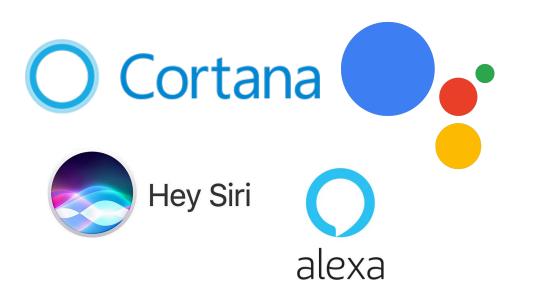
Neural Semantic Parsing

Pengcheng Yin pcyin@google.com Google Research

[Some contents are adapted from talks by Graham Neubig at CMU 11-747 NN for NLP]

Semantic Parsers: Natural Language Interfaces to Computers



Virtual Assistants

Set an alarm at 7 AM
 Remind me for the meeting at 5pm
 Play Jay Chou's latest album

• • Untitled-1	
🕏 Untitled-1 🔍	
1 my_list = [3, 5, 1]	
2 sort in descending order	` ⊖
3 <pre>sorted(my_list, reverse</pre>	=True)
4	
5	
🤌 master* 🕂 😯 Python 3.6.5 64	4-bit 🛞

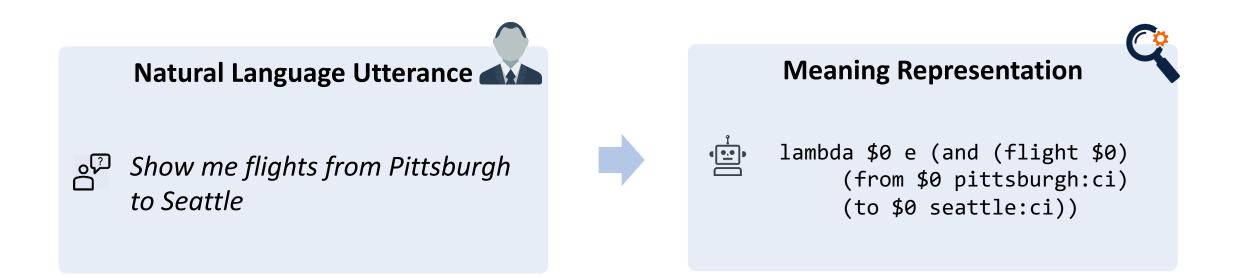
Natural Language Programming Sort my_list in descending order

Copy my_file to home folder

Dump my_dict as a csv file output.csv

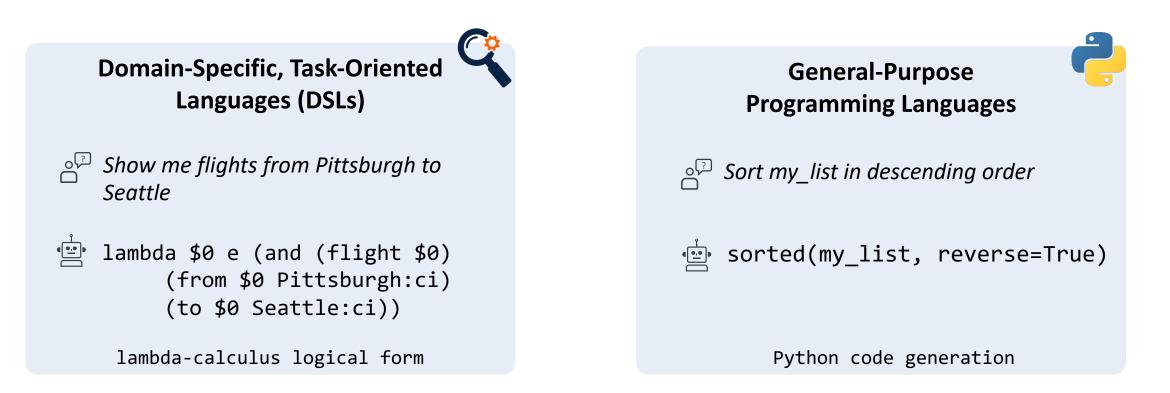
The Semantic Parsing Task

Parsing natural language utterances into machine-executable meaning representations



Machine-executable Meaning Representations

Translating a user's **natural language utterances** (e.g., queries) into machineexecutable **formal meaning representations** (e.g., logical form, SQL, Python code)



Clarification about Meaning Representations (MRs)

Machine-executable MRs (our focus today) executable programs to accomplish a task **MRs for Semantic Annotation** capture the semantics of natural language sentences

> Machine-executable **Meaning Representations**

Show me flights from Pittsburgh to Seattle

lambda \$0 e (and (flight \$0) (from \$0 pittsburgh:ci) (to \$0 seattle:ci))

Lambda Calculus Logical Form

Lambda Calculus

Python, SQL, ...

Meaning Representations For Semantic Annotation

The boy wants to go

(want-01 :arg0 (b / boy) :arg1 (g / go-01))

Abstract Meaning Representation (AMR)

Abstract Meaning Representation (AMR), Combinatory Categorical Grammar (CCG)

Workflow of a Semantic Parser

User's Natural Language Query

Show me flights from Pittsburgh to Seattle

Parsing to Meaning Representation

lambda \$0 e (and (flight \$0)
 (from \$0 pittsburgh:ci)
 (to \$0 seattle:ci))

Execute Programs against KBs

Execution Results (Answer)

Alaska Air 119
 American 3544 -> Alaska 1101
 ...

Semantic Parsing Datasets

Domain-Specific, Task-Oriented Languages (DSLs)

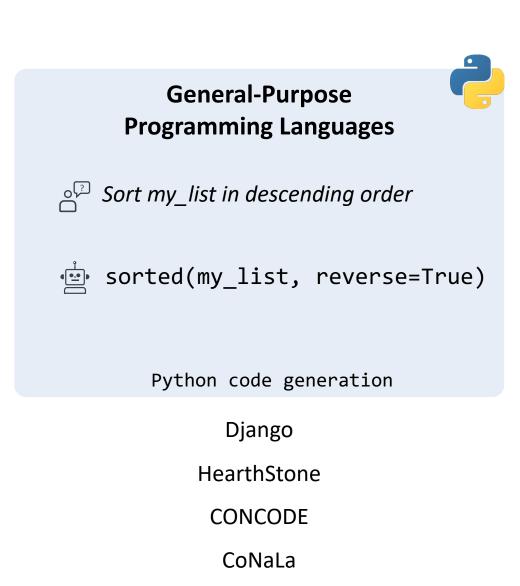
Show me flights from Pittsburgh to Seattle

'E' lambda \$0 e (and (flight \$0) (from \$0 Pittsburgh:ci) (to \$0 Seattle:ci))

lambda-calculus logical form

GeoQuery / ATIS / JOBs WikiSQL / Spider

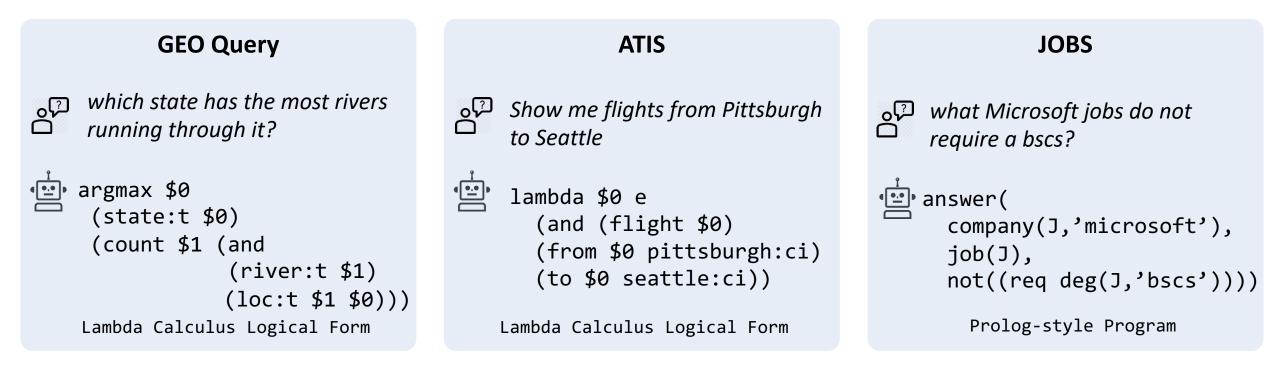
IFTTT



JulCe

GEO Query, ATIS, JOBS

- GEO Query 880 queries about US geographical information
- ATIS 5410 queries about flight booking and airport transportation
- Jobs 640 queries to a job database



