2.2) instead of MSE reduces hubness and consequently improves

performance. The max-margin loss assigns a higher cosine similarity to word pairs that

are translations of each other (xSi ,x
T
i ; first term below) than random word pairs (xSi ,x

T
j ;

second term):

ΩMM =

n∑
i=1

k∑
j 6=i

max{0, γ − cos(WxSi ,x
T
i ) + cos(WxSi ,x

T
j )} (3.31)

The choice of negative examples is crucial. Dinu et al. [2015] propose to select negative

examples that are more informative by being near the current projected vector WxSi but

far from the actual translation vector xTi . Unlike random intruders, such intelligently
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chosen intruders help the model identify training instances where the model considerably

fails to approximate the target function.

Smith et al. [2017] propose a similar solution to the hubness issue in the framework of

mapping-based approaches: they invert the softmax used for finding the translation of a

word at test time and normalize the probability over source words rather than target

words.

Normalization and orthogonality constraint Xing et al. [2015] argue that there

is a mismatch between the comparison function used for training word embeddings with

SGNS, that is, the dot product and the function used for evaluation, which is cosine

similarity. They suggest to normalize word embeddings to be unit length to address this

discrepancy. In order to preserve unit length after mapping, they propose, in addition, to

constrain W to be orthogonal: W>W = I. The exact solution under this constraint is

W = VU> and can be efficiently computed in linear time with respect to the vocabulary

size using SVD where XT>XS = UΣV>. An orthogonality constraint is also used by

Zhang et al. [2016b] for learning cross-lingual embeddings for POS tagging.

Artetxe et al. [2016] further demonstrate the similarity between different approaches by

showing that the mapping model variant of Xing et al. [2015] optimizes the same loss as

Mikolov et al. [2013c] with an orthogonality constraint and unit vectors. In addition,

they empirically show that orthogonality is more important for performance than length

normalization. They also propose dimension-wise mean centering in order to capture

the intuition that two randomly selected words are generally expected not to be similar

and their cosine similarity should thus be zero. Smith et al. [2017] also learn a linear

transformation with an orthogonality constraint and use identical character strings as

their seed lexicon.

Using highly reliable seed lexicon entries The previous mapping approaches used

a bilingual dictionary as an inherent component of their model, but did not pay much

attention to the quality of the dictionary entries, using either automatic translations of

frequent words or word alignments of all words. Vulić and Korhonen [2016] emphasize

the role of the seed lexicon that is used for learning the projection matrix. They propose

a hybrid model that initially learns a first shared bilingual embedding space based on an

existing cross-lingual embedding model. They then use this initial vector space to obtain

translations for a list of frequent source words by projecting them into the space and

using the nearest neighbor in the target language as translation and use these translation

pairs as seed words for learning a mapping. In addition, they propose a symmetry
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constraint: it enforces that words are included in the seed lexicon if and only if their

projections are nearest neighbors of each other in the first embedding space.

Bootstrapping from few seed entries Recently, there have been initiatives towards

enabling embedding induction using only a small number of seed translation pairs. The

core idea behind these bootstrapping approaches is to start from a few seed words initially,

which are then iteratively expanded. Artetxe et al. [2017] propose a mapping model that

relies only on a small set of shared words (e.g., identically spelled words or only shared

numbers) to seed the procedure. The model has multiple bootstrapping rounds where it

gradually adds more and more bilingual translation pairs to the original seed lexicon and

refines it. In Section 5.2, we cast this method as a latent variable method and propose a

novel latent variable model with iterative refinement [Ruder et al., 2018].

Smith et al. [2017] and Hauer et al. [2017] propose a method that creates seed lexicons by

identifying cognates in the vocabularies of related languages. In contrast to Mikolov et al.

[2013c], they learn not only a transformation matrix WS→T that transforms embeddings

of language S to embeddings of language T , but also a matrix WT→S that transforms

embeddings in the opposite direction. Starting from a small set of automatically extracted

seed translation pairs, they iteratively expand the size of the lexicon.

The bootstrapping idea is conceptually similar to the work of Peirsman and Padó [2011]

and Vulić and Moens [2013], with the difference that earlier approaches were developed

within the traditional cross-lingual distributional framework (mapping vectors into the

count-based space using a seed lexicon).

Cross-lingual embeddings via retro-fitting Learning a mapping between mono-

lingual embedding spaces can also be framed as retro-fitting [Faruqui et al., 2015], which

is used to inject knowledge from semantic lexicons into pretrained word embeddings.

Retro-fitting creates a new word embedding matrix X̂ whose embeddings x̂i are both

close to the corresponding learned monolingual word embeddings xi as well as close to

neighbors xj in a knowledge graph:

Ωretro =

|V |∑
i=1

[αi‖x̂i − xi‖2 +
∑

(i,j)∈E

βij‖x̂i − xj‖2] (3.32)

where E is the set of edges in the knowledge graph and α and β control the strength of

the contribution of each term.

Mrkšić et al. [2017] similarly derive cross-lingual synonymy and antonymy constraints from

BabelNet. They then use these constraints to bring the monolingual vector spaces of two
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different languages together into a shared embedding space. Such retro-fitting approaches

employ a max-margin loss with a careful selection of intruders, similar to [Lazaridou

et al., 2015]. In contrast to previous work, retro-fitting approaches use constraints on

each word rather than a translation matrix W to arrive at a new cross-lingual vector

space. While these constraints can capture relations that are more complex than a linear

transformation, they are limited to words that are contained in the semantic lexicons.

CCA-based mapping Haghighi et al. [2008] are the first to use CCA for learning

translation lexicons for the words of different languages. Faruqui and Dyer [2014]

later apply CCA to project words from two languages into a shared embedding space.

Whereas linear projection only learns one transformation matrix WS→T to project the

embedding space of a source language into the space of a target language, CCA learns a

transformation matrix for the source and target language WS→ and WT→ respectively

to project them into a new joint space that is different from both the space of S and of

T . CCA minimizes the following:

ΩCCA = −
n∑
i=1

ρ(WS→xSi ,W
T→xTi ) (3.33)

where ρ is the correlation (§2.1.1). We can write their objective as the following:

J = LLSA(XS) + LLSA(XT )︸ ︷︷ ︸
1

+ ΩCCA(XS ,XT ,WS→,WT→)︸ ︷︷ ︸
2

(3.34)

As CCA sorts the projection matrices WS→ and Wt→ in descending order, Faruqui and

Dyer [2014] find that using the 80% of the projection vectors with the highest correlation

generally yields the highest performance and that CCA helps to separate synonyms and

antonyms in the source language.

Lu et al. [2015] extend Bilingual CCA to Deep Bilingual CCA by introducing non-linearity

in the mapping process: they train two deep neural networks to maximize the correlation

between the projections of both monolingual embedding spaces. Finally, Artetxe et al.

[2016] show that their objective, built on top of the original or “standard” Mikolov-style

mapping idea, and which uses dimension-wise mean centering is directly related to

bilingual CCA. The only fundamental difference is that the CCA-based model does not

guarantee monolingual invariance, while this property is enforced in the model of Artetxe

et al. [2016].

In a similar vein to CCA, we show in [Kementchedjhieva et al., 2018] that projecting

embeddings into a third latent space is beneficial. Specifically, we extend Procrustes
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Analysis to Generalized Procrustes Analysis [Gower, 1975]. Generalized Procrustes

Analysis outperforms Procrustes Analysis consistently and also allows us to incorporate

additional support languages in low-resource scenarios.

Word-level approaches based on pseudo-bilingual corpora

Rather than learning a mapping between the source and the target language, some

approaches use the word-level alignment of a seed bilingual dictionary to construct a

pseudo-bilingual corpus by randomly replacing words in a source language corpus with

their translations. Xiao and Guo [2014] propose the first such method. They first

construct a seed bilingual dictionary by translating all words that appear in the source

language corpus into the target language using Wiktionary, filtering polysemous words

as well as translations that do not appear in the target language corpus. From this seed

dictionary, they create a joint vocabulary, in which each translation pair occupies the

same vector representation. They train this model using the max-margin loss by feeding

it context windows of both the source and target language corpus.

Other approaches explicitly create a pseudo-bilingual corpus: Gouws and Søgaard [2015]

concatenate the source and target language corpus and replace each word that is part

of a translation pair with its translation equivalent with a probability of 1
2kT

, where kT

is the total number of possible translation equivalents for a word, and train CBOW on

this corpus. Ammar et al. [2016b] extend this approach to multiple languages: Using

bilingual dictionaries, they determine clusters of synonymous words in different languages.

They then concatenate the monolingual corpora of different languages and replace tokens

in the same cluster with the cluster ID. Finally, they train SGNS on the concatenated

corpus.

Duong et al. [2016] propose a similar approach. Instead of randomly replacing every

word in the corpus with its translation, they replace each center word with a translation

on-the-fly during CBOW training. In addition, they handle polysemy explicitly by

proposing an EM-inspired method that chooses as replacement the translation wTi whose

representation is most similar to the sum of the source word representation xSi and the

sum of the context embeddings xSs (see Equation 3.9):

wTi = argmaxw′∈τ(wi) cos(xi + xSs ,x
′) (3.35)

They jointly learn to predict both the words and their appropriate translations using

PanLex as the seed bilingual dictionary. PanLex covers around 1,300 language with

about 12 million expressions. Consequently, translations are high coverage but often
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noisy. Adams et al. [2017] use the same approach for pretraining cross-lingual word

embeddings for low-resource language modeling.

Joint models

While the previous approaches either optimize a set of monolingual losses and then the

cross-lingual regularization term (mapping-based approaches) or optimize a monolingual

loss and implicitly—via data manipulation—a cross-lingual regularization term, joint

models optimize monolingual and cross-lingual objectives at the same time jointly. In

what follows, we discuss a few illustrative example models which sparked this sub-line of

research.

Bilingual language model Klementiev et al. [2012b] cast learning cross-lingual repre-

sentations as a multi-task learning problem. They jointly optimize a source language and

target language model together with a cross-lingual regularization term that encourages

words that are often aligned with each other in a parallel corpus to be similar. The

monolingual objective is the classic LM objective of minimizing the negative log likelihood

of the current word wi given its C previous context words:

L = − logP (wi | wi−C+1:i−1) (3.36)

For the cross-lingual regularization term, they first obtain an alignment matrix AS→T

that indicates how often each source language word was aligned with each target language

word from parallel data such as the Europarl corpus [Koehn, 2009]. They then blow

this matrix up to a symmetrical double-size version A ∈ R|V |×|V | where V = V S ∪
V T . They furthermore concatenate the representations of all source and target words

X = [xS1 , . . . ,x
S
|V S |,x

T
1 , . . . ,x

T
|V T |] ∈ Rd×|V |. The cross-lingual regularization term then

encourages the representations of source and target language words that are often aligned

in A to be similar:

Ωs =
1

2
X>(A⊗ Id)X (3.37)

where Id ∈ Rd×d is the identity matrix and ⊗ is the Kronecker product, which intuitively

“blows up” each element of A to the size of a word embedding x ∈ Rd. Equation 3.37 is

a weighted (by word alignment scores) average of inner products, and hence, for unit

length normalized embeddings, equivalent to approaches that maximize the sum of the

cosine similarities of aligned word pairs. Using A⊗ I to encode interaction is borrowed

from linear multi-task learning models [Cavallanti et al., 2010] where A encodes task



Transfer Learning 115

relatedness (§3.2.5.2). The complete objective is the following:

J = L(Xs) + L(Xt) + Ω(A,X) (3.38)

Joint learning of word embeddings and word alignments Kočiský et al. [2014]

simultaneously learn word embeddings and word-level alignments using a distributed

version of FastAlign [Dyer et al., 2013] together with a language model.2 Similar to other

bilingual approaches, they use the word in the source language sentence of an aligned

sentence pair to predict the word in the target language sentence.

They replace the standard multinomial translation probability of FastAlign with an

energy function that tries to bring the representation of a target word wTi close to the

sum of the context words around the word wSi in the source sentence:

E(wSi , w
T
i , ) = −(

C∑
j=−C

xSi+j
>T)xTi − b>xTi − bwTi (3.39)

where xSi+j and xTi are the representations of source word wSi+j and target word wTi

respectively, T ∈ Rd×d is a projection matrix, and b ∈ Rd and bwTi
∈ R are represen-

tation and word biases respectively. The authors speed up training by using a class

factorization strategy similar to the hierarchical softmax and predict frequency-based

class representations instead of word representations. For training, they use EM but fix

the alignment counts of the E-step learned by FastAlign that was initially trained for 5

epochs. They then optimize the word embeddings in the M-step only. Note that this

model is conceptually very similar to bilingual models that discard word-level alignment

information and learn solely on the basis of sentence-aligned information, which we

discuss in Section 3.5.5.

3.5.4.2 Word alignment methods with comparable data

All previous methods required word-level parallel data. We categorize methods that

employ word-level alignment with comparable data into two types:

a) Language grounding models anchor language in images and use image features

to obtain information with regard to the similarity of words in different languages.

b) Comparable feature models that rely on the comparability of some other

features. The main feature that has been explored in this context is part-of-speech

(POS) tag equivalence.

2FastAlign is a fast and effective variant of IBM Model 2 [Brown et al., 1993c].



Transfer Learning 116

Grounding language in images Most methods employing word-aligned comparable

data ground words from different languages in image data. The idea in all of these

approaches is to use the image space as the shared cross-lingual signals. For instance,

bicycles always look like bicycles even if they are referred to as “fiets”, “Fahrrad”, “bicikl”,

“bicicletta”, or “velo”. A set of images for each word is typically retrieved using Google

Image Search. Bergsma and Van Durme [2011] calculate a similarity score for a pair

of words based on the visual similarity of their associated image sets. They propose

two strategies to calculate the cosine similarity between the color and SIFT features of

two image sets, either taking the average or the maximum of the maximum similarity

scores. Kiela et al. [2015] propose to do the same but use CNN-based image features.

Vulić et al. [2016] in addition propose to combine image and word representations either

by interpolating and concatenating them or by interpolating the linguistic and visual

similarity scores.

A similar idea of grounding language for learning multimodal multilingual representations

can be applied for sensory signals beyond vision, e.g. auditive or olfactory signals [Kiela

and Clark, 2015]. This line of work, however, is currently under-explored. Moreover,

it seems that signals from other modalities are typically more useful as an additional

source of information to complement the uni-modal signals from text, rather than using

other modalities as the single source of information.

POS tag equivalence Other approaches rely on comparability between certain fea-

tures of a word, such as its part-of-speech tag. Gouws and Søgaard [2015] create a

pseudo-cross-lingual corpus by replacing words based on part-of-speech equivalence, that

is, words with the same part-of-speech in different languages are replaced with one

another. Instead of using the POS tags of the source and target words as a bridge

between two languages, we can also use the POS tags of their contexts. This makes

strong assumptions about the word orders in the two languages, and their similarity, but

Duong et al. [2015a] use this to obtain cross-lingual word embeddings for several language

pairs. They use POS tags as context features and run SGNS on the concatenation of

two monolingual corpora. Note that under the overly simplistic assumptions that all

instances of a part-of-speech have the same distribution and each word belongs to a

single part-of-speech class, this approach is equivalent to the pseudo-cross-lingual corpus

approach described before.

3.5.5 Sentence-level alignment models

Research on MT has produced large amounts of sentence-aligned parallel data for

European languages, which has led to much work focusing on learning cross-lingual
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representations from sentence-aligned parallel data. For low-resource languages or new

domains, sentence-aligned parallel data is more expensive to obtain than word-aligned

data as it requires fine-grained supervision. Only recently have methods started leveraging

sentence-aligned comparable data (§3.5.5.2).

3.5.5.1 Sentence alignment methods with parallel data

Methods leveraging sentence-aligned parallel data are generally extensions of successful

monolingual models. We have detected four main types:

a) Word-alignment based matrix factorization approaches (§3.5.5.1) apply

matrix factorization techniques to the bilingual setting and typically require addi-

tional word alignment information.

b) Compositional sentence models use word representations to construct sentence

representations of aligned sentences, which are trained to be close to each other.

c) Bilingual autoencoder models reconstruct source and target sentences using

an autoencoder.

d) Bilingual skip-gram models use the skip-gram objective to predict words in

both source and target sentences.

Word-alignment based matrix factorization

Several methods directly leverage the information contained in an alignment matrix

AS→T between source language S and target language T respectively. AS→T is generally

automatically derived from sentence-aligned parallel text using an unsupervised word

alignment model such as FastAlign [Dyer et al., 2013]. AS→T
ij captures the number of

times the i-th word in language T was aligned with the j-th word in language S, with

each row normalized to 1. The intuition is that if a word in the source language is only

aligned with one word in the target language, then those words should have the same

representation. If the target word is aligned with more than one source word, then its

representation should be a combination of the representations of its aligned words. Zou

et al. [2013] represent the embeddings XS in the target language as the product of the

source embeddings XS with the corresponding alignment matrix AS→T . They then

minimize the squared difference between these two terms in both directions:

ΩS→T = ||XT −AS→TXS ||2 (3.40)

Note that ΩS→T can be seen as a variant of ΩMSE, which incorporates soft weights from

alignments. In contrast to mapping-based approaches, the alignment matrix, which
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transforms source to target embeddings, is fixed in this case, while the corresponding

source embeddings XS are learned:

J = LMM(XT )︸ ︷︷ ︸
1

+ ΩS→T (XT ,AS→T ,XS)︸ ︷︷ ︸
2

(3.41)

Shi et al. [2015] also take into account monolingual data by placing cross-lingual con-

straints on the monolingual representations and propose two alignment-based cross-lingual

regularization objectives. The first one treats the alignment matrix AS→T as a cross-

lingual co-occurrence matrix and factorizes it using the GloVe objective. The second one

is similar to the objective by Zou et al. [2013] and minimizes the squared distance of the

representations of words in two languages weighted by their alignment probabilities.

Gardner et al. [2015] extend LSA as translation-invariant LSA to learn cross-lingual word

embeddings. They factorize a multilingual co-occurrence matrix with the restriction that

it should be invariant to translation, i.e., it should stay the same if multiplied with the

respective word or context dictionary.

Vyas and Carpuat [2016] propose another method based on matrix factorization that

enables learning sparse cross-lingual embeddings. As the sparse cross-lingual embeddings

are different from the monolingual embeddings X, we diverge slightly from our notation

and designate them as S. They propose two constraints: The first constraint induces

monolingual sparse representations from pre-trained monolingual embedding matrices

XS and XT by factorizing each embedding matrix X into two matrices S and E with an

additional `1 constraint on S for sparsity:

L =

|V |∑
i=1

‖SiE> −Xi‖22 + λ‖Si‖1 (3.42)

To learn bilingual embeddings, they add another constraint based on the alignment

matrix AS→T that minimizes the `2 reconstruction error between words that were

strongly aligned to each other in a parallel corpus:

Ω =

|V S |∑
i=1

|V T |∑
j=1

1

2
λxA

S→T
ij ‖SSi − STj ‖22 (3.43)

The complete optimization then consists of first pre-training monolingual embeddings

XS and XT with GloVe and in a second step factorizing the monolingual embeddings

with the cross-lingual constraint to induce cross-lingual sparse representations SS and
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ST :

J = LGloVe(X
S) + LGloVe(X

T )︸ ︷︷ ︸
1

+L(XS ,SS ,ES) + L(XT ,ST ,ET ) + Ω(AS→T ,SS ,ST )︸ ︷︷ ︸
2

(3.44)

Guo et al. [2015] similarly create a target language word embedding xTi of a source word

wSi by taking the average of the embeddings of its translations τ(wSi ) weighted by their

alignment probability with the source word:

xTi =
∑

wTj ∈τ(wSi )

Ai,j

Ai,·
· xTj (3.45)

They propagate alignments to OOV words using edit distance as an approximation for

morphological similarity and set the target word embedding xTk of an OOV source word

wSk as the average of the projected vectors of source words that are similar to it based

on the edit distance measure:

xTk =
1

|Ek|
∑

wS∈Ek

xT (3.46)

where xT is the target language word embedding of a source word wS as created above,

Ek = {wS | EditDist(wSk , wS) ≤ χ}, and χ is set empirically to 1.

Compositional sentence model

Hermann and Blunsom [2013] train a model to bring the sentence representations of

aligned sentences sentS and sentT in source and target language S and T respectively

close to each other. The representation yS of sentence sentS in language S is the sum of

the embeddings of its words:

yS =

|sentS |∑
i=1

xSi (3.47)

They seek to minimize the distance between aligned sentences sentS and sentT :

Edist(sent
S , sentT ) = ‖yS − yT ‖2 (3.48)
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They optimize this distance using the max-margin loss by learning to bring aligned

sentences closer together than randomly sampled negative examples:

L =
∑

(sentS ,sentT )∈C

k∑
i=1

max(0, 1 + Edist(sent
S , sentT )− Edist(sentS , sTi )) (3.49)

where k is the number of negative examples. In addition, they use an `2 regularization

term for each language Ω =
λ

2
‖X‖2 so that the final loss they optimize is the following:

J = L(XS ,XT ) + Ω(XS) + Ω(XT ) (3.50)

Note that compared to most previous approaches, there is no dedicated monolingual

objective and all loss terms are optimized jointly. Note that in this case, the `2 norm

is applied to representations X, which are computed as the difference of sentence

representations.

This regularization term approximates minimizing the mean squared error between the

pair-wise interacting source and target words in a way similar to [Gouws et al., 2015].

Hermann and Blunsom [2014] extend this approach to documents, by applying the

composition and objective function recursively to compose sentences into documents.

They additionally propose a non-linear composition function based on bigram pairs,

which outperforms simple addition on large training datasets, but underperforms it on

smaller data:

y =

n∑
i=1

tanh(xi−1 + xi) (3.51)

Soyer et al. [2015] augment this model with a monolingual objective that operates on

the phrase level. The objective uses the max-margin loss and is based on the assumption

that phrases are typically more similar to their sub-phrases than to randomly sampled

phrases:

L = [max(0,m+ ‖ao − ai‖2 − ‖ao − bn‖2) + ‖ao − ai‖2]
ni
no

(3.52)

where m is a margin, ao is a phrase of length no sampled from a sentence, ai is a

sub-phrase of ao of length ni, and bn is a phrase sampled from a random sentence. The

additional loss terms are meant to reduce the influence of the margin as a hyper-parameter

and to compensate for the differences in phrase and sub-phrase length.
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Bilingual autoencoder

Instead of minimizing the distance between two sentence representations in different

languages, Lauly et al. [2013] aim to reconstruct the target sentence from the original

source sentence. Analogously to Hermann and Blunsom [2013], they also encode a

sentence as the sum of its word embeddings. They then train an auto-encoder with

language-specific encoder and decoder layers and hierarchical softmax to reconstruct

from each sentence the sentence itself and its translation. In this case, the encoder

parameters are the word embedding matrices XS and XT , while the decoder parameters

are transformation matrices that project the encoded representation to the output

language space. The loss they optimize can be written as follows:

J = LS→SAUTO + LT→TAUTO + LS→TAUTO + LT→SAUTO (3.53)

where LS→TAUTO denotes the loss for reconstructing from a sentence in language S to a

sentence in language T . Aligned sentences are sampled from parallel text and all losses

are optimized jointly.

Chandar et al. [2014] use a binary BOW instead of the hierarchical softmax. To address

the increase in complexity due to the higher dimensionality of the BOW, they propose

to merge the bags-of-words in a mini-batch into a single BOW and to perform updates

based on this merged bag-of-words. They also add a term to the objective function

that encourages correlation between the source and target sentence representations by

summing the scalar correlations between all dimensions of the two vectors.

Bilingual skip-gram

Several authors propose extensions of the monolingual SGNS model to learn cross-lingual

embeddings. We show their similarities and differences in Table 3.4. All of these models

jointly optimize monolingual SGNS losses for each language together with one more

cross-lingual regularization terms:

J = LSSGNS + LTSGNS + Ω (3.54)

Another commonality is that these models do not require word alignments of aligned

sentences. Instead, they make different assumptions about the alignment of the data.

Bilingual Bag-of-Words without Word Alignments [BilBOWA; Gouws et al., 2015] assumes

each word in a source sentence is aligned with every word in the target sentence. If we

knew the word alignments, we would try to bring the embeddings of aligned words in

source and target sentences close together. Instead, under a uniform alignment model
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Model Alignment model Monolingual losses Cross-lingual regularizer
BilBOWA Gouws et al. [2015] Uniform LSSGNS + LTSGNS ΩBILBOWA

Trans-gram Coulmance et al. [2015] Uniform LSSGNS + LTSGNS ΩS→t
SGNS + Ωt→s

SGNS

BiSkip Luong et al. [2015] Monotonic LSSGNS + LTSGNS ΩS→t
SGNS + Ωt→s

SGNS

Table 3.4: A comparison of similarities and differences of the three bilingual skip-gram
variants.

which matches the intuition behind the simplest (lexical) word alignment IBM Model 1

[Brown et al., 1993a], we try to bring the average alignment close together. In other words,

we use the means of the word embeddings in a sentence as the sentence representations

y and seek to minimize the distance between aligned sentence representations:

yS =
1

|sentS |

|sentS |∑
i=1

xSi (3.55)

ΩBILBOWA =
∑

(sentS ,sentT )∈C

‖yS − yT ‖2 (3.56)

Note that this regularization term is very similar to the objective used in the compositional

sentence model [Hermann and Blunsom, 2013] (Equations 3.47 and 3.48); the only

difference is that we use the mean rather than the sum of word embeddings as sentence

representations.

Trans-gram [Coulmance et al., 2015] also assumes uniform alignment but uses the SGNS

objective as cross-lingual regularization term. In the cross-lingual SGNS setting, we aim

to predict words in the aligned target language sentence based on words in the source

sentence. Under uniform alignment, we aim to predict all words in the target sentence

based on each word in the source sentence:

ΩS→T
SGNS = −

∑
(sentS ,sentT )∈C

1

|sentS |

|sentS |∑
t=1

|sentT |∑
j=1

log P (wt+j | wt) (3.57)

where P (wt+j | wt) is computed via negative sampling (see Equation 3.8).

BiSkip [Luong et al., 2015] uses the same cross-lingual regularization terms as Trans-gram,

but only aims to predict monotonically aligned target language words: Each source

word at position i in the source sentence sentS is aligned to the target word at position

i · |sentS ||sentT | in the target sentence sentT . In practice, all bilingual skip-gram models are

trained by sampling a pair of aligned sentences from a parallel corpus and the respective

loss terms minimizing for the source and target language sentence .

In a similar vein, Pham et al. [2015] propose an extension of paragraph vectors [Le

and Mikolov, 2014] to the multilingual setting by forcing aligned sentences of different

languages to share the same vector representation.
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Other sentence-level approaches Levy et al. [2017] use another sentence-level bilin-

gual signal: IDs of the aligned sentence pairs in a parallel corpus. Their model provides a

strong baseline for cross-lingual embeddings that is inspired by the Dice aligner commonly

used for producing word alignments for MT. Observing that sentence IDs are already a

powerful bilingual signal, they propose to apply SGNS to the word-sentence ID matrix.

They show that this method can be seen as a generalization of the Dice Coefficient.

Rajendran et al. [2016] propose a method that exploits the idea of using pivot languages,

also tackled in previous work, e.g., [Shezaf and Rappoport, 2010]. The model requires

parallel data between each language and a pivot language and is able to learn a shared

embedding space for two languages without any direct alignment signals as the alignment

is implicitly learned via their alignment with the pivot language. The model optimizes

a correlation term with neural network encoders and decoders that is similar to the

objective of the CCA-based approaches [Faruqui and Dyer, 2014, Lu et al., 2015].

3.5.5.2 Sentence alignment methods with comparable data

Grounding language in images Similarly to approaches based on word-level aligned

comparable data, methods that learn cross-lingual representations using sentence align-

ment with comparable data do so by associating sentences with images [Elliott and Kádár,

2017]. The associated image captions/annotations can be direct translations of each

other, but are not expected to be in general. The images are then used as pivots to induce

a shared multimodal embedding space. These approaches typically use Multi30k [Elliott

et al., 2016], a multilingual extension of the Flickr30k dataset [Young et al., 2014], which

contains 30k images and 5 English sentence descriptions and their German translations

for each image. Calixto et al. [2017] represent images using features from a pre-trained

CNN and model sentences using a GRU. They then use the max-margin loss to assign a

higher score to image-description pairs compared to images with a random description.

Gella et al. [2017] augment this objective with another max-margin term that also brings

the representations of translated descriptions closer together, thus effectively combining

learning signals from both visual and textual modality.

3.5.6 Document-level alignment models

Models that require parallel document alignment presuppose that sentence-level parallel

alignment is also present. Such models thus reduce to parallel sentence-level alignment

methods, which have been discussed in the previous section. Comparable document-level

alignment, on the other hand, is more appealing as it is often cheaper to obtain. Existing
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approaches generally use Wikipedia documents, which they either automatically align,

or they employ already theme-aligned Wikipedia documents discussing similar topics.

3.5.6.1 Document alignment methods with comparable data

We divide models using document alignment with comparable data into three types, some

of which employ similar general ideas to previously discussed word and sentence-level

parallel alignment models:

a) Approaches based on pseudo-bilingual document-aligned corpora auto-

matically construct a pseudo-bilingual corpus containing words from the source

and target language by mixing words from document-aligned documents.

b) Concept-based methods leverage information about the distribution of latent

topics or concepts in document-aligned data to represent words.

c) Extensions of sentence-aligned models extend methods using sentence-aligned

parallel data to also work without parallel data.

Pseudo-bilingual document-aligned corpora

The approach of Vulić and Moens [2016] is similar to existing pseudo-bilingual corpora

approaches (§3.5.4.1). In contrast to previous methods, they propose a merge and shuffle

strategy to merge two aligned documents of different languages into a pseudo-bilingual

document. This is done by concatenating the documents and then randomly shuffling

them by permuting words. The intuition is that as most methods rely on learning word

embeddings based on their context, shuffling the documents will lead to robust bilingual

contexts for each word. As the shuffling step is completely random, it might lead to

sub-optimal configurations.

For this reason, they propose another strategy for merging the two aligned documents,

called length-ratio shuffle. It assumes that the structures of the two documents are

similar: words are inserted into the pseudo-bilingual document by alternating between

the source and the target document relying on the order in which they appear in their

monolingual document and based on the monolingual documents’ length ratio.

Concept-based models

Some methods for learning cross-lingual word embeddings leverage the insight that

words in different languages are similar if they are used to talk about or evoke the

same multilingual concepts or topics. Vulić and Moens [2013] base their method on the
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cognitive theory of semantic word responses. Their method centres on the intuition that

words in source and target language are similar if they are likely to generate similar words

as their top semantic word responses. They utilise a probabilistic multilingual topic

model again trained on aligned Wikipedia documents to learn and quantify semantic

word responses. The embedding xSi ∈ R|V S |+|V T | of source word wi is the following

vector:

xSi = [P (wS1 |wi), . . . , P (wS|V S ||wi), P (wT1 |wi) . . . , P (wT|V T ||wi)] (3.58)

where [·, ·] represents concatenation and P (wj |wi) is the probability of wj given wi under

the induced bilingual topic model. The sparse representations may be turned into dense

vectors by factorizing the constructed word-response matrix.

Søgaard et al. [2015] propose an approach that relies on the structure of Wikipedia itself.

Their method is based on the intuition that similar words are used to describe the same

concepts across different languages. Instead of representing every Wikipedia concept

with the terms that are used to describe it, they use an inverted index and represent a

word by the concepts it is used to describe. As a post-processing step, dimensionality

reduction on the produced word representations in the word-concept matrix is performed.

A very similar model by Vulić et al. [2011] uses a bilingual topic model to perform the

dimensionality reduction step and learns a shared cross-lingual topical space.

Extensions of sentence-alignment models

Mogadala and Rettinger [2016] extend the approach of Pham et al. [2015] to also work

without parallel data and adjust the regularization term Ω based on the nature of

the training corpus. Similar to previous work [Hermann and Blunsom, 2013, Gouws

et al., 2015], they use the mean of the word embeddings of a sentence as the sentence

representation y and constrain these to be close together. In addition, they propose

to constrain the sentence paragraph vectors pS and pT of aligned sentences sentS and

sentT to be close to each other. These vectors are learned via paragraph vectors [Le and

Mikolov, 2014] for each sentence and stored in embedding matrices PS and PT . The

complete regularizer then uses elastic net regularization to combine both terms:

Ω =
∑

(sentS ,sentT )∈C

α||pS − pT ||2 + (1− α)‖yS − yT ‖2 (3.59)
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The monolingual paragraph vector objectives LSGNS-P are then optimized jointly with

the cross-lingual regularization term:

J = LSSGNS-P(PS ,XS) + LTSGNS-P(PT ,XT ) + Ω(PS ,PT ,XS ,XT ) (3.60)

To leverage data that is not sentence-aligned, but where an alignment is still present on

the document level, they propose a two-step approach: They use Procrustes analysis

to find the most similar document in language T for each document in language S.

In the second step, they then simply use the previously described method to learn

cross-lingual word representations from the alignment documents, this time treating the

entire documents as paragraphs.

As a final overview, we list all approaches with their monolingual objectives and reg-

ularization terms in Table 3.5. The table is meant to reveal the high-level objectives

and losses each model is optimizing. It also indicates for each method whether all

objectives are jointly optimized; if they are, both monolingual losses and regularization

terms are optimized jointly; otherwise the monolingual losses are optimized first and

the monolingual variables are frozen, while the cross-lingual regularization constraint

is optimized. The table obscures smaller differences and implementation details, which

can be found in the corresponding sections of this survey or by consulting the original

papers. We use Ω∞ to represent an infinitely stronger regularizer that enforces equality

between representations. Regularizers with a ∗ imply that the regularization is achieved

in the limit, e.g. in the pseudo-bilingual case, where examples are randomly sampled

with some equivalence, we obtain the same representation in the limit, without strictly

enforcing it to be the same representation [Ruder et al., 2019b].

Most approaches can be seen as optimizing a combination of monolingual losses with

a regularization term. As we can see, some approaches do not employ a regularization

term; notably, a small number of approaches, i.e., those that ground language in images,

do not optimize a loss but rather use pre-trained image features and a set of similarity

heuristics to retrieve translations.

3.5.7 Evaluation

We now discuss the tasks that we will use for evaluation of cross-lingual word embeddings

in this thesis (§5). For a more comprehensive overview of evaluation tasks and applications,

we refer the reader to Ruder et al. [2019b].

Word similarity This task evaluates how well the notion of word similarity according

to humans is emulated in the vector space. Multi-lingual word similarity datasets are
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Approach Monolingual Regularizer Joint? Description

Klementiev et al. (2012) LMLE ΩMSE X Joint
Mikolov et al. (2013) LSGNS ΩMSE Projection-based
Zou et al. (2013) LC&W ΩMSE Matrix factorization
Hermann and Blunsom (2013) LC&W Ω∗MSE X Sentence-level, joint
Hermann and Blunsom (2014) LC&W Ω∗MSE X Sentence-level + bigram composition
Soyer et al. (2015) LC&W Ω∗MSE X Phrase-level
Shi et al. (2015) LC&W ΩMSE Matrix factorization
Dinu et al. (2015) LSGNS ΩMSE Better neighbour retrieval
Gouws et al. (2015) LSGNS ΩMSE X Sentence-level
Vyas and Carpuat (2016) LGloVe ΩMSE Sparse matrix factorization
Hauer et al. (2017) LSGNS ΩMSE Cognates
Mogadala and Rettinger (2016) LSGNS-P ΩMSE X Elastic net, Procrustes analysis

Xing et al. (2015) LSGNS ΩMSE s.t. W>W = I Normalization, orthogonality
Zhang et al. (2016) LSGNS ΩMSE s.t. W>W = I Orthogonality constraint

Artexte et al. (2016) LSGNS ΩMSE s.t. W>W = I
Normalization, orthogonality,
mean centering

Smith et al. (2017) LSGNS ΩMSE s.t. W>W = I
Orthogonality, inverted softmax
identical character strings

Artexte et al. (2017) LSGNS ΩMSE s.t. W>W = I
Normalization, orthogonality,
mean centering, bootstrapping

Lazaridou et al. (2015) LCBOW ΩC&W Max-margin with intruders
Mrkšić et al. (2017) LSGNS ΩC&W Semantic specialization
Calixto et al. (2017) LRNN ΩC&W X Image-caption pairs
Gella et al. (2017) LRNN ΩC&W X Image-caption pairs

Faruqui and Dyer (2014) LLSA ΩCCA -
Lu et al. (2015) LLSA ΩCCA Neural CCA
Rajendran et al. (2016) LAUTO ΩCCA Pivots
Ammar et al. (2016) LLSA ΩCCA Multilingual CCA

Søgaard et al. (2015) - ΩSVD X Inverted indexing
Levy et al. (2017) LPMI ΩSVD X
Levy et al. (2017) - ΩSGNS X Inverted indexing

Lauly et al. (2013) LAUTO ΩAUTO X Autoencoder
Chandar et al. (2014) LAUTO ΩAUTO X Autoencoder

Vulić and Moens (2013a) LLDA Ω∗∞ X Document-level
Vulić and Moens (2014) LLDA Ω∗∞ X Document-level
Xiao and Guo (2014) LC&W Ω∞ X Pseudo-multilingual
Gouws and Søgaard (2015) LCBOW Ω∗∞ X Pseudo-multilingual
Luong et al. (2015) LSGNS Ω∗∞ Monotonic alignment
Gardner et al. (2015) LLSA Ω∗∞ Matrix factorization
Pham et al. (2015) LSGNS-P Ω∞ X Paragraph vectors
Guo et al. (2015) LCBOW Ω∞ Weighted by word alignments
Coulmance et al. (2015) LSGNS Ω∗∞ X Sentence-level
Ammar et al. (2016) LSGNS Ω∞ X Pseudo-multilingual
Vulić and Korhonen (2016) LSGNS Ω∞ Highly reliable seed entries
Duong et al. (2016) LCBOW Ω∞ X Pseudo-multilingual, polysemy
Vulić and Moens (2016) LSGNS Ω∞ X Pseudo-multilingual documents
Adams et al. (2017) LCBOW Ω∞ X Pseudo-multilingual, polysemy

Bergsma and Van Durme (2011) - - X SIFT image features, similarity
Kiela et al. (2015) - - X CNN image features, similarity
Vulić et al. (2016) - - X CNN features, similarity, interpolation

Gouws and Søgaard (2015) LCBOW POS-level Ω∗∞ X Pseudo-multilingual
Duong et al. (2015) LCBOW POS-level Ω∗∞ X Pseudo-multilingual

Table 3.5: Overview of approaches with monolingual objectives and regularization
terms, with an indication whether the order of optimization matters and short descrip-
tions. Ω∞ represents an infinitely strong regularizer that enforces equality between

representations. ∗ implies that the regularization is achieved in the limit.
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multilingual extensions of datasets that have been used for evaluating English word

representations. Many of these originate from psychology research and consist of word

pairs—ranging from synonyms (e.g., car–automobile) to unrelated terms (e.g., noon–

string)—that have been annotated with a relatedness score by human subjects.

Cross-lingual embeddings are evaluated on these datasets by first computing the cosine

similarity of the representations of the cross-lingual word pairs. The Spearman’s rank

correlation coefficient [Myers et al., 2010] is then computed between the cosine similarity

score and the human judgement scores for every word pair. Cross-lingual word similarity

datasets are affected by the same problems as their monolingual variants Faruqui et al.

[2016]: the annotated notion of word similarity is subjective and is often confused with

relatedness; the datasets evaluate semantic rather than task-specific similarity, which is

arguably more useful; they do not have standardized splits; they correlate only weakly

with performance on downstream tasks; past models do not use statistical significance;

and they do not account for polysemy, which is even more important in the cross-lingual

setting.

Bilingual dictionary induction After the shared cross-lingual embedding space is

induced, given a list of N source language words xu,1, . . . , xu,N , the task is to find a

target language word t for each query word xu relying on the representations in the space.

ti is the target language word closest to the source language word xu,i in the induced

cross-lingual space, also known as the cross-lingual nearest neighbor. The set of learned

N (xu,i, ti) pairs is then run against a gold standard dictionary.

Bilingual dictionary induction is appealing as an evaluation task, as high-quality, freely

available, wide-coverage manually constructed dictionaries are still rare, especially for

non-European languages. The task also provides initial intrinsic evidence on the quality

of the shared space. Most previous work [Vulić and Moens, 2013, Gouws et al., 2015,

Mikolov et al., 2013c] filters source and target words based on part-of-speech, though this

simplifies the task and introduces bias in the evaluation. Each cross-lingual embedding

model is then evaluated on its ability to select the closest target language word to a given

source language word as the translation of choice and measured based on precision-at-one

(P@1).

