
Neuro-symbolic NLP

Jacob Andreas / MIT 6.884 / Fall 2020

lug kiki wif

dax kiki lug

dax fep

lug blicket wif

[Lake, Linzen and Baroni 2020]

lug kiki wif

dax kiki lug

dax fep

lug blicket wif

wif fep

[Lake, Linzen and Baroni 2020]

lug kiki wif

dax kiki lug

dax fep

lug blicket wif

wif fep

[Lake, Linzen and Baroni 2020]

lug kiki wif

dax kiki lug

dax fep

lug blicket wif

wif fep

wif blicket lug kiki dax fep

[Lake, Linzen and Baroni 2020]

lug kiki wif

dax kiki lug

dax fep

lug blicket wif

wif fep

wif blicket lug kiki dax fep

[Lake, Linzen and Baroni 2020]

lug kiki wif

dax kiki lug

dax fep

lug blicket wif

wif fep

wif blicket lug kiki dax fep

[Lake, Linzen and Baroni 2020]

lug kiki wif

dax kiki lug

dax fep

lug blicket wif

wif fep

wif blicket lug kiki dax fep

zup kiki wif

[Lake, Linzen and Baroni 2020]

lug kiki wif

dax kiki lug

dax fep

lug blicket wif

wif fep

wif blicket lug kiki dax fep

zup kiki wif

[Lake, Linzen and Baroni 2020]

lug kiki wif

dax kiki lug

dax fep

lug blicket wif

wif fep

wif blicket lug kiki dax fep

zup kiki wif

86% of crowd workers

70%

~82%

[Lake, Linzen and Baroni 2020]

lug kiki wif

dax kiki lug

dax fep

lug blicket wif

wif fep

wif blicket lug kiki dax fep

zup kiki wif

86% of turkers

70%

~82% Why?
[Lake, Linzen and Baroni 2020]

lug kiki wif

dax kiki lug

dax fep

lug blicket wif

wif fep

wif blicket lug kiki dax fep

zup kiki wif

0% of randomly initialized RNNs

0%

0%

[Lake, Linzen and Baroni 2020]

lug kiki wif

dax kiki lug

dax fep

lug blicket wif

wif fep

wif blicket lug kiki dax fep

zup kiki wif

0% of randomly initialized RNNs

0%

0% Why?
[Lake, Linzen and Baroni 2020]

Successes of deep learning: vision

cucumber

telephone_pole

irish_setter

Successes of deep learning: NLP

En un lugar de la
Mancha, de cuyo nombre
no quiero acordarme, no
ha much tiempo que
vivía un hidalgo de los de
lanza en astillero, adarga
antigua, rocín flaco y
galgo corredor.

Somewhere in La Mancha,
in a place whose name I
do not care to remember,
a gentleman lived not long
ago, one of those who has
a lance and ancient shield
on a shelf and keeps a
skinny nag and a
greyhound for racing.

[Grossman 2005]

Successes of deep learning: NLP

En un lugar de la
Mancha, de cuyo nombre
no quiero acordarme, no
ha much tiempo que
vivía un hidalgo de los de
lanza en astillero, adarga
antigua, rocín flaco y
galgo corredor.

In a place in La Mancha,
whose name I do not want
to remember, it was not
long ago that a nobleman
of the shipyard spear, old
shield, skinny nag and
running greyhound lived.

[http://translate.google.com]

But...

Adversarial Examples for Evaluating Reading Comprehension Systems

Robin Jia
Computer Science Department

Stanford University
robinjia@cs.stanford.edu

Percy Liang
Computer Science Department

Stanford University
pliang@cs.stanford.edu

Abstract

Standard accuracy metrics indicate that
reading comprehension systems are mak-
ing rapid progress, but the extent to which
these systems truly understand language
remains unclear. To reward systems
with real language understanding abili-
ties, we propose an adversarial evalua-
tion scheme for the Stanford Question An-
swering Dataset (SQuAD). Our method
tests whether systems can answer ques-
tions about paragraphs that contain adver-
sarially inserted sentences, which are au-
tomatically generated to distract computer
systems without changing the correct an-
swer or misleading humans. In this ad-
versarial setting, the accuracy of sixteen
published models drops from an average
of 75% F1 score to 36%; when the ad-
versary is allowed to add ungrammatical
sequences of words, average accuracy on
four models decreases further to 7%. We
hope our insights will motivate the de-
velopment of new models that understand
language more precisely.