Text-to-SQL Tasks

Natural Language Questions with Database Schema

Input Utterance

Show me flights from Pittsburgh to Seattle

Flight		Airport		
FlightNo	<u>UniqueId</u>	- 11	Name	<u>UniqueId</u>
Departure	<u>foreign key</u>		CityName	<u>string</u>
Arrival	<u>foreign key</u>		PublicTransport	<u>boolean</u>

SQL Query

```
SELECT Flight.FlightNo
FROM Flight
JOIN Airport as DepAirport
ON
   Flight.Departure == DepAirport.Name
JOIN Airport as ArvAirport
ON
   Flight.Arrival == ArvAirport.Name
WHERE
    DepAirport.CityName == Pittsburgh
    AND
    ArvAirport.CityName == Seattle
```

Semantic Parsing Datasets

Domain-Specific, Task-Oriented Languages (DSLs)

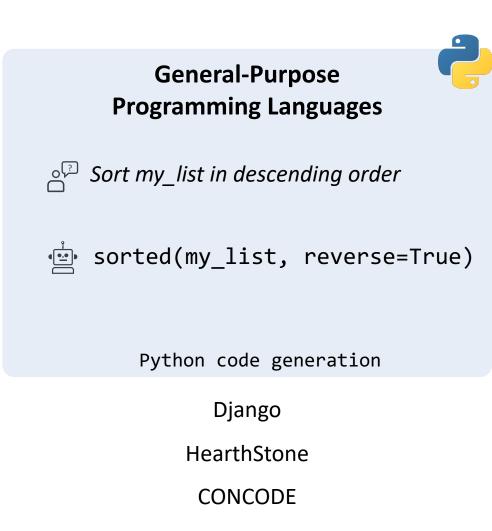
Show me flights from Pittsburgh to Berkeley

'
 lambda \$0 e (and (flight \$0)
 (from \$0 Pittsburgh:ci)
 (to \$0 Berkeley:ci))

lambda-calculus logical form

GeoQuery / ATIS / JOBs WikiSQL / Spider

IFTTT



CoNaLa

Generating General-purpose Programs: HearthStone Dataset

Description properties/fields of a HearthStone card **Target code** implementation as a Python class from HearthBreaker

Input (Card Description)

Name: Divine Favor Cost: 3 Desc: Draw cards until you have as many as your opponent

Target Code (Python class)

Generating General-purpose Programs: CONALA

conala-corpus.github.io

- Get a list of words `words` of a file 'myfile'
- words = open('myfile').read().split() **(..)**

```
Copy the content of file 'file.txt' to file 'file2.txt'
    shutil.copy('file.txt', 'file2.txt')
۰<u>۰</u>
```

```
Check if all elements in list `mylist` are the same
len(set(mylist)) == 1
```


₀⑦ Create a key `key` if it does not exist in dict `dic` and append element `value` to value

```
dic.setdefault(key, []).append(value)
```

- 2,379 Manually annotated, high quality natural language queries
- Programs reflect real-world usage of Python programmers
- Code is highly expressive and compositional
- The task is very hard. Exact match accuracy is low. Still evaluated as a text generation problem using fuzzy metrics like BLEU

Generating General-purpose Programs: SIMPLE PYTHON CODE

```
def solution(lst):
    """Given a non-empty list of integers, return the sum of all of the odd elements
    that are in even positions.
    Examples
    solution([5, 8, 7, 1]) ==>12
    solution([3, 3, 3, 3, 3]) ==>9
    solution([30, 13, 24, 321]) ==>0
    """
    return sum(lst[i] for i in range(0,len(lst)) if i % 2 == 0 and lst[i] % 2 == 1)
```

- **Task:** Fill in the function body given function signature and doc-string
- Examples also includes unit-tests, making them directly executable
- Evaluation is done by checking if the model-predicted code could pass unit tests

[Chen et al., 2021; Austin et al., 2021]

Generating General-purpose Programs: COMPETITION PROBLEMS

Problem	Generated Code	Test Cases		
H-Index Given a list of citations counts, where each citation is a nonnegative integer, write a function h_index that outputs the h-index. The h-index is the largest number <i>h</i> such that <i>h</i> papers have each least <i>h</i> citations. Example:	<pre>def h_index(counts): n = len(counts) if n > 0: counts.sort() counts.reverse() h = 0 while (h < n and counts[h]-1>=h): h += 1 return h else:</pre>	<pre>Input: [1,4,1,4,2,1,3,5,6] Generated Code Output: 4</pre>		
Input: [3,0,6,1,4] Output: 3	return 0	Generated Code Output: 15 ✓		

• Coding competition problems provide a large-scale testbed for code generation

[Example from Hendrycks et al. 2021. More in Alet et al., 2021; Zavershynskyi et al., 2018]

Supervised Learning of Semantic Parsers

User's Natural Language Query

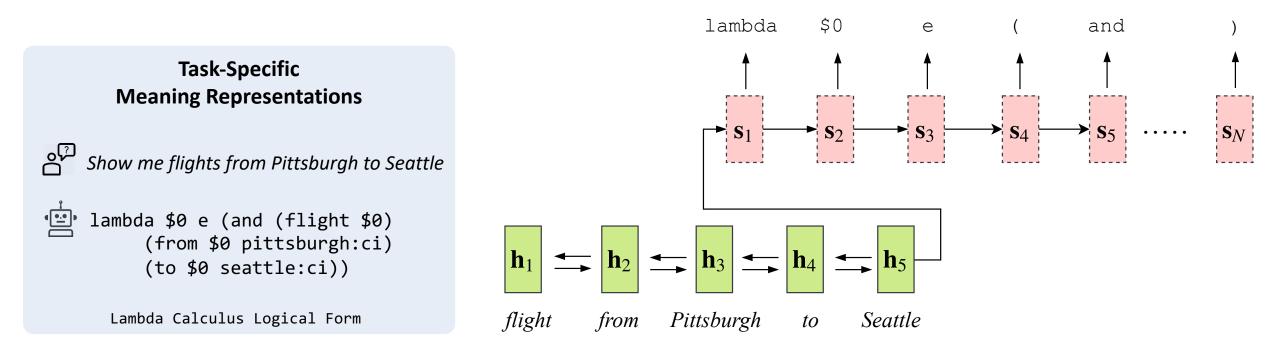
Show me flights from Pittsburgh to Seattle

Parsing to Meaning Representation

```
lambda $0 e (and (flight $0)
    (from $0 pittsburgh:ci)
    (to $0 seattle:ci))
```

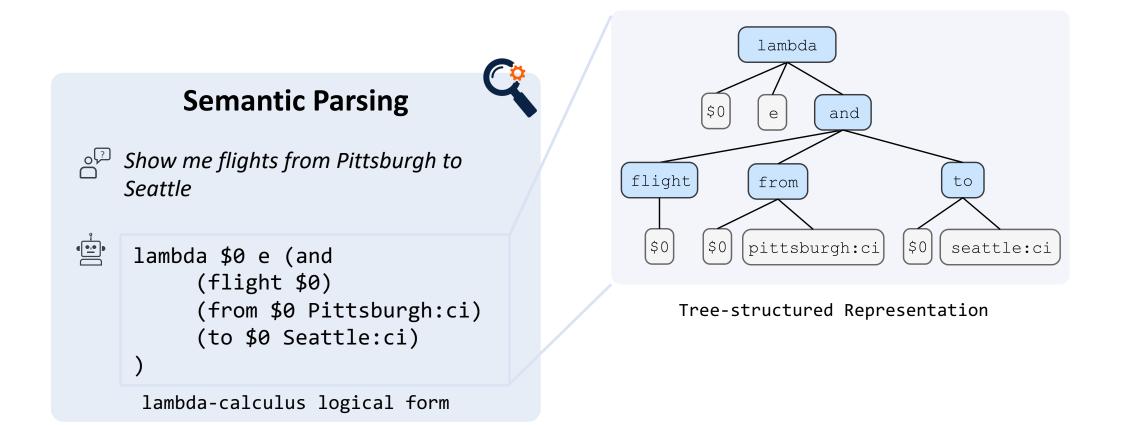
Train a neural semantic parser with source natural language utterances and target programs