3.5.8 Summary

This survey has focused on providing an overview of cross-lingual word embedding models.

It has introduced standardized notation and a typology that demonstrated the similarity

of many of these models. It provided proofs that connect different word-level embedding
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models and has described ways to evaluate cross-lingual word embeddings as well as

how to extend them to the multilingual setting. It finally outlined challenges and future

directions.

3.6 Conclusions

In this chapter, we have introduced transfer learning and reviewed the four transfer

learning settings that are prevalent in NLP and that will be dealt with throughout

this thesis. The first of these, domain adaptation, will be tackled in the next chapter.

Throughout this chapter, we have furthermore emphasized the need to overcome a

discrepancy between source and target scenarios, which is of particular importance in

domain adaptation.



Chapter 4

Selecting Data for Domain

Adaptation

In transfer learning, the similarity of the source and target setting is of key importance. A

discrepancy may lead to negative transfer (§3.3.5). In this chapter, we will investigate the

domain adaptation scenario, where source and target domains are different, i.e. DS 6= DT ,

while the source and target tasks are assumed to be the same, i.e. TS = TT .

To overcome the discrepancy between domains, we propose algorithms that automatically

select both relevant and informative labelled and unlabelled examples for unsupervised

domain adaptation. We evaluate our systems on a combination of sentiment analysis,

part-of-speech tagging, and dependency parsing tasks. We empirically show that an

appropriate selection of data helps in overcoming a domain shift, resulting in higher

performance on the target domain.

In Section 4.1, we propose a novel method that uses Bayesian Optimization to auto-

matically select relevant training data from multiple source domains for unsupervised

domain adaptation. The approach learns an optimal combination of several existing

domain similarity metrics (§3.4.2.1). It also considers the informativeness of an example

by means of different measures of diversity on an example level.

In Section 4.2, we consider the problem of selecting unlabelled examples for domain

adaptation. In this setting, we not only need to select relevant examples but also need

to consider whether our model’s predictions are reliable. To this end, we consider classic

self-labelling approaches (§3.4.4) through the lens of current neural models. We adapt

these classic methods to neural networks and compare them against state-of-the-art

approaches. In addition, we propose multi-task tri-training, a more efficient method that

combines the best of both worlds.

130
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4.1 Learning to Select Data for Transfer Learning With

Bayesian Optimization

∗ Domain similarity measures can be used to gauge adaptability and select suitable data

for transfer learning, but existing approaches define ad hoc measures that are deemed

suitable for respective tasks. Inspired by work on curriculum learning, we propose to

learn data selection measures using Bayesian Optimization and evaluate them across

models, domains and tasks. Our learned measures outperform existing domain similarity

measures significantly on three tasks: sentiment analysis, part-of-speech tagging, and

parsing. We show the importance of complementing similarity with diversity, and that

learned measures are—to some degree—transferable across models, domains, and even

tasks.

4.1.1 Introduction

Natural Language Processing models suffer considerably when applied in the wild. The

distribution of the test data is typically very different from the data used during training,

causing a model’s performance to deteriorate substantially. Domain adaptation is a

prominent approach to transfer learning that can help to bridge this gap; many approaches

were suggested so far [Blitzer et al., 2007, Daumé III, 2007, Jiang and Zhai, 2007, Ma

et al., 2014, Schnabel and Schütze, 2014].

However, most work focused on one-to-one scenarios: Given a set of source domains A

and a set of target domains B, a model is evaluated based on its ability to adapt between

all pairs (a, b) in the Cartesian product A × B where a ∈ A and b ∈ B [Remus, 2012].

However, adaptation between two dissimilar domains is often undesirable, as it may lead

to negative transfer [Rosenstein et al., 2005]. Only recently, many-to-one adaptation

[Mansour, 2009, Wu and Huang, 2016] has received some attention, as it replicates the

realistic scenario of multiple source domains where performance on the target domain is

the foremost objective. These approaches, however, are typically limited to a particular

model or task.

Inspired by work on curriculum learning [Bengio et al., 2009, Tsvetkov et al., 2016], we

instead propose—to the best of our knowledge—the first model-agnostic data selection

approach to transfer learning. Contrary to curriculum learning that aims at speeding up

learning (see §4.1.5), we aim at learning to select the most relevant data from multiple

sources using data metrics. While several measures have been proposed in the past [Moore

∗This section is adapted from: Ruder, S. and Plank, B. (2017). Learning to select data for transfer
learning with Bayesian Optimization. In Proceedings of the 2017 Conference on Empirical Methods in
Natural Language Processing.
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and Lewis, 2010, Axelrod et al., 2011, Van Asch and Daelemans, 2010, Plank and van

Noord, 2011, Remus, 2012], prior work is limited by studying metrics mostly in isolation,

using only the notion of similarity [Ben-David et al., 2007] and focusing on a single task

(see §4.1.5). Our hypothesis is that different tasks or even different domains demand

different notions of similarity. In this paper we go beyond prior work by i) studying

a range of similarity metrics, including diversity; and ii) testing the robustness of the

learned weights across models (e.g., whether a more complex model can be approximated

with a simpler surrogate), domains and tasks (to delimit the transferability of the learned

weights).

The contributions of this work are threefold. First, we present the first model-independent

approach to learn a data selection measure for transfer learning. It outperforms base-

lines across three tasks and multiple domains and is competitive with state-of-the-art

domain adaptation approaches. Second, prior work on transfer learning mostly fo-

cused on similarity. We demonstrate empirically that diversity is as important as—and

complements—domain similarity for transfer learning. Note that rather than making the

selected set of examples as diverse as possible, we focus on examples that have a diverse

set of words. Finally, we show—for the first time—to what degree learned measures

transfer across models, domains and tasks.

4.1.2 Data selection model

In order to select training data for adaptation for a task T , existing approaches rank

the available n training examples X = {x1, x2, · · · , xn} of k source domains D =

{D1,D2, · · · ,Dk} according to a domain similarity measure S and choose the top m

samples for training their algorithm. While this has been shown to work empirically

[Moore and Lewis, 2010, Axelrod et al., 2011, Plank and van Noord, 2011, Van Asch and

Daelemans, 2010, Remus, 2012], using a pre-existing metric leaves us unable to adapt to

the characteristics of our task T and target domain DT and foregoes additional knowledge

that may be gleaned from the interaction of different metrics. For this reason, we propose

to learn the following linear domain similarity measure S as a linear combination of

feature values:

S = φ(X) · wᵀ (4.1)

where φ(X) ∈ Rn×l are the similarity and diversity features further described in §4.1.2.2

for each training example, with l being the number of features, while w ∈ Rl are the

weights learned by Bayesian Optimization.

We aim to learn weights w in order to optimize the objective function J of the respective

task T on a small number of validation examples of the corresponding target domain DT .
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4.1.2.1 Bayesian Optimization for data selection

As the learned measure S should be agnostic of the particular objective function J , we

cannot use gradient-based methods for optimization. Similar to [Tsvetkov et al., 2016],

we use Bayesian Optimization [Brochu et al., 2010], which has emerged as an efficient

framework to optimize any function. For instance, it has repeatedly found better settings

of neural network hyperparameters than domain experts [Snoek et al., 2012].

Given a black-box function f : X → R, Bayesian Optimization aims to find an input

x̂ ∈ arg minx∈X f(x) that globally minimizes f . For this, it requires a prior p(f) over

the function and an acquisition function ap(f) : X→ R that calculates the utility of any

evaluation at any x.

Bayesian Optimization then proceeds iteratively. At iteration t, 1) it finds the most

promising input xt ∈ arg max ap(x) through numerical optimization; 2) it then evaluates

the surrogate function yt ∼ f(xt) +N (0, σ2) on this input and adds the resulting data

point (xt, yt) to the set of observations Ot−1 = (xj , yj)j=1...t−1; 3) finally, it updates the

prior p(f |Ot) and the acquisition function ap(f |Ot).

For data selection, the black-box function f looks as follows: 1) It takes as input a set

of weights w that should be evaluated; 2) the training examples of all source domains

are then scored and sorted according to Equation 4.1; 3) the model for the respective

task T is trained on the top n samples; 4) the model is evaluated on the validation set

according to the evaluation measure J and the value of J is returned.

Gaussian Processes (GP) are a popular choice for p(f) due to their descriptive power

[Rasmussen, 2006]. We use GP with Monte Carlo acquistion and Expected Improvement

(EI) [Močkus, 1974] as acquisition function as this combination has been shown to

outperform comparable approaches [Snoek et al., 2012].1

4.1.2.2 Features

Existing work on data selection for domain adaptation selects data based on its similarity

to the target domain. Several measures have been proposed in the literature [Van Asch

and Daelemans, 2010, Plank and van Noord, 2011, Remus, 2012], but were so far only

used in isolation.

Only selecting training instances with respect to the target domain also fails to account

for instances that are richer and better suited for knowledge acquisition. For this reason,

1We also experimented with FABOLAS [Klein et al., 2017], but found its ability to adjust the training
set size during optimization to be inconclusive for our relatively small training sets.
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we consider—to our knowledge for the first time—whether intrinsic qualities of the

training data accounting for diversity are of use for domain adaptation in NLP.

Similarity We use a range of similarity metrics. Some metrics might be better suited

for some tasks, while different measures might capture complementary information. We

thus use the following measures as features for learning a more effective domain similarity

metric.

We define similarity features over probability distributions in accordance with existing liter-

ature [Plank and van Noord, 2011]. Let P be the representation of a source training exam-

ple, while Q is the corresponding target domain representation. Let further M = 1
2(P+Q),

i.e. the average distribution between P and Q and let DKL(P ||Q) =
∑n

i=1 pi log pi
qi

, i.e.,

the KL divergence between the two domains. We do not use DKL as a feature as it is

undefined for distributions where some event qi ∈ Q has probability 0, which is common

for term distributions. Our features are:

• Jensen-Shannon divergence [Lin, 1991]:
1
2 [DKL(P ||M) +DKL(Q||M)]. Jensen-Shannon divergence is a smoothed, symmet-

ric variant of DKL that has been successfully used for domain adaptation [Plank

and van Noord, 2011, Remus, 2012].

• Rényi divergence [Rényi, 1961]:
1

α−1 log(
∑n

i=1
pαi
qα−1
i

). Rényi divergence reduces to DKL as α→ 1. We set α = 0.99

following [Van Asch and Daelemans, 2010].

• Bhattacharyya distance [Bhattacharya, 1943]: ln(
∑

i

√
PiQi)

• Cosine similarity [Lee, 2001]: P ·Q
‖P‖ ‖Q‖ . We can treat the distributions alternatively

as vectors and consider geometrically motivated distance functions such as cosine

similarity as well as the following.

• Euclidean distance [Lee, 2001]:
√∑

i(Pi −Qi)2.

• Variational dist. [Lee, 2001]:
∑

i |Pi −Qi|.

We consider three different representations for calculating the above domain similarity

measures:

• Term distributions [Plank and van Noord, 2011]: t ∈ R|V | where ti is the probability

of the i-th word in the vocabulary V .

• Topic distributions [Plank and van Noord, 2011]: t ∈ Rn where ti is the probability

of the i-th topic as determined by an LDA model [Blei et al., 2003] trained on the

data and n is the number of topics.
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• Word embeddings [Mikolov et al., 2013a]: 1
n

∑
i vwi

√
a

p(wi)
where n is the number of

words with embeddings in the document, vwi is the pre-trained embedding of the i-

th word, p(wi) its probability, and a is a smoothing factor used to discount frequent

probabilities. A similar weighted sum has recently been shown to outperform

supervised approaches for other tasks [Arora et al., 2017]. As embeddings may be

negative, we use them only with the latter three geometric features above.

Diversity For each training example, we calculate its diversity based on the words in

the example. These diversity metrics operate on the example level and aim to measure

an example’s intrinsic informativeness. They do not seek to measure the diversity of the

entire set of examples.2

Let pi and pj be probabilities of the word types ti and tj in the training data and

cos(vti , vtj ) the cosine similarity between their word embeddings. We employ measures

that have been used in the past for measuring diversity [Tsvetkov et al., 2016]:

• Number of word types: #types.

• Type-token ratio: #types
#tokens .

• Entropy [Shannon, 1948]: −∑i pi ln(pi).

• Simpson’s index [Simpson, 1949]: −∑i p
2
i .

• Rényi entropy [Rényi, 1961]:
1

α−1 log(
∑

i p
α
i )

• Quadratic entropy [Rao, 1982]:∑
i,j cos(vti , vtj )pipj .

4.1.3 Experiments

Tasks and datasets We evaluate our approach on three tasks: sentiment analysis,

part-of speech (POS) tagging, and dependency parsing. We use the n examples with

the highest score as determined by the learned data selection measure for training our

models.3 We show statistics for all datasets in Table 4.1.

Sentiment analysis For sentiment analysis, we evaluate on the Amazon reviews

dataset [Blitzer et al., 2006]. We use tf-idf-weighted unigram and bigram features and a

linear SVM classifier [Blitzer et al., 2007]. We set the vocabulary size to 10,000 and the

number of training examples n = 1600 to conform with existing approaches [Bollegala

et al., 2011] and stratify the training set.

2Future work may consider the diversity of all examples jointly, for instance by employing an algorithm
that greedily selects examples in order to maximize a set-level diversity metric.

3All code is available at https://github.com/sebastianruder/learn-to-select-data.

https://github.com/sebastianruder/learn-to-select-data
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T Domain # labeled # unlabeled

S
en

ti
m

en
t Book 2000 4465

DVD 2000 3586
Electronics 2000 5681
Kitchen 2000 5945

P
O

S
/P

ar
si

n
g Answers 3489 27274

Emails 4900 1194173
Newsgroups 2391 1000000
Reviews 3813 1965350
Weblogs 2031 524834
WSJ 2976 30060

Table 4.1: Statistics for the Amazon Reviews dataset for sentiment analysis (top) and
the SANCL 2012 dataset for POS tagging and parsing (bottom).

POS tagging For POS tagging and parsing, we evaluate on the coarse-grained POS

data (12 universal POS) of the SANCL 2012 shared task [Petrov and McDonald, 2012].

Each domain—except for WSJ—contains around 2000-5000 labeled sentences and more

than 100,000 unlabeled sentences. In the case of WSJ, we use its dev and test data as

labeled samples and treat the remaining sections as unlabeled. We set n = 2000 for POS

tagging and parsing to retain enough examples for the most-similar-domain baseline.

To evaluate the impact of model choice, we compare two models: a Structured Perceptron

(in-house implementation with commonly used features pertaining to tags, words, case,

prefixes, as well as prefixes and suffixes) trained for 5 iterations with a learning rate of

0.2; and a state-of-the-art Bi-LSTM tagger [Plank et al., 2016] with word and character

embeddings as input. We perform early stopping on the validation set with patience of 2

and use otherwise default hyperparameters4 as provided by the authors.

Parsing For parsing, we evaluate the state-of-the-art Bi-LSTM parser by [Kiperwasser

and Goldberg, 2016] [Kiperwasser and Goldberg, 2016] with default hyperparameters.5

We use the same domains as used for POS tagging, i.e., the dependency parsing data

with gold POS as made available in the SANCL 2012 shared task.6

Training details In practice, as feature values occupy different ranges, we have found

it helpful to apply z-normalisation similar to Tsvetkov et al. [2016]. We moreover

constrain the weights w to [−1, 1].

4https://github.com/bplank/bilstm-aux
5https://github.com/elikip/bist-parser
6We leave investigating the effect of the adapted taggers on parsing for future work.

https://github.com/bplank/bilstm-aux
https://github.com/elikip/bist-parser
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For each dataset, we treat each domain as target domain and all other domains as source

domains. Similar to Bousmalis et al. [2016], we chose to use a small number (100) target

domain examples as validation set. We optimize each similarity measure using Bayesian

Optimization with 300 iterations according to the objective measure J of each task

(accuracy for sentiment analysis and POS tagging; LAS for parsing) with respect to the

validation set of the corresponding target domain.

Unlabeled data is used in addition to calculate the representation of the target domain

and to calculate the source domain representation for the most similar domain baseline.

We train an LDA model [Blei et al., 2003] with 50 topics and 10 iterations for topic

distribution-based representations and use GloVe embeddings [Pennington et al., 2014]

trained on 42B tokens of Common Crawl data7 for word embedding-based representations.

For sentiment analysis, we conduct 10 runs of each feature set for every domain and

report mean and variance. For POS tagging and parsing, we observe that variance is low

and perform one run while retaining random seeds for reproducibility.

Baselines and features We compare the learned measures to three baselines: i) a ran-

dom baseline that randomly selects n training samples from all source domains (random);

ii) the top n examples selected using Jensen-Shannon divergence (JS – examples), which

outperformed other measures in previous work [Plank and van Noord, 2011, Remus, 2012];

iii) n examples randomly selected from the most similar source domain determined by

Jensen-Shannon divergence (JS – domain). We additionally compare against training on

all available source data (6,000 examples for sentiment analysis; 14,700-17,569 examples

for POS tagging and parsing depending on the target domain).

We optimize data selection using Bayesian Optimization with every feature set: similarity

features respectively based on i) word embeddings, ii) term distributions, and iii) topic

distributions; and iv) diversity features. In addition, we investigate how well different

representations help each other by using similarity features with the two best-performing

representations, term distributions and topic distributions. Finally, we explore whether

diversity and similarity-based features complement each other by in turn using each

similarity-based feature set together with diversity features.

4.1.4 Results

Sentiment analysis We show results for sentiment analysis in Table 4.2. The best

results are highlighted in bold and the second-best are underlined. First of all, the

7https://nlp.stanford.edu/projects/glove/

https://nlp.stanford.edu/projects/glove/
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Target domains
Feature set Book DVD Electronics Kitchen

B
as

e Random 71.17 (± 4.41) 70.51 (± 3.33) 76.75 (± 1.77) 77.94 (± 3.72)
Jensen-Shannon divergence – examples 72.51 (± 0.42) 68.21 (± 0.34) 76.51 (± 0.63) 77.47 (± 0.44)
Jensen-Shannon divergence – domain 75.26 (± 1.25) 73.74 (± 1.36) 72.60 (± 2.19) 80.01 (± 1.93)

L
ea

rn
ed

m
ea

su
re

s

Similarity (word embeddings) 75.06 (± 1.38) 74.96 (± 2.12) 80.79 (± 1.31) 83.45 (± 0.96)
Similarity (term distributions) 75.39 (± 0.98) 76.25 (± 0.96) 81.91 (± 0.57) 83.39 (± 0.84)
Similarity (topic distributions) 76.04 (± 1.10) 75.89 (± 0.81) 81.69 (± 0.96) 83.09 (± 0.95)
Diversity 76.03 (± 1.28) 77.48 (± 1.33) 81.15 (± 0.67) 83.94 (± 0.99)
Sim (term dists) + sim (topic dists) 75.76 (± 1.30) 76.62 (± 0.95) 81.73 (± 0.63) 83.43 (± 0.75)
Sim (word embeddings) + diversity 75.52 (± 0.98) 77.50 (± 0.61) 80.97 (± 0.83) 84.28 (± 1.02)
Sim (term dists) + diversity 76.20 (± 1.45) 77.60 (± 1.01) 82.67 (± 0.73) 84.98 (± 0.60)
Sim (topic dists) + diversity 77.16 (± 0.77) 79.00 (± 0.93) 81.92 (± 1.32) 84.29 (± 1.00)

All source data (6,000 training examples) 70.86 (± 0.51) 68.74 (± 0.32) 77.39 (± 0.32) 73.09 (± 0.41)

Table 4.2: Accuracy scores for data selection for sentiment analysis domain adaptation
on the Amazon reviews dataset.

baselines show that the sentiment review domains are clearly delimited. Adapting

between two similar domains such as Book and DVD is more productive than adaptation

between dissimilar domains, e.g. Books and Electronics, as shown in previous work

[Blitzer et al., 2007]. This explains the strong performance of the most-similar-domain

baseline.

In contrast, selecting individual examples based on a domain similarity measure performs

only as good as chance. Thus, when domains are more clear-cut, selecting from the

closest domain is a stronger baseline than selecting from the entire pool of source data.

If we learn a data selection measure using Bayesian Optimization, we are able to

outperform the baselines with almost all feature sets. Performance gains are considerable

for all domains with individual feature sets (term similarity, word embeddings similarity,

diversity and topic similarity), except for Books were improvements for some single feature

sets are smaller. Term distributions and topic distributions are the best-performing

representations for calculating similarity, with term distributions performing slightly

better across all domains. Combining term distribution-based and topic distribution-based

features only provides marginal gains over the individual feature sets, demonstrating

that most of the information is contained in the similarity features rather than the

representations.

Diversity features perform comparatively to the best similarity features and outperform

them on two domains. Furthermore, the combination of diversity and similarity features

yields another sizable gain of around 1 percentage point for almost all domains over

the best similarity features, which shows that diversity and similarity features capture

complementary information. Term distribution and topic distribution-based similar-

ity features in conjunction with diversity features finally yield the best performance,

outperforming the baselines by 2-6 points in absolute accuracy.
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Trg domains → Answers Emails Newsgroups Reviews Weblogs WSJ
Task → POS Pars POS Pars POS Pars POS Pars POS Pars POS Pars
Feat ↓ Model → P B BIST P B BIST P B BIST P B BIST P B BIST P B BIST

B
as

e Random 91.34 92.55 81.02 91.80 93.25 79.09 92.50 93.26 80.61 92.08 92.12 82.30 92.76 93.03 82.39 91.08 92.54 78.31
JS – examples 92.42 93.16 82.80 91.75 93.77 80.53 92.96 94.29 83.25 92.77 93.32 84.35 94.33 94.92 85.36 92.85 94.08 82.43
JS – domain 90.84 91.13 80.37 91.64 93.16 79.93 92.23 92.67 81.77 92.27 92.67 82.11 93.19 94.34 83.44 91.20 92.99 80.61

L
ea

rn
ed

m
ea

su
re

s

W2v sim 92.53 93.22 82.74 92.94 94.14 81.18 93.41 94.09 81.62 93.51 93.30 82.98 94.41 94.83 84.30 93.02 94.66 81.57
Term sim 93.13 93.43 83.79 92.96 94.04 81.09 93.58 94.55 82.68 93.53 93.73 84.66 94.42 95.09 84.85 93.44 94.11 82.57
Topic sim 92.50 93.16 82.87 92.70 94.48 81.43 93.97 94.09 82.07 93.21 93.22 83.98 94.42 93.71 84.98 93.09 94.02 82.90
Diversity 92.33 92.58 83.01 93.08 93.56 80.93 94.37 93.97 83.98 93.33 93.05 83.92 94.62 94.94 85.84 93.33 93.44 82.80
Term+topic sim 92.80 93.69 82.87 92.70 92.28 81.13 93.57 93.76 82.97 93.56 93.61 84.65 94.41 94.23 84.43 93.07 94.68 82.43
W2v sim+div 92.76 92.38 82.34 93.51 94.19 80.77 93.96 94.10 84.26 93.45 93.39 84.47 94.36 94.95 85.53 93.32 93.20 82.32
Term sim+div 92.73 93.46 83.72 92.90 93.81 81.60 94.03 93.47 82.80 93.47 93.29 84.62 94.76 95.06 85.44 93.32 93.68 82.87
Topic sim+div 92.93 93.62 82.60 92.62 93.93 80.83 93.85 94.06 84.04 93.16 93.59 84.45 94.42 94.45 85.89 93.38 94.23 82.33

All source data 94.30 95.16 86.34 94.34 95.90 85.57 95.40 95.90 87.18 94.90 95.03 87.51 95.53 95.79 88.23 94.19 95.64 85.20

Table 4.3: Results for data selection for part-of-speech tagging (POS) and parsing
domain adaptation on the SANCL 2012 dataset.

Finally, we compare data selection to training on all available source data (in this setup,

6,000 instances). The result complements the findings of the most-similar baseline: as

domains are dissimilar, training on all available sources is detrimental.

POS tagging Results for POS tagging are given in Table 4.3 using accuracy as

evaluation metric. Best results are again highlighted in bold and the second-best are

underlined.

Using Bayesian Optimization, we are able to outperform the baselines with almost all

feature sets, except for a few cases (e.g., diversity and word embeddings similarity, topic

and term distributions). Overall term distribution-based similarity emerges as the most

powerful individual feature. Combining it with diversity does not prove as beneficial as

in the sentiment analysis case, however, often yields the second-best results.

Notice that for POS tagging/parsing, in contrast to sentiment analysis, the most-similar

domain baseline is not effective, it often performs only as good as chance, or even hurts.

In contrast, the baseline that selects instances (JS – examples) rather than a domain

performs better. This makes sense as in SA topically closer domains express sentiment

in more similar ways, while for POS tagging having more varied training instances

is intuitively more beneficial. In fact, when inspecting the domain distribution of our

approach, we find that the best SA model chooses more instances from the closest domain,

while for POS tagging instances are more balanced across domains. This suggests that

the Web treebank domains are less clear-cut. In fact, training a model on all sources,

which is considerably more and varied data (in this setup, 14-17.5k training instances)

is beneficial. This is in line with findings in machine translation [Mirkin and Besacier,

2014], which show that similarity-based selection works best if domains are very different.

Results are thus less pronounced for POS tagging, and we leave experimenting with

larger n for future work.
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To gain some insight into the optimization procedure, Figure 4.1 shows the development

accuracy for the Structured Perceptron exemplarily on the Reviews domain. The top-

right and bottom graphs show the hypothesis space exploration of Bayesian Optimization

for different single feature sets, while the top-left graph displays the overall best dev

accuracy for different feature sets. We observe again that term similarity is among the

best feature sets and results in a larger explored space (more variance), in contrast to

the diversity features whose development accuracy increases less and results in an overall

less explored space. Exploration plots for other features/models looks similar.
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Figure 4.1: Dev accuracy curves of Bayes Optimization for POS tagging on the
Reviews domain.

Parsing The results for parsing are given in Table 4.3 using Labeled Attachment Score

(LAS) as evaluation metric. Diversity features are stronger than for POS tagging and

outperform the baselines for all except the Reviews domain. Similarly to POS tagging,

term distribution-based similarity as well as its combination with diversity features yield

the best results across most domains.

Transfer across models In addition, we are interested how well the metric learned

for one target domain transfers to other settings. We first investigate its ability to

transfer to another model. In practice, a metric can be learned using a model that is

cheap to evaluate and serves as proxy for a state-of-the-art model, in a way similar to



Selecting Data for Domain Adaptation 141

uptraining [Petrov et al., 2010]. For this, we employ the data selection features learned

using the Structured Perceptron model for POS tagging and use them to select data

for the Bi-LSTM tagger. The data selection weights are learned using model MS ; the

Bi-LSTM tagger (B) is then trained using the learned weights.

We show results in Table 4.4. Performance that is better than the baselines is underlined.

The results indicate that cross-model transfer is indeed possible, with most transferred

feature sets achieving similar results or even outperforming features learned with the

Bi-LSTM. In particular, transferred diversity significantly outperforms its in-model

equivalent. This is encouraging, as it allows to learn a data selection metric using less

complex models.

Target domains
Answers Emails Newsgroups Reviews Weblogs WSJ

Feature set ↓ MS → B Pproxy B Pproxy B Pproxy B Pproxy B Pproxy B Pproxy

Term similarity 93.43 93.67 94.04 93.88 94.55 93.77 93.73 93.54 95.09 95.06 94.11 94.30
Diversity 92.58 93.19 93.56 94.40 93.97 94.96 93.05 93.52 94.94 94.91 93.44 94.14
Term similarity+diversity 93.46 93.18 93.81 94.29 93.47 94.28 93.29 93.35 95.06 94.67 93.68 93.92

Table 4.4: Accuracy scores for cross-model transfer of learned data selection weights
on the SANCL 2012 dataset.

Transfer across domains We explore whether data selection parameters learned for

one target domain transfer to other target domains. For each domain, we use the weights

with the highest performance on the validation set and use them for data selection with

the remaining domains as target domains. We conduct 10 runs for the best-performing

feature sets for sentiment analysis and report the average accuracy scores in Table 4.5

(for POS tagging using the Structured Perceptron, see Table 4.6). We indicate the target

domain used for learning the metric S with DS and highlight the best performance per

feature set in bold and in-domain results in gray. We list the state-of-the-art domain

adaptation approach SDAMS [Wu and Huang, 2016] as comparison.

The transfer of the weights learned with Bayesian Optimization is quite robust in most

cases. Feature sets like Similarity or Diversity trained on Books outperform the strong

JS – D baseline in all 6 cases, for Electronics and Kitchen in 4/6 cases (off-diagonals for

box 2 and 3 in Table 4.5). In some cases, the transferred weights even outperform the

data selection metric learned for the respective domain, such as on D→E with sim and

sim+div features and by almost 2 pp on E→D.

Transferred similarity+diversity features mostly achieve higher performance than other

feature sets, but the higher number of parameters runs the risk of overfitting to the

domain as can be observed with two instances of negative transfer with sim+div features.

As a reference, we also list the performance of the state-of-the-art multi-domain adaptation

approach [Wu and Huang, 2016], which shows that task-independent data selection is
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Target domains
Feature DS B D E K

Sim B 75.39 75.22 80.74 80.41
Sim D 75.30 76.25 82.68 82.29
Sim E 74.55 76.65 81.91 82.23
Sim K 73.64 76.66 81.09 83.39

Div B 76.03 75.16 80.16 80.01
Div D 75.68 77.48 65.74 72.48
Div E 74.69 76.60 81.15 81.97
Div K 75.03 76.23 80.71 83.94

Sim+div B 76.20 64.81 65.06 79.87
Sim+div D 74.17 77.60 83.26 85.19
Sim+div E 74.14 79.32 82.67 84.53
Sim+div K 75.54 76.11 78.72 84.98

SDAMS - 78.29 79.13 84.06 86.29

Table 4.5: Accuracy scores for cross-domain transfer of learned data selection weights
on Amazon reviews.

Target domains
Feature set DS Answers (A) Emails (E) Newsgroups (N) Reviews (R) Weblogs (W) WSJ

Term similarity A 93.13 91.60 93.94 93.63 94.26 92.42
Term similarity E 92.35 92.96 93.42 93.63 93.75 92.24
Term similarity N 92.48 92.28 93.58 93.35 93.95 93.00
Term similarity R 92.06 92.18 93.38 93.53 94.26 91.88
Term similarity W 92.69 92.12 93.65 93.12 94.42 92.63
Term similarity WSJ 92.50 92.51 93.53 93.00 94.29 93.44

Diversity A 92.33 92.14 93.46 92.00 94.01 92.56
Diversity E 92.11 93.08 93.81 92.67 94.16 93.13
Diversity N 92.67 92.22 94.37 92.44 94.05 92.96
Diversity R 92.65 92.72 93.67 93.33 94.18 93.28
Diversity W 92.19 92.31 93.31 92.20 94.62 92.04
Diversity WSJ 92.26 92.31 93.75 92.70 94.32 93.33

Term similarity+diversity A 92.73 92.63 93.16 92.58 93.88 92.23
Term similarity+diversity E 92.55 92.90 93.78 92.73 93.54 92.57
Term similarity+diversity N 92.47 92.27 94.03 92.63 94.30 93.14
Term similarity+diversity R 92.80 93.11 93.92 93.47 93.79 92.99
Term similarity+diversity W 92.61 92.45 93.44 93.52 94.76 93.26
Term similarity+diversity WSJ 91.82 92.37 93.52 92.63 94.17 93.32

Table 4.6: Accuracy scores for cross-domain transfer of learned data selection weights
for part-of-speech tagging on the SANCL 2012 dataset.

in fact competitive with a task-specific, heuristic state-of-the-art domain adaptation

approach. In fact our transferred similarity+diversity feature (E→D) outperforms

the state-of-the-art [Wu and Huang, 2016] on DVD. This is encouraging as previous

work [Remus, 2012] has shown that data selection and domain adaptation can be

complementary.

Transfer across tasks We finally investigate whether data selection is task-specific or

whether a metric learned on one task can be transferred to another one. For each feature

set, we use the learned weights for each domain in the source task (for sentiment analysis,

we use the best weights on the validation set; for POS tagging, we use the Structured
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Perceptron model) and run experiments with them for all domains in the target task.8

We report the averaged accuracy scores for transfer across all tasks in Table 4.7. TS
is the task used for learning metric S. We use the same features as in Table 4.5 and

highlight in-task reults with gray and underline results that are better than the baselines.

Target tasks
Feature set TS POS Pars SA

Sim POS 93.51 83.11 74.19
Sim Pars 92.78 83.27 72.79
Sim SA 86.13 67.33 79.23

Div POS 93.51 83.11 69.78
Div Pars 93.02 83.41 68.45
Div SA 90.52 74.68 79.65

Sim+div POS 93.54 83.24 69.79
Sim+div Pars 93.11 83.51 72.27
Sim+div SA 89.80 75.17 80.36

Table 4.7: Results of cross-task transfer of learned data selection weights.

Transfer is productive between related tasks, i.e. POS tagging and parsing results are

similar to those obtained with data selection learned for the particular task. We observe

large drops in performance for transfer between unrelated tasks, such as sentiment

analysis and POS tagging, which is expected since these are very different tasks. Between

related tasks, the combination of similarity and diversity features achieves the most

robust transfer and outperforms the baselines in both cases. This suggests that even

in the absence of target task data, we only require data of a related task to learn a

successful data selection measure.

4.1.5 Related work

Most prior work on data selection for transfer learning focuses on phrase-based machine

translation [Moore and Lewis, 2010, Axelrod et al., 2011, Duh et al., 2013, Mirkin and

Besacier, 2014], with fewer studies in other tasks, e.g., constituent parsing [McClosky

et al., 2010], dependency parsing [Plank and van Noord, 2011, Søgaard, 2011] and

sentiment analysis [Remus, 2012] (§3.4.3.2). We are not aware of another study that

covers three distinct tasks. In addition, we test previously explored similarity metrics

(§3.4.2.1) and complement them with diversity.

Very recently interest emerged in curriculum learning [Bengio et al., 2009]. It is inspired

by human active learning by providing easier examples at initial learning stages (e.g., by

curriculum strategies such as growing vocabulary size). Curriculum learning employs

8E.g., for SA-¿POS, for each feature set, we obtain one set of weights for each of 4 SA domains, which
we use to select data for the 6 POS domains, yielding 4 · 6 = 24 results.
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a range of data metrics, but aims at altering the order in which the entire training

data is selected, rather than selecting data. In contrast to us, curriculum learning is

mostly aimed at speeding up the learning, while we focus on learning metrics for transfer

learning. Other related work in this direction include using Reinforcement Learning to

learn what data to select during neural network training [Fan et al., 2017b].

There is a long history of research in adaptive data selection, with early approaches

grounded in information theory using a Bayesian learning framework [MacKay, 1992].

It has also been studied extensively as active learning [El-Gamal, 1991]. Curriculum

learning is related to active learning [Settles, 2012], whose view is different: active

learning aims at finding the most difficult instances to label, examples typically close to

the decision boundary. Confidence-based measures are prominent, but as such are less

widely applicable than our model-agnostic approach.

The approach most similar to ours is by Tsvetkov et al. [2016] who use Bayesian

Optimization to learn a curriculum for training word embeddings. Rather than ordering

data (in their case, paragraphs), we use Bayesian Optimization for learning to select

relevant training instances that are useful for transfer learning in order to prevent negative

transfer [Rosenstein et al., 2005]. To the best of our knowledge there is no prior work

that uses this strategy for transfer learning.

4.1.6 Summary

In this section, we propose to use Bayesian Optimization to learn data selection measures

for transfer learning. Our results outperform existing domain similarity metrics on

three tasks (sentiment analysis, POS tagging and parsing), and are competitive with

a state-of-the-art domain adaptation approach. More importantly, we present the first

study on the transferability of such measures, showing promising results to port them

across models, domains and related tasks.

In the following section, we in addition consider unlabelled examples for data selection

and focus on a particular category of semi-supervised learning methods that learns to

assign labels to such unlabelled examples. While we previously incorporated a measure

of informativeness explicitly via features, our models in the next section will aim to learn

how reliable an example based on the agreement with each other.
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4.2 Strong Baselines for Neural Semi-supervised Learning

under Domain Shift

∗ Novel neural models have been proposed in recent years for learning under domain

shift. Most models, however, only evaluate on a single task, on proprietary datasets,

or compare to weak baselines, which makes comparison of models difficult. In this

section, we re-evaluate classic general-purpose bootstrapping approaches in the context

of neural networks under domain shifts vs. recent neural approaches and propose a

novel multi-task tri-training method that reduces the time and space complexity of

classic tri-training. Extensive experiments on two benchmarks are negative: while our

novel method establishes a new state-of-the-art for sentiment analysis, it does not fare

consistently the best. More importantly, we arrive at the somewhat surprising conclusion

that classic tri-training, with some additions, outperforms the state of the art. We

conclude that classic approaches constitute an important and strong baseline.

4.2.1 Introduction

Deep neural networks excel at learning from labeled data and have achieved state of

the art in a wide array of supervised NLP tasks such as dependency parsing [Dozat

and Manning, 2017], named entity recognition [Lample et al., 2016], and semantic role

labeling [He et al., 2017].

In contrast, learning from unlabeled data, especially under domain shift, remains a

challenge. This is common in many real-world applications where the distribution of

the training and test data differs. Many state-of-the-art domain adaptation approaches

leverage task-specific characteristics such as sentiment words [Blitzer et al., 2006, Wu

and Huang, 2016] or distributional features [Schnabel and Schütze, 2014, Yin et al., 2015]

which do not generalize to other tasks. Other approaches that are in theory more general

only evaluate on proprietary datasets [Kim et al., 2017a] or on a single benchmark [Zhou

et al., 2016a], which carries the risk of overfitting to the task. In addition, most models

only compare against weak baselines and, strikingly, almost none considers evaluating

against approaches from the extensive semi-supervised learning (SSL) literature [Chapelle

et al., 2006].

In this work, we make the argument that such algorithms make strong baselines for any

task in line with recent efforts highlighting the usefulness of classic approaches [Melis

et al., 2017, Denkowski and Neubig, 2017]. We re-evaluate bootstrapping algorithms in

∗This section is adapted from: Ruder, S. and Plank, B. (2018). Strong Baselines for Neural
Semi-supervised Learning under Domain Shift. In Proceedings of ACL 2018.
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the context of DNNs. These are general-purpose semi-supervised algorithms that treat the

model as a black box and can thus be used easily—with a few additions—with the current

generation of NLP models. Many of these methods, though, were originally developed

with in-domain performance in mind, so their effectiveness in a domain adaptation setting

remains unexplored.

In particular, we re-evaluate three traditional bootstrapping methods, self-training

[Yarowsky, 1995], tri-training [Zhou and Li, 2005], and tri-training with disagreement

[Søgaard, 2010] for neural network-based approaches on two NLP tasks with different

characteristics, namely, a sequence prediction and a classification task (POS tagging

and sentiment analysis). We evaluate the methods across multiple domains on two

well-established benchmarks, without taking any further task-specific measures, and

compare to the best results published in the literature.

We make the somewhat surprising observation that classic tri-training outperforms

task-agnostic state-of-the-art semi-supervised learning [Laine and Aila, 2017] and recent

neural adaptation approaches [Ganin et al., 2016, Saito et al., 2017].

In addition, we propose multi-task tri-training, which reduces the main deficiency of

tri-training, namely its time and space complexity. It establishes a new state of the art

on unsupervised domain adaptation for sentiment analysis but it is outperformed by

classic tri-training for POS tagging.

Contributions Our contributions are: a) We propose a novel multi-task tri-training

method. b) We show that tri-training can serve as a strong and robust semi-supervised

learning baseline for the current generation of NLP models. c) We perform an extensive

evaluation of bootstrapping1 algorithms compared to state-of-the-art approaches on two

benchmark datasets. d) We shed light on the task and data characteristics that yield the

best performance for each model.

4.2.2 Neural bootstrapping methods

We first introduce three classic bootstrapping methods, self-training, tri-training, and

tri-training with disagreement and detail how they can be used with neural networks.

For in-depth details we refer the reader to [Abney, 2007, Chapelle et al., 2006, Zhu and

Goldberg, 2009]. We introduce our novel multi-task tri-training method in §4.2.2.3.