1 Introduction

Quantifying the extent to which a computer sys-
tem exhibits intelligent behavior is a longstanding
problem in AI (Levesque, 2013). Today, the stan-
dard paradigm is to measure average error across
a held-out test set. However, models can succeed
in this paradigm by recognizing patterns that hap-
pen to be predictive on most of the test examples,
while ignoring deeper, more difficult phenomena
(Rimell et al., 2009; Paperno et al., 2016).

In this work, we propose adversarial evaluation
for NLP, in which systems are instead evaluated
on adversarially-chosen inputs. We focus on the

Article: Super Bowl 50
Paragraph: “Peyton Manning became the first quarter-
back ever to lead two different teams to multiple Super
Bowls. He is also the oldest quarterback ever to play
in a Super Bowl at age 39. The past record was held
by John Elway, who led the Broncos to victory in Super
Bowl XXXIII at age 38 and is currently Denver’s Execu-
tive Vice President of Football Operations and General
Manager. Quarterback Jeff Dean had jersey number 37
in Champ Bowl XXXIV.”
Question: “What is the name of the quarterback who
was 38 in Super Bowl XXXIII?”
Original Prediction: John Elway
Prediction under adversary: Jeff Dean

Figure 1: An example from the SQuAD dataset.
The BiDAF Ensemble model originally gets the
answer correct, but is fooled by the addition of an
adversarial distracting sentence (in blue).

SQuAD reading comprehension task (Rajpurkar
et al., 2016), in which systems answer questions
about paragraphs from Wikipedia. Reading com-
prehension is an appealing testbed for adversarial
evaluation, as existing models appear successful
by standard average-case evaluation metrics: the
current state-of-the-art system achieves 84.7% F1
score, while human performance is just 91.2%.1

Nonetheless, it seems unlikely that existing sys-
tems possess true language understanding and rea-
soning capabilities.

Carrying out adversarial evaluation on SQuAD
requires new methods that adversarially alter read-
ing comprehension examples. Prior work in com-
puter vision adds imperceptible adversarial pertur-
bations to input images, relying on the fact that
such small perturbations cannot change an image’s
true label (Szegedy et al., 2014; Goodfellow et al.,
2015). In contrast, changing even one word of a

1
https://rajpurkar.github.io/

SQuAD-explorer/

ar
X

iv
:1

70
7.

07
32

8v
1

 [c
s.C

L]
 2

3
Ju

l 2
01

7

Q: What was the name of the quarterback who was 38
in Super Bowl XXXIII?

A: Jeff Dean.

[Jia & Liang 2017]

But...

But...

But...
4.1 Can LMs perform robust comparison?
Comparing two numeric values, requires repre-
senting the values and performing the comparison
operations. In §3 we saw the AGE-COMPARISON
task, in which the ages of two people were com-
pared. We found that ROBERTA-L and to some
extent BERT-WWM were able to handle this
task, performing well under the controls. We ex-
pand on this to related comparison tasks and per-
turbations that assess the sensitivity of LMs to the
particular context and to the numerical value.

Is ROBERTA-L comparing numbers or ages?
ROBERTA-L obtained zero-shot accuracy of 96%
in AGE-COMPARISON. But is it robust? We test
this using perturbations to the task and present
the results in Figure 4. Figure 4A corresponds
to the experiment from §3, where we observed
that ROBERTA-L predicts “younger” (blue pix-
els) and “older” (white pixels) almost perfectly.

To test whether ROBERTA-L can compare ages
given the birth year rather than the age, we use the
statement “A person born in YEAR-1 is [MASK]
than me in age, If i was born in YEAR-2.” Fig-
ure 4B shows that ROBERTA-L correctly flips
“younger” to “older” (76% accuracy), reasoning
that a person born in 1980 is older than a person
born in 2000.

However, when evaluated on the exact same
statement, but with values corresponding to typi-
cal ages instead of years (Figure 4D), ROBERTA-
L obtains an accuracy of 12%, consistently out-
putting the wrong prediction. It seems that since
the values are typical ages and not years, it dis-
regards the statement, performing the comparison
based on the values only and not the language. We
will revisit this tendency in §4.4.