Semantic Parsing as Sequence-to-Sequence Transduction



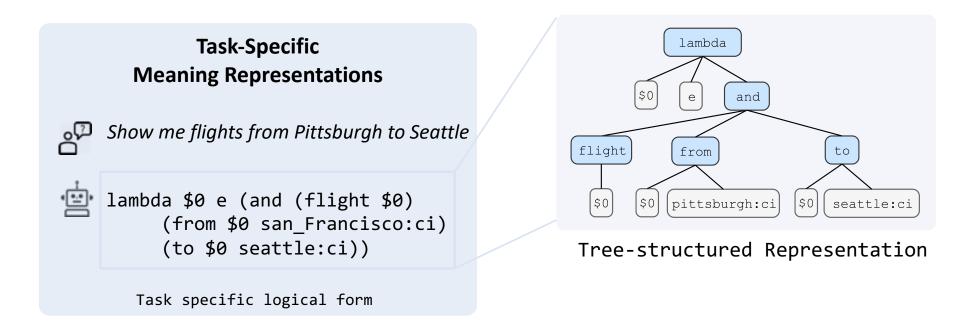
- Treat the target meaning representation as a sequence of linearized tokens
- Reduce the structured prediction task as another sequence-to-sequence learning problem

Meaning Representations have Strong Structures



Issues with Predicting Linearized Programs

- Meaning Representations (e.g., a database query) have strong underlying structures.
- **Issue** Using vanilla seq2seq models ignore the rich structures of meaning representations, and could generate invalid outputs that are not trees



Core Research Question for Better Models

How to add inductive biases to networks to better capture the **program structures**?

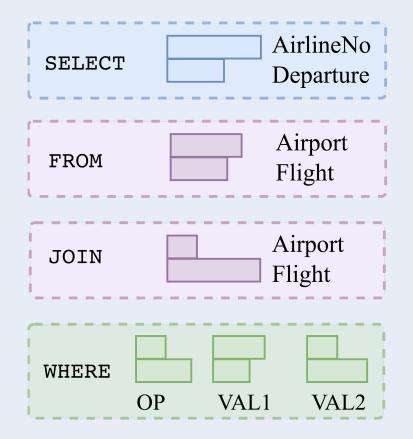
Encode Utterance and In-Domain Knowledge Schema

Input Utterance

Show me flights from Pittsburgh to Berkeley

Flight		Airport		
FlightNo	<u>UniqueId</u>	- 11	Name	<u>UniqueId</u>
Departure	<u>foreign key</u>		CityName	<u>string</u>
Arrival	<u>foreign key</u>		PublicTransport	<u>boolean</u>

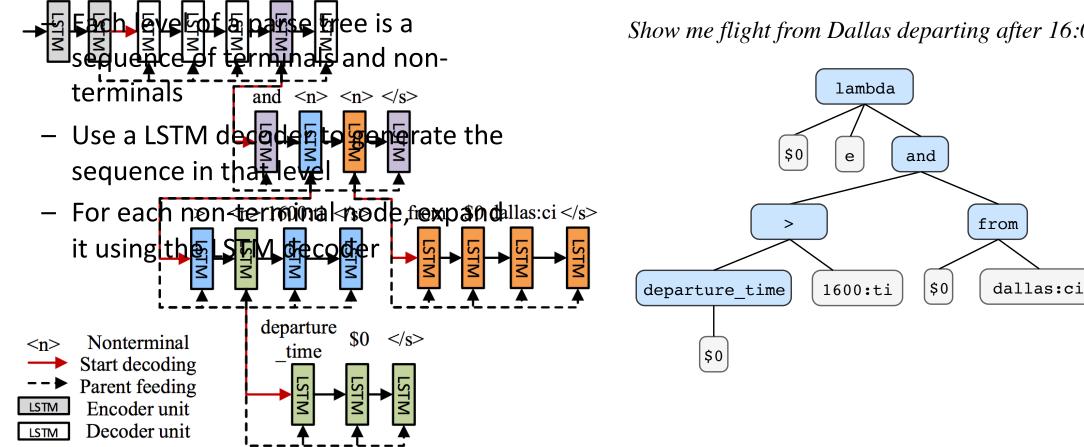
Predict Programs Following Task-Specific Program Structures



[Xu et al., 2017; Yu et al., 2018]

Structure-aware Decoding for Semantic Parsing

- **Seq2Tree** Generate the parse tree of a program using a hierarchy of recurrent neural decoders following the tree structure
- Sequence decoding Process

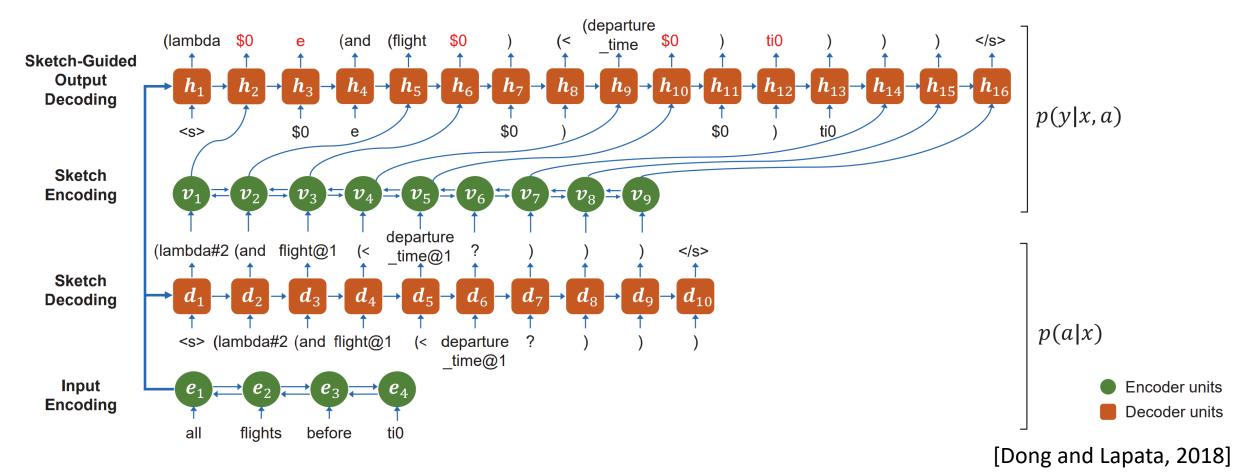


Show me flight from Dallas departing after 16:00

[Dong and Lapata, 2016]

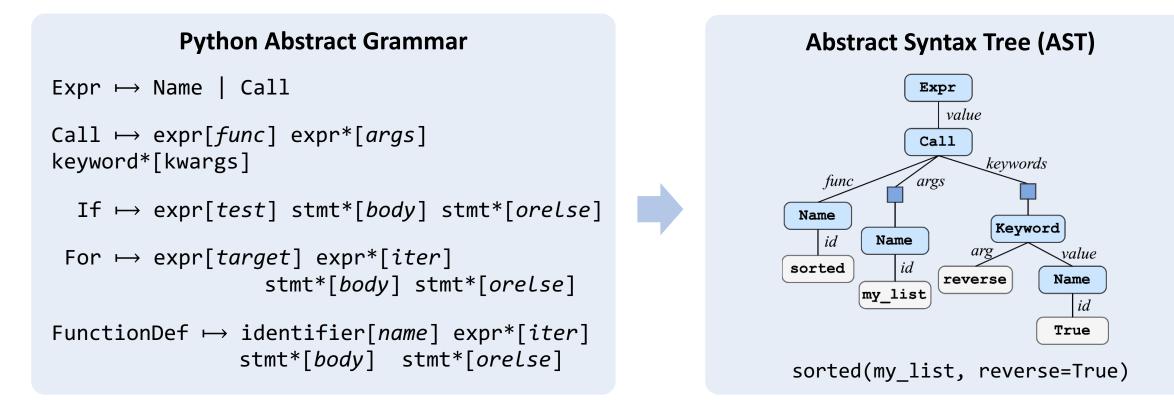
Structure-aware Decoding: Model Decomposition in Programming