1We use the term bootstrapping as used in the semi-supervised learning literature [Zhu, 2005], which
should not be confused with the statistical procedure of the same name [Efron and Tibshirani, 1994].
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4.2.2.1 Self-training

Self-training [Yarowsky, 1995, McClosky et al., 2006b] is one of the earliest and simplest

bootstrapping approaches. In essence, it leverages the model’s own predictions on unla-

beled data to obtain additional information that can be used during training. Typically

the most confident predictions are taken at face value, as detailed next.

Self-training trains a model m on a labeled training set L and an unlabeled data set

U . At each iteration, the model provides predictions m(x) in the form of a probability

distribution over classes for all unlabeled examples x in U . If the probability assigned

to the most likely class is higher than a predetermined threshold τ , x is added to the

labeled examples with p(x) = arg maxm(x) as pseudo-label. This instantiation is the

most widely used and shown in Algorithm 1.

Algorithm 1 Self-training [Abney, 2007]

1: repeat
2: m← train model(L)
3: for x ∈ U do
4: if maxm(x) > τ then
5: L← L ∪ {(x, p(x))}
6: until no more predictions are confident

Calibration It is well-known that output probabilities in neural networks are poorly

calibrated [Guo et al., 2017]. Using a fixed threshold τ is thus not the best choice. While

the absolute confidence value is inaccurate, we can expect that the relative order of

confidences is more robust.

For this reason, we select the top n unlabeled examples that have been predicted with

the highest confidence after every epoch and add them to the labeled data. This is one

of the many variants for self-training, called throttling [Abney, 2007]. We empirically

confirm that this outperforms the classic selection in our experiments.

Online learning In contrast to many classic algorithms, DNNs are trained online by

default. We compare training setups and find that training until convergence on labeled

data and then training until convergence using self-training performs best.

Classic self-training has shown mixed success. In parsing it proved successful only with

small datasets [Reichart and Rappoport, 2007] or when a generative component is used

together with a reranker in high-data conditions [McClosky et al., 2006b, Suzuki and

Isozaki, 2008]. Some success was achieved with careful task-specific data selection [Petrov

and McDonald, 2012], while others report limited success on a variety of NLP tasks [Plank
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and van Noord, 2011, Van Asch and Daelemans, 2016, van der Goot et al., 2017]. Its

main downside is that the model is not able to correct its own mistakes and errors are

amplified, an effect that is increased under domain shift.

4.2.2.2 Tri-training

Tri-training [Zhou and Li, 2005] is a classic method that reduces the bias of predictions

on unlabeled data by utilizing the agreement of three independently trained models.

Tri-training (cf. Algorithm 2) first trains three models m1, m2, and m3 on bootstrap

samples of the labeled data L. An unlabeled data point is added to the training set of a

model mi if the other two models mj and mk agree on its label. Training stops when

the classifiers do not change anymore.

Algorithm 2 Tri-training [Zhou and Li, 2005]

1: for i ∈ {1..3} do
2: Si ← bootstrap sample(L)
3: mi ← train model(Si)

4: repeat
5: for i ∈ {1..3} do
6: Li ← ∅
7: for x ∈ U do
8: if pj(x) = pk(x)(j, k 6= i) then
9: Li ← Li ∪ {(x, pj(x))}

mi ← train model(L ∪ Li)
10: until none of mi changes
11: apply majority vote over mi

Tri-training with disagreement [Søgaard, 2010] is based on the intuition that a model

should only be strengthened in its weak points and that the labeled data should not be

skewed by easy data points. In order to achieve this, it adds a simple modification to

the original algorithm (altering line 8 in Algorithm 2), requiring that for an unlabeled

data point on which mj and mk agree, the other model mi disagrees on the prediction.

Tri-training with disagreement is more data-efficient than tri-training and has achieved

competitive results on part-of-speech tagging [Søgaard, 2010].

Sampling unlabeled data Both tri-training and tri-training with disagreement can

be very expensive in their original formulation as they require to produce predictions

for each of the three models on all unlabeled data samples, which can be in the millions

in realistic applications. We thus propose to sample a number of unlabeled examples

at every epoch. For all traditional bootstrapping approaches we sample 10k candidate

instances in each epoch. For the neural approaches we use a linearly growing candidate



Selecting Data for Domain Adaptation 149

Figure 4.2: The Multi-task Tri-training model

sampling scheme proposed by Saito et al. [2017], increasing the candidate pool size as

the models become more accurate.

Confidence thresholding Similar to self-training, we can introduce an additional

requirement that pseudo-labeled examples are only added if the probability of the

prediction of at least one model is higher than some threshold τ . We did not find this to

outperform prediction without threshold for traditional tri-training, but thresholding

proved essential for our method (§4.2.2.3).

The most important condition for tri-training and tri-training with disagreement is that

the models are diverse. Typically, bootstrap samples are used to create this diversity

[Zhou and Li, 2005, Søgaard, 2010]. However, training separate models on bootstrap

samples of a potentially large amount of training data is expensive and takes a lot of

time. This drawback motivates our approach.

4.2.2.3 Multi-task tri-training

In order to reduce both the time and space complexity of tri-training, we propose Multi-

task Tri-training (MT-Tri). MT-Tri leverages insights from multi-task learning (MTL)

[Caruana, 1993] to share knowledge across models and accelerate training. Rather than

storing and training each model separately, we propose to share the parameters of the

models and train them jointly using MTL.2 All models thus collaborate on learning a

joint representation, which improves convergence.

2Note: we use the term multi-task learning here albeit all tasks are of the same kind, similar to work
on multi-lingual modeling treating each language (but same label space) as separate task e.g., [Fang and
Cohn, 2017]. It is interesting to point out that our model is further doing implicit multi-view learning by
way of the orthogonality constraint.
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The output softmax layers are model-specific and are only updated for the input of the

respective model. We show the model in Figure 4.2 (as instantiated for POS tagging). As

the models leverage a joint representation, we need to ensure that the features used for

prediction in the softmax layers of the different models are as diverse as possible, so that

the models can still learn from each other’s predictions. In contrast, if the parameters in

all output softmax layers were the same, the method would degenerate to self-training.

To guarantee diversity, we introduce an orthogonality constraint [Bousmalis et al., 2016]

as an additional loss term, which we define as follows:

Lorth = ‖W>
m1

Wm2‖2F (4.2)

where | · ‖2F is the squared Frobenius norm and Wm1 and Wm2 are the softmax output

parameters of the two source and pseudo-labeled output layers m1 and m2, respectively.

The orthogonality constraint encourages the models not to rely on the same features for

prediction. As enforcing pair-wise orthogonality between three matrices is not possible,

we only enforce orthogonality between the softmax output layers of m1 and m2,3 while

m3 is gradually trained to be more target-specific. We parameterize Lorth by γ=0.01

following Liu et al. [2017]. We do not further tune γ.

More formally, let us illustrate the model by taking the sequence prediction task (Fig-

ure 4.2) as illustration. Given an utterance with labels y1, .., yn, our Multi-task Tri-

training loss consists of three task-specific (m1,m2,m3) tagging loss functions (where ~h

is the uppermost Bi-LSTM encoding):

L(θ) = −
∑
i

∑
1,..,n

logPmi(y|~h) + γLorth (4.3)

In contrast to classic tri-training, we can train the multi-task model with its three model-

specific outputs jointly and without bootstrap sampling on the labeled source domain

data until convergence, as the orthogonality constraint enforces different representations

between models m1 and m2. From this point, we can leverage the pair-wise agreement

of two output layers to add pseudo-labeled examples as training data to the third model.

We train the third output layer m3 only on pseudo-labeled target instances in order to

make tri-training more robust to a domain shift. For the final prediction, majority voting

of all three output layers is used, which resulted in the best instantiation, together with

confidence thresholding (τ = 0.9, except for high-resource POS where τ = 0.8 performed

slightly better). We also experimented with using a domain-adversarial loss [Ganin

3We also tried enforcing orthogonality on a hidden layer rather than the output layer, but this did
not help.
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Algorithm 3 Multi-task Tri-training

1: m← train model(L)
2: repeat
3: for i ∈ {1..3} do
4: Li ← ∅
5: for x ∈ U do
6: if pj(x) = pk(x)(j, k 6= i) then
7: Li ← Li ∪ {(x, pj(x))}
8: if i = 3 then mi = train model(Li)
9: elsemi ← train model(L ∪ Li)

10: until end condition is met
11: apply majority vote over mi

et al., 2016] on the jointly learned representation, but found this not to help. The full

pseudo-code is given in Algorithm 3.

Computational complexity The motivation for MT-Tri was to reduce the space

and time complexity of tri-training. We thus give an estimate of its efficiency gains.

MT-Tri is ≈ 3× more space-efficient than regular tri-training; tri-training stores one

set of parameters for each of the three models, while MT-Tri only stores one set of

parameters (we use three output layers, but these make up a comparatively small part

of the total parameter budget). In terms of time efficiency, tri-training first requires to

train each of the models from scratch. The actual tri-training takes about the same time

as training from scratch and requires a separate forward pass for each model, effectively

training three independent models simultaneously. In contrast, MT-Tri only necessitates

one forward pass as well as the evaluation of the two additional output layers (which

takes a negligible amount of time) and requires about as many epochs as tri-training

until convergence (see Table 4.9, second column) while adding fewer unlabeled examples

per epoch (see Section 4.2.3.4). In our experiments, MT-Tri trained about 5-6× faster

than traditional tri-training.

MT-Tri can be seen as a self-ensembling technique, where different variations of a model

are used to create a stronger ensemble prediction. Recent approaches in this line are

snapshot ensembling [Huang et al., 2017a] that ensembles models converged to different

minima during a training run, asymmetric tri-training [Saito et al., 2017] (Asym) that

leverages agreement on two models as information for the third, and temporal ensembling

[Laine and Aila, 2017], which ensembles predictions of a model at different epochs. We

tried to compare to temporal ensembling in our experiments, but were not able to

obtain consistent results.4 We compare to the closest most recent method, asymmetric

4We suspect that the sparse features in NLP and the domain shift might be detrimental to its
unsupervised consistency loss.
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tri-training [Saito et al., 2017]. It differs from ours in two aspects: a) Asym leverages

only pseudo-labels from data points on which m1 and m2 agree, and b) it uses only

one task (m3) as final predictor. In essence, our formulation of MT-Tri is closer to the

original tri-training formulation (agreements on two provide pseudo-labels to the third)

thereby incorporating more diversity.

4.2.3 Experiments

In order to ascertain which methods are robust across different domains, we evaluate on

widely used unsupervised domain adaptation datasets for two tasks, a sequence labeling

and a classification task. We choose the SANCL 2012 dataset for POS tagging and the

Amazon Reviews dataset, which we already employed in Section 4.1 (see Table 4.1 for

statistics).

4.2.3.1 POS tagging

For POS tagging we use the SANCL 2012 shared task dataset [Petrov and McDonald,

2012] and compare to the top results in both low and high-data conditions [Schnabel and

Schütze, 2014, Yin et al., 2015]. Both are strong baselines, as the FLORS tagger has been

developed for this challenging dataset and it is based on contextual distributional features

(excluding the word’s identity), and hand-crafted suffix and shape features (including

some language-specific morphological features). We want to gauge to what extent we

can adopt a nowadays fairly standard (but more lexicalized) general neural tagger.

Our POS tagging model is a state-of-the-art Bi-LSTM tagger [Plank, 2016] with word

and 100-dim character embeddings. Word embeddings are initialized with the 100-dim

Glove embeddings [Pennington et al., 2014]. The BiLSTM has one hidden layer with 100

dimensions. The base POS model is trained on WSJ with early stopping on the WSJ

development set, using patience 2, Gaussian noise with σ = 0.2 and word dropout with

p = 0.25 [Kiperwasser and Goldberg, 2016].

Regarding data, the source domain is the Ontonotes 4.0 release of the Penn treebank

Wall Street Journal (WSJ) annotated for 48 fine-grained POS tags. This amounts

to 30,060 labeled sentences. We use 100,000 WSJ sentences from 1988 as unlabeled

data, following Schnabel and Schütze [2014].5 As target data, we use the five SANCL

domains (answers, emails, newsgroups, reviews, weblogs). We restrict the amount of

unlabeled data for each SANCL domain to the first 100k sentences, and do not do any

5Note that our unlabeled data might slightly differ from theirs. We took the first 100k sentences from
the 1988 WSJ dataset from the BLLIP 1987-89 WSJ Corpus Release 1.
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pre-processing. We consider the development set of Answers as our only target dev set

to set hyperparameters. This may result in suboptimal per-domain settings but better

resembles an unsupervised adaptation scenario.

4.2.3.2 Sentiment analysis

For sentiment analysis, we evaluate on the Amazon reviews dataset [Blitzer et al., 2006].

Reviews with 1 to 3 stars are ranked as negative, while reviews with 4 or 5 stars are

ranked as positive. The dataset consists of four domains, yielding 12 adaptation scenarios.

We use the same pre-processing and architecture as used in [Ganin et al., 2016, Saito

et al., 2017]: 5,000-dimensional tf-idf weighted unigram and bigram features as input; 2k

labeled source samples and 2k unlabeled target samples for training, 200 labeled target

samples for validation, and between 3k-6k samples for testing. The model is an MLP

with one hidden layer with 50 dimensions, sigmoid activations, and a softmax output.

We compare against the Variational Fair Autoencoder (VFAE) [Louizos et al., 2015]

model and domain-adversarial neural networks (DANN) [Ganin et al., 2016].

4.2.3.3 Baselines

Besides comparing to the top results published on both datasets, we include the following

baselines:

a) the task model trained on the source domain;

b) self-training (Self);

c) tri-training (Tri);

d) tri-training with disagreement (Tri-D); and

e) asymmetric tri-training [Saito et al., 2017].

Our proposed model is multi-task tri-training (MT-Tri). We implement our models in

DyNet [Neubig et al., 2017]. Reporting single evaluation scores might result in biased

results [Reimers and Gurevych, 2017]. Throughout the paper, we report mean accuracy

and standard deviation over five runs for POS tagging and over ten runs for sentiment

analysis. Significance is computed using bootstrap test. The code for all experiments is

released at: https://github.com/bplank/semi-supervised-baselines.

4.2.3.4 Results

Sentiment analysis We show results for sentiment analysis for all 12 domain adapta-

tion scenarios in Figure 4.3. For clarity, we also show the accuracy scores averaged across

https://github.com/bplank/semi-supervised-baselines
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each target domain as well as a global macro average in Table 4.8. The domains are

Books (B), DVD (DVD), Electronics (E), and Kitchen (K). Results for VFAE, DANN,

and Asym (indicated with a * in Table 4.8 are from Saito et al. [2017]).

Figure 4.3: Average results for unsupervised domain adaptation on the Amazon
dataset.

Model D B E K Avg

VFAE* 76.57 73.40 80.53 82.93 78.36
DANN* 75.40 71.43 77.67 80.53 76.26
Asym* 76.17 72.97 80.47 83.97 78.39

Src 75.91 73.47 75.61 79.58 76.14
Self 78.00 74.55 76.54 80.30 77.35
Tri 78.72 75.64 78.60 83.26 79.05
Tri-D 76.99 74.44 78.30 80.59 77.58
MT-Tri 78.14 74.86 81.45 82.14 79.15

Table 4.8: Average accuracy scores for each SA target domain.

Self-training achieves surprisingly good results but is not able to compete with tri-training.

Tri-training with disagreement is only slightly better than self-training, showing that the

disagreement component might not be useful when there is a strong domain shift. Tri-

training achieves the best average results on two target domains and clearly outperforms

the state of the art on average.

MT-Tri finally outperforms the state of the art on 3/4 domains, and even slightly

traditional tri-training, resulting in the overall best method. This improvement is mainly

due to the B→E and D→E scenarios, on which tri-training struggles. These domain pairs

are among those with the highest A-distance [Blitzer et al., 2007], which highlights that

tri-training has difficulty dealing with a strong shift in domain. Our method is able to
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mitigate this deficiency by training one of the three output layers only on pseudo-labeled

target domain examples.

In addition, MT-Tri is more efficient as it adds a smaller number of pseudo-labeled

examples than tri-training at every epoch. For sentiment analysis, tri-training adds

around 1800-1950/2000 unlabeled examples at every epoch, while MT-Tri only adds

around 100-300 in early epochs. This shows that the orthogonality constraint is useful for

inducing diversity. In addition, adding fewer examples poses a smaller risk of swamping

the learned representations with useless signals and is more akin to fine-tuning, the

standard method for supervised domain adaptation Howard and Ruder [2018].

We observe an asymmetry in the results between some of the domain pairs, e.g. B→D and

D→B. We hypothesize that the asymmetry may be due to properties of the data and that

the domains are relatively far apart e.g., in terms of A-distance. In fact, asymmetry in

these domains is already reflected in the results of Blitzer et al. [2007] and is corroborated

in the results for asymmetric tri-training [Saito et al., 2017] and our method.

We note a weakness of this dataset is high variance. Existing approaches only report the

mean, which makes an objective comparison difficult. For this reason, we believe it is

essential to evaluate proposed approaches also on other tasks.

POS tagging Results for tagging in the low-data regime (10% of WSJ) are given in

Table 4.9. Avg means the average over the 5 SANCL domains. The hyperparameter

ep (epochs) is tuned on the validation set of the Answers domain. µpseudo indicates the

average amount of added pseudo-labeled data. The results for FLORS Batch (u:big) are

from [Yin et al., 2015] (see §4.2.3).

Target domains
Model ep Answers Emails Newsgroups Reviews Weblogs Avg WSJ µpseudo

Src (+glove) 87.63 ±.37 86.49 ±.35 88.60 ±.22 90.12 ±.32 92.85 ±.17 89.14 ±.28 95.49 ±.09 —
Self (5) 87.64 ±.18 86.58 ±.30 88.42 ±.24 90.03 ±.11 92.80 ±.19 89.09 ±.20 95.36 ±.07 .5k
Tri (4) 88.42 ±.16 87.46 ±.20 87.97 ±.09 90.72 ±.14 93.40 ±.15 89.56 ±.16 95.94 ±.07 20.5k
Tri-D (7) 88.50 ±.04 87.63 ±.15 88.12 ±.05 90.76 ±.10 93.51 ±.06 89.70 ±.08 95.99 ±.03 7.7K
Asym (3) 87.81 ±.19 86.97 ±.17 87.74 ±.24 90.16 ±.17 92.73 ±.16 89.08 ±.19 95.55 ±.12 1.5k
MT-Tri (4) 87.92 ±.18 87.20 ±.23 87.73 ±.37 90.27 ±.10 92.96 ±.07 89.21 ±.19 95.50 ±.06 7.6k

FLORS 89.71 88.46 89.82 92.10 94.20 90.86 95.80 —

Table 4.9: Accuracy scores on dev set of target domain for POS tagging for 10%
labeled data.

Self-training does not work for the sequence prediction task. We report only the best

instantiation (throttling with n=800). Our results contribute to negative findings

regarding self-training [Plank and van Noord, 2011, Van Asch and Daelemans, 2016].

In the low-data setup, tri-training with disagreement works best, reaching an overall

average accuracy of 89.70, closely followed by classic tri-training, and significantly
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outperforming the baseline on 4/5 domains. The exception is newsgroups, a difficult

domain with high OOV rate where none of the approches beats the baseline (see §4.2.3.4).

Our proposed MT-Tri is better than asymmetric tri-training, but falls below classic

tri-training. It beats the baseline significantly on only 2/5 domains (answers and emails).

The FLORS tagger [Yin et al., 2015] fares better. Its contextual distributional features

are particularly helpful on unknown word-tag combinations (see §4.2.3.4), which is a

limitation of the lexicalized generic bi-LSTM tagger.

We show results for the high-data setup in Table 4.10 where models were trained on

the full source data. Values for methods with * are from Schnabel and Schütze [2014].

Results are similar.

Target domains dev sets Avg on
Model Answers Emails Newsgroups Reviews Weblogs targets WSJ
TnT* 88.55 88.14 88.66 90.40 93.33 89.82 95.75
Stanford* 88.92 88.68 89.11 91.43 94.15 90.46 96.83

Src 88.84 ±.15 88.24 ±.12 89.45 ±.23 91.24 ±.03 93.92 ±.17 90.34 ±.14 96.69 ±.08
Tri 89.34 ±.18 88.83 ±.07 89.32 ±.21 91.62 ±.06 94.40 ±.06 90.70 ±.12 96.84 ±.04
Tri-D 89.35 ±.16 88.66 ±.09 89.29 ±.12 91.58 ±.05 94.32 ±.05 90.62 ±.09 96.85 ±.06

Src (+glove) 89.35 ±.16 88.55 ±.14 90.12 ±.31 91.48 ±.15 94.48 ±.07 90.80 ±.17 96.90 ±.04
Tri 90.00 ±.03 89.06 ±.16 90.04 ±.25 91.98 ±.11 94.74 ±.06 91.16 ±.12 96.99 ±.02
Tri-D 89.80 ±.19 88.85 ±.10 90.03 ±.22 91.98 ±.09 94.70 ±.05 91.01 ±.13 96.95 ±.05
Asym 89.51 ±.15 88.47 ±.19 89.26 ±.16 91.60 ±.20 94.28 ±.15 90.62 ±.17 96.56 ±.01
MT-Tri 89.45 ±.05 88.65 ±.04 89.40 ±.22 91.63 ±.23 94.41 ±.05 90.71 ±.12 97.37 ±.07

FLORS* 90.30 89.44 90.86 92.95 94.71 91.66 96.59

Target domains test sets Avg on
Model Answers Emails Newsgroups Reviews Weblogs targets WSJ
TnT* 89.36 87.38 90.85 89.67 91.37 89.73 96.57
Stanford* 89.74 87.77 91.25 90.30 92.32 90.28 97.43

Src (+glove) 90.43 ±.13 87.95 ±.18 91.83 ±.20 90.04 ±.11 92.44 ±.14 90.54 ±.15 97.50 ±.03
Tri 91.21 ±.06 88.30 ±.19 92.18 ±.19 90.06 ±.10 92.85 ±.02 90.92 ±.11 97.45 ±.03
Asym 90.62 ±.26 87.71 ±.07 91.40 ±.05 89.89 ±.22 92.37 ±.27 90.39 ±.17 97.19 ±.03
MT-Tri 90.53 ±.15 87.90 ±.07 91.45 ±.19 89.77 ±.26 92.35 ±.09 90.40 ±.15 97.37 ±.07

FLORS* 91.17 88.67 92.41 92.25 93.14 91.53 97.11

Table 4.10: Accuracy for POS tagging on the dev and test sets of the SANCL domains.

Disagreement, however, is only favorable in the low-data setups; the effect of avoiding

easy points no longer holds in the full data setup. Classic tri-training is the best method.

In particular, traditional tri-training is complementary to word embedding initialization,

pushing the non-pre-trained baseline to the level of Src with Glove initalization. Tri-

training pushes performance even further and results in the best model, significantly

outperforming the baseline again in 4/5 cases, and reaching FLORS performance on

weblogs. Multi-task tri-training is often slightly more effective than asymmetric tri-

training [Saito et al., 2017]; however, improvements for both are not robust across

domains, sometimes performance even drops. The model likely is too simplistic for such a

high-data POS setup, and exploring shared-private models might prove more fruitful [Liu

et al., 2017]. On the test sets, tri-training performs consistently the best.
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Ans Email Newsg Rev Webl
% unk tag 0.25 0.80 0.31 0.06 0.0
% OOV 8.53 10.56 10.34 6.84 8.45
% UWT 2.91 3.47 2.43 2.21 1.46

Accuracy on OOV tokens
Src 54.26 57.48 61.80 59.26 80.37
Tri 55.53 59.11 61.36 61.16 79.32
Asym 52.86 56.78 56.58 59.59 76.84
MT-Tri 52.88 57.22 57.28 58.99 77.77

Accuracy on unknown word-tag (UWT) tokens
Src 17.68 11.14 17.88 17.31 24.79
Tri 16.88 10.04 17.58 16.35 23.65
Asym 17.16 10.43 17.84 16.92 22.74
MT-Tri 16.43 11.08 17.29 16.72 23.13

FLORS* 17.19 15.13 21.97 21.06 21.65

Table 4.11: Accuracy scores on dev sets for OOV and unknown word-tag (UWT)
combinations.

POS analysis We analyze POS tagging accuracy with respect to word frequency6 and

unseen word-tag combinations (UWT) on the dev sets. Table 4.11 (top rows) provides

percentage of unknown tags, OOVs and unknown word-tag (UWT) rate.

The SANCL dataset is overall very challenging: OOV rates are high (6.8-11% compared

to 2.3% in WSJ), so is the unknown word-tag (UWT) rate (answers and emails contain

2.91% and 3.47% UWT compared to 0.61% on WSJ) and almost all target domains even

contain unknown tags [Schnabel and Schütze, 2014] (unknown tags: ADD,GW,NFP,XX),

except for weblogs. Email is the domain with the highest OOV rate and highest unknown-

tag-for-known-words rate. We plot accuracy with respect to word frequency on email in

Figure 4.4, analyzing how the three methods fare in comparison to the baseline on this

difficult domain.

Regarding OOVs, the results in Table 4.11 (second part) show that classic tri-training

outperforms the source model (trained on only source data) on 3/5 domains in terms of

OOV accuracy, except on two domains with high OOV rate (newsgroups and weblogs).

In general, we note that tri-training works best on OOVs and on low-frequency tokens,

which is also shown in Figure 4.4 (leftmost bins). Both other methods fall typically

below the baseline in terms of OOV accuracy, but MT-Tri still outperforms Asym in

4/5 cases. Table 4.11 (last part) also shows that no bootstrapping method works well

on unknown word-tag combinations. UWT tokens are very difficult to predict correctly

using an unsupervised approach; the less lexicalized and more context-driven approach

6The binned log frequency was calculated with base 2 (bin 0 are OOVs, bin 1 are singletons and rare
words etc).
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Figure 4.4: Comparison of POS accuracy per binned log frequency for three methods
in the email domain

taken by FLORS is clearly superior for these cases, resulting in higher UWT accuracies

for 4/5 domains.

4.2.4 Related work

Learning under Domain Shift There is a large body of work on domain adaptation

(§3.4). There is almost no work on bootstrapping approaches for recent neural NLP, in

particular under domain shift. Tri-training is less studied, and only recently re-emerged

in the vision community [Saito et al., 2017], albeit is not compared to classic tri-training.

Neural network ensembling Related work on self-ensembling approaches includes

snapshot ensembling [Huang et al., 2017a] or temporal ensembling [Laine and Aila,

2017]. In general, the line between “explicit” and “implicit” ensembling [Huang et al.,

2017a], like dropout [Srivastava et al., 2014] or temporal ensembling [Saito et al., 2017],

is more fuzzy. As we noted earlier our multi-task learning setup can be seen as a form of

self-ensembling.

Multi-task learning in NLP Neural networks are particularly well-suited for MTL

allowing for parameter sharing [Caruana, 1993]. Recent NLP conferences witnessed a

“tsunami” of deep learning papers [Manning, 2015], followed by a multi-task learning

“wave” [Ruder, 2017]. For sentiment analysis we found tri-training and our MT-Tri

model to outperform DANN [Ganin et al., 2016]. Our MT-Tri model lends itself well to

shared-private models such as those proposed recently [Liu et al., 2017, Kim et al., 2017a],

which extend upon [Ganin et al., 2016] by having separate source and target-specific

encoders.
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4.2.5 Summary

We re-evaluate a range of traditional general-purpose bootstrapping algorithms in the

context of neural network approaches to semi-supervised learning under domain shift.

For the two examined NLP tasks classic tri-training works the best and even outperforms

a recent state-of-the-art method. The drawback of tri-training it its time and space

complexity. We therefore propose a more efficient multi-task tri-training model, which

outperforms both traditional tri-training and recent alternatives in the case of sentiment

analysis. For POS tagging, classic tri-training is superior, performing especially well on

OOVs and low frequency tokens, which suggests it is less affected by error propagation.

Overall we emphasize the importance of comparing neural approaches to strong baselines

and reporting results across several runs.

4.3 Conclusions

In this chapter, we have proposed algorithms that automatically select both relevant and

informative labelled and unlabelled examples for domain adaptation and evaluated them

on different extrinsic tasks. We have demonstrated that our methods outperform source

domain models and the state-of-the-art in the majority of cases. In the next chapter,

we will focus on methods that learn representations for heterogeneous, i.e. cross-lingual,

domain adaptation. We will analyse the deficiencies of such representations and evaluate

them on intrinsic tasks.



Chapter 5

Unsupervised and Weakly

Supervised Cross-lingual Learning

Domain adaptation is most often applied in the unsupervised scenario where no labelled

data in the target domain is available. Similarly, cross-lingual learning is most useful for

low-resource languages where labelled data is rare or hard to obtain. For this reason,

recent approaches that learn cross-lingual embeddings without any labelled data are

particularly promising. However, transfer to low-resource languages is often difficult due

to the dissimilarity between the language pairs. In this chapter, we will seek to gain a

better understanding of such methods and characterize the distance between languages.

In Section 5.1, we first analyze the limitations of existing unsupervised cross-lingual

word embedding methods. We propose a metric that measures the distance between

monolingual embedding spaces. This metric can be seen as an analogue to the domain

similarity metrics employed in the previous chapter (§4.1) for heterogeneous feature

spaces and correlates well with downstream performance. In particular, we find that

if spaces are too dissimilar such as between distant language pairs, e.g. English and

Finnish, unsupervised approaches completely fail to produce an alignment. We propose

a weakly supervised method that overcomes this weakness.

We take a latent variable view of cross-lingual word embedding models in Section 5.2,

viewing the existing model by Artetxe et al. [2017] as a latent variable model. In a similar

vein to the multi-task tri-training method presented in the previous chapter (§4.2), we

propose a model that combines both traditional and current neural approaches. As a

latent variable model, we can view the alignment of words with their translations as a

combinatorial optimization problem, allowing us to use an efficient algorithm to solve it.

We show that our approach outperforms the state-of-the-art and particularly performs

well on low-resource language pairs.

160
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5.1 The Limitations of Unsupervised Bilingual Dictionary

Induction

∗ Unsupervised machine translation—i.e., not assuming any cross-lingual supervision

signal, whether a dictionary, translations, or comparable corpora—seems impossible,

but nevertheless, [Lample et al., 2018a] recently proposed a fully unsupervised machine

translation model. The model relies heavily on an adversarial, unsupervised alignment

of word embedding spaces for bilingual dictionary induction [Conneau et al., 2018a],

which we examine here. Our results identify the limitations of current unsupervised MT:

unsupervised bilingual dictionary induction performs much worse on morphologically

rich languages that are not dependent marking, when monolingual corpora from different

domains or different embedding algorithms are used. We show that a simple trick, exploit-

ing a weak supervision signal from identical words, enables more robust induction, and

establish a near-perfect correlation between unsupervised bilingual dictionary induction

performance and a previously unexplored graph similarity metric.

5.1.1 Introduction

Cross-lingual word representations enable us to reason about word meaning in multilingual

contexts and facilitate cross-lingual transfer [Ruder et al., 2019b]. Early cross-lingual

word embedding models relied on large amounts of parallel data [Klementiev et al., 2012b,

Mikolov et al., 2013c], but more recent approaches have tried to minimize the amount

of supervision necessary [Vulić and Korhonen, 2016, Levy et al., 2017, Artetxe et al.,

2017]. Some researchers have even presented unsupervised methods that do not rely on

any form of cross-lingual supervision at all [Barone, 2016, Conneau et al., 2018a, Zhang

et al., 2017].

Unsupervised cross-lingual word embeddings hold promise to induce bilingual lexicons

and machine translation models in the absence of dictionaries and translations [Barone,

2016, Zhang et al., 2017, Lample et al., 2018a], and would therefore be a major step

toward machine translation to, from, or even between low-resource languages.

Unsupervised approaches to learning cross-lingual word embeddings are based on the

assumption that monolingual word embedding graphs are approximately isomorphic,

that is, after removing a small set of vertices (words) [Mikolov et al., 2013c, Barone,

2016, Zhang et al., 2017, Conneau et al., 2018a]. In the words of Barone [2016]:

∗This section is adapted from: Søgaard, A., Ruder, S. and Vulić, I. (2018). On the Limitations
of Unsupervised Bilingual Dictionary Induction. In Proceedings of ACL 2018. Anders focused on the
eigenvector similarity metric. Sebastian and Ivan focused on the analyses.
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. . . we hypothesize that, if languages are

used to convey thematically similar infor-

mation in similar contexts, these random

processes should be approximately isomor-

phic between languages, and that this iso-

morphism can be learned from the statistics

of the realizations of these processes, the

monolingual corpora, in principle without

any form of explicit alignment.

Our results indicate this assumption is not true in general, and that approaches based

on this assumption have important limitations.

Contributions We focus on the recent state-of-the-art unsupervised model of Conneau

et al. [2018a].1 Our contributions are: (a) In §5.1.2, we show that the monolingual word

embeddings used in Conneau et al. [2018a] are not approximately isomorphic, using the

VF2 algorithm [Cordella et al., 2001] and we therefore introduce a metric for quantifying

the similarity of word embeddings, based on Laplacian eigenvalues. (b) In §5.1.3, we

identify circumstances under which the unsupervised bilingual dictionary induction (BDI)

algorithm proposed in Conneau et al. [2018a] does not lead to good performance. (c)

We show that a simple trick, exploiting a weak supervision signal from words that are

identical across languages, makes the algorithm much more robust. Our main finding

is that the performance of unsupervised BDI depends heavily on all three factors: the

language pair, the comparability of the monolingual corpora, and the parameters of the

word embedding algorithms.

5.1.2 How similar are embeddings across languages?

As mentioned, recent work focused on unsupervised BDI assumes that monolingual word

embedding spaces (or at least the subgraphs formed by the most frequent words) are

approximately isomorphic. In this section, we show, by investigating the nearest neighbor

graphs of word embedding spaces, that word embeddings are far from isomorphic. We

therefore introduce a method for computing the similarity of non-isomorphic graphs. In

§5.1.4.7, we correlate our similarity metric with performance on unsupervised BDI.

1Our motivation for this is that Artetxe et al. [2017] use small dictionary seeds for supervision, and
Barone [2016] seems to obtain worse performance than Conneau et al. [2018a]. Our results should extend
to Barone [2016] and Zhang et al. [2017], which rely on very similar methodology.
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(a) Top 10 most
frequent English

words

(b) German trans-
lations of top 10
most frequent En-

glish words

(c) Top 10 most
frequent English

nouns

(d) German trans-
lations of top 10
most frequent En-

glish nouns

Figure 5.1: Nearest neighbor graphs of English words and German translations.

Isomorphism To motivate our study, we first establish that word embeddings are far

from graph isomorphic2—even for two closely related languages, English and German,

and using embeddings induced from comparable corpora (Wikipedia) with the same

hyper-parameters.

If we take the top k most frequent words in English, and the top k most frequent

words in German, and build nearest neighbor graphs for English and German using the

monolingual word embeddings used in Conneau et al. [2018a], the graphs are of course

very different. This is, among other things, due to German case and the fact that the

translates into der, die, and das, but unsupervised alignment does not have access to

this kind of information. Even if we consider the top k most frequent English words

and their translations into German, the nearest neighbor graphs are not isomorphic.

Figure 5.1a-b shows the nearest neighbor graphs of the top 10 most frequent English

words on Wikipedia, and their German translations.

Word embeddings are particularly good at capturing relations between nouns, but even if

we consider the top k most frequent English nouns and their translations, the graphs are

not isomorphic; see Figure 5.1c-d. We take this as evidence that word embeddings are

not approximately isomorphic across languages. We also ran graph isomorphism checks

on 10 random samples of frequent English nouns and their translations into Spanish, and

only in 1/10 of the samples were the corresponding nearest neighbor graphs isomorphic.

Eigenvector similarity Since the nearest neighbor graphs are not isomorphic, even

for frequent translation pairs in neighboring languages, we want to quantify the potential

for unsupervised BDI using a metric that captures varying degrees of graph similarity.

Eigenvalues are compact representations of global properties of graphs, and we intro-

duce a spectral metric based on Laplacian eigenvalues [Shigehalli and Shettar, 2011]

2Two graphs that contain the same number of graph vertices connected in the same way are said to
be isomorphic. In the context of weighted graphs such as word embeddings, a weak version of this is to
require that the underlying nearest neighbor graphs for the most frequent k words are isomorphic.
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that quantifies the extent to which the nearest neighbor graphs are isospectral. Note

that (approximately) isospectral graphs need not be (approximately) isomorphic, but

(approximately) isomorphic graphs are always (approximately) isospectral [Gordon et al.,

1992]. Let A1 and A2 be the adjacency matrices of the nearest neighbor graphs G1 and

G2 of our two word embeddings, respectively. Let L1 = D1 −A1 and L2 = D2 −A2 be

the Laplacians of the nearest neighbor graphs, where D1 and D2 are the corresponding

diagonal matrices of degrees. We now compute the eigensimilarity of the Laplacians of

the nearest neighbor graphs, L1 and L2. For each graph, we find the smallest k such that

the sum of the k largest Laplacian eigenvalues is < 90% of the Laplacian eigenvalues.

We take the smallest k of the two, and use the sum of the squared differences between

the largest k Laplacian eigenvalues ∆ as our similarity metric.

∆ =
k∑
i=1

(λ1i − λ2i)
2 (5.1)

where k is chosen s.t.

min
j
{
∑k

i=1 λji∑n
i=1 λji

> 0.9}

Note that ∆ = 0 means the graphs are isospectral, and the metric goes to infinite. Thus,

the higher ∆ is, the less similar the graphs (i.e., their Laplacian spectra). We discuss the

correlation between unsupervised BDI performance and approximate isospectrality or

eigenvector similarity in §5.1.4.7.

5.1.3 Unsupervised cross-lingual learning

5.1.3.1 Learning scenarios

Unsupervised neural machine translation relies on BDI using cross-lingual embeddings

[Lample et al., 2018a, Artetxe et al., 2018b], which in turn relies on the assumption

that word embedding graphs are approximately isomorphic. The work of Conneau et al.

[2018a], which we focus on here, also makes several implicit assumptions that may or

may not be necessary to achieve such isomorphism, and which may or may not scale

to low-resource languages. The algorithms are not intended to be limited to learning

scenarios where these assumptions hold, but since they do in the reported experiments,

it is important to see to what extent these assumptions are necessary for the algorithms

to produce useful embeddings or dictionaries.

We focus on the work of Conneau et al. [2018a], who present a fully unsupervised approach

to aligning monolingual word embeddings, induced using fastText [Bojanowski et al.,
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2017]. We describe the learning algorithm in §5.1.3.2. Conneau et al. [2018a] consider a

specific set of learning scenarios:

(a) The authors work with the following languages: English-{French, German, Chi-

nese, Russian, Spanish}. These languages, except French, are dependent marking

(Table 5.1).3 We evaluate Conneau et al. [2018a] on (English to) Estonian (et),

Finnish (fi), Greek (el), Hungarian (hu), Polish (pl), and Turkish (tr) in §5.1.4.2,

to test whether the selection of languages in the original study introduces a bias.

(b) The monolingual corpora in their experiments are comparable; Wikipedia corpora

are used, except for an experiment in which they include Google Gigawords. We

evaluate across different domains, i.e., on all combinations of Wikipedia, EuroParl,

and the EMEA medical corpus, in §5.1.4.3. We believe such scenarios are more

realistic for low-resource languages.

(c) The monolingual embedding models are induced using the same algorithms with

the same hyper-parameters. We evaluate Conneau et al. [2018a] on pairs of

embeddings induced with different hyper-parameters in §5.1.4.4. While keeping

hyper-parameters fixed is always possible, it is of practical interest to know whether

the unsupervised methods work on any set of pre-trained word embeddings.

We also investigate the sensitivity of unsupervised BDI to the dimensionality of the

monolingual word embeddings in §5.1.4.5. The motivation for this is that dimensionality

reduction will alter the geometric shape and remove characteristics of the embedding

graphs that are important for alignment; but on the other hand, lower dimensionality

introduces regularization, which will make the graphs more similar. Finally, in §5.1.4.6, we

investigate the impact of different types of query test words on performance, including

how performance varies across part-of-speech word classes and on shared vocabulary

items.

5.1.3.2 Summary of Conneau et al. [2018a]

We now introduce the method of Conneau et al. [2018a].4 The approach builds on

existing work on learning a mapping between monolingual word embeddings [Mikolov

et al., 2013c, Xing et al., 2015] and consists of the following steps: 1) Monolingual word

embeddings: An off-the-shelf word embedding algorithm [Bojanowski et al., 2017] is

used to learn source and target language spaces X and Y . 2) Adversarial mapping: A

translation matrix W is learned between the spaces X and Y using adversarial techniques

[Ganin et al., 2016]. A discriminator is trained to discriminate samples from the translated

3A dependent-marking language marks agreement and case more commonly on dependents than on
heads.