Symmetrically, Figure 4C shows results when
numeric values of ages are swapped with typical
years of birth. ROBERTA-L is unable to handle
this, always predicting “older”. This emphasizes
that the model is sensitive to the argument values.

Can Language Models compare object sizes?
Comparing physical properties of objects requires
knowledge of the numeric value of the property
and the ability to perform comparison. Previ-
ous work has shown that such knowledge can be
extracted from text and images (Bagherinezhad
et al., 2016; Forbes and Choi, 2017; Yang et al.,
2018a; Elazar et al., 2019). Can LMs do the same?
Probe Construction We construct statements of

Figure 4: AGE COMPARISON perturbations. Left side
graphs are age-comparison, right side graphs are age
comparison by birth-year. In the bottom row, the values
of ages are swapped with birth-years and vice versa. In
blue pixels the model predicts “older”, in white pixels
“younger”. The first answer (A) is the correct answer.

the form “The size of a OBJ-1 is usually much
[MASK] than the size of a OBJ-2.”, where the
candidate answers are “larger” and “smaller”.
To instantiate the two objects, we manually sam-
ple a list of objects from two domains: animals
(e.g., “camel”, “dinosaur”) and general objects
(e.g., “pen”, “sun”), and use the first domain for
training and the second for evaluation. We bucket
different objects based on the numerical value of
their size based on their median value from DOQ
(Elazar et al., 2019), and then manually fix any er-
rors. Overall, we collected 127 and 35 objects for
training and development respectively. We auto-
matically instantiate object slots using objects that
are in the same bucket.
Results ROBERTA-L excels in this task, start-
ing from 84% accuracy in the zero-shot setup and
reaching MAX of 91% (Table 3). Other models
start with random performance and are roughly on
par with MLM-BASELINE. ROBERTA-L shows
sensitivity to the language, suggesting that the
ability to compare object sizes is encoded in it.
Analysis Table 4 shows results of running
ROBERTA-L in the zero-shot setup over pairs of
objects, where we sampled a single object from
each bucket. Objects are ordered by their size

[Talmor et al. 2019]

But???

[Mitchell 2020]

But???

A: i j l

[Mitchell 2020]

But??????

A: i j l

A: r s t u x
[Mitchell 2020]

Symbolic NLP

What do these problems all have in common?

Symbolic NLP

What do these problems all have in common?

wif blicket lug kiki dax fep

green around blue after red thrice

Symbolic NLP

What do these problems all have in common?

wif blicket lug kiki dax fep

green around blue after red thrice

after(around(green, blue), thrice(red))

Symbolic NLP

What do these problems all have in common?

wif blicket lug kiki dax fep

green around blue after red thrice

after(around(green, blue), thrice(red))

fep: wif: blicket: (x, y) x y x↦

Symbolic NLP

Symbolic NLP

Adversarial Examples for Evaluating Reading Comprehension Systems

Robin Jia
Computer Science Department

Stanford University
robinjia@cs.stanford.edu

Percy Liang
Computer Science Department

Stanford University
pliang@cs.stanford.edu

Abstract

Standard accuracy metrics indicate that
reading comprehension systems are mak-
ing rapid progress, but the extent to which
these systems truly understand language
remains unclear. To reward systems
with real language understanding abili-
ties, we propose an adversarial evalua-
tion scheme for the Stanford Question An-
swering Dataset (SQuAD). Our method
tests whether systems can answer ques-
tions about paragraphs that contain adver-
sarially inserted sentences, which are au-
tomatically generated to distract computer
systems without changing the correct an-
swer or misleading humans. In this ad-
versarial setting, the accuracy of sixteen
published models drops from an average
of 75% F1 score to 36%; when the ad-
versary is allowed to add ungrammatical
sequences of words, average accuracy on
four models decreases further to 7%. We
hope our insights will motivate the de-
velopment of new models that understand
language more precisely.

1 Introduction

Quantifying the extent to which a computer sys-
tem exhibits intelligent behavior is a longstanding
problem in AI (Levesque, 2013). Today, the stan-
dard paradigm is to measure average error across
a held-out test set. However, models can succeed
in this paradigm by recognizing patterns that hap-
pen to be predictive on most of the test examples,
while ignoring deeper, more difficult phenomena
(Rimell et al., 2009; Paperno et al., 2016).