- **Coarse-to-Fine Decoding** decodes a coarse **sketch** of the target logical form first and then decode the full logical form conditioned on both the input query and the sketch
- Explicitly model a **coarse global structure** of the logical form, and use it to guide the generation of the **fine-grained structure**



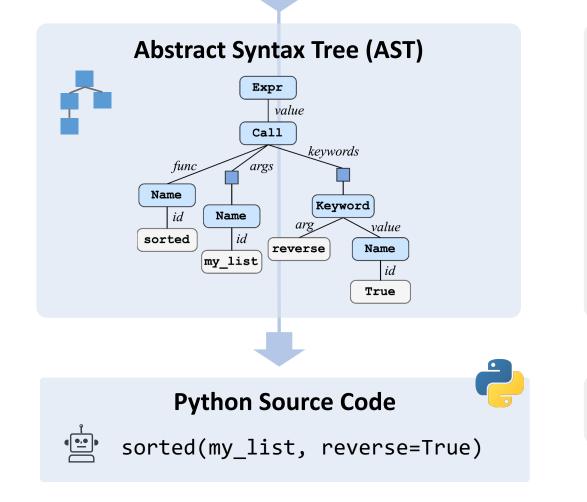
Grammar-constrained Decoding

- Previously introduced methods could generate tree-structured representations, but cannot guarantee they are grammatically correct.
- Meaning representations (e.g., Python) have strong underlying grammar/syntax
- How can we explicitly leverage the grammar of programs for better generation?



Sort my_list in descending order

General-purpose Syntax-driven Program Generation



 Use Abstract Syntax Trees as general-purpose intermediate meaning representations

- $p_{\theta}(\mathbf{r})$ is a seq-to-tree model using program grammar as prior syntactic

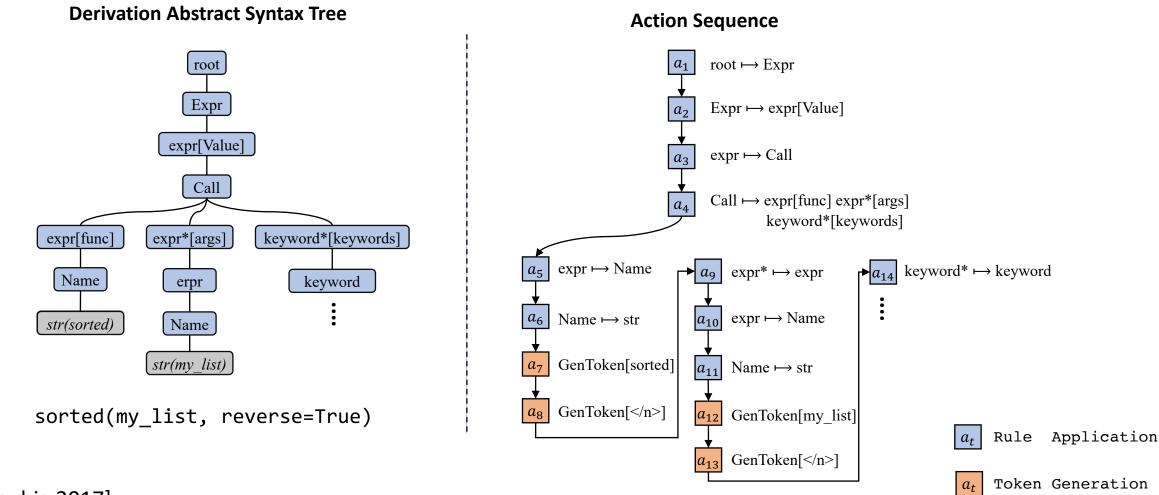
knowledge to guide neural decoding

Deterministic transformation to source code

[Yin and Neubig 2017]

$p_{\theta}(\mathbf{r} | \mathbf{r})$: AST Generation using Auto-regressive Models

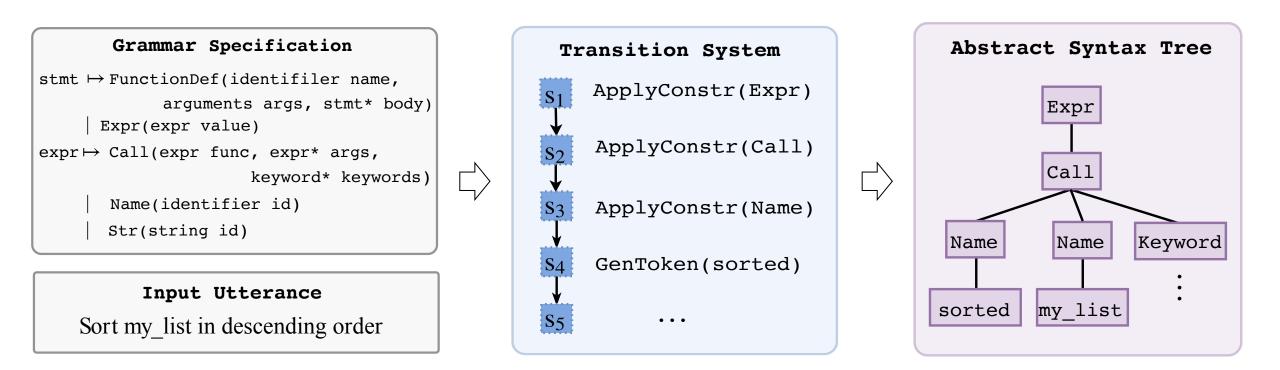
Factorize the generation story of an AST into sequential application of *actions* $\{a_t\}$:



[Yin and Neubig 2017]

TranX: Transition-based Abstract SyntaX Parser

- Convenient interface to specify task-dependent grammar in plain text
- Customizable conversion from abstract syntax trees to domain-specific programs
- Built-in support for many languages: Python, SQL, Lambda Calculus, Prolog...

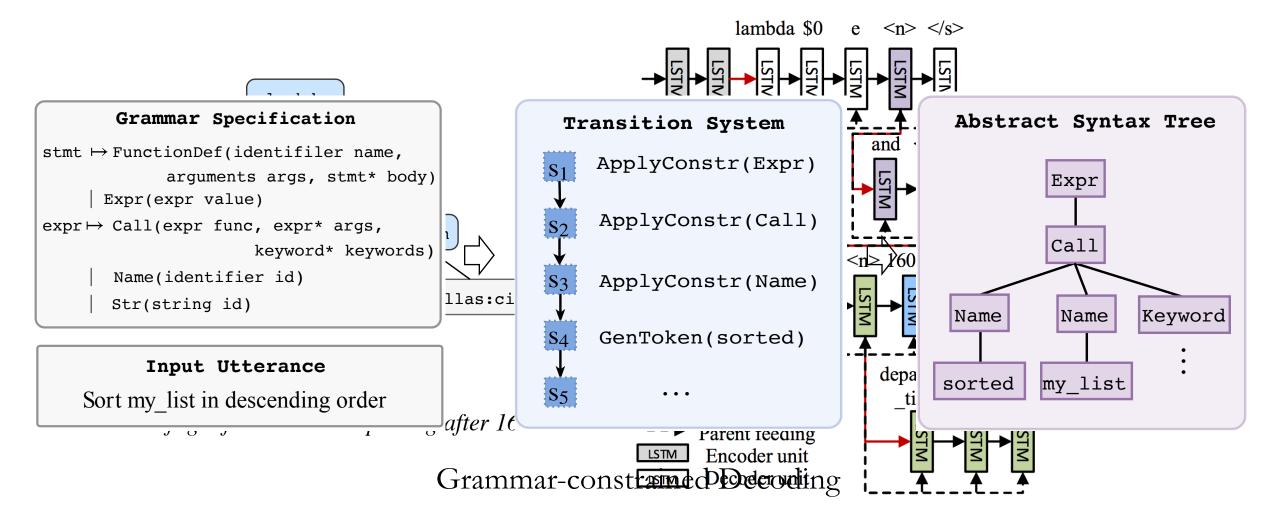


github.com/pcyin/tranX

[Yin and Neubig 2018, Yin and Neubig 2019]