4https://github.com/facebookresearch/MUSE

https://github.com/facebookresearch/MUSE
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source space WX from the target space Y , while W is trained to prevent this. This,

again, is motivated by the assumption that source and target language word embeddings

are approximately isomorphic. 3) Refinement (Procrustes analysis): W is used to

build a small bilingual dictionary of frequent words, which is pruned such that only

bidirectional translations are kept [Vulić and Korhonen, 2016]. A new translation matrix

W that translates between the spaces X and Y of these frequent word pairs is then

induced by solving the Orthogonal Procrustes problem:

W ∗ = argminW ‖WX − Y ‖F = UV >

s.t. UΣV > = SVD(Y X>)
(5.2)

This step can be used iteratively by using the new matrix W to create new seed

translation pairs. It requires frequent words to serve as reliable anchors for learning

a translation matrix. In the experiments in Conneau et al. [2018a], as well as in ours,

the iterative Procrustes refinement improves performance across the board. 4) Cross-

domain similarity local scaling (CSLS) is used to expand high-density areas and

condense low-density ones, for more accurate nearest neighbor calculation, CSLS reduces

the hubness problem in high-dimensional spaces [Radovanović et al., 2010, Dinu et al.,

2015]. It relies on the mean similarity of a source language embedding x to its K target

language nearest neighbours (K = 10 suggested) nn1, . . . , nnK :

mnnT (x) =
1

K

K∑
i=1

cos(x, nni) (5.3)

where cos is the cosine similarity. mnnS(y) is defined in an analogous manner for any

target language embedding y. CSLS(x, y) is then calculated as follows:

2cos(x, y)−mnnT (x)−mnnS(y) (5.4)

5.1.3.3 A simple supervised method

Instead of learning cross-lingual embeddings completely without supervision, we can

extract inexpensive supervision signals by harvesting identically spelled words as in, e.g.

[Artetxe et al., 2017, Smith et al., 2017]. Specifically, we use identically spelled words

that occur in the vocabularies of both languages as bilingual seeds, without employing

any additional transliteration or lemmatization/normalization methods. Using this seed

dictionary, we then run the refinement step using Procrustes analysis of Conneau et al.

[2018a].
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5.1.4 Experiments

In the following experiments, we investigate the robustness of unsupervised cross-lingual

word embedding learning, varying the language pairs, monolingual corpora, hyper-

parameters, etc., to obtain a better understanding of when and why unsupervised BDI

works.

We use bilingual dictionaries compiled by Conneau et al. [2018a] as gold standard, and

adopt their evaluation procedure: each test set in each language consists of 1500 gold

translation pairs. We rely on CSLS for retrieving the nearest neighbors, as it consistently

outperformed the cosine similarity in all our experiments. Following a standard evaluation

practice [Vulić and Moens, 2013, Mikolov et al., 2013c, Conneau et al., 2018a], we report

Precision at 1 scores (P@1): how many times one of the correct translations of a source

word w is retrieved as the nearest neighbor of w in the target language.

5.1.4.1 Experimental setup

Our default experimental setup closely follows the setup of Conneau et al. [2018a]. For

each language we induce monolingual word embeddings for all languages from their

respective tokenized and lowercased Polyglot Wikipedias [Al-Rfou et al., 2013] using

fastText [Bojanowski et al., 2017]. Only words with more than 5 occurrences are retained

for training. Our fastText setup relies on skip-gram with negative sampling [Mikolov

et al., 2013a] with standard hyper-parameters: bag-of-words contexts with the window

size 2, 15 negative samples, subsampling rate 10−4, and character n-gram length 3-6. All

embeddings are 300-dimensional.

As we analyze the impact of various modeling assumptions in the following sections (e.g.,

domain differences, algorithm choices, hyper-parameters), we also train monolingual word

embeddings using other corpora and different hyper-parameter choices. Quick summaries

of each experimental setup are provided in the respective subsections.

5.1.4.2 Impact of language similarity

Conneau et al. [2018a] present results for several target languages: Spanish, French,

German, Russian, Chinese, and Esperanto. All languages but Esperanto are isolating or

exclusively concatenating languages from a morphological point of view. All languages but

French are dependent-marking. Table 5.1 lists three important morphological properties

of the languages involved in their/our experiments.5

5We use information from the World Atlas of Language Structures (WALS; https://wals.info/) as
basis for our characterisation of the presented languages.

https://wals.info/


Unsupervised and Weakly Supervised Cross-lingual Learning 168

Marking Type # Cases

English (en) dependent isolating None
French (fr) mixed fusional None
German (de) dependent fusional 4
Chinese (zh) dependent isolating None
Russian (ru) dependent fusional 6–7
Spanish (es) dependent fusional None

Estonian (et) mixed agglutinative 10+
Finnish (fi) mixed agglutinative 10+
Greek (el) double fusional 3
Hungarian (hu) dependent agglutinative 10+
Polish (pl) dependent fusional 6–7
Turkish (tr) dependent agglutinative 6–7

Table 5.1: Languages in Conneau et al. [2018a] (top) and in our experiments (lower
half)

Unsupervised Supervised Similarity
(Adversarial) (Identical) (Eigenvectors)

en-es 81.89 82.62 2.07

en-et 00.00 31.45 6.61
en-fi 00.09 28.01 7.33
en-el 00.07 42.96 5.01
en-hu 45.06 46.56 3.27
en-pl 46.83 52.63 2.56
en-tr 32.71 39.22 3.14

et-fi 29.62 24.35 3.98

Table 5.2: Bilingual dictionary induction scores (P@1×100%) of unsupervised and
supervised methods, together with eigenvector similarities.

Agglutinative languages with mixed or double marking show more morphological variance

with content words, and we speculate whether unsupervised BDI is challenged by this

kind of morphological complexity. To evaluate this, we experiment with Estonian and

Finnish, and we include Greek, Hungarian, Polish, and Turkish to see how their approach

fares on combinations of these two morphological traits.

We show results in the left column of Table 5.2 using a) the unsupervised method

with adversarial training; b) the supervised method with a bilingual seed dictionary

consisting of identical words (shared between the two languages). The third columns lists

eigenvector similarities between 10 randomly sampled source language nearest neighbor

subgraphs of 10 nodes and the subgraphs of their translations, all from the benchmark

dictionaries in Conneau et al. [2018a].

The results are quite dramatic. The approach achieves impressive performance for

Spanish, one of the languages Conneau et al. [2018a] include in their paper. For the

languages we add here, performance is less impressive. For the languages with dependent

marking (Hungarian, Polish, and Turkish), P@1 scores are still reasonable, with Turkish
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being slightly lower (0.327) than the others. However, for Estonian and Finnish, the

method fails completely. Only in less than 1/1000 cases does a nearest neighbor search

in the induced embeddings return a correct translation of a query word.6

The sizes of Wikipedias naturally vary across languages: e.g., fastText trains on approxi-

mately 16M sentences and 363M word tokens for Spanish, while it trains on 1M sentences

and 12M words for Finnish. However, the difference in performance cannot be explained

by the difference in training data sizes. To verify that near-zero performance in Finnish

is not a result of insufficient training data, we have conducted another experiment using

the large Finnish WaC corpus [Ljubešić et al., 2016] containing 1.7B words in total

(this is similar in size to the English Polyglot Wikipedia). However, even with this large

Finnish corpus, the model does not induce anything useful: P@1 equals 0.0.

We note that while languages with mixed marking may be harder to align, it seems

unsupervised BDI is possible between similar, mixed marking languages. So while

unsupervised learning fails for English-Finnish and English-Estonian, performance is

reasonable and stable for the more similar Estonian-Finnish pair (Table 5.2). In general,

unsupervised BDI, using the approach in Conneau et al. [2018a], seems challenged

when pairing English with languages that are not isolating and do not have dependent

marking.7

The promise of zero-supervision models is that we can learn cross-lingual embeddings

even for low-resource languages. On the other hand, a similar distribution of embed-

dings requires languages to be similar. This raises the question whether we need fully

unsupervised methods at all. In fact, our supervised method that relies on very naive

supervision in the form of identically spelled words leads to competitive performance

for similar language pairs and better results for dissimilar pairs. The fact that we can

reach competitive and more robust performance with such a simple heuristic questions

the true applicability of fully unsupervised approaches and suggests that it might often

be better to rely on available weak supervision.

5.1.4.3 Impact of domain differences

Monolingual word embeddings used in Conneau et al. [2018a] are induced from Wikipedia,

a near-parallel corpus. In order to assess the sensitivity of unsupervised BDI to the

6We note, though, that varying our random seed, performance for Estonian, Finnish, and Greek is
sometimes (approximately 1 out of 10 runs) on par with Turkish. Detecting main causes and remedies
for the inherent instability of adversarial training is one the most important avenues for future research.

7One exception here is French, which they include in their paper, but French arguably has a relatively
simple morphology.
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comparability and domain similarity of the monolingual corpora, we replicate the experi-

ments in Conneau et al. [2018a] using combinations of word embeddings extracted from

three different domains: 1) parliamentary proceedings from EuroParl.v7 [Koehn, 2005],

2) Wikipedia [Al-Rfou et al., 2013], and 3) the EMEA corpus in the medical domain

[Tiedemann, 2009]. We report experiments with three language pairs: English-{Spanish,

Finnish, Hungarian}.

To control for the corpus size, we restrict each corpus in each language to 1.1M sentences

in total (i.e., the number of sentences in the smallest, EMEA corpus). 300-dim fastText

vectors are induced as in §5.1.4.1, retaining all words with more than 5 occurrences

in the training data. For each pair of monolingual corpora, we compute their domain

(dis)similarity by calculating the Jensen-Shannon divergence [El-Gamal, 1991], based

on term distributions.8 The domain similarities are displayed in Figures 5.2a–c.9 In

the top row (a)-(c), we show domain similarity (higher is more similar) computed as

dsim = 1− JS, where JS is Jensen-Shannon divergence; the middle row, (d)-(f), depicts

the performance of the baseline BLI model which learns a linear mapping between

two monolingual spaces based on a set of identical (i.e., shared) words; the bottom

row, (g)-(i), displays the performance of the fully unsupervised BLI model relying on

the distribution-level alignment and adversarial training. Both BLI models apply the

Procrustes analysis and use CSLS to retrieve nearest neighbours.

We show the results of unsupervised BDI in Figures 5.2g–i. For Spanish, we see good

performance in all three cases where the English and Spanish corpora are from the same

domain. When the two corpora are from different domains, performance is close to zero.

For Finnish and Hungarian, performance is always poor, suggesting that more data is

needed, even when domains are similar. This is in sharp contrast with the results of our

minimally supervised approach (Figures 5.2d–f) based on identical words, which achieves

decent performance in many set-ups.

We also observe a strong decrease in P@1 for English-Spanish (from 81.19% to 46.52%)

when using the smaller Wikipedia corpora. This result indicates the importance of

procuring large monolingual corpora from similar domains in order to enable unsupervised

dictionary induction. However, resource-lean languages, for which the unsupervised

method was designed in the first place, cannot be guaranteed to have as large monolingual

training corpora as available for English, Spanish or other major resource-rich languages.

8In order to get comparable term distributions, we translate the source language to the target language
using the bilingual dictionaries provided by Conneau et al. [2018a] Conneau et al. [2018a].

9We also computed A-distances [Blitzer et al., 2007] and confirmed that trends were similar.
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(a) en-es: domain similar-
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(b) en-fi: domain similarity
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(c) en-hu: domain similar-
ity
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(d) en-es: identical words
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(e) en-fi: identical words
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(f) en-hu: identical words

EN:EP EN:Wiki EN:EMEA
Training Corpus (English)

0

10

20

30

40

50

60

BL
I:

P@
1

61.01

0.13 0.00.11

41.38

0.00.0 0.08

49.43

(g) en-es: fully unsupervised
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(h) en-fi: fully unsupervised
BLI
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Figure 5.2: Influence of language-pair and domain similarity on BLI performance,
with three language pairs (en-es/fi/hu). Top row, (a)-(c): Domain similarity (higher
is more similar) computed as dsim = 1− JS, where JS is Jensen-Shannon divergence;
Middle row, (d)-(f): baseline BLI model which learns a linear mapping between
two monolingual spaces based on a set of identical (i.e., shared) words; Bottom row,
(g)-(i): fully unsupervised BLI model relying on the distribution-level alignment and
adversarial training. Both BLI models apply the Procrustes analysis and use CSLS to

retrieve nearest neighbours.

5.1.4.4 Impact of hyper-parameters

Conneau et al. [2018a] use the same hyper-parameters for inducing embeddings for all

languages. This is of course always practically possible, but we are interested in seeing

whether their approach works on pre-trained embeddings induced with possibly very

different hyper-parameters. We focus on two hyper-parameters: context window-size
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English
(skipgram, win=2, chn=3-6)

Spanish Spanish
(skipgram) (cbow)

== 81.89 00.00
6= win=10 81.28 00.07
6= chn=2-7 80.74 00.00
6= win=10, chn=2-7 80.15 00.13

Table 5.3: Varying the underlying fastText algorithm and hyper-parameters.

(win) and the parameter controlling the number of n-gram features in the fastText model

(chn), while at the same time varying the underlying algorithm: skip-gram vs. cbow. The

results for English-Spanish are listed in Table 5.3. The first column lists differences in

training configurations between English and Spanish monolingual embeddings.

The small variations in the hyper-parameters with the same underlying algorithm (i.e.,

using skip-gram or cbow for both en and es) yield only slight drops in the final scores. Still,

the best scores are obtained with the same configuration on both sides. Our main finding

here is that unsupervised BDI fails (even) for en-es when the two monolingual embedding

spaces are induced by two different algorithms (see the results of the entire Spanish cbow

column).10 In sum, this means that the unsupervised approach is unlikely to work on

pre-trained word embeddings unless they are induced on same- or comparable-domain,

reasonably-sized training data using the same underlying algorithm.

5.1.4.5 Impact of dimensionality

We also perform an experiment on 40-dimensional monolingual word embeddings. This

leads to reduced expressivity, and can potentially make the geometric shapes of embedding

spaces harder to align; on the other hand, reduced dimensionality may also lead to less

overfitting. We generally see worse performance (P@1 is 50.33 for Spanish, 21.81 for

Hungarian, 20.11 for Polish, and 22.03 for Turkish) – but, very interestingly, we obtain

better performance for Estonian (13.53), Finnish (15.33), and Greek (24.17) than we

did with 300 dimensions. We hypothesize this indicates monolingual word embedding

algorithms over-fit to some of the rarer peculiarities of these languages.

10We also checked if this result might be due to a lower-quality monolingual es space. However,
monolingual word similarity scores on available datasets in Spanish show performance comparable to
that of Spanish skip-gram vectors: e.g., Spearman’s ρ correlation is ≈ 0.7 on the es evaluation set from
SemEval-2017 Task 2 [Camacho-Collados et al., 2017].
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en-es en-hu en-fi

Noun 80.94 26.87 00.00
Verb 66.05 25.44 00.00
Adjective 85.53 53.28 00.00
Adverb 80.00 51.57 00.00
Other 73.00 53.40 00.00

Table 5.4: P@1× 100% scores for query words with different parts-of-speech.
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Figure 5.3: P@1 scores for en-es and en-hu for queries with different frequency ranks.

5.1.4.6 Impact of evaluation procedure

BDI models are evaluated on a held-out set of query words. Here, we analyze the

performance of the unsupervised approach across different parts-of-speech, frequency

bins, and with respect to query words that have orthographically identical counterparts

in the target language with the same or a different meaning.

Part-of-speech We show the impact of the part-of-speech of the query words in

Table 5.4; again on a representative subset of our languages. The results indicate that

performance on verbs is lowest across the board. This is consistent with research on

distributional semantics and verb meaning [Schwartz et al., 2015, Gerz et al., 2016].

Frequency We also investigate the impact of the frequency of query words. We

calculate the word frequency of English words based on Google’s Trillion Word Corpus:

query words are divided in groups based on their rank – i.e., the first group contains the

top 100 most frequent words, the second one contains the 101th-1000th most frequent

words, etc. – and plot performance (P@1) relative to rank in Figure 5.3. For en-fi, P@1

was 0 across all frequency ranks. The plot shows sensitivity to frequency for hu, but less

so for es.
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Spelling Meaning en-es en-hu en-fi

Same Same 45.94 18.07 00.00
Same Diff 39.66 29.97 00.00
Diff Diff 62.42 34.45 00.00

Table 5.5: Scores (P@1 × 100%) for query words with same and different spellings
and meanings.

Homographs Since we use identical word forms (homographs) for supervision, we

investigated whether these are representative or harder to align than other words.

Table 5.5 lists performance for three sets of query words: (a) source words that have

homographs (words that are spelled the same way) with the same meaning (homonyms)

in the target language, e.g., many proper names; (b) source words that have homographs

that are not homonyms in the target language, e.g., many short words; and (c) other

words. Somewhat surprisingly, words which have translations that are homographs, are

associated with lower precision than other words. This is probably due to loan words

and proper names, but note that using homographs as supervision for alignment, we

achieve high precision for this part of the vocabulary for free.

5.1.4.7 Evaluating eigenvector similarity

Finally, in order to get a better understanding of the limitations of unsupervised BDI,

we correlate the graph similarity metric described in §5.1.2 (right column of Table 5.2)

with performance across languages (left column). Since we already established that the

monolingual word embeddings are far from isomorphic—in contrast with the intuitions

motivating previous work [Mikolov et al., 2013c, Barone, 2016, Zhang et al., 2017,

Conneau et al., 2018a]—we would like to establish another diagnostic metric that

identifies embedding spaces for which the approach in Conneau et al. [2018a] is likely to

work. Differences in morphology, domain, or embedding parameters seem to be predictive

of poor performance, but a metric that is independent of linguistic categorizations and

the characteristics of the monolingual corpora would be more widely applicable. We plot

the values in Table 5.2 in Figure 5.4. Recall that our graph similarity metric returns a

value in the half-open interval [0,∞). The correlation between BDI performance and

graph similarity is strong (ρ ∼ 0.89).

5.1.5 Related work

Unsupervised cross-lingual learning Haghighi et al. [2008] were first to explore

unsupervised BDI, using features such as context counts and orthographic substrings, and

canonical correlation analysis. Recent approaches use adversarial learning [Goodfellow
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Figure 5.4: Strong correlation (ρ = 0.89) between BDI performance (x) and graph
similarity (y)

et al., 2014] and employ a discriminator, trained to distinguish between the translated

source and the target language space, and a generator learning a translation matrix

[Barone, 2016]. Zhang et al. [2017], in addition, use different forms of regularization for

convergence, while Conneau et al. [2018a] uses additional steps to refine the induced

embedding space.

Unsupervised machine translation Research on unsupervised machine translation

[Lample et al., 2018a, Artetxe et al., 2018b, Lample et al., 2018b] has generated a lot

of interest recently with a promise to support the construction of MT systems for and

between resource-poor languages. All unsupervised NMT methods critically rely on

accurate unsupervised BDI and back-translation. Models are trained to reconstruct a

corrupted version of the source sentence and to translate its translated version back to the

source language. Since the crucial input to these systems are indeed cross-lingual word

embedding spaces induced in an unsupervised fashion, in this paper we also implicitly

investigate one core limitation of such unsupervised MT techniques.

5.1.6 Summary

We investigated when unsupervised BDI [Conneau et al., 2018a] is possible and found

that differences in morphology, domains or word embedding algorithms may challenge

this approach. Further, we found eigenvector similarity of sampled nearest neighbor

subgraphs to be predictive of unsupervised BDI performance. Building on these findings,

we will propose a new cross-lingual embedding model that casts existing models from a

latent variable perspective in the next section. We will show that this model performs
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well with the weak supervision introduced in this chapter as well as on low-resource

languages.

5.2 A Discriminative Latent-Variable Model for Bilingual

Lexicon Induction

∗ We introduce a novel discriminative latent-variable model for the task of bilingual lexicon

induction. Our model combines the bipartite matching dictionary prior of Haghighi et al.

[2008] with a state-of-the-art embedding-based approach. To train the model, we derive

an efficient Viterbi EM algorithm. We provide empirical improvements on six language

pairs under two metrics and show that the prior theoretically and empirically helps to

mitigate the hubness problem. We also demonstrate how previous work may be viewed

as a similarly fashioned latent-variable model, albeit with a different prior.†

5.2.1 Introduction

Is there a more fundamental bilingual linguistic resource than a dictionary? The task of

bilingual lexicon induction seeks to create a dictionary in a data-driven manner directly

from monolingual corpora in the respective languages and, perhaps, a small seed set of

translations. From a practical point of view, bilingual dictionaries have found uses in

a myriad of NLP tasks ranging from machine translation [Klementiev et al., 2012a] to

cross-lingual named entity recognition [Mayhew et al., 2017]. In this work, we offer a

probabilistic twist on the task, developing a novel discriminative latent-variable model

that outperforms previous work.

Our proposed model is a bridge between current state-of-the-art methods in bilingual

lexicon induction that take advantage of word embeddings, e.g., the embeddings induced

by Mikolov et al. [2013b]’s skip-gram objective, and older ideas in the literature that

build explicit probabilistic models for the task. We propose a discriminative probability

model, inspired by Irvine and Callison-Burch [2013], infused with the bipartite matching

dictionary prior of Haghighi et al. [2008]. However, like more recent approaches [Artetxe

et al., 2017], our model operates directly over pretrained word embeddings, induces a

joint cross-lingual embedding space, and scales to large vocabulary sizes. To train our

∗This section is adapted from: Ruder, S., Cotterell, R., Kementchedjhieva, Y., and Søgaard, A. (2018).
A Discriminative Latent-Variable Model for Bilingual Lexicon Induction. In Proceedings of EMNLP 2018.
Sebastian focused on the implementation and experiments. Ryan focused on the presentation of the
model and the proofs.

†The code used to run the experiments is available at https://github.com/sebastianruder/

latent-variable-vecmap.

https://github.com/sebastianruder/latent-variable-vecmap
https://github.com/sebastianruder/latent-variable-vecmap
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model, we derive a generalized expectation-maximization algorithm [EM; Neal and

Hinton, 1998] and employ an efficient matching algorithm.

Empirically, we experiment on three standard and three extremely low-resource language

pairs. We evaluate intrinsically, comparing the quality of the induced bilingual dictionary,

as well as analyzing the resulting bilingual word embeddings themselves. The latent-

variable model yields gains over several previous approaches across language pairs. It

also enables us to make implicit modeling assumptions explicit. To this end, we provide

a reinterpretation of Artetxe et al. [2017] as a latent-variable model with an IBM Model

1–style [Brown et al., 1993b] dictionary prior, which allows a clean side-by-side analytical

comparison. Viewed in this light, the difference between our approach and Artetxe

et al. [2017], the strongest baseline, is whether one-to-one alignments or one-to-many

alignments are admitted between the words of the languages’ respective lexicons. Thus,

we conclude that our hard constraint on one-to-one alignments is primarily responsible

for the improvements over Artetxe et al. [2017].

5.2.1.1 Graph-theoretic formulation

To ease the later exposition, we will formulate the task graph-theoretically. Let `src

denote the source language and `trg the target language. Suppose the source language

`src has nsrc word types in its lexicon Vsrc and `trg has ntrg word types in its lexicon Vtrg.

We will write vsrc(i) for the ith word type in `src and vtrg(i) for the ith word type in `trg.

We can view the elements of Vsrc and Vtrg as sets of vertices in a graph. Now consider

the bipartite set of vertices V = Vtrg ∪ Vsrc. In these terms, a bilingual lexicon is just

a bipartite graph G = (E, V ) and, thus, the task of bilingual lexicon induction is a

combinatorial problem: the search for a ‘good’ edge set E ⊆ Vtrg × Vsrc. We depict such

a bipartite graph in Figure 5.5. In section 5.2.2, we will operationalize the notion of

‘goodness’ by assigning a weight wij to each possible edge between Vtrg and Vsrc.

When the edge set E takes the form of a matching, we will denote it as m.1 In general,

we will be interested in partial matchings, where many vertices have no incident edges.

We will write M for the set of all partial matchings on the bipartite graph G. The set of

vertices in Vtrg (respectively Vsrc) with no incident edges will be termed utrg (respectively

usrc). Note that for any matching m, we have the identity utrg = Vtrg \ {i : (i, j) ∈m}.
1A matching is an edge set where none of the edges share common vertices [West, 2000].
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richtig

Vogel

trinken

Mutter

Wurzel

werfen

rot

bird

mother

drink

right

eye

ash

m

utrg

usrc

Figure 5.5: Partial lexicons of German and English shown as a bipartite graph.
German is the target language and English is the source language. The ntrg = 7 German
words are shown in blue and the nsrc = 6 English words are shown in green. A bipartite
matching m between the two sets of vertices is also depicted. The German nodes in

utrg are unmatched.

5.2.1.2 Word embeddings

Word embeddings will also play a key role in our model. For the remainder of the

paper, we will assume we have access to d-dimensional embeddings for each language’s

lexicon—for example, those provided by a standard model such as skip-gram [Mikolov

et al., 2013b]. Notationally, we define the real matrices S ∈ Rd×nsrc and T ∈ Rd×ntrg .

Note that in this formulation si ∈ Rd, the ith column of S, is the word embedding

corresponding to vsrc(i). Likewise, note that ti ∈ Rd, the ith column of T , is the word

embedding corresponding to vtrg(i).

5.2.2 A latent-variable model

The primary contribution of this paper is a novel latent-variable model for bilingual

lexicon induction. The latent variable will be the edge set E, as discussed in section 5.2.1.1.

Given pretrained embeddings for the source and target languages, arranged into the

matrices S and T , we define the density

p(T | S) :=
∑

m∈M
p(T | S,m) · p(m) (5.5)
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whereM is the set of all bipartite matchings on the graph G and m ∈M is an individual

matching. Note that, then, p(m) is a distribution over all bipartite matchings on G such

as the matching shown in Figure Figure 5.5. We will take p(m) to be fixed as the uniform

distribution for the remainder of the exposition, though more complicated distributions

could be learned, of course. We further define the distribution

pθ(T | S,m) :=
∏

(i,j)∈m

p(ti | sj) ·
∏
i∈utrg

p(ti) (5.6)

Recall we write (i, j) ∈m to denote an edge in the matching. Furthermore, for notational

simplicity, we have dropped the dependence of utrg on m.2. Next, we define the two

densities present in Equation 5.6 as Gaussians:

pθ(t | s) := N (Ω s, I) (5.7)

∝ exp−1/2||t− Ω s||22
pθ(t) := N (µ, I) (5.8)

Given a fixed matching m, we may create matrices Sm ∈ Rd×|m| and Tm ∈ Rd×|m| such

that the rows correspond to word vectors of matched vertices (translations under the

matching m). Now, after some algebra, we see that we can rewrite
∏

(i,j)∈m p(ti | si) in

matrix notation:

pθ(Tm | Sm,m) =
∏

(i,j)∈m

p(ti | sj) (5.9)

∝
∏

(i,j)∈m

exp−1/2||ti − Ω sj ||22

= exp−1/2
∑

(i,j)∈m

||ti − Ω sj ||22

= exp−1/2||Tm − ΩSm||2F (5.10)

where Ω ∈ Rd×d is an orthogonal matrix of parameters to be learned. The result of

this derivation, Equation 5.10, will become useful during the discussion of parameter

estimation in Section 5.2.3.

We define the model’s parameters, to be optimized, as θ = (Ω, µ).

Modeling Assumptions and their Limitations In the previous section, we have

formulated the induction of a bilingual lexicon as the search for an edge set E, which we

treat as a latent variable that we marginalize out in Equation 5.6. Specifically, we assume

2Recall utrg = Vtrg \ {i : (i, j) ∈m}
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that E is a partial matching. Thus, for every (i, j) ∈m, we have ti ∼ N (Ω sj , I), that

is, the embedding for vtrg(i) is assumed to have been drawn from a Gaussian centered

around the embedding for vsrc(j), after an orthogonal transformation. This gives rise to

two modeling assumptions, which we make explicit: (i) There exists a single source for

every word in the target lexicon and that source cannot be used more than once.3 (ii)

There exists an orthogonal transformation, after which the embedding spaces are more

or less equivalent.

Assumption (i) may be true for related languages, but is likely false for morphologically

rich languages that have a many-to-many relationship between the words in their respec-

tive lexicons. We propose to ameliorate this using a rank constraint that only considers

the top n most frequent words in both lexicons for matching (§7.1.4). In addition, we

experiment with priors that express different matchings (§7.1.5).

As for assumption (ii), previous work [Xing et al., 2015, Artetxe et al., 2017] has achieved

some success using an orthogonal transformation; recently, however, Søgaard et al. [2018]

demonstrated that monolingual embedding spaces are not approximately isomorphic

and that there is a complex relationship between word form and meaning, which is

only inadequately modeled by current approaches, which for example cannot model

polysemy. Nevertheless, we will show that imbuing our model with these assumptions

helps empirically (§7.1.4), giving them practical utility.

Why it Works: The Hubness Problem Why should we expect the bipartite

matching prior to help, given that we know of cases when multiple source words should

match a target word? One answer is because the bipartite prior helps us obviate the

hubness problem, a common issue in word-embedding-based bilingual lexicon induction

[Dinu et al., 2015]. The hubness problem is an intrinsic problem of high-dimensional

vector spaces where certain vectors will be universal nearest neighbors, i.e. they will be

the nearest neighbor to a disproportionate number of other vectors [Radovanović et al.,

2010]. Thus, if we allow one-to-many alignments, we will find the embeddings of certain

elements of Vsrc acting as hubs, i.e. the model will pick them to generate a disproportionate

number of target embeddings, which reduces the quality of the embedding space.4

Another explanation for the positive effect of the one-to-one alignment prior is its

connection to the Wasserstein distance and computational optimal transport [Villani,

2008]. Concurrent work [Grave et al., 2018] similarly has found the one-to-one alignment

prior to be beneficial.

3This is true by the definition of a matching.
4In section 5.2.4, we discuss the one-to-many alignment used in several of our baseline systems.
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Algorithm 4 Viterbi EM for our latent-variable model

1: repeat
2: // Viterbi E-Step
3: m? ← argmaxm∈M log pθ(m | S, T )
4: u?trg ← Vtrg \ {i : (i, j) ∈m?}
5: // M-Step
6: UΣV > ← SVD

(
Tm?S>m?

)
7: Ω? ← UV >

8: µ? ← 1/|u?
trg| ·

∑
i∈u?trg

ti

9: θ ← (Ω?, µ?)
10: until converged

5.2.3 Parameter estimation

We will conduct parameter estimation through Viterbi EM. We describe first the E-step,

then the M-step. Viterbi EM estimates the parameters by alternating between the two

steps until convergence. We give the complete pseudocode in Algorithm 4.

5.2.3.1 Viterbi E-Step

The E-step asks us to compute the posterior of latent bipartite matchings p(m | S, T ).

Computation of this distribution, however, is intractable as it would require a sum over

all bipartite matchings, which is #P-hard [Valiant, 1979]. Tricks from combinatorial

optimization make it possible to maximize over all bipartite matchings in polynomial

time. Thus, we fall back on the Viterbi approximation for the E-step [Brown et al.,

1993b, Samdani et al., 2012]. The derivation will follow Haghighi et al. [2008]. In order

to compute

m? = argmax
m∈M

log pθ(m | S, T ) (5.11)

we construct a fully connected bipartite graph G = (E, Vsrc ∪Vtrg), where E = Vsrc×Vtrg.
We weight each arc (i, j) ∈ E with the weight between the projected source word and

target word embeddings: wij = log p(ti | sj)− log p(ti) = −1/2(||ti − Ω sj ||22 − ||ti − µ||22),

where the normalizers of both Gaussians cancel as both have the same covariance

matrix, i.e., I. Note that in the case where the ti and the sj are of length 1, that is,

||ti||2 = ||sj ||2 = 1, and µ = 0, we recover cosine similarity between the vectors up to an

additive constant as orthogonal matrices preserve length (the constant is always −1/2 as

||ti||2 = 1).5 We may ignore this constant during the E-step’s combinatorial optimization.

5Proof of the equivalence of the difference between the two Gaussians and cosine similarity up to an
additive constant:

log p(ti | sj)− log p(ti) = −1/2
(
||ti − Ω sj ||22 − ||ti||22

)
= −1/2 (2(1− cos(ti,Ω sj))− 1)

= cos(ti,Ω sj)− 1/2
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Note the optimal partial matching will contain no edges with weight wij < 0. For this

reason, we remove such edges from the bipartite graph. To find the maximal partial

bipartite matching on G to compute m?, we employ an efficient algorithm as detailed in

the next section.

Finding a Maximal Bipartite Matching We frame finding an optimal one-to-one

alignment between nsrc source and ntrg words as a combinatorial optimization problem,

specifically, a linear assignment problem [LAP; Bertsimas and Tsitsiklis, 1997]. In its

original formulation, the LAP requires assigning a number of agents (source words) to

a number of tasks (target words) at a cost that varies based on each assignment. An

optimal solution assigns each source word to exactly one target word and vice versa at

minimum cost. The Hungarian algorithm [Kuhn, 1955] is one of the most well-known

approaches for solving the LAP, but runs in O((nsrc + ntrg)
3). This works for smaller

vocabulary sizes,6 but is prohibitive for matching cross-lingual word embeddings with

large vocabularies for real-world applications.7

For each source word, most target words, however, are unlikely candidates for alignment.

We thus propose to consider only the top k most similar target words for alignment with

every source word. We sparsify the graph by weighting the edges for all other words with

−∞. The remaining weights wij are chosen as discussed above. We employ a version of

the Jonker-Volgenant algorithm [Jonker and Volgenant, 1987, Volgenant, 1996], which

has been optimized for LAP on sparse graphs, to find the maximum-weight matching

m? on G.8

5.2.3.2 M-Step

Next, we will describe the M-step. Given an optimal matching m? computed in sec-

tion 5.2.3.1, we search for a matrix Ω ∈ Rd×d. We additionally enforce the constraint that

Ω is a real orthogonal matrix, i.e., Ω>Ω = I. Previous work [Xing et al., 2015, Artetxe

et al., 2017] found that the orthogonality constraint leads to noticeable improvements.

6Haghighi et al. [2008] use the Hungarian algorithm to find a matching between 2000 source and
target language words.

7For reference, in Section 7.1.4, we learn bilingual lexicons between embeddings of 200,000 source and
target language words.

8After acceptance to EMNLP 2018, Edouard Grave pointed out that Sinkhorn propagation [Adams
and Zemel, 2011, Mena et al., 2018] may have been a computationally more effective manner to deal
with the latent matchings.
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Our M-step optimizes two objectives independently. First, making use of the result in

equation (5.10), we optimize the following:

log p(Tm? | Sm? ,m?) (5.12)

= ||Tm? − ΩSm? ||2F + C

with respect to Ω subject to Ω>Ω = I.9 Second, we optimize the objective

log
∏
i∈utrg

p(ti) =
∑
i∈utrg

||ti − µ||22 +D (5.13)

with respect to the mean parameter µ, which is simply an average. Note, again, we may

ignore the constant D during optimization.

Optimizing equation (5.12) with respect to Ω is known as the orthogonal Procrustes

problem [Schönemann, 1966, Gower and Dijksterhuis, 2004] and has a closed form solution

that exploits the singular value decomposition [Horn and Johnson, 2012]. Namely, we

compute UΣV > = T>mSm. Then, we directly arrive at the optimum: Ω? = UV >.

Optimizing equation (5.13) can also been done in closed form; the point which minimizes

distance to the data points (thereby maximizing the log-probability) is the centroid:

µ? = 1/|utrg| ·
∑

i∈utrg
ti.

5.2.4 Reinterpretation of Artetxe et al. [2017] as a latent-variable

model

The self-training method of Artetxe et al. [2017], our strongest baseline in section 7.1.4,

may also be interpreted as a latent-variable model in the spirit of our exposition in

section 5.2.2. Indeed, we only need to change the edge-set prior p(m) to allow for edge

sets other than those that are matchings. Specifically, a matching enforces a one-to-one

alignment between types in the respective lexicons. Artetxe et al. [2017], on the other

hand, allow for one-to-many alignments. We show how this corresponds to an alignment

distribution that is equivalent to IBM Model 1 [Brown et al., 1993b], and that Artetxe

et al. [2017]’s self-training method is actually a form of Viterbi EM.

To formalize Artetxe et al. [2017]’s contribution as a latent-variable model, we lay down

some more notation. Let A = {1, . . . , nsrc + 1}ntrg , where we define (nsrc + 1) to be

none, a distinguished symbol indicating unalignment. The set A is to be interpreted as

the set of all one-to-many alignments a on the bipartite vertex set V = Vtrg ∪ Vsrc such

that ai = j means the ith vertex in Vtrg is aligned to the jth vertex in Vsrc. Note that

9We may ignore the constant C during the optimization.
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ai = (nsrc + 1) = none means that the ith element of Vtrg is unaligned. Now, by analogy

to our formulation in section 5.2.2, we define

p(T | S) :=
∑
a∈A

p(T | S,a) · p(a) (5.14)

=
∑
a∈A

ntrg∏
i=1

p(ti | sai , ai) · p(ai) (5.15)

=

ntrg∏
i=1

nsrc+1∑
ai=1

p(ti | sai , ai) · p(ai) (5.16)

The move from equation (5.15) to equation (5.16) is the dynamic-programming trick

introduced in Brown et al. [1993b]. This reduces the number of terms in the expression

from exponentially many to polynomially many. We take p(a) to be a uniform distribution

over all alignments with no parameters to be learned.

Artetxe et al. [2017]’s Viterbi E-Step In the context of Viterbi EM, it means the

max over A will decompose additively s

max
a∈A

log p(a | S, T ) =

ntrg∑
i=1

max
1≤ai≤(nsrc+1)

log p(ai | S, T )

thus, we can simply find a? component-wise as follows:

a?i = argmax
1≤ai≤(nsrc+1)

log p(ai | ti, sai) (5.17)

Artetxe et al. [2017]’s M-step The M-step remains unchanged from the exposition

in section 5.2.2 with the exception that we fit Ω given matrices Sa and Ta formed from a

one-to-many alignment a, rather than a matching m.

Why a Reinterpretation? The reinterpretation of Artetxe et al. [2017] as a proba-

bilistic model yields a clear analytical comparison between our method and theirs. The

only difference between the two is the constraint on the bilingual lexicon that the model

is allowed to induce.

5.2.5 Experiments

We first conduct experiments on bilingual dictionary induction and cross-lingual word

similarity on three standard language pairs, English–Italian, English–German, and

English–Finnish.
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5.2.5.1 Experimental details

Datasets For bilingual dictionary induction, we use the English–Italian dataset by

Dinu et al. [2015] and the English–German and English–Finnish datasets by Artetxe

et al. [2017]. For cross-lingual word similarity, we use the RG-65 and WordSim-353

cross-lingual datasets for English–German and the WordSim-353 cross-lingual dataset

for English–Italian by Camacho-Collados et al. [2015].

Monolingual Embeddings We follow Artetxe et al. [2017] and train monolingual

embeddings with word2vec, CBOW, and negative sampling [Mikolov et al., 2013a] on a

2.8 billion word corpus for English (ukWaC + Wikipedia + BNC), a 1.6 billion word

corpus for Italian (itWaC), a 0.9 billion word corpus for German (SdeWaC), and a 2.8

billion word corpus for Finnish (Common Crawl).

Seed dictionaries Following Artetxe et al. [2017], we use dictionaries of 5,000 words,

25 words, and a numeral dictionary consisting of words matching the [0-9]+ regular

expression in both vocabularies.10 In line with Søgaard et al. [2018], we additionally use

a dictionary of identically spelled strings in both vocabularies.

Implementation details Similar to Artetxe et al. [2017], we stop training when the

improvement on the average cosine similarity for the induced dictionary is below 1×10−6

between succeeding iterations. Unless stated otherwise, we induce a dictionary of 200,000

source and 200,000 target words as in previous work [Mikolov et al., 2013c, Artetxe et al.,

2016]. For optimal 1:1 alignment, we have observed the best results by keeping the top

k = 3 most similar target words. If using a rank constraint, we restrict the matching in

the E-step to the top 40,000 words in both languages.11 Finding an optimal alignment on

the 200,000 × 200,000 graph takes about 25 minutes on CPU;12 with a rank constraint,

matching takes around three minutes.