In this work, we propose adversarial evaluation
for NLP, in which systems are instead evaluated
on adversarially-chosen inputs. We focus on the

Article: Super Bowl 50
Paragraph: “Peyton Manning became the first quarter-
back ever to lead two different teams to multiple Super
Bowls. He is also the oldest quarterback ever to play
in a Super Bowl at age 39. The past record was held
by John Elway, who led the Broncos to victory in Super
Bowl XXXIII at age 38 and is currently Denver’s Execu-
tive Vice President of Football Operations and General
Manager. Quarterback Jeff Dean had jersey number 37
in Champ Bowl XXXIV.”
Question: “What is the name of the quarterback who
was 38 in Super Bowl XXXIII?”
Original Prediction: John Elway
Prediction under adversary: Jeff Dean

Figure 1: An example from the SQuAD dataset.
The BiDAF Ensemble model originally gets the
answer correct, but is fooled by the addition of an
adversarial distracting sentence (in blue).

SQuAD reading comprehension task (Rajpurkar
et al., 2016), in which systems answer questions
about paragraphs from Wikipedia. Reading com-
prehension is an appealing testbed for adversarial
evaluation, as existing models appear successful
by standard average-case evaluation metrics: the
current state-of-the-art system achieves 84.7% F1
score, while human performance is just 91.2%.1

Nonetheless, it seems unlikely that existing sys-
tems possess true language understanding and rea-
soning capabilities.

Carrying out adversarial evaluation on SQuAD
requires new methods that adversarially alter read-
ing comprehension examples. Prior work in com-
puter vision adds imperceptible adversarial pertur-
bations to input images, relying on the fact that
such small perturbations cannot change an image’s
true label (Szegedy et al., 2014; Goodfellow et al.,
2015). In contrast, changing even one word of a

1
https://rajpurkar.github.io/

SQuAD-explorer/

ar
X

iv
:1

70
7.

07
32

8v
1

 [c
s.C

L]
 2

3
Ju

l 2
01

7

Q: What was the name of the quarterback who was 38
in Super Bowl XXXIII?

name(e1, John Elway)
type(e1, Person)
name(e2, Super Bowl XXXIII)
type(e2, Event)
role(e1, e2, Quarterback)
name(e3, Peyton Manning)...

name(x1, a)
role(x1, x2, Quarterback)
name(x2, Super Bowl XXXIII)
a?

Compositionality

Sentence interpretation is a homomorphism
from inputs to outputs.

green around blue

f(x, y) x y x↦

Compositionality

Sentence interpretation is a homomorphism
from inputs to outputs.

green around blue

f(x, y) x y x↦

f(x, y) =

Compositionality

Sentence interpretation is a homomorphism
from inputs to outputs.

green around blue

(x, y) x y x↦ can
speak

fluently English

can speak English

can speak English fluently

Symbol processing is about more than compositionality!

green around blue after red thrice ✔

around around red after ✘

X → X after X, X thrice, X around X, red, green, ...

Three theories

Symbol processing is correct as a
mechanistic model of language.

We'll never get human-level NLP without
explicit symbols in our models.

Three theories

Symbol processing is correct as a
descriptive model of language.

We may not need them at the implementation
level, but symbolic models are useful for
characterizing the kinds of data distributions and
generalizations that matter.

Three theories

Symbol processing is the wrong
model.

Real languages (and other human
representational systems) are too messy and have
too many exceptions to admit a useful symbolic
description at any level of representation.

Cultures in artificial intelligence research

Symbolists
name(e1, John Elway)
type(e1, Person)
name(e2, Super Bowl XXXIII)
type(e2, Event)
role(e1, e2, Quarterback)
name(e3, Peyton Manning)...

name(x1, a)
role(x1, x2, Quarterback)
name(x2, Super Bowl XXXIII)
a?

Model behavior is produced by
discrete composition of primitive
reasoning operations.

Implementation-level understanding
is most important.

Tools: grammars, logics, formal
systems.

Inductive program synthesis

Input v1 Output
International Business Machines IBM
Principles Of Programming Languages POPL
International Conference on Software Engineering ICSE

String Program:
Loop(�w : Concatenate(SubStr2(v1; UpperTok; w))).