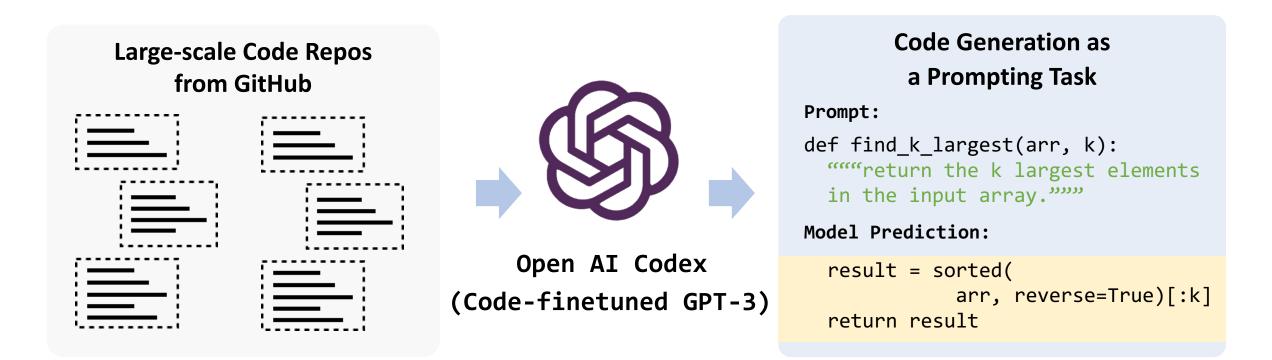
Summary: Supervised Learning of Semantic Parsers

Key Research Question: constrain the output space following the structure of programs



Structure-aware Decoding

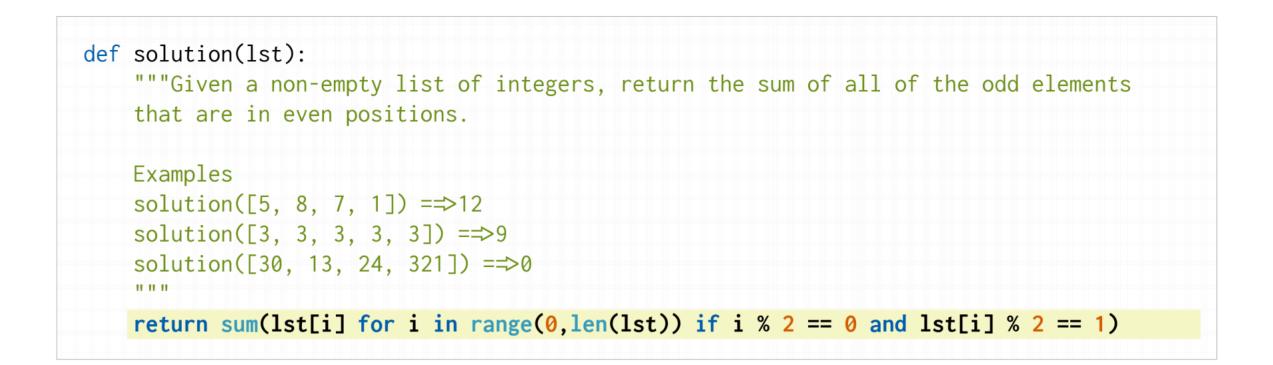
Wait.... Do We Really Need Program Structures?



• **Open Al Codex**: Large-scale transformer language model pre-trained on 170+ GB of GitHub code data

[Chen et al., 2021; Austin et al., 2021]

Impressive Performance of Large Code Language Models



Solves nearly 50% such simple coding programs using only 10 samples

Do We Really Need Program Structures?

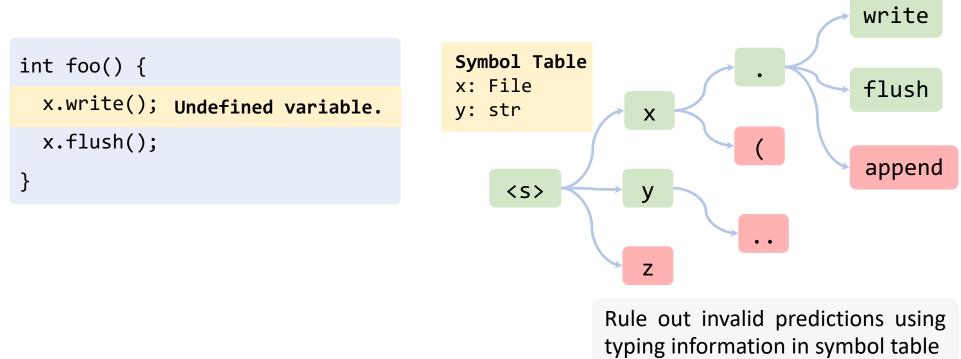
- Perhaps.... not? Large language models trained on code seldom make syntax errors
- However, language models treat code as plain text without modeling its rich semantics (e.g., variables defined in the context).
- We hope to language models could capture program semantics with large-scale data, but this is not very sample efficient.

```
int foo() {
    x.write(); Undefined variable.
    x.flush();
}
```

Large language models are still prune to such semantic errors.

How Constrained-decoding can be Useful?

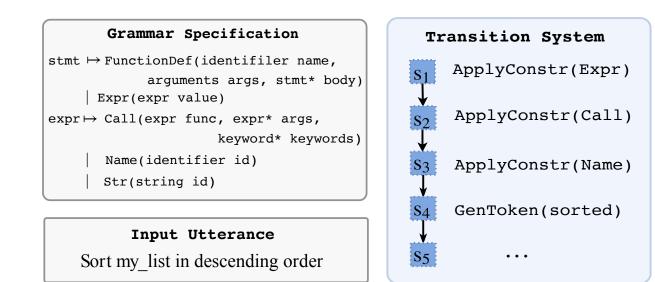
- Instead of constraining the generation based on the syntactic grammar, we constrain generation using the semantic properties of the programmatic context
 - Semantic properties can be inferred using a static program analyzer
 - We can augment the **neural** model with information from the **symbolic** analyzer



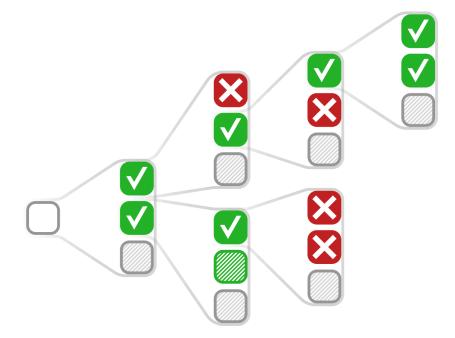
[Examples adapted from Mukherjee et al., 2021]

Brief Summary

- **Grammar-constrained decoding** was quite popular for semantic parsing and code generation before pre-trained language models.
- With **pre-trained language models** on code, constrained decoding using semantic information of programs could still be useful to control and decoding process and prune invalid predictions.