Baselines We compare our approach with and without the rank constraint to the

original bilingual mapping approach by Mikolov et al. [2013c]. In addition, we compare

with Zhang et al. [2016b] and Xing et al. [2015] who augment the former with an

orthogonality constraint and normalization and an orthogonality constraint respectively.

10The resulting dictionaries contain 2772, 2148, and 2345 entries for English–{Italian, German, Finnish}
respectively.

11We validated both values with identical strings using the 5,000 word lexicon as validation set on
English–Italian.

12Training takes a similar amount of time as [Artetxe et al., 2017] due to faster convergence.
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English–Italian English–German English–Finnish
5,000 25 num iden 5,000 25 num iden 5,000 25 num iden

Mikolov et al. [2013c] 34.93 00.00 0.00 1.87 35.00 0.00 0.07 19.20 25.91 0.00 0.00 7.02
Xing et al. [2015] 36.87 0.00 0.13 27.13 41.27 0.07 0.53 38.13 28.23 0.07 0.56 17.95
Zhang et al. [2016b] 36.73 0.07 0.27 28.07 40.80 0.13 0.87 38.27 28.16 0.14 0.42 17.56
Artetxe et al. [2016] 39.27 0.07 0.40 31.07 41.87 0.13 0.73 41.53 30.62 0.21 0.77 22.61
Artetxe et al. [2017] 39.67 37.27 39.40 39.97 40.87 39.60 40.27 40.67 28.72 28.16 26.47 27.88
Ours (1:1) 41.00 39.63 40.47 41.07 42.60 42.40 42.60 43.20 29.78 0.07 3.02 29.76
Ours (1:1, rank constr.) 42.47 41.13 41.40 41.80 41.93 42.40 41.93 41.47 28.23 27.04 27.60 27.81

Table 5.6: Precision at 1 (P@1) scores for bilingual lexicon induction of different
models with different seed dictionaries and languages on the full vocabulary.

Finally, we compare with Artetxe et al. [2016] who add dimension-wise mean centering

to Xing et al. [2015], and Artetxe et al. [2017].

Both Mikolov et al. [2013c] and Artetxe et al. [2017] are special cases of our famework

and comparisons to these approaches thus act as an ablation study. Specifically, Mikolov

et al. [2013c] does not employ orthogonal Procrustes, but rather allows the learned matrix

Ω to range freely. Likewise, as discussed in section 5.2.4, Artetxe et al. [2017] make use

of a Viterbi EM style algorithm with a different prior over edge sets.13

5.2.5.2 Results

We show results for bilingual dictionary induction in Table 5.6 and for cross-lingual

word similarity in Table 5.7. Our method with a 1:1 prior outperforms all baselines

on English–German and English–Italian.14 Interestingly, the 1:1 prior by itself fails on

English–Finnish with a 25 word and numerals seed lexicon. We hypothesize that the

prior imposes too strong of a constraint to find a good solution for a distant language

pair from a poor initialization. With a better—but still weakly supervised—starting

point using identical strings, our approach finds a good solution. Alternatively, we can

mitigate this deficiency effectively using a rank constraint, which allows our model to

converge to good solutions even with a 25 word or numerals seed lexicon. The rank

constraint generally performs similarly or boosts performance, while being about 8 times

faster. All approaches do better with identical strings compared to numerals, indicating

that the former may be generally suitable as a default weakly-supervised seed lexicon.

On cross-lingual word similarity, our approach yields the best performance on WordSim-

353 and RG-65 for English–German and is only outperformed by Artetxe et al. [2017] on

English–Italian Wordsim-353.

13Other recent improvements such as symmetric reweighting [Artetxe et al., 2018a] are orthogonal to
our method, which is why we do not explicitly compare to them here.

14Note that results are not directly comparable to [Conneau et al., 2018a] due to the use of embeddings
trained on different monolingual corpora (WaCKy vs. Wikipedia).



Unsupervised and Weakly Supervised Cross-lingual Learning 187

en-it en-de
Dict WS RG WS

Mikolov et al. [2013c] 5k .627 .643 .528
Xing et al. [2015] 5k .614 .700 .595
Zhang et al. [2016b] 5k .616 .704 .596
Artetxe et al. [2016] 5k .617 .716 .597

Artetxe et al. [2017]
5k .624 .742 .616
25 .626 .749 .612

num .628 .739 .604

Ours (1:1)
5k .621 .733 .618
25 .621 .740 .617

num .624 .743 .617

Ours (1:1, rank constr.)
5k .623 .741 .609
25 .622 .753 .609

num .625 .755 .611

Table 5.7: Spearman correlations on English–Italian and English–German cross-lingual
word similarity datasets.

5.2.6 Analysis

Vocabulary sizes The beneficial contribution of the rank constraint demonstrates

that in similar languages, many frequent words will have one-to-one matchings, while it

may be harder to find direct matches for infrequent words. We would thus expect the

latent variable model to perform better if we only learn dictionaries for the top n most

frequent words in both languages. We show results for our approach in comparison to

the baselines in Figure 5.6 for English–Italian using a 5,000 word seed lexicon across

vocabularies consisting of different numbers n of the most frequent words15.

The comparison approaches mostly perform similar, while our approach performs partic-

ularly well for the most frequent words in a language.

Different priors An advantage of having an explicit prior as part of the model is that

we can experiment with priors that satisfy different assumptions. Besides the 1:1 prior,

we experiment with a 2:2 prior and a 1:2 prior. For the 2:2 prior, we create copies of

the source and target words V ′src and V ′trg and add these to our existing set of vertices

V ′ = (Vtrg +V ′trg, Vsrc+V ′src). We run the Viterbi E-step on this new graph G′ and merge

matched pairs of words and their copies in the end. Similarly, for the 1:2 prior, which

allows one source word to be matched to two target words, we augment the vertices with

15We only use the words in the 5,000 word seed lexicon that are contained in the n most frequent
words. We do not show results for the 25 word seed lexicon and numerals as they are not contained in
the smallest n of most frequent words.
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Figure 5.6: Bilingual dictionary induction results of our method and baselines for
English–Italian with a 5,000 word seed lexicon across different vocabulary sizes.

a copy of the source words V ′src and proceed as above. We show results for bilingual

dictionary induction with different priors across different vocabulary sizes in Figure 5.7.

(a) English–Italian (b) English–German (c) English–Finnish

Figure 5.7: Bilingual dictionary induction results of our method with different priors
using a 5,000 word seed lexicon across different vocabulary sizes.

The 2:2 prior performs best for small vocabulary sizes. As solving the linear assignment

problem for larger vocabularies becomes progressively more challenging, the differences

between the priors become obscured and their performance converges.

Hubness problem We analyze empirically whether the prior helps with the hubness

problem. Following Lazaridou et al. [2015], we define the hubness Nk(y) at k of a target

word y as follows:

Nk(y) = |{x ∈ Q | y ∈ NNk(x,G)}| (5.18)

where Q is a set of query source language words and NNk(x,G) denotes the k nearest

neighbors of x in the graph G.16 In accordance with Lazaridou et al. [2015], we set k = 20

and use the words in the evaluation dictionary as query terms. We show the target

16In other words, the hubness of a target word measures how often it occurs in the neighborhood of
the query terms.
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Artetxe et al. [2017] Ours (1:1)

luis (20)
gleichgültigkeit
- ‘indifference’ (14)

ungarischen heuchelei
- ‘Hungarian’ (18) - ‘hypocrisy ’ (13)
jorge (17) ahmed (13)

mohammed (17)
ideologie
- ‘ideology ’ (13)

gewiß
eduardo (13)

- ‘certainly ’ (17)

Table 5.8: Hubs in English–German cross-lingual embedding space with degree of
hubness. Non-name tokens are translated.

language words with the highest hubness using our method and Artetxe et al. [2017] for

English–German with a 5,000 seed lexicon and the full vocabulary in Table 5.8.17

Hubs are fewer and occur less often with our method, demonstrating that the prior—to

some extent—aids with resolving hubness. Interestingly, compared to Lazaridou et al.

[2015], hubs seem to occur less often and are more meaningful in current cross-lingual

word embedding models.18 For instance, the neighbors of ‘gleichgültigkeit’ all relate

to indifference and words appearing close to ‘luis’ or ‘jorge’ are Spanish names. This

suggests that the prior might also be beneficial in other ways, e.g. by enforcing more

reliable translation pairs for subsequent iterations.

Low-resource languages Cross-lingual embeddings are particularly promising for

low-resource languages, where few labeled examples are typically available, but are

not adequately reflected in current benchmarks (besides the English–Finnish language

pair). We perform experiments with our method with and without a rank constraint

and Artetxe et al. [2017] for three truly low-resource language pairs, English–{Turkish,

Bengali, Hindi}. We additionally conduct an experiment for Estonian-Finnish, similarly

to Søgaard et al. [2018]. For all languages, we use fastText embeddings [Bojanowski

et al., 2017] trained on Wikipedia, the evaluation dictionaries provided by Conneau et al.

[2018a], and a seed lexicon based on identical strings to reflect a realistic use case. We

note that English does not share scripts with Bengali and Hindi, making this even more

challenging. We show results in Table 5.9.

17We verified that hubs are mostly consistent across runs and similar across language pairs.
18Lazaridou et al. [2015] observed mostly rare words with N20 values of up to 50 and many with

N20 > 20.
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en-tr en-bn en-hi et-fi

Artetxe et al. [2017] 28.93 0.87 2.07 30.18
Ours (1:1) 38.73 2.33 10.47 33.79
Ours (1:1, rank constr.) 42.40 11.93 31.80 34.78

Table 5.9: Bilingual dictionary induction results for English-{Turkish, Bengali, Hindi}
and Estonian-Finnish.

Surprisingly, the method by Artetxe et al. [2017] is unable to leverage the weak supervision

and fails to converge to a good solution for English-Bengali and English-Hindi.19 Our

method without a rank constraint significantly outperforms Artetxe et al. [2017], while

particularly for English-Hindi the rank constraint dramatically boosts performance.

Error analysis To illustrate the types of errors the model of Artetxe et al. [2017] and

our method with a rank constraint make, we query both of them with words from the

test dictionary of Artetxe et al. [2017] in German and seek their nearest neighbours in

the English embedding space. P@1 over the German-English test set is 36.38 and 39.18

for Artetxe et al. [2017] and our method respectively. We show examples where nearest

neighbours of the methods differ in Table 5.10.

Similar to Kementchedjhieva et al. [2018], we find that morphologically related words

are often the source of mistakes. Other common sources of mistakes in this dataset

are names that are translated to different names and nearly synonymous words being

predicted. Both of these sources indicate that while the learned alignment is generally

good, it is often not sufficiently precise.

5.2.7 Related work

Cross-lingual embedding priors Haghighi et al. [2008] first proposed an EM self-

learning method for bilingual lexicon induction, representing words with orthographic

and context features and using the Hungarian algorithm in the E-step to find an optimal

1:1 matching. Artetxe et al. [2017] proposed a similar self-learning method that uses

word embeddings, with an implicit one-to-many alignment based on nearest neighbor

queries. Vulić and Korhonen [2016] proposed a more strict one-to-many alignment based

on symmetric translation pairs, which is also used by Conneau et al. [2018a]. Our method

bridges the gap between early latent variable and word embedding-based approaches and

explicitly allows us to reason over its prior.

19One possible explanation is that Artetxe et al. [2017] particularly rely on numerals, which are
normalized in the fastText embeddings.
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Query Gold Artetxe et al. [2017] Ours

unregierbar ungovernable untenable uninhabitable
nikolai nikolaj feodor nikolai
memoranden memorandums communiqués memos
argentinier argentinians brazilians argentines
trostloser bleaker dreary dark-coloured
umverteilungen redistributions inequities reforms
modischen modish trend-setting modish
tranquilizer tranquillizers clonidine opiates
sammelsurium hotchpotch assortment mishmash
demagogie demagogy opportunism demagogy
andris andris rehn viktor
dehnten halmahera overran stretched
deregulieren deregulate deregulate liberalise
eurokraten eurocrats bureaucrats eurosceptics
holte holte threw grabbed
reserviertheit aloofness disdain antipathy
reaktiv reactively reacting reactive
danuta danuta julie monika
scharfblick perspicacity sagacity astuteness

Table 5.10: Comparison of example translations for German-English by our model
and Artetxe et al. [2017]

Hubness problem The hubness problem is an intrinsic problem in high-dimensional

vector spaces [Radovanović et al., 2010]. Dinu et al. [2015] first observed it for cross-lingual

embedding spaces and proposed to address it by re-ranking neighbor lists. Lazaridou et al.

[2015] proposed a max-marging objective as a solution, while more recent approaches

proposed to modify the nearest neighbor retrieval by inverting the softmax [Smith et al.,

2017] or scaling the similarity values [Conneau et al., 2018a].

5.2.8 Summary

We have presented a novel latent-variable model for bilingual lexicon induction, building on

the work of Artetxe et al. [2017]. Our model combines the prior over bipartite matchings

inspired by Haghighi et al. [2008] and the discriminative, rather than generative, approach

inspired by Irvine and Callison-Burch [2013]. We show empirical gains on six language

pairs and theoretically and empirically demonstrate the application of the bipartite

matching prior to solving the hubness problem.
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5.3 Conclusions

In this chapter, we have analysed methods for learning cross-lingual word embeddings

and proposed a new model inspired by classic approaches. We have emphasized the need

to evaluate on low-resource languages, on which our latent variable model performed

particularly well. Similar to sharing word embeddings between languages, the most

common approach in multi-task learning is to share parameters between different tasks. In

the next chapter, we will propose two novel models that enable more effective parameter

sharing.



Chapter 6

Improved Sharing in Multi-task

Learning

We have seen in the previous chapter that unsupervised methods fail if languages are too

distant. Similarly, existing multi-task learning methods such as hard parameter sharing

lead to negative transfer if tasks are dissimilar. In addition, they are restricted to sharing

separate layers and cannot effectively exploit similarities between tasks. In this chapter,

we propose two architectures for multi-task learning that enable more flexible sharing

between tasks.

In Section 6.1, we propose sluice networks, a meta-architecture that automatically learns

how tasks should share information. We achieve this by defining parameters that enable

the model to control the flow of information between tasks. In addition, the model is able

to exploit the intrinsic hierarchy of NLP tasks and learn which tasks require low-level

syntactic information or high-level semantic information. Finally, we enable the model

to learn shared and private representations by partitioning the weights into orthogonal

subspaces. The model outperforms strong single-task learning and multi-task learning

approaches on four tasks and multiple domains.

Section 6.2 presents a model that is able to leverage information from related label

spaces more effectively. In particular, the model employs a label embedding layer to

learn relationships between tasks. We also propose a label transfer network that allows

us to leverage unlabelled data and auxiliary data from other tasks via semi-supervised

learning methods similar to those used in Section 4.2. We evaluate the model on a range

of pairwise sequence classification tasks. It outperforms the state-of-the-art for aspect-

and topic-based sentiment analysis.

193
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6.1 Latent Multi-task Architecture Learning

∗ Multi-task learning (MTL) allows deep neural networks to learn from related tasks by

sharing parameters with other networks. In practice, however, MTL involves searching

an enormous space of possible parameter sharing architectures to find (a) the layers or

subspaces that benefit from sharing, (b) the appropriate amount of sharing, and (c) the

appropriate relative weights of the different task losses. Recent work has addressed each

of the above problems in isolation. In this work we present an approach that learns a

latent multi-task architecture that jointly addresses (a)–(c). We present experiments

on synthetic data and data from OntoNotes 5.0, including four different tasks and

seven different domains. Our extension consistently outperforms previous approaches

to learning latent architectures for multi-task problems and achieves up to 15% average

error reductions over common approaches to MTL.

6.1.1 Introduction

Multi-task learning in deep neural networks is typically a result of parameter sharing

between two networks (of usually the same dimensions) [Caruana, 1993]. If you have two

three-layered, recurrent neural networks, both with an embedding inner layer and each

recurrent layer feeding the task-specific classifier function through a feed-forward neural

network, we have 19 pairs of layers that could share parameters. With the option of

having private spaces, this gives us 519 =19,073,486,328,125 possible MTL architectures.

If we additionally consider soft sharing of parameters, the number of possible architectures

grows infinite. It is obviously not feasible to search this space. Neural architecture search

(NAS) [Zoph and Le, 2017] typically requires learning from a large pool of experiments

with different architectures. Searching for multi-task architectures via reinforcement

learning [Wong and Gesmundo, 2018] or evolutionary approaches [Liang et al., 2018] can

therefore be quite expensive. In this paper, we jointly learn a latent multi-task architecture

and task-specific models, paying a minimal computational cost over single task learning

and standard multi-task learning (5-7% training time). We refer to this problem as

multi-task architecture learning. In contrast to architecture search, the overall meta-

architecture is fixed and the model learns the optimal latent connections and pathways

for each task. Recently, a few authors have considered multi-task architecture learning

[Misra et al., 2016, Meyerson and Miikkulainen, 2018], but these papers only address a

subspace of the possible architectures typically considered in neural multi-task learning,

while other approaches at most consider a couple of architectures for sharing [Søgaard

and Goldberg, 2016, Peng and Dredze, 2016, Alonso and Plank, 2017]. In contrast,

∗This section is adapted from: Ruder, S., Bingel, J., Augenstein, I., and Søgaard, A. (2019). Latent
Multi-task Architecture Learning. In Proceedings of AAAI 2019.
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Figure 6.1: A sluice meta-network with one main task A and one auxiliary task B.
It consists of a shared input layer (bottom), two task-specific output layers (top), and
three hidden layers per task, each partitioned into two subspaces G that are enforced
to be orthogonal. α parameters control which subspaces are shared between main and
auxiliary task, while β parameters control which layer outputs are used for prediction.
For simplicity, we do not index layers and subspaces. With two subspaces, each block

αAA, αBA, . . . ∈ R2×2. With three layers, βA, βB ∈ R3.

we introduce a framework that unifies previous approaches by introducing trainable

parameters for all the components that differentiate multi-task learning approaches along

the above dimensions.

Contributions We present a novel meta-architecture (shown in Figure 6.1) that

generalizes several previous multi-task architectures, with an application to sequence

tagging problems. Our meta-architecture enables multi-task architecture learning, i.e.,

learning (a) what layers to share between deep recurrent neural networks, but also (b)

which parts of those layers to share, and with what strength, as well as (c) a mixture

model of skip connections at the architecture’s outer layer. We show that the architecture

is a generalization of various multi-task [Caruana, 1998, Søgaard and Goldberg, 2016,

Misra et al., 2016] and transfer learning algorithms [Daumé III, 2007]. We evaluate it on

four tasks and across seven domains on OntoNotes 5.0 [Weischedel et al., 2013], where it

consistently outperforms previous work on multi-task architecture learning, as well as

common MTL approaches. Moreover, we study the task properties that predict gains

and those that correlate with learning certain types of sharing.
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6.1.2 Multi-task architecture learning

We introduce a meta-architecture for multi-task architecture learning, which we refer to

as a sluice network, sketched in Figure 6.1 for the case of two tasks.

The network learns to share parameters between M neural networks—in our case, two

deep recurrent neural networks (RNNs) [Hochreiter and Schmidhuber, 1997]. The network

can be seen as an end-to-end differentiable union of a set of sharing architectures with

parameters controlling the sharing. By learning the weights of those sharing parameters

(sluices) jointly with the rest of the model, we arrive at a task-specific MTL architecture

over the course of training.

The two networks A and B share an embedding layer associating the elements of an

input sequence, in our case English words, with vector representations via word and

character embeddings. The two sequences of vectors are then passed on to their respective

inner recurrent layers. Each layer is divided into subspaces (by splitting the matrices

in half), e.g., for network A into GA,1 and GA,2, which allow the sluice network to

learn task-specific and shared representations, if beneficial. The subspaces have different

weights.

The output of the inner layer of network A is then passed to its second layer, as well as

to the second layer of network B. This traffic of information is mediated by a set of α

and β parameters similar to the way a sluice controls the flow of water. Specifically, the

second layer of each network receives a combination of the output of the two inner layers

weighted by the α parameters. Importantly, these α parameters are trainable and allow

the model to learn whether to share or to focus on task-specific features in a subspace.

Finally, a weighted combination of the outputs of the outer recurrent layers G·,3,· as well

as the weighted outputs of the inner layers are mediated through β parameters, which

reflect a mixture over the representations at various depths of the multi-task architecture.

In sum, sluice networks have the capacity to learn what layers and subspaces should be

shared, and how much, as well as at what layers the meta-network has learned the best

representations of the input sequences.

Matrix Regularization We cast learning what to share as a matrix regularization

problem, following [Jacob et al., 2009, Yang and Hospedales, 2017]. Assume M different

tasks that are loosely related, with M potentially non-overlapping datasets D1, . . . ,DM .

Each task is associated with a deep neural network with K layers L1, . . . LK . For

simplicity, we assume that all the deep networks have the same hyper-parameters at the

outset. Let W ∈ RM×D be a matrix in which each row i corresponds to a model θi with

D parameters. The loss that sluice networks minimize, with a penalty term Ω, is then as
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follows: λ1L1(f(x; θ1), y1) + . . . + λMLM (f(x; θM ), yM ) + Ω. The loss functions Li are

cross-entropy functions of the form −∑y p(y) log q(y) where yi are the labels of task i.

Note that sluice networks are not restricted to tasks with the same loss functions, but

could also be applied to jointly learn regression and classification tasks. The weights

λi determine the importance of the different tasks during training. We explicitly add

inductive bias to the model via the regularizer Ω below, but our model also implicitly

learns regularization through multi-task learning [Caruana, 1993] mediated by the α

parameters, while the β parameters are used to learn the mixture functions f(·), as

detailed in the following.

Learning Matrix Regularizers We now explain how updating α parameters can

lead to different matrix regularizers. Each matrix W consists of M rows where M is

the number of tasks. Each row is of length D with D the number of model parameters.

Subvectors Lm,k correspond to the parameters of network m at layer k. Each layer

consists of two subspaces with parameters Gm,k,1 and Gm,k,2. Our meta-architecture is

partly motivated by the observation that for loosely related tasks, it is often beneficial if

only certain features in specific layers are shared, while many of the layers and subspaces

remain more task-specific [Søgaard and Goldberg, 2016]. We want to learn what to share

while inducing models for the different tasks. For simplicity, we ignore subspaces at first

and assume only two tasks A and B. The outputs hA,k,t and hB,k,t of the k-th layer for

time step t for task A and B respectively interact through the α parameters (see Figure

6.1). Omitting t for simplicity, the output of the α layers is:

[
h̃A,k

h̃B,k

]
=

[
αAA αAB

αBA αBB

] [
hA,k

> , hB,k
>
]

(6.1)

where h̃A,k is a linear combination of the outputs that is fed to the k + 1-th layer of task

A, and
[
a>, b>

]
designates the stacking of two vectors a, b ∈ RD to a matrix M ∈ R2×D.

Subspaces [Virtanen et al., 2011, Bousmalis et al., 2016] should allow the model to focus

on task-specific and shared features in different parts of its parameter space. Extending

the α-layers to include subspaces, for 2 tasks and 2 subspaces, we obtain an α matrix

∈ R4×4 that not only controls the interaction between the layers of both tasks, but also

between their subspaces:
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h̃A1,k

...

h̃B2,k

 =


αA1A1 . . . αB2A1

...
. . .

...

αA1B2 . . . αB2B2


[
hA1,k

> , . . . , hB2,k
>
] (6.2)

where hA1,k is the output of the first subspace of the k-th layer of task A and h̃A1,k is

the linear combination for the first subspace of task A. The input to the k + 1-th layer

of task A is then the concatenation of both subspace outputs: hA,k =
[
h̃A1,k , h̃A2,k

]
.

Different α weights correspond to different matrix regularizers Ω, including several ones

that have been proposed previously for multi-task learning. We review those in Section

3. For now just observe that if all α-values are set to 0.25 (or any other constant), we

obtain hard parameter sharing [Caruana, 1993], which is equivalent to a heavy L0 matrix

regularizer.

Adding Inductive Bias Naturally, we can also add explicit inductive bias to sluice

networks by partially constraining the regularizer or adding to the learned penalty.

Inspired by work on shared-space component analysis [Salzmann et al., 2010], we add a

penalty to enforce a division of labor and discourage redundancy between shared and

task-specific subspaces. While the networks can theoretically learn such a separation,

an explicit constraint empirically leads to better results and enables the sluice networks

to take better advantage of subspace-specific α-values. We introduce an orthogonality

constraint [Bousmalis et al., 2016] between the layer-wise subspaces of each model:

Ω =
∑M

m=1

∑K
k=1 ‖Gm,k,1>Gm,k,2‖2F , where M is the number of tasks, K is the number

of layers, ‖ · ‖2F is the squared Frobenius norm, and Gm,k,1 and Gm,k,2 are the first and

second subspace respectively in the k-th layer of the m-th task model.

Learning Mixtures Many tasks form an implicit hierarchy of low-level to more

complex tasks, with intuitive synergies between the low-level tasks and parts of the

complex tasks. Rather than hard-coding this structure [Søgaard and Goldberg, 2016,

Hashimoto et al., 2017], we enable our model to learn hierarchical relations by associating

different tasks with different layers if this is beneficial for learning. Inspired by advances in

residual learning [He et al., 2016], we employ skip-connections from each layer, controlled

using β parameters. This layer acts as a mixture model, returning a mixture of expert

predictions:



Improved Sharing in Multi-task Learning 199

h̃>A =


βA,1

· · ·
βA,k


> [
hA,1

> , . . . hA,k
>
]

(6.3)

where hA,k is the output of layer k of model A, while h̃A,t is the linear combination of all

layer outputs of model A that is fed into the final softmax layer.

Complexity Our model only adds a minimal number of additional parameters com-

pared to single-task models of the same architecture. In our experiments, we add α

parameters between all task networks. As such, they scale linearly with the number of

layers and quadratically with the number of tasks and subspaces, while β parameters

scale linearly with the number of tasks and the number of layers. For a sluice network

with M tasks, K layers per task, and 2 subspaces per layer, we thus obtain 4KM2

additional α parameters and KM β parameters. Training sluice networks is not much

slower than training hard parameter sharing networks, with only a 5–7% increase in

training time.

6.1.3 Prior work as instances of sluice networks

Our meta-architecture is very flexible and can be seen as a generalization over several

existing algorithms for transfer and multi-task learning, including [Caruana, 1998, Daumé

III, 2007, Søgaard and Goldberg, 2016, Misra et al., 2016]. We show how to derive each

of these below.

• Hard parameter sharing between the two networks appears if all α values are

set to the same constant [Caruana, 1998, Collobert and Weston, 2008]. This is

equivalent to a mean-constrained `0-regularizer Ω(·) = | · |w̄i0 and
∑

i λiLi < 1.

Since the penalty for not sharing a parameter is 1, it holds that if the sum of

weighted losses is smaller than 1, the loss with penalty is always the highest when

all parameters are shared.

• The `1/`2 group lasso regularizer is
∑G

g=1 ||G1,i,g||2, a weighted sum over the `2

norms of the groups, often used to enforce subspace sharing [Zhou et al., 2010,

Świrszcz and Lozano, 2012]. Our architecture learns a `1/`2 group lasso over the

two subspaces (with the same degrees of freedom), when all αAB and αBA-values are

set to 0. When the outer layer α-values are not shared, we get block communication

between the networks.

• The approach to domain adaptation in [Daumé III, 2007], commonly referred to as

frustratingly easy domain adaptation, which relies on a shared and a private
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Figure 6.2: The relative importance of the auxiliary task (αBA
αAA

) over number of

training instances. With more data, the network learns not to share, when auxiliary
task is randomly relabeled (Random).

space for each task or domain, can be encoded in sluice networks by setting all

αAB- and αBA-weights associated with Gi,k,1 to 0, while setting all αAB-weights

associated with Gi,k,2 to αBB , and αBA-weights associated with Gi,k,2 to αAA. Note

that Daumé III [2007] Daumé III [2007] discusses three subspaces. We obtain this

space if we only share one half of the second subspaces across the two networks.

• Søgaard and Goldberg [2016] Søgaard and Goldberg [2016] propose a low super-

vision model where only the inner layers of two deep recurrent works are shared.

This is obtained using heavy mean-constrained L0 regularization over the first layer

Li,1, e.g., Ω(W ) =
∑K

i ||Li,1||0 with
∑

i λiL(i) < 1, while for the auxiliary task,

only the first layer β parameter is set to 1.

• Misra et al. [2016] Misra et al. [2016] introduce cross-stitch networks that have

α values control the flow between layers of two convolutional neural networks. Their

model corresponds to setting the α-values associated with Gi,j,1 to be identical to

those for Gi,j,2, and by letting all but the β-value associated with the outer layer

be 0.

In our experiments, we include hard parameter sharing, low supervision, and cross-stitch

networks as baselines. We do not report results for group lasso and frustratingly easy

domain adaptation, which were consistently inferior, by some margin, on development

data.1

1Note that frustratingly easy domain adaptation was not designed for MTL.
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6.1.4 Experiments

A synthetic experiment Our first experiment serves as a sanity check that our

meta-architecture learns reasonable sharing architectures by learning α weights. We

also want the α to adjust quickly in order not to slow down learning. We contrast two

partially synthetic pairs of target and auxiliary data. In both cases, our target dataset is

n instances (sentences) from our part-of-speech tagging dataset (see details below). In

the first scenario (Random), the auxiliary dataset is a random relabeling of the same

n instances. In the second scenario (Copy), the auxiliary dataset is a copy of the n

instances.

For Random, we would like our α parameters to quickly learn that the auxiliary task

at best contributes with noise injection. Initializing our α parameters to equal weights

(0.25), we therefore hope to see a quick drop in the relative importance of the auxiliary

task, given by αBA
αAA

. Seeing n training instances, we expect this number to quickly drop,

then stabilize to a slow decrease due to the reduced need for regularization with larger

sample sizes.2

For Copy, in contrast, we expect no significant change in the relative importance of the

auxiliary task over n training instances. We use the same hyperparameters as in our

subsequent experiments (see below). The parameter settings are thus realistic, and not

toy settings.

See Figure 6.2 for the results of our experiment. The two curves show the expected

contrast between an auxiliary task with an all-noise signal (Random) and an auxiliary

task with a perfect, albeit redundant, signal (Copy). This experiment shows that our

meta-architecture quickly learns a good sharing architecture in clear cases such as Random

and Copy. We now proceed to test whether multi-task architecture learning also leads to

empirical gains over existing approaches to multi-task learning.

Data As testbed for our experiments, we choose the OntoNotes 5.0 dataset [Weischedel

et al., 2013], not only due to its high inter-annotator agreement [Hovy et al., 2006], but

also because it enables us to analyze the generalization ability of our models across

different tasks and domains. The OntoNotes dataset provides data annotated for an

array of tasks across different languages and domains. We present experiments with the

English portions of datasets, for which we show statistics in Table 6.1.

2The quick drop is the meta-architecture learning that the auxiliary data is much less useful than the
target data; the slight decrease after the first drop is the reduced need for regularization due to lower
variance with more data.
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Domains

bc bn mz nw pc tc wb
Train 173289 206902 164217 878223 297049 90403 388851
Dev 29957 25271 15421 147955 25206 11200 49393
Test 35947 26424 17874 60756 25883 10916 52225

Table 6.1: Number of tokens for each domain in the OntoNotes 5.0 dataset.

Words Abramov had a car accident

CHUNK O B-VP B-NP I-NP I-NP
NER B-PERSON O O O O
SRL B-ARG0 B-V B-ARG1 I-ARG1 I-ARG1
POS NNP VBD DT NN NN

Table 6.2: Example annotations for CHUNK, NER, SRL, and POS.

Tasks In MTL, one task is usually considered the main task, while other tasks are

used as auxiliary tasks to improve performance on the main task. As main tasks, we

use chunking (CHUNK), named entity recognition (NER), and a simplified version of

semantic role labeling (SRL) where we only identify headwords3 , and pair them with

part-of-speech tagging (POS) as an auxiliary task, following [Søgaard and Goldberg,

2016]. Example annotations for each task can be found in Table 6.2.

Model We use a state-of-the-art BiLSTM-based sequence labeling model [Plank et al.,

2016] as the building block of our model. The BiLSTM consists of 3 layers with 100

dimensions that uses 64-dimensional word and 100-dimensional character embeddings,

which are both randomly initialized. The output layer is an MLP with a dimensionality

of 100. We initialize α parameters with a bias towards one source subspace for each

direction and initialize β parameters with a bias towards the last layer4. We have found

it most effective to apply the orthogonality constraint only to the weights associated

with the LSTM inputs.

Training and Evaluation We train our models with stochastic gradient descent

(SGD), an initial learning rate of 0.1, and learning rate decay5. During training, we

uniformly sample from the data for each task. We perform early stopping with patience of

2 based on the main task and hyperparameter optimization on the in-domain development

data of the newswire domain. We use the same hyperparameters for all comparison

models across all domains. We train our models on each domain and evaluate them both

3We do this to keep pre-processing for SRL minimal.
4We experimented with different initializations for α and β parameters and found these to work best.
5We use SGD as Søgaard and Goldberg [2016] Søgaard and Goldberg [2016] also employed SGD.

Adam yielded similar performance differences.
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on the in-domain test set (Table 6.3, top) as well as on the test sets of all other domains

(Table 6.3, bottom) to evaluate their out-of-domain generalization ability. Note that due

to this set-up, our results are not directly comparable to the results reported in [Søgaard

and Goldberg, 2016], who only train on the WSJ domain and use OntoNotes 4.0.

Baseline Models As baselines, we compare against i) a single-task model only trained

on chunking; ii) the low supervision model [Søgaard and Goldberg, 2016], which predicts

the auxiliary task at the first layer; iii) an MTL model based on hard parameter sharing

[Caruana, 1993]; and iv) cross-stitch networks [Misra et al., 2016]. We compare these

against our complete sluice network with subspace constraints and learned α and β

parameters. We implement all models in DyNet [Neubig et al., 2017] and make our code

available at https://github.com/sebastianruder/sluice-networks.

We first assess how well sluice networks perform on in-domain and out-of-domain data

compared to the state-of-the-art. We evaluate all models on chunking with POS tagging

as auxiliary task.

Chunking results We show results on in-domain and out-of-domain tests sets in

Table 6.3. Out-of-domain results for each target domain are averages across the 6

remaining source domains. On average, sluice networks significantly outperform all other

model architectures on both in-domain and out-of-domain data and perform best for all

domains, except for the telephone conversation (tc) domain, where they are outperformed

by cross-stitch networks. The average error reduction vs. single task learning is 12.8% on

in-domain and 8.9% on out-of-domain data respectively. Compared to hard parameter

sharing, the error reduction is 14.8% on in-domain data.

The performance boost is particularly significant for the out-of-domain setting, where

sluice networks add more than 1 point in accuracy compared to hard parameter sharing

and almost .5 compared to the strongest baseline on average, demonstrating that sluice

networks are particularly useful to help a model generalize better. In contrast to

previous studies on MTL [Alonso and Plank, 2017, Bingel and Søgaard, 2017, Augenstein

et al., 2018], our model also consistently outperforms single-task learning. Overall, this

demonstrates that our meta-architecture for learning which parts of multi-task models

to share, with a small set of additional parameters to learn, can achieve significant and

consistent improvements over strong baseline methods.

NER and SRL We now evaluate sluice nets on NER with POS tagging as auxiliary

task and simplified semantic role labeling with POS tagging as auxiliary task. We show

results in Table 6.4 (ID indicates in-domain and OOD means out-of-domain). Sluice

https://github.com/sebastianruder/sluice-networks
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In-domain results

System bc bn mz nw pt tc wb Avg

B
a
se

li
n

es Single task 90.80 92.20 91.97 92.76 97.13 89.84 92.95 92.52
Hard sharing 90.31 91.73 92.33 92.22 96.40 90.59 92.84 92.35
Low supervision 90.95 91.70 92.37 93.40 96.87 90.93 93.82 92.86
Cross-stitch nets 91.40 92.49 92.59 93.52 96.99 91.47 94.00 93.21

Ours Sluice network 91.72 92.90 92.90 94.25 97.17 90.99 94.40 93.48

Out-of-domain results

B
a
se

li
n

es Single task 85.95 87.73 86.81 84.29 90.91 84.55 73.36 84.80
Hard sharing 86.31 87.73 86.96 84.99 90.76 84.48 73.56 84.97
Low supervision 86.53 88.39 87.15 85.02 90.19 84.48 73.24 85.00
Cross-stitch nets 87.13 88.40 87.67 85.37 91.65 85.51 73.97 85.67

Ours Sluice network 87.95 88.95 88.22 86.23 91.87 85.32 74.48 86.15

Table 6.3: Accuracy scores for chunking on in-domain and out-of-domain test sets
with POS as auxiliary task.

networks outperform the comparison models for both tasks on in-domain test data

and successfully generalize to out-of-domain test data on average. They yield the best

performance on 5 out of 7 domains and 4 out of 7 domains for NER and semantic role

labeling.

Named entity recognition

System nw (ID) bc bn mz pt tc wb OOD Avg

B
as

el
in

es Single task 95.04 93.42 93.81 93.25 94.29 94.27 92.52 93.59
Hard sharing 94.16 91.36 93.18 93.37 95.17 93.23 92.99 93.22
Low supervision 94.94 91.97 93.69 92.83 94.26 93.51 92.51 93.13
Cross-stitch nets 95.09 92.39 93.79 93.05 94.14 93.60 92.59 93.26

Ours Sluice network 95.52 93.50 94.16 93.49 93.61 94.33 92.48 93.60

Simplified semantic role labeling

B
as

el
in

es Single task 97.41 95.67 95.24 95.86 95.28 98.27 97.82 96.36
Hard sharing 97.09 95.50 95.00 95.77 95.57 98.46 97.64 96.32
Low supervision 97.26 95.57 95.09 95.89 95.50 98.68 97.79 96.42
Cross-stitch nets 97.32 95.44 95.14 95.82 95.57 98.69 97.67 96.39

Ours Sluice network 97.67 95.64 95.30 96.12 95.07 98.61 98.01 96.49

Table 6.4: Test accuracy scores for different target domains with nw as source domain
for NER (main task) and SRL with POS as aux task.

Joint model Most work on MTL for NLP uses a single auxiliary task [Bingel and

Søgaard, 2017, Alonso and Plank, 2017]. In this experiment, we use one sluice network

to jointly learn our four tasks on the newswire domain and show results in Table 6.5.
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System chunk ner srl pos

Single task 89.30 94.18 96.64 88.62
Hard param. 88.30 94.12 96.81 89.07
Low super. 89.10 94.02 96.72 89.20

Sluice net 89.19 94.32 96.67 89.46

Table 6.5: All-tasks experiment: Test accuracy scores for each task with nw as source
domain averaged across all target domains.

Here, the low-level POS tagging and simplified SRL tasks are the only ones that benefit

from hard parameter sharing highlighting that hard parameter sharing by itself is not

sufficient for doing effective multi-task learning with semantic tasks. We rather require

task-specific layers that can be used to transform the shared, low-level representation

into a form that is able to capture more fine-grained task-specific knowledge. Sluice

networks outperform single task models for all tasks, except chunking and achieve the

best performance on 2/4 tasks in this challenging setting.

6.1.5 Analysis

To better understand the properties and behavior of our meta-architecture, we conduct

a series of analyses and ablations.

Task Properties and Performance Bingel and Søgaard [2017] correlate meta-

characteristics of task pairs and gains compared to hard parameter sharing across

a large set of NLP task pairs. Similarly, we correlate various meta-characteristics with

error reductions and α, β values. Most importantly, we find that a) multi-task learning

gains, also in sluice networks, are higher when there is less training data; and b) sluice

networks learn to share more when there is more variance in the training data (cross-task

αs are higher, intra-task αs lower). Generally, α values at the inner layers correlate more

strongly with meta-characteristics than α values at the outer layers.