EXAMPLE 5 (Split Odds). The goal in this problem, taken from
an Excel help forum, is to place each odd in a separate cell,
while ignoring any extraneous numbers or parenthesis. We reduce
the problem of generating multiple unbounded number of output
strings to that of generating one output string where the multiple
strings are separated by a unique symbol, say#.

Input v1 Output
(6/7)(4/5)(14/1) 6/7 # 4/5 # 14/1 #
49(28/11)(14/1) 28/11 # 14/1 #
() (28/11)(14/1) 28/11 # 14/1 #

String Program:
Loop(�w : Concatenate(SubStr(v1; p1; p2); ConstStr(“# ”)))
where p1 ⌘ Pos(LeftParenTok; TokenSeq(NumTok; SlashTok); w))
and p2 ⌘ Pos(TokenSeq(SlashTok;NumTok);RightParenTok; w).

EXAMPLE 6 (Remove excess spaces). The goal in this problem,
provided by the product team and also present in [21], is to re-
move all leading and trailing spaces and replace internal strings of
multiple spaces by a single space. Notice how the loop expression
prints out all but last sequence of non-whitespace characters (to
not print any trailing whitespace in the output).

Input v1 Output
Oege de Moor Oege de Moor

Kathleen Fisher AT&T Labs Kathleen Fisher AT&T Labs

String Program:
Concatenate(Loop(�w : Concatenate(SubStr(v1; p1; p2));

ConstStr(\ "));
SubStr2(v1;NonSpaceTok;�1))

where p1 ⌘ Pos(✏;NonSpaceTok; w), and
p2 ⌘ Pos(NonSpaceTok; TokenSeq(SpaceTok;NonSpaceTok); w).

3.3 Conditionals
The top-level string expression P is a Switch constructor whose
arguments are pairs of (disjoint) boolean expressions b and trace
expressions e. The value of P in a given input state � is the value of
the trace expression that corresponds to the boolean expression sat-
isfied by �. Boolean expressions b are represented in DNF form and
are boolean combinations of predicates of the form Match(vi; r; k),
where r is some regular expression and k is some integer constant.
Match(vi; r; k) evaluates to true iff vi contains at least k matches
of regular expression r. We often denote Match(vi; r) by simply
Match(vi; r; 1).

Conditionals play a very important role in our string processing
language. They allow us to appropriately interpret/process data
that is in multiple formats. This is precisely the place where most
existing (data cleansing) tools that allow string processing through
tons of automated pre-canned features fail since they assume that
the input is in a fixed structured format. Conditionals also allow us
to express transformations that are beyond the expressive power of
the underlying conditional-free part of our language.

EXAMPLE 7 (Conditional Concatenation). The goal here is to
concatenate the first and the second strings v1 and v2 in the in-
put tuple as v1(v2), only if both v1 and v2 are non-empty strings.
Otherwise, the output should be empty string. This example is taken
from an Excel online help forum.

Input v1 Input v2 Output
Alex Asst. Alex(Asst.)
Jim Manager Jim(Manager)
Ryan ✏ ✏
✏ Asst. ✏

String Program:
Switch((b1; e1); (b2; ✏)), where
b1 ⌘ Match(v1;CharTok) ^ Match(v2;CharTok),
e1 ⌘ Concatenate(v1; ConstStr(“(”); v2; ConstStr(“)”));
b2 ⌘ :Match(v1;CharTok) _ :Match(v2;CharTok).

EXAMPLE 8 (Mixed Date Parsing). The goal here is to parse
dates in multiple formats into day, month, and year. This example is
taken from an internal mailing list. We show below the program for
month extraction. (Day and year extraction are solved similarly.)

Input v1 Output
01/21/2001 01
22.02.2002 02
2003-23-03 03

String Program:
Switch((b1; e1); (b2; e2); (b3; e3)), where
b1 ⌘ Match(v1; SlashTok), b2 ⌘ Match(v1;DotTok),
b3 ⌘ Match(v1;HyphenTok),
e1 ⌘ SubStr(v1; Pos(StartTok; ✏; 1); Pos(✏; SlashTok; 1))
e2 ⌘ SubStr(v1; Pos(DotTok; ✏; 1); Pos(✏;DotTok; 2))
e3 ⌘ SubStr(v1; Pos(HyphenTok; ✏; 2); Pos(EndTok; ✏; 1))
EXAMPLE 9 (Name Parsing). The goal in this problem, provided
by the product team, is to parse names that occur in multiple
formats and transform them into a uniform format.