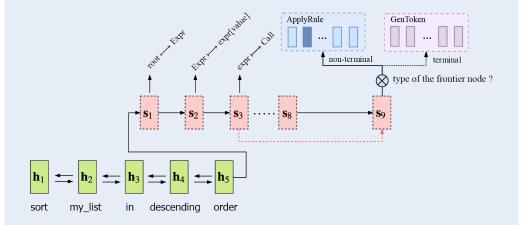
Grammar-constrained Decoding



Generalized-constrained Decoding [Scholak et al., 2021; Mukherjee et al., 2021]

Supervised Learning: the Data Inefficiency Issue

Supervised Parsers are Data Hungry



Purely supervised neural semantic parsing models require large amounts of training data

Data Collection is Costly

Copy the content of file 'file.txt' to file 'file2.txt'
shutil.copy('file.txt','file2.txt')

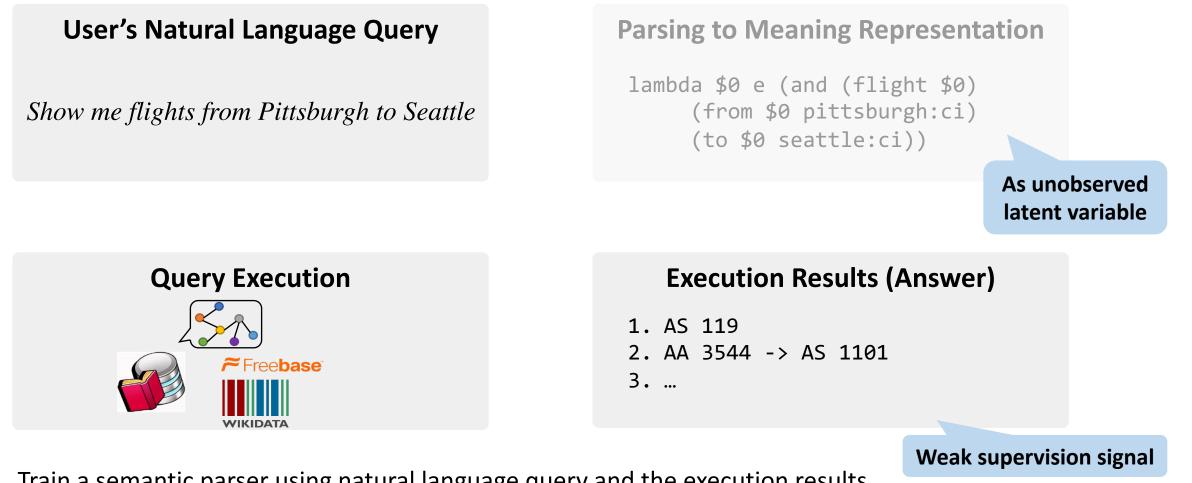
Get a list of words `words` of a file 'myfile'
words = open('myfile').read().split()

Check if all elements in list `mylist` are the same
len(set(mylist)) == 1

Collecting parallel training data costs and

*Examples from conala-corpus.github.io [Yin et al., 2018] 1700 USD for <3K Python code generation examples

Weakly-supervised Learning of Semantic Parsers



Train a semantic parser using natural language query and the execution results (a.k.a. Semantic Parsing with Execution)

[Clarke et al., 2010; Liang et al., 2011]

Weakly-supervised Parsing as Reinforcement Learning



Answer: New York

City.OrderBy(Population) .First() => Result: Tokyo

City.Filter(Country=='USA')

.OrderBy(Population)

.First() => Result: New York

City.Filter(Country=='USA')

.OrderBy(GDP)

.First() => Result: New York

Weakly-supervised Learning -- Challenges

Hypothesized Programs

City.OrderBy(Population)
 .First() => Result: Tokyo

City.Filter(Country=='USA')
 .OrderBy(Population)
 .First() => Result: New York

City.Filter(Country=='USA')
.OrderBy(GDP)
.First() => Result: New York

 (\mathbf{X})

Large Search Space

Exponentially large search space w.r.t. the size of programs

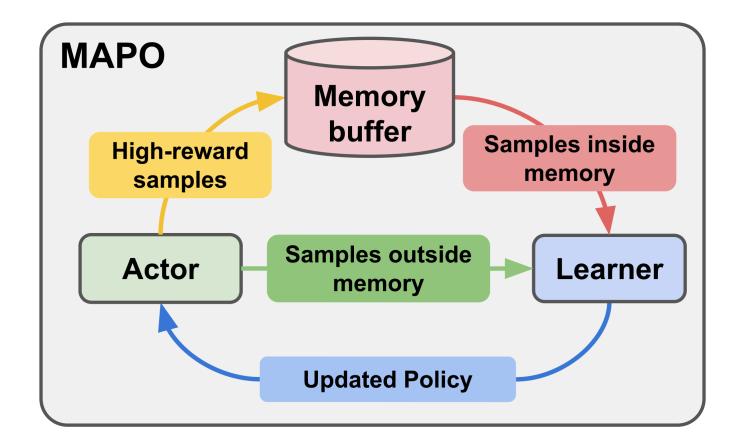
Very Sparse Rewards

Only very few programs are actually correct

Spurious Programs

Spurious programs could also hit the correct answer, leading to noisy reward signals.

Efficient Search: Cache High-reward Programs



- Use a memory buffer to cache high-rewarding logical forms sampled so far
- During training, bias towards high-rewarding queries in the memory buffer

[Liang et al., 2018]

Few-shot Learning: use a few annotated examples

o[[]^{2]} Translate questions into programs:

```
Question 1: What is the capital of UK.
Program 1: Country.Filter(Name='UK').Select(Capital)
Question 2: What is the most populous city in United States?
Program 2: City.Filter(Country=='USA').OrderBy(Population).First()
```

- Semantic Parsing as a prompting task using large language models.
- Use a handful amount of demonstration examples in the prompt, ask the model to generate a continuation.

Few-shot Learning: Represent Programs as Canonical Sentences

Translate questions into programs: Question 1: What is the capital of UK. Solution: From Country, get rows whose name is 'UK', select Capital Question 2: What is the most populous city in United States? Solution: From City, get rows whose country is USA, rank by Population, get first row Question 3: Show me countries with the highest GDP? Solution: From Country, rank by GDP, get first row.

- Better prompt a language model using pseudo-English sentences.
- We can perform constrained decoding on those canonical utterances.

[Wang et al., 2015; Shin et al., 2021; Shin et al., 2022]

Zero-shot Learning: Learning using only synthetic Data

Synchronous Context Free Grammar based on Domain Schema

Allan Turing's citations

GetProperty(\$Entity , \$property) **\$Entities** \mapsto **\$property** of **\$Entity** \$Entities → \$EntType (\$PrepNP | \$Compl.) \$Entity

\$Compl. \mapsto that has the largest **\$property**

Synthetic Canonical Examples

 $PrepNP \mapsto prep$

Citation count of Alan Turing

GetProperty(alan turing, citation num)

Most recent paper in deep learning

Paper that has the largest

publication year and in deep learning

Iterative Paraphrasing by Paraphrase Generation Model

finite Horizonte Sensitive Sensiti

The citations of Allan Turing

How many citations did Allan Turing get?

- How many citations does Allan Turing have?
- *Recent research on deep learning Most recent research in deep learning*
- *What is the latest deep learning study?*
- What's new in deep learning?

What's the latest deep learning paper?

- Latest studies on deep learning
- Paper in deep learning and the biggest year of publication
- *What is the biggest year for publishing deep learning?*

[Yin et al., 2021; Wang et al. 2015; Xu et al., 2019; Xu et al., 2020]

Conclusion: Workflow of a Semantic Parser

User's Natural Language Query

Show me flights from Pittsburgh to Seattle

Parsing to Meaning Representation

lambda \$0 e (and (flight \$0)
 (from \$0 san_Francisco:ci)
 (to \$0 seattle:ci))

Execution Results (Answer)

1. AS 119 2. AA 3544 -> AS 1101 3. ...

Conclusion: Learning Paradigms

Supervised Semantic Parsing

- 2000	?	1
0	ゲ	5
\sim	Ŷ	

What is the most populous city in United States?

City.Filter(Country=='USA')

.OrderBy(Population)
.First() => Result: New York

Tree-based Decoding

Grammar-constrained Decoding

Few/zero-shot Training

Weakly Supervised Semantic Parsing

What is the most populous city in United States?