Ablation Analysis Different types of sharing may be more important than others. In

order to analyze this, we perform an ablation analysis in Table 6.6. We investigate the

impact of i) the α parameters; ii) the β parameters; and iii) the division into subspaces

with an orthogonality penalty. We also evaluate whether concatenation of the outputs

of each layer is a reasonable alternative to our mixture model. Overall, we find that

learnable α parameters are preferable over constant α parameters. Learned β parameters

marginally outperform skip-connections in the hard parameter sharing setting, while

skip-connections are competitive with learned β values in the learned α setting.
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Task shar-
ing

Layer sharing bc bn mz nw pt tc wb Avg

constant α (hard)
Concatenation 86.70 88.24 87.20 85.19 90.64 85.33 73.75 85.29
Skip-connections (β = 1) 86.65 88.10 86.82 84.91 90.92 84.89 73.62 85.13
Mixture (learned β) 86.59 88.03 87.19 85.12 90.99 84.90 73.48 85.19

learned α (soft)

Concatenation 87.37 88.94 87.99 86.02 91.96 85.83 74.28 86.05
Skip-connections 87.08 88.62 87.74 85.77 91.92 85.81 74.04 85.85
Mixture 87.10 88.61 87.71 85.44 91.61 85.55 74.09 85.73
Mixture + subspaces 87.95 88.95 88.22 86.23 91.87 85.32 74.48 86.15

Table 6.6: Ablation. Out-of-domain scores for Chunking with POS as auxiliary task on
out-of-domain (OOD) test sets for Chunking (main task) with POS tagging as auxiliary
task for different target domains for different configurations of sluice networks. OOD

scores for each target domain are averaged across the 6 source domains.

In addition, modeling subspaces explicitly helps for almost all domains. To our knowledge,

this is the first time that subspaces within individual LSTM layers have been shown to be

beneficial.6. Being able to effectively partition LSTM weights opens the way to research

in inducing more structured neural network representations that encode task-specific

priors. Finally, concatenation of layer outputs is a viable form to share information

across layers as has also been demonstrated by recent models such as DenseNet [Huang

et al., 2017b].

Analysis of α values Figure 6.3 presents the final α weights in the inner and outer

layers of sluice networks for Chunking, NER, and SRL, trained with newswire as training

data. We see that a) for the low-level simplified SRL, there is more sharing at inner

layers, which is in line with Søgaard and Goldberg [2016] Søgaard and Goldberg [2016],

while Chunking and NER also rely on the outer layer, and b) more information is shared

from the more complex target tasks than vice versa.

Analysis of β values Inspecting the β values for the all-tasks sluice net in Table 6.5,

we find that all tasks place little emphasis on the first layer, but prefer to aggregate

their representations in different later layers of the model: The more semantic NER

and chunking tasks use the second and third layer to a similar extent, while for POS

tagging and simplified SRL the representation of one of the two later layers dominates

the prediction.

6.1.6 Related work

Hard parameter sharing [Caruana, 1993] is easy to implement, reduces overfitting, but

is only guaranteed to work for (certain types of) closely related tasks [Baxter, 2000,

6Liu et al. [2017] induce subspaces between separate LSTM layers.
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Figure 6.3: Heat maps of learned α parameters in sluice networks trained on newswire
data for chunking, NER, and SRL (top to bottom). Layers are shown from bottom to

top (left to right).

Maurer, 2007]. Peng and Dredze [2016] apply a variation of hard parameter sharing to

multi-domain multi-task sequence tagging with a shared CRF layer and domain-specific

projection layers. Yang et al. [2016] use hard parameter sharing to jointly learn different

sequence-tagging tasks across languages. Alonso and Plank [2017] explore a similar

set-up, but sharing is limited to the initial layer. In all three papers, the amount of

sharing between the networks is fixed in advance.

In soft parameter sharing [Duong et al., 2015b], each task has separate parameters and

separate hidden layers, as in our architecture, but the loss at the outer layer is regularized

by the current distance between the models. Kumar and Daumé III [2012] and Maurer

et al. [2013] enable selective sharing by allowing task predictors to select from sparse

parameter bases for homogeneous tasks. Søgaard and Goldberg [2016] show that low-level

tasks, i.e. syntactic tasks typically used for preprocessing such as POS tagging and NER,

should be supervised at lower layers when used as auxiliary tasks.

Another line of work looks into separating the learned space into a private (i.e. task-

specific) and shared space [Salzmann et al., 2010, Virtanen et al., 2011] to more explicitly

capture the difference between task-specific and cross-task features. Constraints are

enforced to prevent the models from duplicating information. Bousmalis et al. [2016] use

shared and private encoders regularized with orthogonality and similarity constraints

for domain adaptation for computer vision. Liu et al. [2017] use a similar technique for

sentiment analysis. In contrast, we do not limit ourselves to a predefined way of sharing,
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but let the model learn which parts of the network to share using latent variables, the

weights of which are learned in an end-to-end fashion. Misra et al. [2016], focusing on

applications in computer vision, consider a small subset of the sharing architectures that

are learnable in sluice networks, i.e., split architectures, in which two n-layer networks

share the innermost k layers with 0 ≤ k ≤ n, but learn k with a mechanism very similar

to α-values.

Our method is also related to the classic mixture-of-experts layer [Jacobs et al., 1991].

In contrast to this approach, our method is designed for multi-task learning and thus

encourages a) the sharing of parameters between different task “experts” if this is

beneficial as well as b) differentiating between low-level and high-level representations.

6.1.7 Summary

We introduced sluice networks, a meta-architecture for multi-task architecture search. In

our experiments across four tasks and seven different domains, the meta-architecture

consistently improved over strong single-task learning, architecture learning, and multi-

task learning baselines. We also showed how our meta-architecture can learn previously

proposed architectures for multi-task learning and domain adaptation.

While sluice networks seek to facilitate learning of tasks that require learning repre-

sentations at different levels of a hierarchy, we will focus on the topmost level of the

hierarchy, the labels, in the following section. We will propose an architecture that

leverages information from related label spaces and apply this architecture to pairwise

sequence classification tasks.

6.2 Multi-task Learning of Pairwise Sequence Classifica-

tion Tasks Over Disparate Label Spaces

∗ We combine multi-task learning and semi-supervised learning by inducing a joint

embedding space between disparate label spaces and learning transfer functions between

label embeddings, enabling us to jointly leverage unlabelled data and auxiliary, annotated

datasets. We evaluate our approach on a variety of sequence classification tasks with

disparate label spaces. We outperform strong single and multi-task baselines and achieve

a new state-of-the-art for aspect- and topic-based sentiment analysis.

∗This section is adapted from: Augenstein, I.*, Ruder, S.*†, and Søgaard, A. (2018). Multi-task
Learning of Pairwise Sequence Classification Tasks Over Disparate Label Spaces. In Proceedings of
NAACL-HLT 2018. The model was implemented by Sebastian and Isabelle. Sebastian wrote most of the
paper, while Isabelle ran the experiments.
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6.2.1 Introduction

Multi-task learning (MTL) and semi-supervised learning are both successful paradigms for

learning in scenarios with limited labelled data and have in recent years been applied to

almost all areas of NLP. Applications of MTL in NLP, for example, include partial parsing

[Søgaard and Goldberg, 2016], text normalisation [Bollman et al., 2017], neural machine

translation [Luong et al., 2016], and keyphrase boundary classification [Augenstein and

Søgaard, 2017].

Contemporary work in MTL for NLP typically focuses on learning representations that

are useful across tasks, often through hard parameter sharing of hidden layers of neural

networks [Collobert et al., 2011, Søgaard and Goldberg, 2016]. If tasks share optimal

hypothesis classes at the level of these representations, MTL leads to improvements

[Baxter, 2000]. However, while sharing hidden layers of neural networks is an effective

regulariser [Søgaard and Goldberg, 2016], we potentially loose synergies between the

classification functions trained to associate these representations with class labels. This

paper sets out to build an architecture in which such synergies are exploited, with an

application to pairwise sequence classification tasks. Doing so, we achieve a new state of

the art on topic-based and aspect-based sentiment analysis tasks.

For many NLP tasks, disparate label sets are weakly correlated, e.g. part-of-speech tags

correlate with dependencies [Hashimoto et al., 2017], sentiment correlates with emotion

[Felbo et al., 2017, Eisner et al., 2016], etc. We thus propose to induce a joint label

embedding space (visualised in Figure 6.5) using a Label Embedding Layer that allows

us to model these relationships, which we show helps with learning.

In addition, for tasks where labels are closely related, we should be able to not only

model their relationship, but also to directly estimate the corresponding label of the

target task based on auxiliary predictions. To this end, we propose to train a Label

Transfer Network (LTN) jointly with the model to produce pseudo-labels across tasks.

The LTN can be used to label unlabelled and auxiliary task data by utilising the ‘dark

knowledge’ [Hinton et al., 2015] contained in auxiliary model predictions. This pseudo-

labelled data is then incorporated into the model via semi-supervised learning, leading to a

natural combination of multi-task learning and semi-supervised learning. We additionally

augment the LTN with data-specific diversity features [Ruder and Plank, 2017] that aid

in learning.

Contributions Our contributions are: a) We model the relationships between labels

by inducing a joint label space for multi-task learning. b) We propose a Label Transfer
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Network that learns to transfer labels between tasks and propose to use semi-supervised

learning to leverage them for training. c) We evaluate MTL approaches on a variety

of classification tasks and shed new light on settings where multi-task learning works.

d) We perform an extensive ablation study of our model. e) We report state-of-the-art

performance on topic-based and aspect-based sentiment analysis tasks.

6.2.2 Related work

Learning task similarities Existing approaches for learning similarities between tasks

enforce a clustering of tasks [Evgeniou et al., 2005, Jacob et al., 2009], induce a shared

prior [Yu et al., 2005, Xue et al., 2007, Daumé III, 2009], or learn a grouping [Kang et al.,

2011, Kumar and Daumé III, 2012]. These approaches focus on homogeneous tasks and

employ linear or Bayesian models. They can thus not be directly applied to our setting

with tasks using disparate label sets.

Multi-task learning with neural networks Recent work in multi-task learning

goes beyond hard parameter sharing [Caruana, 1993] and considers different sharing

structures, e.g. only sharing at lower layers [Søgaard and Goldberg, 2016] and induces

private and shared subspaces [Liu et al., 2017, Ruder et al., 2019a]. These approaches,

however, are not able to take into account relationships between labels that may aid

in learning. Another related direction is to train on disparate annotations of the same

task [Chen et al., 2016, Peng et al., 2017]. In contrast, the different nature of our tasks

requires a modelling of their label spaces.

Semi-supervised learning There exists a wide range of semi-supervised learning

algorithms, e.g., self-training, co-training, tri-training, EM, and combinations thereof,

several of which have also been used in NLP. Our approach is probably most closely

related to an algorithm called co-forest [Li and Zhou, 2007]. In co-forest, like here, each

learner is improved with unlabeled instances labeled by the ensemble consisting of all

the other learners. Note also that several researchers have proposed using auxiliary

tasks that are unsupervised [Plank et al., 2016, Rei, 2017], which also leads to a form of

semi-supervised models.

Label transformations The idea of manually mapping between label sets or learning

such a mapping to facilitate transfer is not new. Zhang et al. [2012] use distributional

information to map from a language-specific tagset to a tagset used for other languages, in

order to facilitate cross-lingual transfer. More related to this work, Kim et al. [2015] use
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canonical correlation analysis to transfer between tasks with disparate label spaces. There

has also been work on label transformations in the context of multi-label classification

problems [Yeh et al., 2017].

6.2.3 Multi-task learning with disparate label spaces

Problem definition In our multi-task learning scenario, we have access to labelled

datasets for T tasks T1, . . . , TT at training time with a target task TT that we particularly

care about. The training dataset for task Ti consists of Nk examples XTi = {xTi1 , . . . , x
Ti
Nk
}

and their labels YTi = {yTi1 , . . . ,y
Ti
Nk
}. Our base model is a deep neural network that

performs classic hard parameter sharing [Caruana, 1993]: It shares its parameters across

tasks and has task-specific softmax output layers, which output a probability distribution

pTi for task Ti according to the following equation:

pTi = softmax(WTih + bTi) (6.4)

where softmax(x) = ex/
∑‖x‖

i=1 e
xi , WTi ∈ RLi×h, bTi ∈ RLi is the weight matrix and

bias term of the output layer of task Ti respectively, h ∈ Rh is the jointly learned hidden

representation, Li is the number of labels for task Ti, and h is the dimensionality of h.

The MTL model is then trained to minimise the sum of the individual task losses:

L = λ1L1 + . . .+ λTLT (6.5)

where Li is the negative log-likelihood objective Li = H(pTi ,yTi) = − 1
N

∑
n

∑
j log pTij yTij

and λi is a parameter that determines the weight of task Ti. In practice, we apply the

same weight to all tasks. We show the full set-up with hard parameter sharing and 3

tasks T1−3 and L1−3 labels per task in Figure 6.4a.

Label Embedding Layer In order to learn the relationships between labels, we

propose a Label Embedding Layer (LEL) that embeds the labels of all tasks in a joint

space. Instead of training separate softmax output layers as above, we introduce a label

compatibility function c(·, ·) that measures how similar a label with embedding l is to

the hidden representation h:

c(l,h) = l · h (6.6)
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(c) Semi-supervised MTL with LTN

Figure 6.4: a) Multi-task learning (MTL) with hard parameter sharing and 3 tasks
T1−3 and L1−3 labels per task. A shared representation h is used as input to task-
specific softmax layers, which optimise cross-entropy losses L1−3. b) MTL with the

Label Embedding Layer (LEL) embeds task labels l
T1−3

1−Li
in a joint embedding space

and uses these for prediction with a label compatibility function. c) Semi-supervised
MTL with the Label Transfer Network (LTN) in addition optimises an unsupervised
loss Lpseudo over pseudo-labels zTT on auxiliary/unlabelled data. The pseudo-labels
zTT are produced by the LTN for the main task TT using the concatenation of auxiliary

task label output embeddings [oi−1,oi,oi+1] as input.

where · is the dot product. This is similar to the Universal Schema Latent Feature

Model introduced by [Riedel et al., 2013]. In contrast to other models that use the dot

product in the objective function, we do not have to rely on negative sampling and a

hinge loss [Collobert and Weston, 2008] as negative instances (labels) are known. For

efficiency purposes, we use matrix multiplication instead of a single dot product and

softmax instead of sigmoid activations:

p = softmax(Lh) (6.7)

where L ∈ R(
∑
i Li)×l is the label embedding matrix for all tasks and l is the dimensionality

of the label embeddings. In practice, we set l to the hidden dimensionality h. We use

padding if l < h. We apply a task-specific mask to L in order to obtain a task-specific

probability distribution pTi . The LEL is shared across all tasks, which allows us to learn

the relationships between the labels in the joint embedding space. The LEL generalises

the common setting of sharing hidden layers for tasks with the same label space to the

setting of disparate label spaces. We show MTL with the LEL, which embeds task labels

l
T1−3

1−Li in a joint embedding space and uses these for prediction with a label compatibility

function in Figure 6.4b.
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Label Transfer Network The LEL allows us to learn the relationships between labels.

In order to make use of these relationships, we would like to leverage the predictions of

our auxiliary tasks to estimate a label for the target task. To this end, we introduce the

Label Transfer Network (LTN). This network takes the auxiliary task outputs as input.

In particular, we define the output label embedding oi of task Ti as the sum of the task’s

label embeddings lj weighted with their probability pTij :

oi =

Li∑
j=1

pTij lj (6.8)

The label embeddings l encode general relationship between labels, while the model’s

probability distribution pTi over its predictions encodes fine-grained information useful

for learning [Hinton et al., 2015]. The LTN is trained on labelled target task data. For

each example, the corresponding label output embeddings of the auxiliary tasks are fed

into a multi-layer perceptron (MLP), which is trained with a negative log-likelihood

objective LLTN to produce a pseudo-label zTT for the target task TT :

LTNT = MLP([o1, . . . ,oT−1]) (6.9)

where [·, ·] designates concatenation. The mapping of the tasks in the LTN yields another

signal that can be useful for optimisation and act as a regulariser. The LTN can also

be seen as a mixture-of-experts layer [Jacobs et al., 1991] where the experts are the

auxiliary task models. As the label embeddings are learned jointly with the main model,

the LTN is more sensitive to the relationships between labels than a separately learned

mixture-of-experts model that only relies on the experts’ output distributions. As such,

the LTN can be directly used to produce predictions on unseen data.

Semi-supervised MTL The downside of the LTN is that it requires additional pa-

rameters and relies on the predictions of the auxiliary models, which impacts the runtime

during testing. Instead, of using the LTN for prediction directly, we can use it to provide

pseudo-labels for unlabelled or auxiliary task data by utilising auxiliary predictions for

semi-supervised learning.

We train the target task model on the pseudo-labelled data to minimise the squared

error between the model predictions pTi and the pseudo labels zTi produced by the LTN:

Lpseudo = MSE(pTT , zTT ) = ||pTT − zTT ||2 (6.10)
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We add this loss term to the MTL loss in Equation 6.5. As the LTN is learned together

with the MTL model, pseudo-labels produced early during training will likely not be

helpful as they are based on unreliable auxiliary predictions. For this reason, we first

train the base MTL model until convergence and then augment it with the LTN. We

show the full semi-supervised learning procedure in Figure 6.4c. We additionally optimize

an unsupervised loss Lpseudo over pseudo-labels zTT on auxiliary/unlabelled data. The

pseudo-labels zTT are produced by the LTN for the main task TT using the concatenation

of auxiliary task label output embeddings [oi−1,oi,oi+1] as input.

Data-specific features When there is a domain shift between the datasets of different

tasks as is common for instance when learning NER models with different label sets, the

output label embeddings might not contain sufficient information to bridge the domain

gap.

To mitigate this discrepancy, we augment the LTN’s input with features that have been

found useful for transfer learning [Ruder and Plank, 2017]. In particular, we use the

number of word types, type-token ratio, entropy, Simpson’s index, and Rényi entropy as

diversity features. We calculate each feature for each example.1 The features are then

concatenated with the input of the LTN.

Other multi-task improvements Hard parameter sharing can be overly restrictive

and provide a regularisation that is too heavy when jointly learning many tasks. For this

reason, we propose several additional improvements that seek to alleviate this burden:

We use skip-connections, which have been shown to be useful for multi-task learning

in recent work [Ruder et al., 2019a]. Furthermore, we add a task-specific layer before

the output layer, which is useful for learning task-specific transformations of the shared

representations [Søgaard and Goldberg, 2016, Ruder et al., 2019a].

6.2.4 Experiments

For our experiments, we evaluate on a wide range of text classification tasks. In particular,

we choose pairwise classification tasks—i.e. those that condition the reading of one

sequence on another sequence—as we are interested in understanding if knowledge can

be transferred even for these more complex interactions. To the best of our knowledge,

this is the first work on transfer learning between such pairwise sequence classification

tasks. We implement all our models in Tensorflow [Abadi et al., 2016] and release the

code at https://github.com/coastalcph/mtl-disparate.

1For more information regarding the feature calculation, refer to [Ruder and Plank, 2017].

https://github.com/coastalcph/mtl-disparate
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Task Domain # of examples # of labels Metric

Topic-2 Twitter 4,346 2 ρPN

Topic-5 Twitter 6,000 5 MAEM

Target Twitter 6,248 3 FM1
Stance Twitter 2,914 3 FFA1

ABSA-L Reviews 2,909 3 Acc
ABSA-R Reviews 2,507 3 Acc
FNC-1 News 39,741 4 Acc
MultiNLI Diverse 392,702 3 Acc

Table 6.7: Training set statistics and evaluation metrics of every task.

Topic-based sentiment analysis

Tweet No power at home, sat in the dark listening to AC/DC
in the hope it’ll make the electricity come back again

Topic AC/DC
Label positive

Target-dependent sentiment analysis
Text how do you like settlers of catan for the wii?
Target wii
Label neutral

Aspect-based sentiment analysis
Text For the price, you cannot eat this well in Manhattan
Aspects restaurant prices, food quality
Label positive

Stance detection

Tweet Be prepared - if we continue the policies of the liberal
left, we will be #Greece

Target Donald Trump
Label favor

Fake news detection

Document Dino Ferrari hooked the whopper wels catfish, (...),
which could be the biggest in the world.

Headline Fisherman lands 19 STONE catfish which could be
the biggest in the world to be hooked

Label agree

Natural language inference
Premise Fun for only children
Hypothesis Fun for adults and children
Label contradiction

Table 6.8: Example instances from the employed datasets.

Tasks and datasets We use the following tasks and datasets for our experiments,

show task statistics in Table 6.7, and summarise examples in Table 6.8:

Topic-based sentiment analysis Topic-based sentiment analysis aims to estimate

the sentiment of a tweet known to be about a given topic. We use the data from

SemEval-2016 Task 4 Subtask B and C [Nakov et al., 2016] for predicting on a two-point

scale of positive and negative (Topic-2) and five-point scale ranging from highly negative

to highly positive (Topic-5) respectively. An example from this dataset would be to
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classify the tweet “No power at home, sat in the dark listening to AC/DC in the hope

it’ll make the electricity come back again” known to be about the topic “AC/DC”, which

is labelled as a positive sentiment. The evaluation metrics for Topic-2 and Topic-5

are macro-averaged recall (ρPN ) and macro-averaged mean absolute error (MAEM )

respectively, which are both averaged across topics.

Target-dependent sentiment analysis Target-dependent sentiment analysis (Target)

seeks to classify the sentiment of a text’s author towards an entity that occurs in the

text as positive, negative, or neutral. We use the data from [Dong et al., 2014] [Dong

et al., 2014]. An example instance is the expression “how do you like settlers of catan for

the wii?” which is labelled as neutral towards the target “wii’.’ The evaluation metric is

macro-averaged F1 (FM1 ).

Aspect-based sentiment analysis Aspect-based sentiment analysis is the task of

identifying whether an aspect, i.e. a particular property of an item is associated with

a positive, negative, or neutral sentiment [Ruder et al., 2016a]. We use the data of

SemEval-2016 Task 5 Subtask 1 Slot 3 [Pontiki et al., 2016] for the laptops (ABSA-L) and

restaurants (ABSA-R) domains. An example is the sentence “For the price, you cannot

eat this well in Manhattan”, labelled as positive towards both the aspects “restaurant

prices” and “food quality”. The evaluation metric for both domains is accuracy (Acc).

Stance detection Stance detection (Stance) requires a model, given a text and a

target entity, which might not appear in the text, to predict whether the author of the

text is in favour or against the target or whether neither inference is likely [Augenstein

et al., 2016]. We use the data of SemEval-2016 Task 6 Subtask B [Mohammad et al.,

2016]. An example from this dataset would be to predict the stance of the tweet “Be

prepared - if we continue the policies of the liberal left, we will be #Greece” towards the

topic “Donald Trump”, labelled as “favor”. The evaluation metric is the macro-averaged

F1 score of the “favour” and “against” classes (FFA1 ).

Fake news detection The goal of fake news detection in the context of the Fake News

Challenge2 is to estimate whether the body of a news article agrees, disagrees, discusses,

or is unrelated towards a headline. We use the data from the first stage of the Fake

News Challenge (FNC-1). An example for this dataset is the document “Dino Ferrari

hooked the whopper wels catfish, (...), which could be the biggest in the world.” with the

2http://www.fakenewschallenge.org/

http://www.fakenewschallenge.org/
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headline “Fisherman lands 19 STONE catfish which could be the biggest in the world to

be hooked” labelled as “agree”. The evaluation metric is accuracy (Acc)3.

Natural language inference Natural language inference is the task of predicting

whether one sentences entails, contradicts, or is neutral towards another one. We use the

Multi-Genre NLI corpus (MultiNLI) from the RepEval 2017 shared task [Nangia et al.,

2017]. An example for an instance would be the sentence pair “Fun for only children”,

“Fun for adults and children”, which are in a “contradiction” relationship. The evaluation

metric is accuracy (Acc).

Base model Our base model is the Bidirectional Encoding model [Augenstein et al.,

2016], a state-of-the-art model for stance detection that conditions a bidirectional LSTM

(BiLSTM) encoding of a text on the BiLSTM encoding of the target. Unlike [Augenstein

et al., 2016], we do not pre-train word embeddings on a larger set of unlabelled in-domain

text for each task as we are mainly interested in exploring the benefit of multi-task

learning for generalisation.

Training settings We use BiLSTMs with one hidden layer of 100 dimensions, 100-

dimensional randomly initialised word embeddings, a label embedding size of 100. We

train our models with RMSProp, a learning rate of 0.001, a batch size of 128, and early

stopping on the validation set of the main task with a patience of 3.

Stance FNC MultiNLI Topic-2 Topic-5* ABSA-L ABSA-R Target

Augenstein et al. [2016] 49.01 - - - - - - -
Riedel et al. [2017] - 88.46 - - - - - -
Chen et al. [2017b] - - 74.90 - - - - -
Palogiannidi et al. [2016] - - - 79.90 - - - -
Balikas and Amini [2016] - - - - 0.719 - - -
Brun et al. [2016] - - - - - 88.13 - -
Kumar et al. [2016b] - - - - - 86.73 82.77 -
Vo and Zhang [2015] - - - - - - - 69.90

STL 41.1 72.72 49.25 63.92 0.919 76.74 67.47 64.01

MTL + LEL 46.26 72.71 49.94 80.52 0.814 74.94 79.90 66.42
MTL + LEL + LTN, main model 43.16 72.73 48.75 73.90 0.810 75.06 83.71 66.10
MTL + LEL + LTN + semi, main model 43.56 72.72 48.00 72.35 0.821 75.42 83.26 63.00

Table 6.9: Comparison of our best performing models against the state-of-the-art.

Results Our main results are shown in Table 6.9, with a comparison against a single

task (STL) baseline against the state-of-the-art with task-specific metrics. We present

the results of our multi-task learning network with label embeddings (MTL + LEL),

multi-task learning with label transfer (MTL + LEL + LTN), and the semi-supervised

3We use the same metric as [Riedel et al., 2017].
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extension of this model. On 7/8 tasks, at least one of our architectures is better than

single-task learning; and in 4/8, all our architectures are much better than single-task

learning.

The state-of-the-art systems we compare against are often highly specialised, task-

dependent architectures. Our architectures, in contrast, have not been optimised to

compare favourably against the state of the art, as our main objective is to develop

a novel approach to multi-task learning leveraging synergies between label sets and

knowledge of marginal distributions from unlabeled data. For example, we do not use

pre-trained word embeddings [Augenstein et al., 2016, Palogiannidi et al., 2016, Vo and

Zhang, 2015], class weighting to deal with label imbalance [Balikas and Amini, 2016], or

domain-specific sentiment lexicons [Brun et al., 2016, Kumar et al., 2016b]. Nevertheless,

our approach outperforms the state-of-the-art on two-way topic-based sentiment analysis

(Topic-2) and aspect-based sentiment analysis on restaurant reviews (ABSA-R). This is

particularly surprising for the restaurants domain, as none of the datasets of other tasks

are in the same domain.

The poor performance compared to the state-of-the-art on FNC and MultiNLI is expected;

as we alternate among the tasks during training, our model only sees a comparatively

small number of examples of both corpora, which are one and two orders of magnitude

larger than the other datasets. For this reason, we do not achieve good performance on

these tasks as main tasks, but they are still useful as auxiliary tasks as seen in Table

6.10.

6.2.5 Analysis

Label Embeddings Our results above show that, indeed, modelling the similarity

between tasks using label embeddings sometimes leads to much better performance.

Figure 6.5 shows why. In Figure 6.5, we visualise the label embeddings of an MTL+LEL

model trained on all tasks, using PCA. As we can see, similar labels are clustered

together across tasks, e.g. there are two positive clusters (middle-right and top-right),

two negative clusters (middle-left and bottom-left), and two neutral clusters (middle-top

and middle-bottom).

Our visualisation also provides us with a picture of what auxilary tasks are beneficial,

and to what extent we can expect synergies from multi-task learning. For instance,

the notion of positive sentiment appears to be very similar across the topic-based and

aspect-based tasks, while the conceptions of negative and neutral sentiment differ. In

addition, we can see that the model has failed to learn a relationship between MultiNLI

labels and those of other tasks, possibly accounting for its poor performance on the
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Figure 6.5: Label embeddings of all tasks.

inference task. We did not evaluate the correlation between label embeddings and task

performance, but [Bjerva, 2017] recently suggested that mutual information of target

and auxiliary task label sets is a good predictor of gains from multi-task learning.

Main task Auxiliary tasks

Topic-2 FNC-1, MultiNLI, Target

Topic-5
FNC-1, MultiNLI, ABSA-L,
Target

Target FNC-1, MultiNLI, Topic-5
Stance FNC-1, MultiNLI, Target
ABSA-L Topic-5

ABSA-R Topic-5, ABSA-L, Target

FNC-1
Stance, MultiNLI, Topic-5,
ABSA-R, Target

MultiNLI Topic-5

Table 6.10: Best-performing auxiliary tasks for different main tasks.

Auxilary Tasks For each task, we show the auxiliary tasks that achieved the best

performance in Table 6.10. In contrast to most existing work, we did not restrict ourselves

to performing multi-task learning with only one auxiliary task [Søgaard and Goldberg,

2016, Bingel and Søgaard, 2017]. Indeed we find that most often a combination of

auxiliary tasks achieves the best performance. In-domain tasks are less used than we

assumed; only Target is consistently used by all Twitter main tasks. In addition, tasks

with a higher number of labels, e.g. Topic-5 are used more often. Such tasks provide

a more fine-grained reward signal, which may help in learning representations that

generalise better. Finally, tasks with large amounts of training data such as FNC-1 and
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MultiNLI are also used more often. Even if not directly related, the larger amount of

training data that can be indirectly leveraged via multi-task learning may help the model

focus on relevant parts of the representation space [Caruana, 1993]. These observations

shed additional light on when multi-task learning may be useful that go beyond existing

studies [Bingel and Søgaard, 2017].

Ablation analysis We now perform a detailed ablation analysis of our model, testing

different variants of our model with early stopping on the development set. We report

task-specific evaluation metrics and show results in Table 6.11. Note that for MultiNLI,

we down-sample the training data.

Stance FNC MultiNLI Topic-2 Topic-5* ABSA-L ABSA-R Target

MTL 44.12 72.75 49.39 80.74 0.859 74.94 82.25 65.73

MTL + LEL 46.26 72.71 49.94 80.52 0.814 74.94 79.90 66.42
MTL + LTN 40.95 72.72 44.14 78.31 0.851 73.98 82.37 63.71
MTL + LTN, main model 41.60 72.72 47.62 79.98 0.814 75.54 81.70 65.61
MTL + LEL + LTN 44.48 72.76 43.72 74.07 0.821 75.66 81.92 65.00
MTL + LEL + LTN, main model 43.16 72.73 48.75 73.90 0.810 75.06 83.71 66.10

MTL + LEL + LTN + main preds feats 42.78 72.72 45.41 66.30 0.835 73.86 81.81 65.08
MTL + LEL + LTN + main preds feats, main model 42.65 72.73 48.81 67.53 0.803 75.18 82.59 63.95

MTL + LEL + LTN + main preds feats – diversity feats 42.78 72.72 43.13 66.3 0.835 73.5 81.7 63.95
MTL + LEL + LTN + main preds feats – diversity feats, main model 42.47 72.74 47.84 67.53 0.807 74.82 82.14 65.11

MTL + LEL + LTN + semi 42.65 72.75 44.28 77.81 0.841 74.10 81.36 64.45
MTL + LEL + LTN + semi, main model 43.56 72.72 48.00 72.35 0.821 75.42 83.26 63.00

Table 6.11: Ablation results with task-specific evaluation metrics. LTN - main preds
feats means the output of the relabelling function is shown, which does not use the task
predictions, only predictions from other tasks. MTL + EM, main model means that
the main model predictions of the model that trains a relabelling function are used. *:

lower is better. Bold: best. Underlined: second-best.

We ablate whether to use the LEL (+ LEL), whether to use the LTN (+ LTN ), whether

to use the LEL output or the main model output for prediction (main model output

is indicated by , main model), and whether to use the LTN as a regulariser or for

semi-supervised learning (semi-supervised learning is indicated by + semi). We further

test whether to use diversity features (– diversity feats) and whether to use main model

predictions for the LTN (+ main model feats).

Overall, the addition of the Label Embedding Layer improves the performance over

regular MTL in almost all cases.

Label transfer network To understand the performance of the LTN, we analyse

learning curves of the relabelling function vs. the main model on the development set.

The main model is pre-trained for 10 epochs, after which the relabelling function is

trained. Examples for all tasks without semi-supervised learning are shown in Figure 6.6.

One can observe that the relabelling model does not take long to converge as it has

fewer parameters than the main model. Once the relabelling model is learned alongside
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Figure 6.6: Development learning curves with Label Transfer Network for selected
tasks.

the main model, the main model performance first stagnates, then starts to increase

again. For some of the tasks, the main model ends up with a higher task score than

the relabelling model. We hypothesise that this means the softmax predictions of other,

even highly related tasks are less helpful for predicting main labels than the output

layer of the main task model. At best, learning the relabelling model alongside the main

model might act as a regulariser to the main model and thus improve the main model’s

performance over a baseline MTL model, as it is the case for TOPIC-5 (see Table 6.11).

To further analyse the performance of the LTN, we look into to what degree predictions

of the main model and the relabelling model for individual instances are complementary

to one another. Or, said differently, we measure the percentage of correct predictions

made only by the relabelling model or made only by the main model, relative to the

number of correct predictions overall. Results of this for each task are shown in Table

6.12 for the LTN with and without semi-supervised learning.

Task Main LTN Main (Semi) LTN (Semi)

Stance 2.12 2.62 1.94 1.28
FNC 4.28 2.49 6.92 4.84
MultiNLI 1.5 1.95 1.94 1.28
Topic-2 6.45 4.44 5.87 5.59
Topic-5* 9.22 9.71 11.3 5.90
ABSA-L 3.79 2.52 9.06 6.63
ABSA-R 10.6 6.70 9.06 6.63
Target 26.3 14.6 20.1 15.7

Table 6.12: Error analysis of LTN with and without semi-supervised learning.
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We use the percentage of correct predictions only made by either the relabelling function

or the main model respectively, relative to the the number of all correct predictions as

metric. One can observe that, even though the relabelling function overall contributes

to the score to a lesser degree than the main model, a substantial number of correct

predictions are made by the relabelling function that are missed by the main model. This

is most prominently pronounced for ABSA-R, where the proportion is 14.6.

6.2.6 Summary

We have presented a multi-task learning architecture that (i) leverages potential synergies

between classifier functions relating shared representations with disparate label spaces

and (ii) enables learning from mixtures of labeled and unlabeled data. We have presented

experiments with combinations of eight pairwise sequence classification tasks. Our results

show that leveraging synergies between label spaces sometimes leads to big improvements,

and we have presented a new state of the art for aspect-based and topic-based sentiment

analysis. Our analysis further showed that (a) the learned label embeddings were

indicative of gains from multi-task learning, (b) auxiliary tasks were often beneficial

across domains, and (c) label embeddings almost always led to better performance. We

also investigated the dynamics of the label transfer network we use for exploiting the

synergies between disparate label spaces.

6.3 Conclusions

In this chapter, we have presented two novel multi-task learning approaches that learn

to share different parts of the architecture. We have evaluated these architectures on a

wide range of tasks and found that they outperform both single task and state-of-the-art

multi-task learning approaches.

In the next chapter, we will finally tackle sequential transfer learning, the most ubiquitous

transfer learning setting with neural networks, which transfers a trained model to a target

task rather than learning both tasks jointly. We will first propose a novel sequential

transfer learning framework based on fine-tuning language models and then extensively

study the adaptation phase.



Chapter 7

Adapting Universal Pretrained

Representations

Multi-task learning has become a common tool in many scenarios involving neural

networks. However, in practice sequential transfer learning likely is the most common

transfer learning setting, as pretrained representations provide a significant performance

boost and can be transferred efficiently to a target task (§3.3). In this chapter, we tackle

the most general setting of sequential transfer learning and aim to pretrain representations

that can be adapted to any target task. As most prior work has focused on the pretraining

stage (§3.3.2), we in particular analyze and propose novel techniques for the adaptation

phase.

In Section 7.1, we propose Universal Language Model Fine-Tuning (ULMFiT), a novel

framework for pretraining and adapting learned representations. We first pretrain a

state-of-the-art language model on a large general-domain corpus and then fine-tune

it on the target task. We propose several methods for adaptation, such as slanted

triangular learning rates, discriminative fine-tuning, and gradual unfreezing that together

facilitate the transfer of information to the target task. Our framework achieves significant

improvements over the state-of-the-art across a wide range of text classification tasks.

In Section 7.2, we analyze the adaptation phase in more detail. We compare the two

main adaptation paradigms, feature extraction and fine-tuning with two state-of-the-art

pretrained language model representations across a diverse set of tasks. We also evaluate

the usefulness of the methods we introduced in the previous section. We find that the

relative performance of both adaptation approaches depends on the similarity of the

pretraining and target tasks. Specifically, fine-tuning performs better on similar tasks.

We finally provide practical guidelines to practitioners.

223
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7.1 Universal Language Model Fine-tuning for Text Clas-

sification

∗ Inductive transfer learning has greatly impacted computer vision, but existing ap-

proaches in NLP still require task-specific modifications and training from scratch. We

propose Universal Language Model Fine-tuning (ULMFiT), an effective transfer learning

method that can be applied to any task in NLP, and introduce techniques that are key for

fine-tuning a language model. Our method significantly outperforms the state-of-the-art

on six text classification tasks, reducing the error by 18-24% on the majority of datasets.

Furthermore, with only 100 labeled examples, it matches the performance of training

from scratch on 100× more data. We open-source our pretrained models and code†.

7.1.1 Introduction

Inductive transfer learning has had a large impact on computer vision (CV). Applied CV

models (including object detection, classification, and segmentation) are rarely trained

from scratch, but instead are fine-tuned from models that have been pretrained on

ImageNet, MS-COCO, and other datasets [Sharif Razavian et al., 2014, Long et al.,

2015a, He et al., 2016, Huang et al., 2017b].

Text classification is a category of Natural Language Processing (NLP) tasks with real-

world applications such as spam, fraud, and bot detection [Jindal and Liu, 2007, Ngai

et al., 2011, Chu et al., 2012], emergency response [Caragea et al., 2011], and commercial

document classification, such as for legal discovery [Roitblat et al., 2010].

While Deep Learning models have achieved state-of-the-art on many NLP tasks, these

models are trained from scratch, requiring large datasets, and days to converge. Research

in NLP focused mostly on transductive transfer [Blitzer et al., 2007]. For inductive

transfer, fine-tuning pretrained word embeddings [Mikolov et al., 2013a], a simple transfer

technique that only targets a model’s first layer, has had a large impact in practice and

is used in most state-of-the-art models. Recent approaches that concatenate embeddings

derived from other tasks with the input at different layers [Peters et al., 2017, McCann

et al., 2017, Peters et al., 2018a] still train the main task model from scratch and treat

pretrained embeddings as fixed parameters, limiting their usefulness.

In light of the benefits of pretraining [Erhan et al., 2010], we should be able to do better

than randomly initializing the remaining parameters of our models. However, inductive

∗This section is adapted from: Howard, J.* and Ruder, S.* (2018). Universal Language Model
Fine-tuning for Text Classification. In Proceedings of ACL 2018. Jeremy focused on the implementation.
Sebastian focused on the experiments and writing.

†http://nlp.fast.ai/ulmfit.

http://nlp.fast.ai/ulmfit
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transfer via fine-tuning has been unsuccessful for NLP [Mou et al., 2016]. Dai and Le

[2015] first proposed fine-tuning a language model (LM) but require millions of in-domain

documents to achieve good performance, which severely limits its applicability.

We show that not the idea of LM fine-tuning but our lack of knowledge of how to train

them effectively has been hindering wider adoption. LMs overfit to small datasets and

suffered catastrophic forgetting when fine-tuned with a classifier. Compared to CV, NLP

models are typically more shallow and thus require different fine-tuning methods.

We propose a new method, Universal Language Model Fine-tuning (ULMFiT) that

addresses these issues and enables robust inductive transfer learning for any NLP task,

akin to fine-tuning ImageNet models: The same 3-layer LSTM architecture—with the

same hyperparameters and no additions other than tuned dropout hyperparameters—

outperforms highly engineered models and transfer learning approaches on six widely

studied text classification tasks. On IMDb, with 100 labeled examples, ULMFiT matches

the performance of training from scratch with 10× and—given 50k unlabeled examples—

with 100× more data.

Contributions Our contributions are the following: 1) We propose Universal Language

Model Fine-tuning (ULMFiT), a method that can be used to achieve CV-like transfer

learning for any task for NLP. 2) We propose discriminative fine-tuning, slanted triangular

learning rates, and gradual unfreezing, novel techniques to retain previous knowledge

and avoid catastrophic forgetting during fine-tuning. 3) We significantly outperform the

state-of-the-art on six representative text classification datasets, with an error reduction

of 18-24% on the majority of datasets. 4) We show that our method enables extremely

sample-efficient transfer learning and perform an extensive ablation analysis. 5) We make

the pretrained models and our code available to enable wider adoption.