Input v1 Output
Dr. Eran Yahav Yahav, E.
Prof. Kathleen S. Fisher Fisher, K.
Bill Gates, Sr. Gates, B.
George Ciprian Necula Necula, G.
Ken McMillan, II McMillan, K.

String Program for extracting initial of the first name:
The logic used is that of extracting the initial of the first word not
followed by a dot: SubStr(v1; p1; p2), where
p1 ⌘ Pos(✏; TokenSeq(AlphTok;NonDotTok); 1), and
p2 ⌘ Pos(✏; TokenSeq(LowerTok;NonDotTok); 1).
String Program for extracting last name:
The logic used is that of extracting the word followed by a comma,
or the last word (if no comma exists): Switch((b1; e1); (b2; e2)),
where b1 ⌘ Match(v1; CommaTok), b2 ⌘ :Match(v1; CommaTok),
e1 ⌘ SubStr2(v1; p1; p2), e2 ⌘ SubStr2(v1; AlphTok;�1),
p1 ⌘ Pos(✏; TokenSeq(AlphTok; CommaTok); 1)
and p2 ⌘ Pos(AlphTok; CommaTok; 1)

The above two programs can be concatenated together (after dis-
tributing conditionals at the top-level) along with some constant
strings to yield the desired program.

EXAMPLE 10 (Phone Numbers). The goal here is to parse phone
numbers that occur in multiple formats and transform them into a
uniform format, adding a default area code of “425” if the area
code is missing. This example was provided by the product team.

Input v1 Output
323-708-7700 323-708-7700
(425)-706-7709 425-706-7709
510.220.5586 510-220-5586
235 7654 425-235-7654
745-8139 425-745-8139

String Program:
Switch((b1; e1); (b2; e2)), where

Input v1 Output
International Business Machines IBM
Principles Of Programming Languages POPL
International Conference on Software Engineering ICSE

String Program:
Loop(�w : Concatenate(SubStr2(v1; UpperTok; w))).

EXAMPLE 5 (Split Odds). The goal in this problem, taken from
an Excel help forum, is to place each odd in a separate cell,
while ignoring any extraneous numbers or parenthesis. We reduce
the problem of generating multiple unbounded number of output
strings to that of generating one output string where the multiple
strings are separated by a unique symbol, say#.

Input v1 Output
(6/7)(4/5)(14/1) 6/7 # 4/5 # 14/1 #
49(28/11)(14/1) 28/11 # 14/1 #
() (28/11)(14/1) 28/11 # 14/1 #

String Program:
Loop(�w : Concatenate(SubStr(v1; p1; p2); ConstStr(“# ”)))
where p1 ⌘ Pos(LeftParenTok; TokenSeq(NumTok; SlashTok); w))
and p2 ⌘ Pos(TokenSeq(SlashTok;NumTok);RightParenTok; w).

EXAMPLE 6 (Remove excess spaces). The goal in this problem,
provided by the product team and also present in [21], is to re-
move all leading and trailing spaces and replace internal strings of
multiple spaces by a single space. Notice how the loop expression
prints out all but last sequence of non-whitespace characters (to
not print any trailing whitespace in the output).

Input v1 Output
Oege de Moor Oege de Moor

Kathleen Fisher AT&T Labs Kathleen Fisher AT&T Labs

String Program:
Concatenate(Loop(�w : Concatenate(SubStr(v1; p1; p2));

ConstStr(\ "));
SubStr2(v1;NonSpaceTok;�1))

where p1 ⌘ Pos(✏;NonSpaceTok; w), and
p2 ⌘ Pos(NonSpaceTok; TokenSeq(SpaceTok;NonSpaceTok); w).

3.3 Conditionals
The top-level string expression P is a Switch constructor whose
arguments are pairs of (disjoint) boolean expressions b and trace
expressions e. The value of P in a given input state � is the value of
the trace expression that corresponds to the boolean expression sat-
isfied by �. Boolean expressions b are represented in DNF form and
are boolean combinations of predicates of the form Match(vi; r; k),
where r is some regular expression and k is some integer constant.
Match(vi; r; k) evaluates to true iff vi contains at least k matches
of regular expression r. We often denote Match(vi; r) by simply
Match(vi; r; 1).