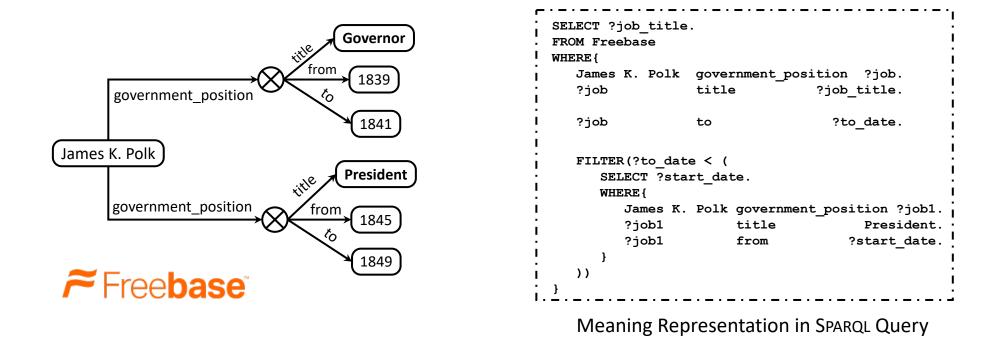
City	Country	Population	GDP	
New York	USA	8.62M	1275B	
Hong Kong	China	7.39M	341.4B	
Tokyo	Japan	9.27M	1800B	

Answer: New York

Efficient Exploration over Large Search Space Tackle Spurious Programs

Challenge: Natural Language is Highly Compositional

Q: what was James K. Polk before he was president?

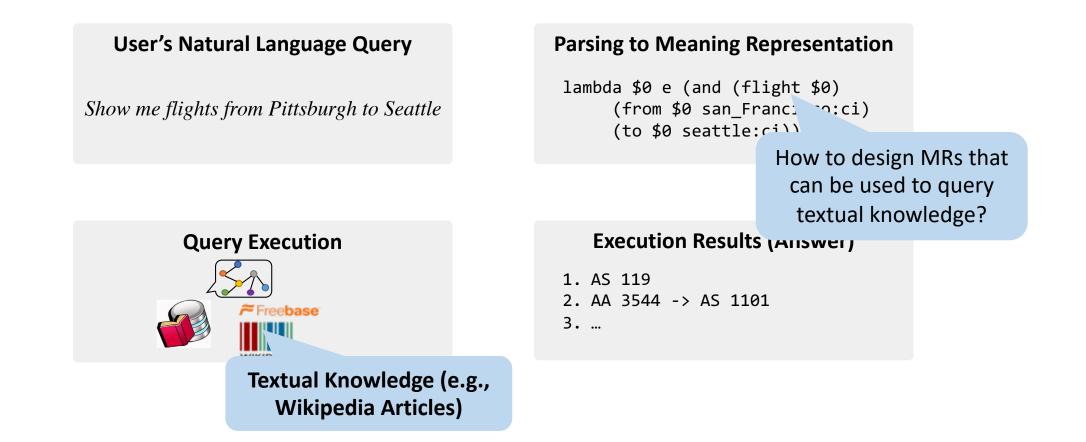


• Sometimes even a short NL phrase/clause has complex structured grounding

[Yin et al., 2015]

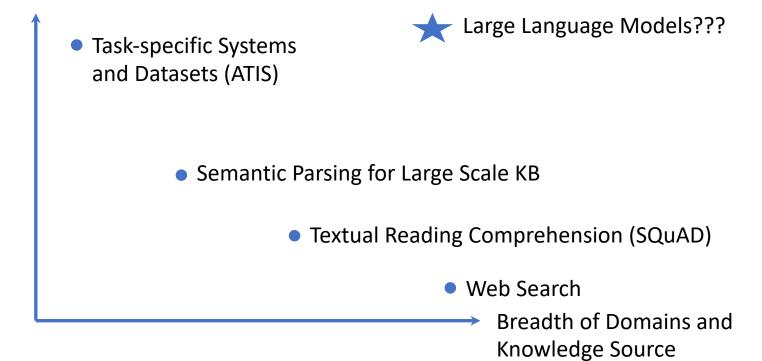
Challenge: Scale to Open-domain Knowledge

- Most existing works focus on parsing natural language to queries to structured, curated knowledge bases
- Most of the world's knowledge has unstructured, textual form!
 - Machine Reading Comprehension tasks (e.g., SQUAD) use textual knowledge



Final Notes: Challenges

Depth of Semantic Compositionality

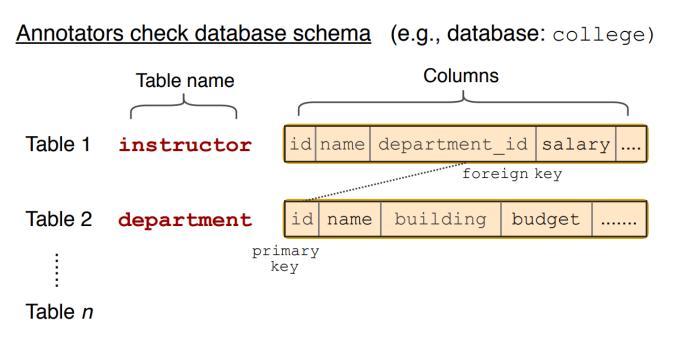


[Figure adapted from Pasupat and Liang, 2015]

Supplementary Slides

More Semantic Parsing Datasets

Spider



Annotators create:

Complex
questionWhat are the name and budget of the departments
with average instructor salary greater than the
overall average?Complex
SQLSELECT T2.name, T2.budget
FROM instructor as T1 JOIN department as
T2 ON T1.department_id = T2.id
GROUP BY T1.department_id
HAVING avg(T1.salary) >
(SELECT avg(salary) FROM instructor)

- Examples from 200 databases
- Target SQL queries involve joining fields over multiple tables
- Non-trivial Compositionality
 - Nested queries
 - Set Union

...

https://yale-lily.github.io

[Yu et al., 2018]

WikiSQL Dataset

Table: CFLDraft				Question:	
Pick #	CFL Team	Player	Position	College	How many CFL teams are from York College?
27	Hamilton Tiger-Cats	Connor Healy	DB	Wilfrid Laurier	SQL: SELECT COUNT CFL Team FROM CFLDraft WHERE College = "York" Result:
28	Calgary Stampeders	Anthony Forgone	OL	York	
29	Ottawa Renegades	L.P. Ladouceur	DT	California	
30	Toronto Argonauts	Frank Hoffman	DL	York	
					2

- 80,654 examples of Table, Question, SQL Query and Answer
- **Context** a small, single database table extracted from a Wikipedia article
- Target an SQL query

HearthStone (HS) Card Dataset

- Description: properties/fields of an HearthStone card
- Target code: implementation as a Python class from HearthBreaker

Utterance (Card Property)

<name> Divine Favor </name> <cost> 3 </cost> <desc> Draw cards until you have as many in hand as your opponent </desc>

Target Code (Python class)

IFTTT Dataset

- Over 70K user-generated task completion snippets crawled from ifttt.com
- Wide variety of topics: home automation, productivity, etc.
- Domain-Specific Language: IF-THIS-THEN-THAT structure

https://ifttt.com/applets/1p-autosaveyour-instagram-photos-to-dropbox IFTTT Natural Language Query and Meaning Representation