7.1.2 Related work

Transfer learning in CV Features in deep neural networks in CV have been observed

to transition from general to task-specific from the first to the last layer [Yosinski et al.,

2014]. For this reason, most work in CV focuses on transferring the first layers of the

model [Long et al., 2015b]. Sharif Razavian et al. [2014] achieve state-of-the-art results

using features of an ImageNet model as input to a simple classifier. In recent years, this

approach has been superseded by fine-tuning either the last [Donahue et al., 2014] or

several of the last layers of a pretrained model and leaving the remaining layers frozen

[Long et al., 2015a].
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Hypercolumns In NLP, only recently have methods been proposed that go beyond

transferring word embeddings. The prevailing approach is to pretrain embeddings that

capture additional context via other tasks. Embeddings at different levels are then

used as features, concatenated either with the word embeddings or with the inputs at

intermediate layers. This method is known as hypercolumns [Hariharan et al., 2015] in

CV1 and is used by Peters et al. [2017], Peters et al. [2018a], Wieting and Gimpel [2017],

Conneau et al. [2017], and McCann et al. [2017] who use language modeling, paraphrasing,

entailment, and MT respectively for pretraining. Specifically, Peters et al. [2018a] require

engineered custom architectures, while we show state-of-the-art performance with the

same basic architecture across a range of tasks. In CV, hypercolumns have been nearly

entirely superseded by end-to-end fine-tuning [Long et al., 2015a].

Multi-task learning A related direction is multi-task learning (§3.2). This is the

approach taken by Rei [2017] and Liu et al. [2018a] who add a language modeling

objective to the model that is trained jointly with the main task model. MTL requires

the tasks to be trained from scratch every time, which makes it inefficient and often

requires careful weighting of the task-specific objective functions [Chen et al., 2017c].

Fine-tuning Fine-tuning has been used successfully to transfer between similar tasks,

e.g. in QA [Min et al., 2017], for distantly supervised sentiment analysis [Severyn and

Moschitti, 2015], or MT domains [Sennrich et al., 2015] but has been shown to fail

between unrelated ones [Mou et al., 2016]. Dai and Le [2015] also fine-tune a language

model, but overfit with 10k labeled examples and require millions of in-domain documents

for good performance. In contrast, ULMFiT leverages general-domain pretraining and

novel fine-tuning techniques to prevent overfitting even with only 100 labeled examples

and achieves state-of-the-art results also on small datasets.

7.1.3 Universal Language Model Fine-tuning

We are interested in the most general inductive transfer learning setting for NLP [Pan

and Yang, 2010]: Given a static source task TS and any target task TT with TS 6= TT ,

we would like to improve performance on TT . Language modeling can be seen as the

ideal source task and a counterpart of ImageNet for NLP: It captures many facets of

language relevant for downstream tasks, such as long-term dependencies [Linzen et al.,

2016], hierarchical relations [Gulordava et al., 2018], and sentiment [Radford et al., 2017].

1A hypercolumn at a pixel in CV is the vector of activations of all CNN units above that pixel. In
analogy, a hypercolumn for a word or sentence in NLP is the concatenation of embeddings at different
layers in a pretrained model.
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In contrast to tasks like MT [McCann et al., 2017] and entailment [Conneau et al.,

2017], it provides data in near-unlimited quantities for most domains and languages.

Additionally, a pretrained LM can be easily adapted to the idiosyncrasies of a target

task, which we show significantly improves performance (see Section 7.1.5). Moreover,

language modeling already is a key component of existing tasks such as MT and dialogue

modeling. Formally, language modeling induces a hypothesis space H that should be

useful for many other NLP tasks [Vapnik and Kotz, 1982, Baxter, 2000].

We propose Universal Language Model Fine-tuning (ULMFiT), which pretrains a language

model (LM) on a large general-domain corpus and fine-tunes it on the target task using

novel techniques. The method is universal in the sense that it meets these practical

criteria: 1) It works across tasks varying in document size, number, and label type;

2) it uses a single architecture and training process; 3) it requires no custom feature

engineering or preprocessing; and 4) it does not require additional in-domain documents

or labels.

In our experiments, we use the state-of-the-art language model AWD-LSTM [Merity et al.,

2017a], a regular LSTM (with no attention, short-cut connections, or other sophisticated

additions) with various tuned dropout hyperparameters. Analogous to CV, we expect

that downstream performance can be improved by using higher-performance language

models in the future.
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Figure 7.1: ULMFiT consists of three stages: a) The LM is trained on a general-
domain corpus to capture general features of the language in different layers. b) The
full LM is fine-tuned on target task data using discriminative fine-tuning (‘Discr ’) and
slanted triangular learning rates (STLR) to learn task-specific features. c) The classifier
is fine-tuned on the target task using gradual unfreezing, ‘Discr ’, and STLR to preserve
low-level representations and adapt high-level ones (shaded: unfreezing stages; black:

frozen).

ULMFiT consists of the following steps, which we show in Figure 7.1: a) General-domain

LM pretraining (§7.1.3.1); b) target task LM fine-tuning (§7.1.3.2); and c) target task
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classifier fine-tuning (§7.1.3.3). In a), the LM is trained on a general-domain corpus

to capture general features of the language in different layers. In b), the full LM is

fine-tuned on target task data using discriminative fine-tuning (‘Discr ’) and slanted

triangular learning rates (STLR) to learn task-specific features. In c), the classifier is

fine-tuned on the target task using gradual unfreezing, ‘Discr ’, and STLR to preserve

low-level representations and adapt high-level ones. Black layers in the figure remain

frozen throughout training and shaded layers are gradually unfrozen. We discuss the

stages in more detail in the following sections.

7.1.3.1 General-domain LM pretraining

An ImageNet-like corpus for language should be large and capture general properties

of language. We pretrain the language model on Wikitext-103 [Merity et al., 2017b]

consisting of 28,595 preprocessed Wikipedia articles and 103 million words. Pretraining

is most beneficial for tasks with small datasets and enables generalization even with

100 labeled examples. We leave the exploration of more diverse pretraining corpora to

future work, but expect that they would boost performance. While this stage is the most

expensive, it only needs to be performed once and improves performance and convergence

of downstream models.

7.1.3.2 Target task LM fine-tuning

No matter how diverse the general-domain data used for pretraining is, the data of the

target task will likely come from a different distribution. We thus fine-tune the LM on

data of the target task. Given a pretrained general-domain LM, this stage converges

faster as it only needs to adapt to the idiosyncrasies of the target data, and it allows

us to train a robust LM even for small datasets. We propose discriminative fine-tuning

and slanted triangular learning rates for fine-tuning the LM, which we introduce in the

following.

Discriminative fine-tuning As different layers capture different types of information

[Yosinski et al., 2014], they should be fine-tuned to different extents. To this end, we

propose a novel fine-tuning method, discriminative fine-tuning2.

Instead of using the same learning rate for all layers of the model, discriminative fine-

tuning allows us to tune each layer with different learning rates. For context, the regular

2 An unrelated method of the same name exists for deep Boltzmann machines [Salakhutdinov and
Hinton, 2009].
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stochastic gradient descent (SGD) update of a model’s parameters θ at time step t looks

like the following [Ruder, 2016]:

θt = θt−1 − η · ∇θJ(θ) (7.1)

where η is the learning rate and∇θJ(θ) is the gradient with regard to the model’s objective

function. For discriminative fine-tuning, we split the parameters θ into {θ1, . . . , θL}
where θl contains the parameters of the model at the l-th layer and L is the number of

layers of the model. Similarly, we obtain {η(1), . . . , η(L)} where η(l) is the learning rate

of the l-th layer.

The SGD update with discriminative fine-tuning is then the following:

θ
(l)
t = θ

(l)
t−1 − η(l) · ∇θ(l)J(θ) (7.2)

We empirically found it to work well to first choose the learning rate η(L) of the last

layer by fine-tuning only the last layer and using η(l−1) = η(l)/2.6 as the learning rate for

lower layers.

Slanted triangular learning rates For adapting its parameters to task-specific

features, we would like the model to quickly converge to a suitable region of the parameter

space in the beginning of training and then refine its parameters. Using the same learning

rate (LR) or an annealed learning rate throughout training is not the best way to achieve

this behaviour. Instead, we propose slanted triangular learning rates (STLR), which first

linearly increases the learning rate and then linearly decays it according to the following

update schedule, which can be seen in Figure 7.2:

cut = bT · cut fracc

p =

t/cut, if t < cut

1− t−cut
cut·(1/cut frac−1) , otherwise

ηt = ηmax ·
1 + p · (ratio− 1)

ratio

(7.3)

where T is the number of training iterations3, cut frac is the fraction of iterations we

increase the LR, cut is the iteration when we switch from increasing to decreasing the

LR, p is the fraction of the number of iterations we have increased or will decrease the

LR respectively, ratio specifies how much smaller the lowest LR is from the maximum

3In other words, the number of epochs times the number of updates per epoch.
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LR ηmax, and ηt is the learning rate at iteration t. We generally use cut frac = 0.1,

ratio = 32 and ηmax = 0.01.

STLR modifies triangular learning rates [Smith, 2017] with a short increase and a long

decay period, which we found key for good performance.4 In Section 7.1.5, we compare

against aggressive cosine annealing, a similar schedule that has recently been used to

achieve state-of-the-art performance in CV [Loshchilov and Hutter, 2017b].5

Figure 7.2: The slanted triangular learning rate schedule used for ULMFiT as a
function of the number of training iterations.

7.1.3.3 Target task classifier fine-tuning

Finally, for fine-tuning the classifier, we augment the pretrained language model with two

additional linear blocks. Following standard practice for CV classifiers, each block uses

batch normalization [Ioffe and Szegedy, 2015] and dropout, with ReLU activations for the

intermediate layer and a softmax activation that outputs a probability distribution over

target classes at the last layer. Note that the parameters in these task-specific classifier

layers are the only ones that are learned from scratch. The first linear layer takes as the

input the pooled last hidden layer states.

Concat pooling The signal in text classification tasks is often contained in a few

words, which may occur anywhere in the document. As input documents can consist of

hundreds of words, information may get lost if we only consider the last hidden state of

the model. For this reason, we concatenate the hidden state at the last time step hT

4We also credit personal communication with the author.
5While Loshchilov and Hutter [2017b] use multiple annealing cycles, we generally found one cycle to

work best.
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Dataset Type # classes # examples

TREC-6 Question 6 5.5k
IMDb Sentiment 2 25k
Yelp-bi Sentiment 2 560k
Yelp-full Sentiment 5 650k
AG Topic 4 120k
DBpedia Topic 14 560k

Table 7.1: Text classification datasets and tasks with number of classes and training
examples.

of the document with both the max-pooled and the mean-pooled representation of the

hidden states over as many time steps as fit in GPU memory H = {h1, . . . ,hT }:

hc = [hT , maxpool(H), meanpool(H)] (7.4)

where [] is concatenation.

Fine-tuning the target classifier is the most critical part of the transfer learning method.

Overly aggressive fine-tuning will cause catastrophic forgetting, eliminating the benefit

of the information captured through language modeling; too cautious fine-tuning will

lead to slow convergence (and resultant overfitting). Besides discriminative fine-tuning

and triangular learning rates, we propose gradual unfreezing for fine-tuning the classifier.

Gradual unfreezing Rather than fine-tuning all layers at once, which risks catas-

trophic forgetting, we propose to gradually unfreeze the model starting from the last

layer as this contains the least general knowledge [Yosinski et al., 2014]: We first unfreeze

the last layer and fine-tune all unfrozen layers for one epoch. We then unfreeze the next

lower frozen layer and repeat, until we fine-tune all layers until convergence at the last

iteration. This is similar to ‘chain-thaw ’ [Felbo et al., 2017], except that we add a layer

at a time to the set of ‘thawed’ layers, rather than only training a single layer at a time.

While discriminative fine-tuning, slanted triangular learning rates, and gradual unfreezing

all are beneficial on their own, we show in Section 7.1.5 that they complement each other

and enable our method to perform well across diverse datasets.

BPTT for Text Classification (BPT3C) Language models are trained with back-

propagation through time (BPTT) to enable gradient propagation for large input se-

quences. In order to make fine-tuning a classifier for large documents feasible, we propose

BPTT for Text Classification (BPT3C): We divide the document into fixed-length batches

of size b. At the beginning of each batch, the model is initialized with the final state
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of the previous batch; we keep track of the hidden states for mean and max-pooling;

gradients are back-propagated to the batches whose hidden states contributed to the

final prediction. In practice, we use variable length backpropagation sequences [Merity

et al., 2017a].

Bidirectional language model Similar to existing work [Peters et al., 2017, 2018a],

we are not limited to fine-tuning a unidirectional language model. For all our experiments,

we pretrain both a forward and a backward LM. We fine-tune a classifier for each LM

independently using BPT3C and average the classifier predictions.

7.1.4 Experiments

While our approach is equally applicable to sequence labeling tasks, we focus on text

classification tasks in this work due to their important real-world applications.

7.1.4.1 Experimental setup

Datasets and tasks We evaluate our method on six widely-studied datasets, with

varying numbers of documents and varying document length, used by state-of-the-art

text classification and transfer learning approaches [Johnson and Zhang, 2017, McCann

et al., 2017] as instances of three common text classification tasks: sentiment analysis,

question classification, and topic classification. We show the statistics for each dataset

and task in Table 7.1.

Sentiment Analysis For sentiment analysis, we evaluate our approach on the binary

movie review IMDb dataset [Maas et al., 2011] and on the binary and five-class version

of the Yelp review dataset compiled by Zhang et al. [2015].

Question Classification We use the six-class version of the small TREC dataset [Voorhees

and Tice, 1999] dataset of open-domain, fact-based questions divided into broad semantic

categories.

Topic classification For topic classification, we evaluate on the large-scale AG news

and DBpedia ontology datasets created by Zhang et al. [2015].
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Pre-processing We use the same pre-processing as in earlier work [Johnson and Zhang,

2017, McCann et al., 2017]. In addition, to allow the language model to capture aspects

that might be relevant for classification, we add special tokens for upper-case words,

elongation, and repetition.

Hyperparameters We are interested in a model that performs robustly across a

diverse set of tasks. To this end, if not mentioned otherwise, we use the same set of

hyperparameters across tasks, which we tune on the IMDb validation set. We use the

AWD-LSTM language model [Merity et al., 2017a] with an embedding size of 400, 3

layers, 1150 hidden activations per layer, and a BPTT batch size of 70. We apply dropout

of 0.4 to layers, 0.3 to RNN layers, 0.4 to input embedding layers, 0.05 to embedding

layers, and weight dropout of 0.5 to the RNN hidden-to-hidden matrix. The classifier

has a hidden layer of size 50. We use Adam with β1 = 0.7 instead of the default β1 = 0.9

and β2 = 0.99, similar to [Dozat and Manning, 2017]. We use a batch size of 64, a base

learning rate of 0.004 and 0.01 for fine-tuning the LM and the classifier respectively, and

tune the number of epochs on the validation set of each task6. We otherwise use the

same practices used in [Merity et al., 2017a].

Baselines and comparison models For each task, we compare against the current

state-of-the-art. For the IMDb and TREC-6 datasets, we compare against CoVe [McCann

et al., 2017], a state-of-the-art transfer learning method for NLP. For the AG, Yelp, and

DBpedia datasets, we compare against the state-of-the-art text categorization method

by Johnson and Zhang [2017].

7.1.4.2 Results

For consistency, we report all results as error rates (lower is better). We show the

test error rates on the IMDb and TREC-6 datasets used by McCann et al. [2017] in

Table 7.2. Our method outperforms both CoVe, a state-of-the-art transfer learning

method based on hypercolumns, as well as the state-of-the-art on both datasets. On

IMDb, we reduce the error dramatically by 43.9% and 22% with regard to CoVe and the

state-of-the-art respectively. This is promising as the existing state-of-the-art requires

complex architectures [Peters et al., 2018a], multiple forms of attention [McCann et al.,

2017] and sophisticated embedding schemes [Johnson and Zhang, 2016], while our method

employs a regular LSTM with dropout. We note that the language model fine-tuning

6On small datasets such as TREC-6, we fine-tune the LM only for 15 epochs without overfitting, while
we can fine-tune longer on larger datasets. We found 50 epochs to be a good default for fine-tuning the
classifier.
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Model Test Model Test

IM
D

b
CoVe [McCann et al., 2017] 8.2

T
R

E
C

-6

CoVe [McCann et al., 2017] 4.2
oh-LSTM [Johnson and Zhang, 2016] 5.9 TBCNN [Mou et al., 2015] 4.0
Virtual [Miyato et al., 2017] 5.9 LSTM-CNN [Zhou et al., 2016b] 3.9
ULMFiT (ours) 4.6 ULMFiT (ours) 3.6

Table 7.2: Test error rates (%) on two text classification datasets used by McCann
et al. [2017].

AG DBpedia Yelp-bi Yelp-full

Char-level CNN [Zhang et al., 2015] 9.51 1.55 4.88 37.95
CNN [Johnson and Zhang, 2016] 6.57 0.84 2.90 32.39
DPCNN [Johnson and Zhang, 2017] 6.87 0.88 2.64 30.58
ULMFiT (ours) 5.01 0.80 2.16 29.98

Table 7.3: Test error rates (%) on text classification datasets used by Johnson and
Zhang [2017].

approach of Dai and Le [2015] only achieves an error of 7.64 vs. 4.6 for our method on

IMDb, demonstrating the benefit of transferring knowledge from a large ImageNet-like

corpus using our fine-tuning techniques. IMDb in particular is reflective of real-world

datasets: Its documents are generally a few paragraphs long—similar to emails (e.g for

legal discovery) and online comments (e.g for community management); and sentiment

analysis is similar to many commercial applications, e.g. product response tracking and

support email routing.

On TREC-6, our improvement—similar as the improvements of state-of-the-art approaches—

is not statistically significant, due to the small size of the 500-examples test set. Never-

theless, the competitive performance on TREC-6 demonstrates that our model performs

well across different dataset sizes and can deal with examples that range from single

sentences—in the case of TREC-6—to several paragraphs for IMDb. Note that despite

pretraining on more than two orders of magnitude less data than the 7 million sentence

pairs used by McCann et al. [2017], we consistently outperform their approach on both

datasets.

We show the test error rates on the larger AG, DBpedia, Yelp-bi, and Yelp-full datasets

in Table 7.3. Our method again outperforms the state-of-the-art significantly. On AG,

we observe a similarly dramatic error reduction by 23.7% compared to the state-of-the-

art. On DBpedia, Yelp-bi, and Yelp-full, we reduce the error by 4.8%, 18.2%, 2.0%

respectively.
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7.1.5 Analysis

In order to assess the impact of each contribution, we perform a series of analyses and

ablations. We run experiments on three corpora, IMDb, TREC-6, and AG that are

representative of different tasks, genres, and sizes. For all experiments, we split off 10%

of the training set and report error rates on this validation set with unidirectional LMs.

We fine-tune the classifier for 50 epochs and train all methods but ULMFiT with early

stopping.

Low-shot learning One of the main benefits of transfer learning is being able to train

a model for a task with a small number of labels. We evaluate ULMFiT on different

numbers of labeled examples in two settings: only labeled examples are used for LM

fine-tuning (‘supervised ’); and all task data is available and can be used to fine-tune

the LM (‘semi-supervised ’). We compare ULMFiT to training from scratch—which

is necessary for hypercolumn-based approaches. We split off balanced fractions of the

training data, keep the validation set fixed, and use the same hyperparameters as before.

We show the results in Figure 7.3.

Figure 7.3: Validation error rates for few-shot learning with supervised and semi-
supervised ULMFiT vs. training from scratch with different numbers of training

examples on IMDb, TREC-6, and AG (from left to right).

On IMDb and AG, supervised ULMFiT with only 100 labeled examples matches the

performance of training from scratch with 10× and 20× more data respectively, clearly

demonstrating the benefit of general-domain LM pretraining. If we allow ULMFiT to

also utilize unlabeled examples (50k for IMDb, 100k for AG), at 100 labeled examples,

we match the performance of training from scratch with 50× and 100× more data on AG

and IMDb respectively. On TREC-6, ULMFiT significantly improves upon training from

scratch; as examples are shorter and fewer, supervised and semi-supervised ULMFiT

achieve similar results.
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Pretraining IMDb TREC-6 AG

Without pretraining 5.63 10.67 5.52
With pretraining 5.00 5.69 5.38

Table 7.4: Validation error rates for ULMFiT with and without pretraining.

LM IMDb TREC-6 AG

Vanilla LM 5.98 7.41 5.76
AWD-LSTM LM 5.00 5.69 5.38

Table 7.5: Validation error rates for ULMFiT with a vanilla LM and the AWD-LSTM
LM.

LM fine-tuning IMDb TREC-6 AG

No LM fine-tuning 6.99 6.38 6.09
Full 5.86 6.54 5.61
Full + discr 5.55 6.36 5.47
Full + discr + stlr 5.00 5.69 5.38

Table 7.6: Validation error rates for ULMFiT with different variations of LM fine-
tuning.

Impact of pretraining We compare using no pretraining with pretraining on WikiText-

103 [Merity et al., 2017b] in Table 7.4. Pretraining is most useful for small and medium-

sized datasets, which are most common in commercial applications. However, even for

large datasets, pretraining improves performance.

Impact of LM quality In order to gauge the importance of choosing an appropriate

LM, we compare a vanilla LM with the same hyperparameters without any dropout7

with the AWD-LSTM LM with tuned dropout parameters in Table 7.5. Using our

fine-tuning techniques, even a regular LM reaches surprisingly good performance on the

larger datasets. On the smaller TREC-6, a vanilla LM without dropout runs the risk of

overfitting, which decreases performance.

Impact of LM fine-tuning We compare no fine-tuning against fine-tuning the full

model [Erhan et al., 2010] (‘Full ’), the most commonly used fine-tuning method, with

and without discriminative fine-tuning (‘Discr ’) and slanted triangular learning rates

(‘Stlr ’) in Table 7.6. Fine-tuning the LM is most beneficial for larger datasets. ‘Discr ’

and ‘Stlr ’ improve performance across all three datasets and are necessary on the smaller

TREC-6, where regular fine-tuning is not beneficial.

7To avoid overfitting, we only train the vanilla LM classifier for 5 epochs and keep dropout of 0.4 in
the classifier.
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Classifier fine-tuning IMDb TREC-6 AG

From scratch 9.93 13.36 6.81
Full 6.87 6.86 5.81
Full + discr 5.57 6.21 5.62
Last 6.49 16.09 8.38
Chain-thaw 5.39 6.71 5.90
Freez 6.37 6.86 5.81
Freez + discr 5.39 5.86 6.04
Freez + stlr 5.04 6.02 5.35
Freez + cos 5.70 6.38 5.29
Freez + discr + stlr 5.00 5.69 5.38

Table 7.7: Validation error rates for ULMFiT with different methods to fine-tune the
classifier.

Impact of classifier fine-tuning We compare training from scratch, fine-tuning

the full model (‘Full ’), only fine-tuning the last layer (‘Last ’) [Donahue et al., 2014],

‘Chain-thaw ’ [Felbo et al., 2017], and gradual unfreezing (‘Freez ’). We furthermore assess

the importance of discriminative fine-tuning (‘Discr ’) and slanted triangular learning

rates (‘Stlr ’). We compare the latter to an alternative, aggressive cosine annealing

schedule (‘Cos’) [Loshchilov and Hutter, 2017b]. We use a learning rate ηL = 0.01 for

‘Discr ’, learning rates of 0.001 and 0.0001 for the last and all other layers respectively

for ‘Chain-thaw ’ as in [Felbo et al., 2017], and a learning rate of 0.001 otherwise. We

show the results in Table 7.7.

Fine-tuning the classifier significantly improves over training from scratch, particularly

on the small TREC-6. ‘Last ’, the standard fine-tuning method in CV, severely underfits

and is never able to lower the training error to 0. ‘Chain-thaw ’ achieves competitive

performance on the smaller datasets, but is outperformed significantly on the large AG.

‘Freez ’ provides similar performance as ‘Full ’. ‘Discr ’ consistently boosts the performance

of ‘Full ’ and ‘Freez ’, except for the large AG. Cosine annealing is competitive with slanted

triangular learning rates on large data, but under-performs on smaller datasets. Finally,

full ULMFiT classifier fine-tuning (bottom row) achieves the best performance on IMDB

and TREC-6 and competitive performance on AG. Importantly, ULMFiT is the only

method that shows excellent performance across the board—and is therefore the only

universal method.

Classifier fine-tuning behavior While our results demonstrate that how we fine-

tune the classifier makes a significant difference, fine-tuning for inductive transfer is

currently under-explored in NLP as it mostly has been thought to be unhelpful [Mou

et al., 2016]. To better understand the fine-tuning behavior of our model, we compare
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the validation error of the classifier fine-tuned with ULMFiT and ‘Full ’ during training

in Figure 7.4.

Figure 7.4: Validation error rate curves for fine-tuning the classifier with ULMFiT
and ‘Full ’ on IMDb, TREC-6, and AG (top to bottom).

On all datasets, fine-tuning the full model leads to the lowest error comparatively early

in training, e.g. already after the first epoch on IMDb. The error then increases as the

model starts to overfit and knowledge captured through pretraining is lost. In contrast,

ULMFiT is more stable and suffers from no such catastrophic forgetting; performance

remains similar or improves until late epochs, which shows the positive effect of the

learning rate schedule.

Impact of bidirectionality At the cost of training a second model, ensembling the

predictions of a forward and backwards LM-classifier brings a performance boost of

around 0.5–0.7. On IMDb we lower the test error from 5.30 of a single model to 4.58 for

the bidirectional model.
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7.1.6 Summary

We have proposed ULMFiT, an effective and extremely sample-efficient transfer learning

method that can be applied to any NLP task. We have also proposed several novel

fine-tuning techniques that in conjunction prevent catastrophic forgetting and enable

robust learning across a diverse range of tasks. Our method significantly outperformed

existing transfer learning techniques and the state-of-the-art on six representative text

classification tasks.

Our proposed methods focused on the adaptation phase, which we will study in more

detail in the following section. In particular, we will compare the two prevalent adaptation

approaches on two state-of-the-art transfer learning methods.

7.2 To Tune or Not to Tune?

∗ While most previous work has focused on different pretraining objectives and architec-

tures for transfer learning, we ask how to best adapt the pretrained model to a given

target task. We focus on the two most common forms of adaptation, feature extraction

(where the pretrained weights are frozen), and directly fine-tuning the pretrained model.

Our empirical results across diverse NLP tasks with two state-of-the-art models show that

the relative performance of fine-tuning vs. feature extraction depends on the similarity

of the pretraining and target tasks. We explore possible explanations for this finding and

provide a set of adaptation guidelines for the NLP practitioner.

7.2.1 Introduction

Sequential inductive transfer learning [Pan and Yang, 2010] consists of two stages:

pretraining, in which the model learns a general-purpose representation of inputs, and

adaptation, in which the representation is transferred to a new task. Most previous work

in NLP has focused on different pretraining objectives for learning word or sentence

representations [Mikolov et al., 2013a, Kiros et al., 2015]. Few works, however, have

focused on the adaptation phase. There are two main paradigms for adaptation: feature

extraction and fine-tuning. In feature extraction (EX) the model’s weights are ‘frozen’ and

the pretrained representations are used in a downstream model similar to classic feature-

based approaches [Koehn et al., 2003]. Alternatively, a pretrained model’s parameters

∗Peters, M.∗, Ruder, S.∗, and Smith, N. A. (2019). To Tune or Not to Tune? Adapting Pretrained
Representations to Diverse Tasks. Matthew ran experiments with ELMo and feature extraction and wrote
most of the Experimental Setup section. Sebastian ran experiments with BERT, conducted analyses,
and wrote most of the remainder.



Adapting Universal Pretrained Representations 240

Conditions
Guidelines

Pretrain Adapt. Task

Any EX Any Add many task parameters

Any FT Any
Add minimal task parameters
Hyper-parameters!

Any Any Seq. / clas. EX and FT have similar performance
ELMO FT Any Use ULMFiT techniques
ELMo Any Sent. pair use EX
BERT Any Sent. pair use FT

Table 7.8: Guidelines for using feature extraction (EX) and fine-tuning (FT) with
ELMo and BERT. Seq.: sequence labeling. Clas.: classification. Sent. pair: sentence

pair tasks.

can be unfrozen and fine-tuned (FT) on a new task [Dai and Le, 2015]. Both have

benefits: EX enables use of task-specific model architectures and may be computationally

cheaper as features only need to be computed once. On the other hand, FT is convenient

as it may allow us to adapt a general-purpose representation to many different tasks.

Gaining a better understanding of the adaptation phase is key in making the most use out

of pretrained representations. To this end, we compare two state-of-the-art pretrained

models, ELMo [Peters et al., 2018a] and BERT [Devlin et al., 2018] using both EX and

FT across seven diverse tasks including named entity recognition, natural language

inference (NLI), and paraphrase detection. We seek to characterize the conditions under

which one approach substantially outperforms the other, and whether it is dependent

on the pretraining objective or target task. We find that EX and FT have comparable

performance in most cases, except when the source and target tasks are either highly

similar or highly dissimilar. We furthermore shed light on the practical challenges of

adaptation and provide a set of guidelines to the NLP practitioner, as summarized in

Table 7.8.

7.2.2 Pretraining and adaptation

While pretraining tasks have been designed with particular downstream tasks in mind

[Felbo et al., 2017], we focus on pretraining tasks that seek to induce universal represen-

tations suitable for any downstream task (§3.3.2.3).

Sentence embedding methods Such methods learn sentence representations via

different pretraining objectives such as previous/next sentence prediction [Kiros et al.,

2015, Logeswaran and Lee, 2018], NLI [Conneau et al., 2017], or a combination of

objectives [Subramanian et al., 2018]. During the adaptation phase, the sentence
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representation is typically provided as input to a linear classifier (EX). LM pretraining

with FT has also been successfully applied to sentence level tasks. In the previous section,

we propose ULMFiT, techniques for fine-tuning a LM, including triangular learning rate

schedules and discriminative fine-tuning, which uses lower learning rates for lower layers.

Radford et al. [2018] extend LM-FT to additional sentence and sentence-pair tasks.

Masked LM and next-sentence prediction BERT [Devlin et al., 2018] combines

both word and sentence representations (via masked LM and next sentence prediction

objectives) in a single very large pretrained transformer [Vaswani et al., 2017]. It is

adapted to both word and sentence level tasks by FT with task-specific layers.

7.2.3 Experimental setup

We compare ELMo and BERT as representatives of the two best-performing pretraining

settings. This section provides an overview of our methods. For fair comparison, all

experiments include extensive hyper-parameter tuning. We tuned the learning rate,

dropout ratio, weight decay and number of training epochs. In addition, the fine-tuning

experiments also examined the impact of triangular learning rate schedules, gradual

unfreezing, and discriminative learning rates presented in Section 7.1. Hyper-parameters

were tuned on the development sets and the best setting evaluated on the test sets.

All models were optimized with the Adam optimizer [Kingma and Ba, 2015] with weight

decay fix [Loshchilov and Hutter, 2017a]. We used the publicly available pretrained

ELMo1 and BERT2 models in all experiments. For ELMo, we used the original two

layer bidirectional LM. In the case of BERT, we used the BERT-base model, a 12 layer

bidirectional transformer. We used the English uncased model for all tasks except for

NER which used the English cased model.

7.2.3.1 Target tasks and datasets

We evaluate on a diverse set of target tasks: named entity recognition (NER), sentiment

analysis (SA), and three sentence pair tasks, natural language inference (NLI), paraphrase

detection (PD), and semantic textual similarity (STS).

NER We use the CoNLL 2003 dataset [Sang and Meulder, 2003], which provides token

level annotations of newswire across four different entity types (PER, LOC, ORG, MISC).

1https://allennlp.org/elmo
2https://github.com/google-research/bert
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SA We use the binary version of the Stanford Sentiment Treebank [SST-2; Socher et al.,

2013], providing sentiment labels (negative or positive) for phrases and sentences of

movie reviews.

NLI We use both the broad-domain MultiNLI dataset [Williams et al., 2018] and

Sentences Involving Compositional Knowledge [SICK-E; Marelli et al., 2014].

PD For paraphrase detection (i.e., decide whether two sentences are semantically

equivalent), we use the Microsoft Research Paraphrase Corpus [MRPC; Dolan and

Brockett, 2005].

STS We employ the Semantic Textual Similarity Benchmark [STS-B; Cer et al., 2017]

and SICK-R [Marelli et al., 2014]. Both datasets, provide a human judged similarity

value from 1 to 5 for each sentence pair.

We now describe how we adapt ELMo and BERT to these tasks. For EX we require a

task-specific architecture, while for FT we need a task-specific output layer.

7.2.3.2 Feature extraction

To isolate the effects of fine-tuning contextual word representations, all feature based

models only include one type of word representation (ELMo or BERT) and do not

include any other pretrained word representations. For all tasks, all layers of pretrained

representations were weighted together with learned scalar parameters following [Peters

et al., 2018a].

NER For the NER task, we use a two layer bidirectional LSTM in all experiments.

For ELMo, the output layer is a CRF, similar to a state-of-the-art NER system [Lample

et al., 2016]. Feature extraction for ELMo treated each sentence independently.

In the case of BERT, the output layer is a softmax to be consistent with the fine-tuned

experiments presented in [Devlin et al., 2018]. In addition, as in [Devlin et al., 2018], we

used document context to extract word piece representations. When composing multiple

word pieces into a single word representation, we found it beneficial to run the BiLSTM

layers over all word pieces before taking the LSTM states of the first word piece in each

word. We experimented with other pooling operations to combine word pieces into a

single word representation but they did not provide additional gains.
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SA We used the implementation of the bi-attentive classification network in AllenNLP

[Gardner et al., 2017] with default hyper-parameters, except for tuning those noted above.

As in the fine-tuning experiments for SST-2, we used all available annotations during

training, including those of sub-trees. Evaluation on the development and test sets used

full sentences.

Sentence pair tasks When extracting features from ELMo, each sentence was handled

separately. For BERT, we extracted features for both sentences jointly to be consistent

with the pretraining procedure. As reported in Section 5 this improved performance over

extracting features for each sentence separately.

Our model is the ESIM model [Chen et al., 2017a], modified as needed to support

regression tasks in addition to classification. We used default hyper-parameters except

for those described above.

7.2.3.3 Fine-tuning

When fine-tuning ELMo, we found it beneficial to use discriminative learning rates (§7.1)

where the learning rate decreased by 0.4× in each layer. In addition, for SST-2 and NER,

we also found it beneficial to gradually unfreeze the weights starting with the top layer.

In this setting, in each epoch one additional layer of weights is unfrozen until all weights

are training. These settings were chosen by tuning development set performance.

For fine-tuning BERT, we used the default learning rate schedule [Devlin et al., 2018]

that is similar to our slanted triangular learning rate schedule (§7.1).

SA We considered several pooling operations for composing the ELMo LSTM states

into a vector for prediction including max pooling, average pooling and taking the

first/last states. Max pooling performed slightly better than average pooling on the

development set.

Sentence pair tasks Our bi-attentive fine-tuning mechanism is similar to the attention

mechanism in the feature based ESIM model. To apply it, we first computed the bi-

attention between all words in both sentences, then applied the same “enhanced” pooling

operation as in [Chen et al., 2017a] before predicting with a softmax. Note that this

attention mechanism and pooling operation does not add any additional parameters to

the network.
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Pretraining Adaptation
NER SA Nat. lang. inference Semantic textual similarity

CoNLL 2003 SST-2 MNLI SICK-E SICK-R MRPC STS-B

Skip-thoughts EX - 81.8 62.9 - 86.6 75.8 71.8

ELMo
EX 91.7 91.8 79.6 86.3 86.1 76.0 75.9
FT 91.9 91.2 76.4 83.3 83.3 74.7 75.5

∆=FT-EX 0.2 -0.6 -3.2 -3.3 -2.8 -1.3 -0.4

BERT-base
EX 92.2 93.0 84.6 84.8 86.4 78.1 82.9
FT 92.4 93.5 84.6 85.8 88.7 84.8 87.1

∆=FT-EX 0.2 0.5 0.0 1.0 2.3 6.7 4.2

Table 7.9: Test set performance of feature extraction (EX) and fine-tuning (FT)
approaches for ELMo and BERT-base compared to two sentence embedding methods.
Settings that are good for FT are colored in red (∆=FT-EX > 1.0); settings good
for EX are colored in blue (∆=FT-EX < -1.0). Numbers for baseline methods are
from respective papers, except for SST-2, MNLI, and STS-B results, which are from
Wang et al. [2018a]. BERT fine-tuning results (except on SICK) are from Devlin et al.
[2018]. The metric varies across tasks (higher is always better): accuracy for SST-2,
SICK-E, and MRPC; matched accuracy for MultiNLI; Pearson correlation for STS-B
and SICK-R; and span F1 for CoNLL 2003. For CoNLL 2003, we report the mean with

five seeds; standard deviation is about 0.2%.

7.2.4 Results

We show results in Table 7.9 comparing ELMo and BERT for both EX and FT approaches

across the seven tasks with one sentence embedding method, Skip-thoughts [Kiros et al.,

2015], that employs a next-sentence prediction objective similar to BERT.

Both ELMo and BERT outperform the sentence embedding method significantly, except

on the semantic textual similarity tasks (STS) where Skip-thoughts is similar to ELMo.

The overall performance of EX and FT varies from task to task, with small differences

except for a few notable cases. For ELMo, we find the largest differences for sentence pair

tasks where EX consistently outperforms FT. For BERT, we obtain nearly the opposite

result: FT significantly outperforms EX on all STS tasks, with much smaller differences

for the others.

Discussion Past work in NLP [Mou et al., 2016] showed that similar pretraining tasks

transfer better.3 In computer vision (CV), Yosinski et al. [2014] similarly found that the

transferability of features decreases as the distance between the pretraining and target

task increases. In this vein, Skip-thoughts—and Quick-thoughts [Logeswaran and Lee,

2018], which has similar performance—which use a next-sentence prediction objective

similar to BERT, perform particularly well on STS tasks, indicating a close alignment

between the pretraining and target task. This strong alignment also seems to be the

reason for BERT’s strong relative performance on these tasks.

3Mou et al. [2016], however, only investigate transfer between classification tasks (NLI → SICK-
E/MRPC).



Adapting Universal Pretrained Representations 245

SICK-E SICK-R STS-B MRPC

ELMo-FT +bi-attn. 83.8 84.0 80.2 77.0
w/o bi-attn. 70.9 51.8 38.5 72.3

Table 7.10: Comparison of ELMo-FT cross-sentence embedding methods on dev. sets
of sentence pair tasks.

In CV, FT generally outperforms EX when transferring from ImageNet supervised

classification pretraining to other classification tasks [Kornblith et al., 2018]. Recent

results suggest FT is less useful for more distant target tasks such as semantic segmentation

[He et al., 2018a]. This is in line with our results, which show strong performance with

FT between closely aligned tasks (next-sentence prediction in BERT and STS tasks)

and poor performance for more distant tasks (LM in ELMo and sentence pair tasks). A

confounding factor may be the suitability of the inductive bias of the model architecture

for sentence pair tasks, which we will analyze next.

7.2.5 Analyses

Modelling pairwise interactions LSTMs consider each token sequentially, while

Transformers can relate each token to every other in each layer [Vaswani et al., 2017].

This might facilitate FT with Transformers on sentence pair tasks, on which ELMo-

FT performs comparatively poorly. To analyze this further, we compare different ways of

encoding the sentence pair with ELMo and BERT. For ELMo, we compare encoding with

and without cross-sentence bi-attention in Table 7.10. When adapting the ELMo LSTM

to a sentence pair task, modeling the sentence interactions by fine-tuning through the bi-

attention mechanism provides the best performance.4 This provides further evidence that

the LSTM has difficulty modeling the pairwise interactions during sequential processing.

This is in contrast to a Transformer LM that can be fine-tuned in this manner [Radford

et al., 2018].

For BERT-EX, we compare joint encoding of the sentence pair with encoding the sentences

separately in Table 7.11. The latter leads to a drop in performance, which shows that the

BERT representations encode cross-sentence relationships and are therefore particularly

well-suited for sentence pair tasks.