Conditionals play a very important role in our string processing
language. They allow us to appropriately interpret/process data
that is in multiple formats. This is precisely the place where most
existing (data cleansing) tools that allow string processing through
tons of automated pre-canned features fail since they assume that
the input is in a fixed structured format. Conditionals also allow us
to express transformations that are beyond the expressive power of
the underlying conditional-free part of our language.

EXAMPLE 7 (Conditional Concatenation). The goal here is to
concatenate the first and the second strings v1 and v2 in the in-
put tuple as v1(v2), only if both v1 and v2 are non-empty strings.
Otherwise, the output should be empty string. This example is taken
from an Excel online help forum.

Input v1 Input v2 Output
Alex Asst. Alex(Asst.)
Jim Manager Jim(Manager)
Ryan ✏ ✏
✏ Asst. ✏

String Program:
Switch((b1; e1); (b2; ✏)), where
b1 ⌘ Match(v1;CharTok) ^ Match(v2;CharTok),
e1 ⌘ Concatenate(v1; ConstStr(“(”); v2; ConstStr(“)”));
b2 ⌘ :Match(v1;CharTok) _ :Match(v2;CharTok).

EXAMPLE 8 (Mixed Date Parsing). The goal here is to parse
dates in multiple formats into day, month, and year. This example is
taken from an internal mailing list. We show below the program for
month extraction. (Day and year extraction are solved similarly.)

Input v1 Output
01/21/2001 01
22.02.2002 02
2003-23-03 03

String Program:
Switch((b1; e1); (b2; e2); (b3; e3)), where
b1 ⌘ Match(v1; SlashTok), b2 ⌘ Match(v1;DotTok),
b3 ⌘ Match(v1;HyphenTok),
e1 ⌘ SubStr(v1; Pos(StartTok; ✏; 1); Pos(✏; SlashTok; 1))
e2 ⌘ SubStr(v1; Pos(DotTok; ✏; 1); Pos(✏;DotTok; 2))
e3 ⌘ SubStr(v1; Pos(HyphenTok; ✏; 2); Pos(EndTok; ✏; 1))
EXAMPLE 9 (Name Parsing). The goal in this problem, provided
by the product team, is to parse names that occur in multiple
formats and transform them into a uniform format.

Input v1 Output
Dr. Eran Yahav Yahav, E.
Prof. Kathleen S. Fisher Fisher, K.
Bill Gates, Sr. Gates, B.
George Ciprian Necula Necula, G.
Ken McMillan, II McMillan, K.

String Program for extracting initial of the first name:
The logic used is that of extracting the initial of the first word not
followed by a dot: SubStr(v1; p1; p2), where
p1 ⌘ Pos(✏; TokenSeq(AlphTok;NonDotTok); 1), and
p2 ⌘ Pos(✏; TokenSeq(LowerTok;NonDotTok); 1).
String Program for extracting last name:
The logic used is that of extracting the word followed by a comma,
or the last word (if no comma exists): Switch((b1; e1); (b2; e2)),
where b1 ⌘ Match(v1; CommaTok), b2 ⌘ :Match(v1; CommaTok),
e1 ⌘ SubStr2(v1; p1; p2), e2 ⌘ SubStr2(v1; AlphTok;�1),
p1 ⌘ Pos(✏; TokenSeq(AlphTok; CommaTok); 1)
and p2 ⌘ Pos(AlphTok; CommaTok; 1)

The above two programs can be concatenated together (after dis-
tributing conditionals at the top-level) along with some constant
strings to yield the desired program.

EXAMPLE 10 (Phone Numbers). The goal here is to parse phone
numbers that occur in multiple formats and transform them into a
uniform format, adding a default area code of “425” if the area
code is missing. This example was provided by the product team.

Input v1 Output
323-708-7700 323-708-7700
(425)-706-7709 425-706-7709
510.220.5586 510-220-5586
235 7654 425-235-7654
745-8139 425-745-8139

String Program:
Switch((b1; e1); (b2; e2)), where

[Gulwani 2010]

Cultures in artificial intelligence research

Connectionists

Model behavior is produced by
generic operations on continuous
representations.

Application-level understanding is
most important.

Tools: humongous datasets, data
augmentation, pretraining.

[Vaswani 2017]

Neural machine translation

Seq2Seq + Attention

the conditioning vector is dynamically computed at each stage
based on the current decoder hidden state.