Autosave your Instagram photos to Dropbox

IF Instagram.AnyNewPhotoByYou
THEN Dropbox.AddFileFromURL

Domain-Specific Programming Language

Django Annotation Dataset

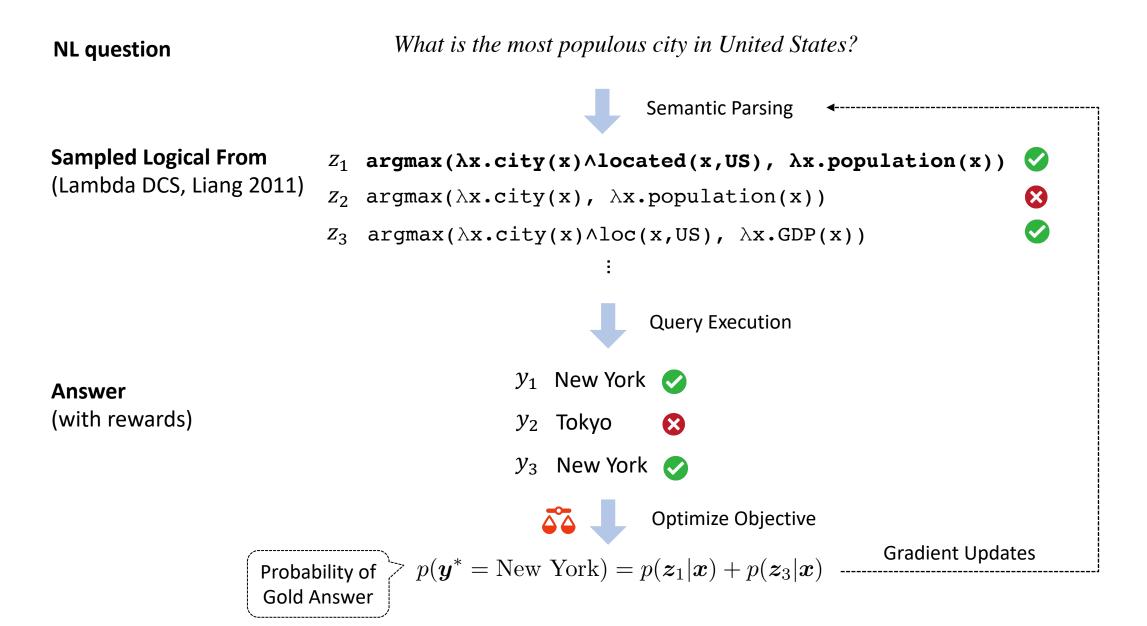
- Description: manually annotated descriptions for 10K lines of code
- Target code: one liners
- Covers basic usage of Python like variable definition, function calling, string manipulation and exception handling

Utterance *call the function _generator, join the result into a string, return the result*

Target return ''.join(_generator())

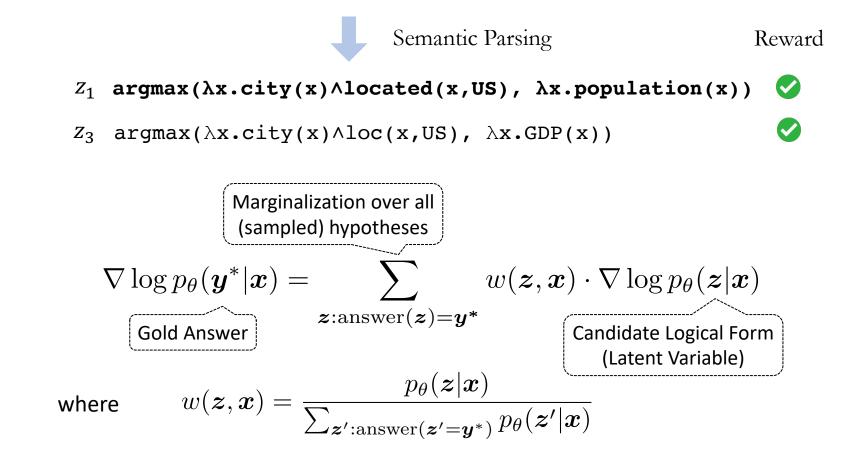
Notes for Weakly Supervised Parsing

Weakly-supervised Parsing as Reinforcement Learning



Maximum Marginal Likelihood Training Objective

What is the most populous city in United States?

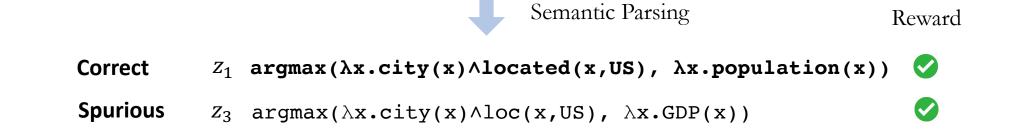


• Intuitively, the gradient from each candidate logical form is weighted by its normalized probability. The more likely the logical form is, the higher the weight of its gradient

Weakly-supervised Learning Issue 1: Spurious Logical Forms

• **Spurious Logical Forms** have the correct execution result, but are semantically wrong

What is the most populous city in United States?

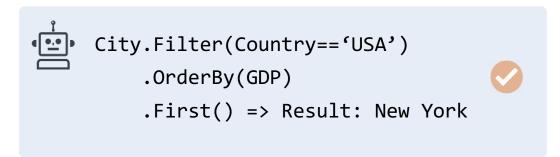


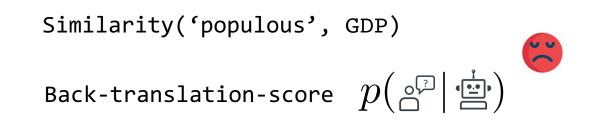
- Solutions:
 - Encourage diversity in gradient updates by updating different hypotheses with roughly equal gradient weights (Guu *et al.*, 2017)
 - Use prior lexical knowledge to promote promising hypotheses. E.g., *populous* has strong association with λx .population(x) (Misra *et al.*, 2018)

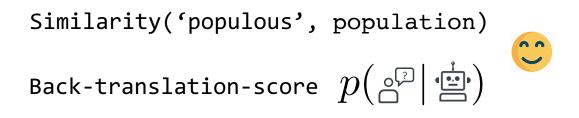
Tackle Spurious Programs using Heuristics

 $V_{1}^{?}$ W_{2}

What is the most populous city in United States?







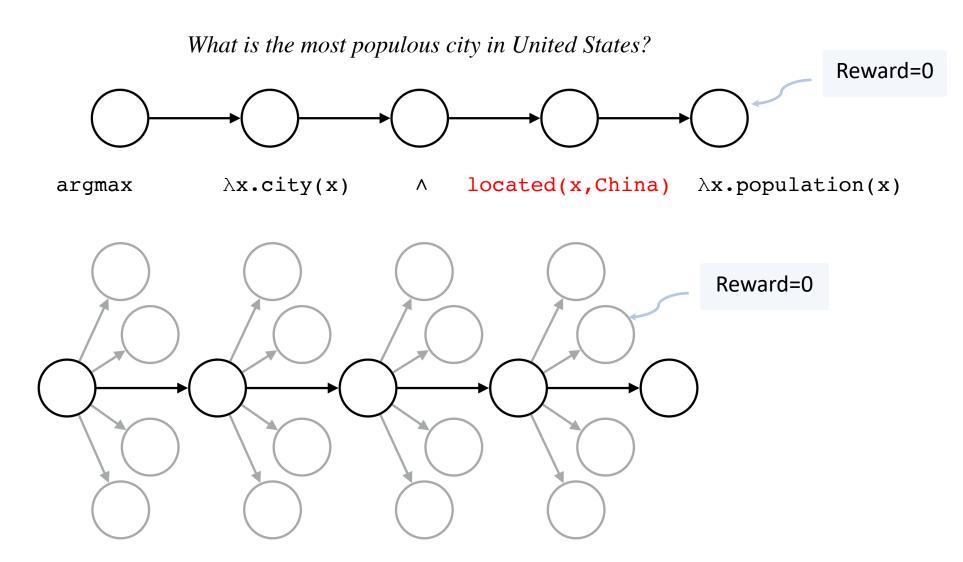
[Guu et al., 2017; Misra et al., 2018; Cheng et al., 2018]

Weakly-supervised Learning Issue 2: Search Space

- The space of possible logical forms with correct answers is exponentially large
- How to search candidate logical forms more efficiently?

$$\nabla \log p_{\theta}(\boldsymbol{y}^{*}|\boldsymbol{x}) = \sum_{\substack{\boldsymbol{z}: \text{answer}(\boldsymbol{z}) = \boldsymbol{y}^{*} \\ \text{Prohibitively Large} \\ \text{Search Space}} w(\boldsymbol{z}, \boldsymbol{x}) \cdot \nabla \log p_{\theta}(\boldsymbol{z}|\boldsymbol{x})$$

Efficient Search: Single Step Reward Observation



Factorize the reward into each single time step (a.k.a., reward shaping) [Suhr and Artzi, 2018]