Impact of additional parameters We evaluate whether adding parameters is useful

for both adaptation settings on NER. We add a CRF layer (as used in FT) and a BiLSTM

with a CRF layer (as used in EX) to both and show results in Table 7.12. We find

4This is similar to text classification tasks, where we find max-pooling to outperform using the final
hidden state, similar to [Howard and Ruder, 2018].
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SICK-E SICK-R STS-B MRPC

BERT-EX, joint enc. 85.5 86.4 88.1 83.3
separate encoding 81.2 86.8 86.8 81.4

Table 7.11: Comparison of BERT-EX cross-sentence embedding methods on dev. sets
of sentence pair tasks.

Model configuration F1

EX + BiLSTM + CRF 95.5
EX + CRF 91.9

FT + CRF + gradual unfreeze 95.5
FT + BiLSTM + CRF + gradual unfreeze 95.2
FT + CRF 95.1

Table 7.12: Comparison of CoNLL 2003 NER development set performance (F1) for
ELMo for both feature extraction and fine-tuning. All results averaged over five random

seeds.

that additional parameters are key for EX, but hurt performance with FT. In addition,

FT requires gradual unfreezing [Howard and Ruder, 2018] to match performance of

feature extraction.

Extreme gradual unfreezing One hypothesis why additional parameters for FT hurt

is that training too many randomly initialized parameters together with fully trained ones

complicates the optimization problem. To investigate this hypothesis, we run another

experiment with an extreme form of gradual unfreezing: We first use a learning rate of

0 for all layers of the pretrained LM and only train the target task-specific parameters

on the downstream. This is the same as EX. The additional parameters should have

adapted to the pretrained parameters at this point. We now gradually unfreeze all the

layers of the model, in every epoch setting the learning rate of the next lower layer to

a non-zero value. We find that the performance of the model decays as soon as more

than the top layers are trained jointly, even if learning rates are tuned carefully. The

negative impact of additional parameters thus cannot be explained by the discrepancy in

initialization alone.

ELMo fine-tuning We found fine-tuning the ELMo LSTM to be initially difficult

and required careful hyper-parameter tuning. Once tuned for one task, other tasks

have similar hyper-parameters. Our best models used slanted triangular learning rates

and discriminative fine-tuning [Howard and Ruder, 2018] and in some cases gradual

unfreezing.
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te go tr fi sl

BERT-EX 84.4 86.7 86.1 84.5 80.9
∆=FT-EX -1.1 -0.2 -0.6 0.4 -0.6
JS div 0.21 0.18 0.14 0.09 0.09

Table 7.13: Accuracy of feature extraction (EX) and fine-tuning (FT) with BERT-base
trained on training data of different MNLI domains and evaluated on corresponding dev

sets. te: telephone. fi: fiction. tr: travel. go: government. sl: slate.

Impact of target domain Pretrained language model representations are intended to

be universal. However, the target domain might still impact the adaptation performance.

We calculate the Jensen-Shannon divergence based on term distributions (§4.1) between

the domains used to train BERT (books and Wikipedia) and each MNLI domain. We

show results in Table 7.13. We find no significant correlation. At least for this task, the

distance of the source and target domains does not seem to have a major impact on the

adaptation performance.

Representations at different layers In addition, we are interested how the infor-

mation in the different layers of the models develops over the course of fine-tuning. We

measure this information in two ways: a) with diagnostic classifiers [Adi et al., 2017];

and b) with mutual information [MI; Noshad et al., 2018]. Both methods allow us to

associate the hidden activations of our model with a linguistic property. In both cases,

we use the mean of the hidden activations of BERT-base5 of each token / word piece of

the sequence(s) as the representation.6

With diagnostic classifiers, for each example, we extract the pretrained and fine-tuned

representation at each layer as features. We use these features as input to train a logistic

regression model (linear regression for STS-B, which has real-valued outputs) on the

training data of two single sentence (CoLA7 and SST-2) and two pair sentence tasks

(MRPC and STS-B). We show its performance on the corresponding dev sets in Figure

7.5.

For all tasks, diagnostic classifier performance generally is higher in higher layers of the

model. Fine-tuning improves the performance of the diagnostic classifier at every layer.

For the single sentence classification tasks CoLA and SST-2, pretrained performance

increases gradually until the last layers. In contrast, for the sentence pair tasks MRPC

and STS-B performance is mostly flat after the fourth layer. Relevant information for

5We show results for BERT as they are more inspectable due to the model having more layers. Trends
for ELMo are similar.

6We observed similar results when using max-pooling or the representation of the first token.
7The Corpus of Linguistic Acceptability (CoLA) consists of examples of expert English sentence

acceptability judgments drawn from 22 books and journal articles on linguistic theory. It uses the Matthews
correlation coefficient [Matthews, 1975] for evaluation and is available at: nyu-mll.github.io/CoLA

nyu-mll.github.io/CoLA
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Figure 7.5: Performance of diagnostic classifiers trained on pretrained and fine-tuned
BERT representations at different layers on the dev sets of the corresponding tasks.

sentence pair tasks thus does not seem to be concentrated primarily in the upper layers

of pretrained representations, which could explain why fine-tuning is particularly useful

in these scenarios.

Computing the mutual information with regard to representations of deep neural net-

works has only become feasible recently with the development of more sophisticated MI

estimators. In our experiments, we use the state-of-the-art ensemble dependency graph

estimator [EDGE; Noshad et al., 2018] with default hyper-parameter values. As a sanity

check, we compute the MI between hidden activations and random labels and random

representations and random labels, which yields 0 in every case as we would expect.8

We show the mutual information I(H;Y ) between the pretrained and fine-tuned mean

hidden activations H at each layer of BERT and the output labels Y on the dev sets of

CoLA, SST-2, and MRPC in Figure 7.6.

The MI between pretrained representations and labels is close to 0 across all tasks

and layers, except for SST where the last layer shows a small non-zero value. In

contrast, fine-tuned representations display much higher MI values. The MI for fine-

tuned representations rises gradually through the intermediate and last layers for the

8For the same settings, we obtain non-zero values with earlier estimators [Saxe et al., 2018], which
seem to be less reliable for higher numbers of dimensions.
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Figure 7.6: The mutual information between fine-tuned and pretrained mean BERT
representations and the labels on the dev set of the corresponding tasks.

sentence pair task MRPC, while for the single sentence classification tasks, the MI rises

sharply in the last layers. Similar to our findings with diagnostic classifiers, knowledge

for single sentence classification tasks thus seems mostly concentrated in the last layers,

while pair sentence classification tasks gradually build up information in the intermediate

and last layers of the model.

7.2.6 Summary

We have empirically analyzed fine-tuning and feature extraction approaches across

diverse datasets, finding that the relative performance depends on the similarity of the

pretraining and target tasks. We have explored possible explanations and provided

practical recommendations for adapting pretrained representations to NLP practitioners.

We have additionally analyzed the representations at different layers using diagnostic

classifiers and mutual information.

7.3 Conclusions

In this chapter, we have analyzed and proposed a novel framework for sequential transfer

learning, focusing on the adaptation phase. Our ULMFiT framework outperformed the

state-of-the-art across six diverse text classification tasks, while we have empirically stud-

ied adaptation capabilities of two state-of-the-art models across a range of classification

and sequence labelling tasks.

In the following and final chapter of this thesis, we will look back on the methods proposed

in this dissertation, highlight insights and commonalities, and provide an outlook into

the future.



Chapter 8

Conclusion

Throughout this thesis, we have made contributions to the four areas of transfer learning

in natural language processing: domain adaptation (§4), cross-lingual learning (§5),

multi-task learning (§6), and sequential transfer learning (§7). In this final chapter, we

will recapitulate the proposed methods (§8.1), summarize our findings (§8.2), and provide

an outlook into the future (§8.3).

8.1 Synopsis

In this dissertation, we have studied the problem of automatically learning transferable

representations for a variety of NLP tasks. In Chapter 3, we have presented a taxonomy

for transfer learning for NLP and provided a comprehensive overview of each area.

Chapter 4 presented approaches for domain adaptation that overcome the discrepancy

between domains by automatically selecting relevant and informative examples. In

particular, it presented a novel automatic data selection method and a novel semi-

supervised learning approach that combines the strengths of both classic and neural

techniques. We evaluated our methods across three diverse NLP tasks and multiple

domains.

Chapter 5 focused on cross-lingual learning, particularly unsupervised and weakly su-

pervised approaches. We first extensively analyzed the limitations of unsupervised

approaches and proposed a weakly supervised method that mitigates them. We then

proposed a different latent-variable view of existing neural methods and a novel cross-

lingual word embedding model that combines both traditional and current approaches.

We evaluated our methods on bilingual dictionary induction where they outperform the

state of the art.

250
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In Chapter 6, we studied the problem of multi-task learning across heterogeneous

tasks. We proposed two novel models that enable more flexible sharing than existing

architectures. We evaluated our methods on diverse sets of tasks and domains where

they outperformed hard parameter sharing and strong single-task models.

Chapter 7 tackled the most impactful sequential transfer learning scenario involving

transfer to an arbitrary target task. We proposed ULMFiT, a novel framework that

pretrains language model representations and then transfers them to a target task using

novel techniques. Our method achieved significant error reductions over the state-of-

the-art across a range of text classification datasets. We additionally compared feature

extraction and fine-tuning of two state-of-the-art pretrained representations across a

diverse set of tasks. We found that the similarity between pretraining and target task is

indicative of the relative performance between feature extraction and fine-tuning. We

finally provided practical guidelines to practitioners.

8.2 Summary of findings

This dissertation investigated the hypothesis that deep neural networks that leverage

relevant information using transfer learning techniques outperform their supervised

counterparts across a wide range of tasks. Over the course of this thesis, we have

presented multiple novel methods for different transfer learning scenarios and evaluated

them across a diversity of settings where they outperformed single-task learning as well as

competing transfer learning methods. We now recapitulate how our methods addressed

the desiderata we laid out initially and summarize our contributions and findings.

Research objectives

Overcoming a discrepancy between source and target setting Transferring

between dissimilar or distant settings is one of the biggest challenges in transfer learning

and a key reason for the failure of current systems. Domain adaptation methods

deteriorate when domains are dissimilar; cross-lingual embedding methods fail when

languages are distant; and multi-task learning approaches break down when tasks are

unrelated. We have proposed methods that seek to address this challenge in every setting:

For domain adaptation, we have proposed a method that takes into account the relevancy

and informativeness of examples using Bayesian Optimization (§4.1). When learning

cross-lingual word embeddings between distant languages such as English and Finnish,

we characterized this distance with a novel eigenvector similarity metric and found weak

supervision in the form of identically spelled strings to provide an effective bridge (§5).
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Our proposed architectures for multi-task learning aim to be as flexible as possible so

that beneficial information can be shared, but unrelated tasks do not result in worse

performance (§6). In particular, using subspaces and allowing for sharing across the

hierarchy proved beneficial. Our new framework for sequential transfer learning learns

general-purpose representations that can be transferred to any target task (§7.1). In

this framework, we proposed several techniques that facilitate transfer to a different

target task. We found these techniques key in adapting LSTM-based representations

and observed that task similarity plays a role in adaptation. When tasks are dissimilar,

feature extraction is preferred, while fine-tuning works better for related tasks (§7.2).

Inducing an inductive bias Much of the work in this thesis has focused on leveraging

an inductive bias that narrows a model’s hypothesis space and improves its ability to

generalize. To this end, we employed a wide array of inductive biases. We used a model’s

or auxiliary models’ predictions on unlabelled data as additional learning signal via semi-

supervised learning (§4.2, §6.2). Multi-task learning similarly was a pervasive inductive

bias that we employed across many models (§4.2, §6). Another common bias that we

found helpful is an orthogonality constraint, which allowed us to encourage multi-task

learning models to focus on learning different features (§4.2, §6.1). For cross-lingual

learning, we found weak supervision in the form of identically spelled strings to be a useful

inductive bias (§5). As another inductive bias for cross-lingual learning, we employed

a 1:1 matching prior that enabled us to learn a better matching between words and

their translations and mitigate the hubness problem (§5.2). In our multi-task learning

model, we found a hierarchical bias in the form of a latent mixture to be helpful (§6.1).

Finally, pretrained language model representations allowed us to achieve state-of-the-art

performance across a wide range of tasks (§7).

Combining traditional and current approaches In this thesis, we have extensively

reviewed the existing literature (§3). At the same time, many current approaches reinvent

the wheel, replacing classic feature-based approaches with a different toolkit rather than

seeking inspiration and drawing on lessons of the past. While classic approaches were an

inspiration for this thesis in general, in two cases we explicitly combine them with current

methods. For semi-supervised learning, we adapt classic bootstrapping approaches to

neural networks and propose a novel method that combines both the agreement-based

learning of tri-training and the efficiency of neural multi-task learning (§4.2). For cross-

lingual learning, we combine the theoretically motivated bipartite matching dictionary

prior of Haghighi et al. [2008] with a state-of-the-art embedding-based approach (§5.2).
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Transfer across the hierarchy of NLP tasks Tasks in natural language processing

are naturally hierarchical and range from tasks that require morphological information,

to syntactic and semantic tasks. This hierarchy offers challenges, as it complicates

sharing of layers, but also brings opportunities, if information related to different levels

of meaning can be organized and accessed reliably. Our multi-task meta-architecture

was designed with this hierarchy in mind. It enables sharing across all levels of the

hierarchy, from low-level to high-level tasks (§6.1). Our second multi-task architecture

focuses on the highest layer, the label embedding. It leverages new mechanisms to better

integrate information across related label spaces to transfer between coarse-grained and

fine-grained sentiment tasks (§6.2). Finally, ULMFiT introduces new techniques that seek

to minimize catastrophic forgetting during adaptation. It employs gradual unfreezing

and discriminative fine-tuning to retain the general information in the lowest layers of

the model and transfer these to the target task (§7.1).

Generalization across many settings We were interested in methods that do not

depend on any particular task and in models that generalize across a wide range of

settings. We thus evaluated our models on a wide range of tasks including POS tagging,

dependency parsing, and sentiment analysis (§4); chunking, NER, semantic role labelling,

and POS tagging (§6.1); pairwise classification tasks (6.2); text classification tasks (§7.1);

and seven diverse NLP tasks (§7.2). In general, we were interested in models that not

only perform well on in-domain data but also achieve good performance on data outside

of the training distribution. To this end, we evaluated our models on product review,

movie review, and Twitter domains for sentiment analysis (§4, §6.2, §7.1), web domains

for sequence labelling tasks (§4, §6.1), and multiple domains for topic classification (§7.1).

We finally evaluated our approaches on a diverse set of languages, including Estonian,

Finnish, Greek, Hungarian, Polish, and Turkish (§5.1) as well as English, German, Italian,

Finnish, Turkish, Bengali, and Hindi (§5.2).

Contributions

We now summarize this thesis’ contributions with regard to transfer learning overall and

each transfer learning area in particular:

Transfer learning We presented a taxonomy for transfer learning for NLP (§3.1.3)

by adapting the widely used taxonomy of Pan and Yang [2010]. The taxonomy reflects

the most common transfer learning scenarios encountered in current natural language

processing. We extensively reviewed each of the scenarios (§3.2, §3.3, §3.4, §3.5) and

highlighted connections and similarities between the approaches of different areas. For
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instance, we made it clear where sequential transfer learning and domain adaptation

approaches build on multi-task learning techniques.

Domain adaptation We have presented a model that automatically learns to select

training examples that are relevant for a particular target domain (§4.1). We have

evaluated this model across three tasks where it outperformed existing domain similarity

metrics and demonstrated the transferability of the learned policy across different settings.

We additionally re-evaluated a range of classic self-labelling approaches to neural networks

in the context of a domain shift (§4.2). We found that tri-training works best and even

outperforms a recent state-of-the-art method. We addressed the drawback of tri-training,

its time and space complexity, with a more efficient multi-task tri-training method.

Our novel method outperformed both traditional tri-training and recent alternatives on

sentiment analysis. For POS tagging, classic tri-training still was superior, particularly

on OOV and low frequency tokens, which suggests it is less affected by error propagation.

Cross-lingual learning We presented a taxonomy for cross-lingual word embedding

models that organizes models based on the main sources of variation, the type of alignment

and the comparability of the training data (§3.5.3). We additionally showed that cross-

lingual word embedding models that learn on the word level optimize similar objectives

by reducing each model to a combination of monolingual losses and regularization terms

(§3.5.4). We theoretically and empirically analyzed the limitations of unsupervised

cross-lingual embedding models and showed that unsupervised methods perform much

worse on distant language pairs, with monolingual corpora from different domains, and

different embedding algorithms (§5.1). We proposed a novel eigenvector-based metric to

characterize the distance between monolingual embedding spaces and gauge the potential

of unsupervised methods. We furthermore presented a novel latent-variable model for

bilingual lexicon induction that combines a bipartite matching prior with a state-of-

the-art embedding-based approach, which we evaluated on three standard and three

low-resource language pairs where it outperformed the state-of-the-art (§5.2). We finally

showed how existing approaches can be viewed as a similar latent variable model with a

different prior.

Multi-task learning We presented sluice networks, a novel multi-task learning frame-

work that automatically learns which layers to share between different tasks and detailed

how this model generalizes existing transfer learning and multi-task learning architectures

(§6.1). We evaluated the model on synthetic data and data from OntoNotes 5.0 covering

multiple tasks and domains where it consistently outperformed single-task and multi-task

baselines. We additionally proposed a novel multi-task learning model that integrates
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information from disparate label spaces and propose methods to leverage unlabelled

and auxiliary data (§6.2). We evaluated the model on a variety of pairwise sequence

classification tasks where it outperformed single and multi-task baselines and achieved a

new state of the art for aspect- and topic-based sentiment analysis.

Sequential transfer learning We proposed a novel framework for sequential transfer

learning using pretrained language models and novel adaptation techniques including

novel ways to fine-tune a language model (§7.1). Our method convincingly outperformed

the state-of-the-art on six text classification tasks with an error reduction of 18–24% on

most tasks and demonstrated significant few-shot learning capabilities. In addition, we

analyzed the adaptation phase of sequential transfer learning comparing the two prevalent

adaptation methods with state-of-the-art pretrained representations on a diverse range of

tasks (§7.2). We found that the relative performance of fine-tuning vs. feature extraction

depends on the similarity of the pretraining and target tasks. In addition, we found

that information in pretrained BERT [Devlin et al., 2018] representations on sentence

pair tasks is mostly flat across intermediate and higher layers, while information for

single sentence tasks gradually increases throughout the network, which may explain

why fine-tuning is particularly useful for the former set of tasks. We finally provided

guidelines to the NLP practitioner, e.g. ELMo [Peters et al., 2018a] should extract

features by default, while BERT should be fine-tuned.

8.3 Future directions

In this section, we will give an outlook into the future for each of the respective transfer

learning areas in particular and for transfer learning in general.

Domain adaptation

Robustness to out-of-distribution data As we become more cognizant of the

brittleness of our current methods, we hope that more work will focus on making them

more robust. To test robustness, evaluation on out-of-domain data will become more

common. The recent CoQA [Reddy et al., 2018] dataset already includes out-of-domain

evaluation. We hope that in the future when new datasets are created, in addition to a

random test set, dedicated out-of-domain test sets will become common practice. This

will enable us to test whether our models truly generalize.
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Challenge sets A related direction is to evaluate models on challenge sets, which have

recently become more popular [Linzen et al., 2016, Gulordava et al., 2018]; see [Belinkov

and Glass, 2019] for an overview. Such challenge sets probe particular aspects such as

certain linguistic phenomena on which current models fail. Challenge sets have been

mainly created for tasks such as question answering and machine translation and English.

In the future, we expect the creation of challenge sets for other tasks and non-English

languages.

Adversarial examples One way to induce robustness is via adversarial examples

[Goodfellow et al., 2015, Wang and Bansal, 2018]. Adversarial examples are an ongoing

research topic and are closely related to understanding the generalization properties of

current models. Adversarial examples have become more common in NLP, but generating

useful adversarial examples that work across tasks and domains is still a challenge.

Semi-supervised learning We also expect more effective approaches that combine

explicit semi-supervised learning such as self-labelling (§4.2) with transfer learning. While

transfer learning allows us to leverage unlabelled data via an unsupervised pretraining

or auxiliary task, semi-supervised learning uses unlabelled data directly for our target

task, for instance by making the model’s predictions more consistent with itself. Current

semi-supervised learning methods, however, still struggle with a domain shift (§3.4.4.2)

and need to be made more robust to be used at their full potential and as a complement

to transfer learning methods.

Cross-lingual learning

Cross-lingual resources In order to bridge the digital language divide, NLP models

must be applied to non-English languages. To this end, resources will need to be

created not just for English but for the world’s other 6,000 languages. This can be done

comparatively inexpensively in many cases by releasing small test datasets in multiple

languages that can be used to evaluate cross-lingual models. A recent example of such a

data set is XNLI [Conneau et al., 2018b], which contains NLI test sets for 15 languages.

Unsupervised cross-lingual methods As training data is not available for most

of these languages, unsupervised and weakly supervised cross-lingual methods will be

required to deal with such low-resource scenarios (§5). As we have shown, current

unsupervised methods are still unstable in many settings, such as in the context of

different domains, dissimilar languages, or different algorithms. Developing more robust

unsupervised methods is thus an important research direction.
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Deep cross-lingual embedding models Similar to the progression from shallow

word embeddings to deep language models, we expect training of deep cross-lingual

models to be a fruitful research direction. The main challenge here is to enable models

to go beyond learning from sentence-level parallel data and incorporate non-parallel

monolingual corpora. To this end, unsupervised and weakly-supervised techniques will

also be useful. A shared representation at the input layers such as cross-lingual word

embeddings or a shared word piece vocabulary [Lample et al., 2018b] may often be

sufficient to kick-start the training of a deep model.

Multi-task learning

Massively multi-task models Hard parameter sharing will likely still be used as the

default when learning between two tasks as the method is simple and efficient. However,

models that learn from more tasks will likely move away from this paradigm as it will

be too restrictive. In particular, we expect the development of ‘massively multi-task

models’ that are heavily modularized and update only a comparatively small number of

parameters for each task. Such architectures will be more flexible and allow for variable

degrees of sharing (§6). A challenge will be to allow for such flexibility without the

number of parameters blowing up.

Convergence of multi-task learning and sequential transfer learning Given a

larger number of tasks, sequential transfer learning and multi-task learning will likely

converge, as it will often be prohibitive to train all tasks jointly. Instead, many tasks will

be pretrained and optionally equipped with regularizers to encourage positive backwards

transfer. A related direction is the development of scalable lifelong learning approaches

that are not memory-based and scale sublinearly with the number of tasks.

Understanding task relationships Finally, we hope for more efforts focusing on

understanding the relationships between tasks. So far, most of the insight in NLP has

come from anecdotal evidence and small-scale empirical studies that investigated the

pairwise relationships between a few tasks (§3.2.6). A large-scale study such as the one

done by Zamir et al. [2018] in computer vision is necessary to obtain more generally

useful insights. A confounding factor is the role of the domain, which is harder to isolate

in NLP. As tasks are diverse, ranging from natural language generation, to sequence

tagging, natural language understanding, and text classification, it is harder to obtain

annotations for each instance across many tasks.
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Sequential transfer learning

Specialized pretraining tasks We expect deep pretrained representations to become

a common tool for the NLP practitioner, in their utility similar to pretrained word

embeddings in the past years. As transfer learning becomes more pervasive, we expect

the emergence of dedicated pretraining tasks that encode specialized knowledge. This is

already evidenced in approaches that report gains by combining different pretrained word

embeddings [Kiela et al., 2018b]. Eventually, downstream models will be able to choose

from a large range of pretrained representations. Some of these will be specialized to

particular domains such as biomedical or legal documents, while others will be specialized

to specific tasks such as particular forms of reasoning and natural language understanding,

e.g. anaphora resolution, arithmetic reasoning, etc. By sparsely selecting among a set of

relevant modules, approaches will both be more computationally efficient and use richer

representations compared to classic NLP pipelines.

Adaptation We similarly expect more work focusing on effective adaptation strategies

that allow us to go from the pretrained initialization to the final trained model more

effectively. When adapting to a few number of examples, meta-learning might be a viable

method, though it still requires access to labelled data from a diverse distribution of

tasks for training the meta-learner. As pretrained models get deeper, we will see best

practices emerge regarding the adaptation of many layers that leverage different learning

rates or freeze part of the model, such as the techniques we proposed (§7). In addition,

methods that flexibly augment pretrained parameters with task-specific ones—similar to

residual adapters [Rebuffi et al., 2017]—and that extend these connections to multiple

tasks will become more commonplace.

Transfer learning

On a broader note, in the long-term we expect transfer learning to be an integral part

of NLP systems. It will become the exception that models are trained from scratch;

particularly, as we tackle more challenging problems such as applications that require

common sense reasoning, we will need to develop components that can acquire and

integrate world knowledge from disparate sources into our models. Transfer learning

will play an important role to bridge the digital language divide and to bring NLP

capabilities to the rest of the world’s languages. As NLP systems become more mature

and are applied to many more real-world—and often low-resource—scenarios, leveraging

information from related domains, tasks, and languages will be key.
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Language is a reflection of our context and experience. Training from a blank slate

deprives our models of experience and the ability to interpret context. Ultimately, in

order to come closer to the elusive goal of true natural language understanding, we need

to equip our models with as much relevant knowledge and experience as possible.
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Ljubešić, N., Pirinen, T., and Toral, A. (2016). Finnish Web corpus fiWaC 1.0. Slovenian

language resource repository CLARIN.SI.

Logeswaran, L. and Lee, H. (2018). An efficient framework for learning sentence repre-

sentations. In Proceedings of ICLR 2018.

Long, J., Shelhamer, E., and Darrell, T. (2015a). Fully convolutional networks for

semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 3431–3440.

Long, M., Cao, Y., Wang, J., and Jordan, M. I. (2015b). Learning Transferable Features

with Deep Adaptation Networks. In Proceedings of ICML, volume 37, Lille, France.

Long, M. and Wang, J. (2015). Learning Multiple Tasks with Deep Relationship Networks.

arXiv preprint arXiv:1506.02117.

Lopez-Paz, D. and Ranzato, M. (2017). Gradient Episodic Memory for Continuum

Learning. In Proceedings of NIPS 2017.

Loshchilov, I. and Hutter, F. (2017a). Fixing Weight Decay Regularization in Adam.

arXiv preprint arXiv:1711.05101.

Loshchilov, I. and Hutter, F. (2017b). SGDR: Stochastic Gradient Descent with Warm

Restarts. In Proceedings of the Internal Conference on Learning Representations 2017.

Louizos, C., Swersky, K., Li, Y., Welling, M., and Zemel, R. (2015). The variational fair

autoencoder. arXiv preprint arXiv:1511.00830.

Lounici, K., Pontil, M., Tsybakov, A. B., and van de Geer, S. (2009). Taking Advantage

of Sparsity in Multi-Task Learning. Stat, (1).

Lu, A., Wang, W., Bansal, M., Gimpel, K., and Livescu, K. (2015). Deep multilingual

correlation for improved word embeddings. In Proceedings of NAACL-HLT, pages

250–256.



Bibliography 287

Lu, W., Chieu, H. L., and Jonathan, L. (2016). A General Regularization Framework

for Domain Adaptation. Proceedings of the 2016 Conference on Empirical Methods in

Natural Language Processing (EMNLP2016), (3):950–954.

Lu, W. and Zheng, V. W. (2017). A Simple Regularization-based Algorithm for Learning

Cross-Domain Word Embeddings. In Proceedings of the 2017 Conference on Empirical

Methods in Natural Language Processing, pages 2888–2894.

Luong, M.-T., Le, Q. V., Sutskever, I., Vinyals, O., and Kaiser, L. (2016). Multi-task

Sequence to Sequence Learning. In Proceedings of ICLR 2016.

Luong, M.-T., Pham, H., and Manning, C. D. (2015). Bilingual Word Representations

with Monolingual Quality in Mind. Workshop on Vector Modeling for NLP, pages

151–159.

Lynn, V. E., Son, Y., Kulkarni, V., Balasubramanian, N., Schwartz, H. A., and Brook,

S. (2017). Human Centered NLP with User-Factor Adaptation. In Proceedings of the

2017 Conference on Empirical Methods in Natural Language Processing.

Ma, J., Zhang, Y., and Zhu, J. (2014). Tagging The Web: Building A Robust Web Tagger

with Neural Network. Proceedings of the 52nd Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers), pages 144–154.

Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., and Potts, C. (2011).

Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting

of the Association for Computational Linguistics: Human Language Technologies-

Volume 1, pages 142–150. Association for Computational Linguistics.

MacKay, D. J. C. (1992). Information-Based Objective Functions for Active Data

Selection. Neural Computation, 4(4):590–604.

Mahajan, D., Girshick, R., Ramanathan, V., He, K., Paluri, M., Li, Y., Bharambe, A.,

and van der Maaten, L. (2018). Exploring the Limits of Weakly Supervised Pretraining.

Malaviya, C., Neubig, G., and Littell, P. (2017). Learning Language Representations for

Typology Prediction. In Proceedings of the 2017 Conference on Empirical Methods in

Natural Language Processing.

Manning, C. D., , and Schütze, H. (1999). Foundations of statistical natural language

processing. MIT press.

Manning, C. D. (2015). Computational linguistics and deep learning. Computational

Linguistics, 41(4):701–707.



Bibliography 288

Mansour, Y. (2009). Domain Adaptation with Multiple Sources. Neural Information

Processing Systems Conference (NIPS 2009).

Marcus, M. P., Marcinkiewicz, M. A., and Santorini, B. (1993). Building a large annotated

corpus of english: The penn treebank. Computational linguistics, 19(2):313–330.

Marelli, M., Menini, S., Baroni, M., Bentivogli, L., Bernardi, R., Zamparelli, R., et al.

(2014). A sick cure for the evaluation of compositional distributional semantic models.

In LREC, pages 216–223.

Margolis, A. (2011). A Literature Review of Domain Adaptation with Unlabeled Data.

Margolis, A., Livescu, K., and Ostendorf, M. (2010). Domain adaptation with unlabeled

data for dialog act tagging. In Proceedings of the 2010 Workshop on Domain Adap-

tation for Natural Language Processing, pages 45–52. Association for Computational

Linguistics.

Matthews, B. W. (1975). Comparison of the predicted and observed secondary structure of

t4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-Protein Structure, 405(2):442–

451.

Maurer, A. (2007). Bounds for Linear Multi Task Learning. JMLR, 7:117–139.

Maurer, A., Pontil, M., and Romera-paredes, B. (2013). Sparse coding for multitask and

transfer learning. In ICML, volume 28, pages 343–351.

Mayhew, S., Dan, C.-t. T., and Goodwin, N. (2017). Cheap Translation for Cross-Lingual

Named Entity Recognition. In Proceedings of the 2017 Conference on Empirical

Methods in Natural Language Processing, pages 2526–2535.

McCann, B., Bradbury, J., Xiong, C., and Socher, R. (2017). Learned in Translation:

Contextualized Word Vectors. In Advances in Neural Information Processing Systems.

McClosky, D., Charniak, E., and Johnson, M. (2006a). Effective self-training for parsing.

Proceedings of the main conference on human language technology conference of the

North American Chapter of the Association of Computational Linguistics, pages 152–

159.

McClosky, D., Charniak, E., and Johnson, M. (2006b). Reranking and Self-Training for

Parser Adaptation. International Conference on Computational Linguistics (COL-

ING) and Annual Meeting of the Association for Computational Linguistics (ACL),

(July):337–344.

McClosky, D., Charniak, E., and Johnson, M. (2010). Automatic domain adaptation

for parsing. In Human Language Technologies: The 2010 Annual Conference of the



Bibliography 289

North American Chapter of the Association for Computational Linguistics, pages 28–36.

Association for Computational Linguistics.

Melis, G., Dyer, C., and Blunsom, P. (2017). On the State of the Art of Evaluation in

Neural Language Models. In arXiv preprint arXiv:1707.05589.

Mena, G., Belanger, D., Linderman, S., and Snoek, J. (2018). Learning latent permuta-

tions with Gumbel-Sinkhorn networks. arXiv preprint arXiv:1802.08665.

Merity, S., Shirish Keskar, N., and Socher, R. (2017a). Regularizing and Optimizing

LSTM Language Models. arXiv preprint arXiv:1708.02182.

Merity, S., Xiong, C., Bradbury, J., and Socher, R. (2017b). Pointer Sentinel Mixture

Models. In Proceedings of the International Conference on Learning Representations

2017.

Meyerson, E. and Miikkulainen, R. (2018). Beyond Shared Hierarchies: Deep Multitask

Learning through Soft Layer Ordering. In ICPR.

Michel, P. and Neubig, G. (2018). Extreme Adaptation for Personalized Neural Machine

Translation. In Proceedings of ACL 2018.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a). Distributed Representations

of Words and Phrases and their Compositionality. In Proceedings of NIPS, pages

3111–3119.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013b). Efficient estimation of word

representations in vector space. In International Conference on Learning Representa-

tions (ICLR) Workshop.

Mikolov, T., Le, Q. V., and Sutskever, I. (2013c). Exploiting similarities among languages

for machine translation.

Miller, S., Guinness, J., and Zamanian, A. (2004). Name tagging with word clusters and

discriminative training. In Proceedings of the Human Language Technology Conference

of the North American Chapter of the Association for Computational Linguistics:

HLT-NAACL 2004.

Min, S., Seo, M., and Hajishirzi, H. (2017). Question Answering through Transfer

Learning from Large Fine-grained Supervision Data. In Proceedings of the 55th Annual

Meeting of the Association for Computational Linguistics (Short Papers).

Mintz, M., Bills, S., Snow, R., and Jurafsky, D. (2009). Distant supervision for relation

extraction without labeled data. In Proceedings of the 47th Annual Meeting of the

ACL and the 4th IJCNLP of the AFNLP, pages 1003–1011.



Bibliography 290

Mirkin, S. and Besacier, L. (2014). Data selection for compact adapted smt models.

In Eleventh Conference of the Association for Machine Translation in the Americas

(AMTA).

Misra, I., Shrivastava, A., Gupta, A., and Hebert, M. (2016). Cross-stitch Networks for

Multi-task Learning. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition.

Mitchell, T., Cohen, W., Hruschka, E., Talukdar, P., Yang, B., Betteridge, J., Carlson, A.,

Dalvi, B., Gardner, M., Kisiel, B., Krishnamurthy, J., Lao, N., Mazaitis, K., Mohamed,

T., Nakashole, N., Platanios, E., Ritter, A., Samadi, M., Settles, B., Wang, R., Wijaya,

D., Gu, A., and Welling, J. (2018). Never-Ending Learning. Communications of the

ACM, 61(5).

Miyato, T., Dai, A. M., and Goodfellow, I. (2017). Adversarial Training Methods for

Semi-supervised Text Classification. In Proceedings of ICLR 2017.

Mnih, A. and Teh, Y. W. (2012). A fast and simple algorithm for training neural

probabilistic language models. Proceedings of ICML, pages 1751–1758.
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Mrkšić, N., Vulić, I., Ó Séaghdha, D., Leviant, I., Reichart, R., Gašić, M., Korhonen,
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Montréal, Canada. Association for Computational Linguistics.

Sandu, O., Carenini, G., Murray, G., and Ng, R. (2010). Domain adaptation to summarize

human conversations. In Proceedings of the 2010 Workshop on Domain Adaptation for

Natural Language Processing, pages 16–22. Association for Computational Linguistics.

Sang, E. F. T. K. and Meulder, F. D. (2003). Introduction to the CoNLL-2003 shared

task: Language-independent named entity recognition. In CoNLL.

Sanh, V., Wolf, T., and Ruder, S. (2019). A Hierarchical Multi-task Approach for

Learning Embeddings from Semantic Tasks. In Proceedings of AAAI 2019.

Satpal, S. and Sarawagi, S. (2007). Domain adaptation of conditional probability models

via feature subsetting. In European Conference on Principles of Data Mining and

Knowledge Discovery, pages 224–235. Springer.

Saxe, A. M., Bansal, Y., Dapello, J., Advani, M., Kolchinsky, A., Tracey, B. D., and Cox,

D. D. (2018). On the Information Bottleneck Theory of Deep Learning. In Proceedings

of ICLR 2018.

Schnabel, T. and Schütze, H. (2014). FLORS: Fast and Simple Domain Adaptation for

Part-of-Speech Tagging. TACL, 2:15–26.

Schönemann, P. H. (1966). A generalized solution of the orthogonal Procrustes problem.

Psychometrika, 31(1):1–10.

Schwartz, R., Reichart, R., and Rappoport, A. (2015). Symmetric pattern based word

embeddings for improved word similarity prediction. In Proceedings of CoNLL, pages

258–267.

Schwarz, J., Luketina, J., Czarnecki, W. M., Grabska-Barwinska, A., Teh, Y. W., Pascanu,

R., and Hadsell, R. (2018). Progress & Compress : A scalable framework for continual

learning. In Proceedings of ICML 2018.

Sennrich, R., Haddow, B., and Birch, A. (2015). Improving neural machine translation

models with monolingual data. arXiv preprint arXiv:1511.06709.

Settles, B. (2012). Active learning literature survey. Morgan and Claypool.



Bibliography 300

Severyn, A. and Moschitti, A. (2015). UNITN: Training Deep Convolutional Neural

Network for Twitter Sentiment Classification. Proceedings of the 9th International

Workshop on Semantic Evaluation (SemEval 2015), pages 464–469.

Shah, D. J., Lei, T., Moschitti, A., Romeo, S., and Nakov, P. (2018). Adversarial Domain

Adaptation for Duplicate Question Detection. In Proceedings of EMNLP 2018.

Shannon, C. E. (1948). A mathematical theory of communication. The Bell System

Technical Journal, 27(July 1928):379–423.

Sharif Razavian, A., Azizpour, H., Sullivan, J., and Carlsson, S. (2014). Cnn features

off-the-shelf: an astounding baseline for recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 806–813.

Shezaf, D. and Rappoport, A. (2010). Bilingual lexicon generation using non-aligned

signatures. In Proceedings of ACL, pages 98–107.

Shi, T., Liu, Z., Liu, Y., and Sun, M. (2015). Learning cross-lingual word embeddings

via matrix co-factorization. In Proceedings of ACL, pages 567–572.

Shigehalli, V. and Shettar, V. (2011). Spectral technique using normalized adjacency

matrices for graph matching. International Journal of Computational Science and

Mathematics, 3:371–378.

Shu, L., Xu, H., and Liu, B. (2017). Lifelong Learning CRF for Supervised Aspect Extrac-

tion. In Proceedings of the 55th Annual Meeting of the Association for Computational

Linguistics (ACL 2017).

Silver, D. L., Yang, Q., and Li, L. (2013). Lifelong Machine Learning Systems : Beyond

Learning Algorithms. AAAI Spring Symposium Series, pages 49–55.

Simpson, E. H. (1949). Measurement of diversity. Nature.

Smith, L. N. (2017). Cyclical learning rates for training neural networks. In Applications

of Computer Vision (WACV), 2017 IEEE Winter Conference on, pages 464–472. IEEE.

Smith, N. A. (2011). Linguistic structure prediction. Synthesis lectures on human

language technologies, 4(2):1–274.

Smith, S. L., Turban, D. H. P., Hamblin, S., and Hammerla, N. Y. (2017). Offline bilingual

word vectors, orthogonal transformations and the inverted softmax. In Proceedings of

ICLR (Conference Papers).

Snell, J., Swersky, K., and Zemel, R. S. (2017). Prototypical Networks for Few-shot

Learning. In Advances in Neural Information Processing Systems.



Bibliography 301

Snoek, J., Larochelle, H., and Adams, R. P. (2012). Practical Bayesian Optimization

of Machine Learning Algorithms. Neural Information Processing Systems Conference

(NIPS 2012).

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng, A., and Potts,

C. (2013). Recursive deep models for semantic compositionality over a sentiment

treebank. In Proceedings of the 2013 conference on empirical methods in natural

language processing, pages 1631–1642.

Søgaard, A. (2010). Simple semi-supervised training of part-of-speech taggers. In

Proceedings of the ACL 2010 Conference Short Papers, pages 205–208.

Søgaard, A. (2011). Data Point Selection for Cross-Language Adaptation of Dependency

Parsers. Proceedings of the 49th Annual Meeting of the Association for Computational

Linguistics: Human Language Technologies (HLT ’11): Short Papers, pages 682–686.

Søgaard, A. (2013). Part-of-speech tagging with antagonistic adversaries. Proceedings of

ACL, pages 640–644.
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