[Bahdanau 2015]

Connectionist scores in symbolist models

green after red twice

after(green, red twice) twice(green after red)

Connectionist scores in symbolist models

green after red twice

after(green, red twice) twice(green after red)

Connectionist scores in symbolist models
Hall and Klein (2012) employed both kinds of an-
notations, along with lexicalized head word anno-
tation. All of these past CRF parsers do also ex-
ploit span features, as did the structured margin
parser of Taskar et al. (2004); the current work pri-
marily differs in shifting the work from the gram-
mar to the surface features.

The problem with rich annotations is that they
increase the state space of the grammar substan-
tially. For example, adding parent annotation can
square the number of symbols, and each subse-
quent annotation causes a multiplicative increase
in the size of the state space. Hall and Klein
(2012) attempted to reduce this state space by fac-
toring these annotations into individual compo-
nents. Their approach changed the multiplicative
penalty of annotation into an additive penalty, but
even so their individual grammar projections are
much larger than the base X-bar grammar.

In this work, we want to see how much of the
expressive capability of annotations can be cap-
tured using surface evidence, with little or no an-
notation of the underlying grammar. To that end,
we avoid annotating our trees at all, opting instead
to see how far simple surface features will go in
achieving a high-performance parser. We will re-
turn to the question of annotation in Section 5.

3 Surface Feature Framework

To improve the performance of our X-bar gram-
mar, we will add a number of surface feature tem-
plates derived only from the words in the sentence.
We say that an indicator is a surface property if
it can be extracted without reference to the parse
tree. These features can be implemented with-
out reference to structured linguistic notions like
headedness; however, we will argue that they still
capture a wide range of linguistic phenomena in a
data-driven way.

Throughout this and the following section, we
will draw on motivating examples from the En-
glish Penn Treebank, though similar examples
could be equally argued for other languages. For
performance on other languages, see Section 6.

Recall that our CRF factors over anchored rules
r, where each r has identity rule(r) and anchor-
ing span(r). The X-bar grammar has only indi-
cators of rule(r), ignoring the anchoring. Let a
surface property of r be an indicator function of
span(r) and the sentence itself. For example, the
first word in a constituent is a surface property, as

averted financial disaster

VP

NPVBD

JJ NN

PARENT = VP

FIRSTWORD = averted

LENGTH = 3

RULE = VP → VBD NP

PARENT = VP

Span properties

Rule backoffs

Features

...

5 6 7 8... LASTWORD = disaster

�FIRSTWORD = averted

LASTWORD = disaster PARENT = VP�
�FIRSTWORD = averted RULE = VP → VBD NP

Figure 1: Features computed over the application
of the rule VP ! VBD NP over the anchored
span averted financial disaster with the shown in-
dices. Span properties are generated as described
throughout Section 4; they are then conjoined with
the rule and just the parent nonterminal to give the
features fired over the anchored production.

is the word directly preceding the constituent. As
illustrated in Figure 1, the actual features of the
model are obtained by conjoining surface proper-
ties with various abstractions of the rule identity.
For rule abstractions, we use two templates: the
parent of the rule and the identity of the rule. The
surface features are somewhat more involved, and
so we introduce them incrementally.

One immediate computational and statistical is-
sue arises from the sheer number of possible sur-
face features. There are a great number of spans
in a typical treebank; extracting features for ev-
ery possible combination of span and rule is pro-
hibitive. One simple solution is to only extract
features for rule/span pairs that are actually ob-
served in gold annotated examples during train-
ing. Because these “positive” features correspond
to observed constituents, they are far less numer-
ous than the set of all possible features extracted
from all spans. As far as we can tell, all past CRF
parsers have used “positive” features only.

However, negative features—features that are
not observed in any tree—are still powerful indica-
tors of (un)grammaticality: if we have never seen
a PRN that starts with “has,” or a span that be-
gins with a quotation mark and ends with a close
bracket, then we would like the model to be able to
place negative weights on these features. Thus, we
use a simple feature hashing scheme where posi-
tive features are indexed individually, while nega-

[Hall et al. 2014]

Connectionist scores in symbolist models

· · · · · ·

· · ·

· · ·

Input layer: [xw, xt, xl]

Hidden layer:
h = (Ww

1 xw +W t
1x

t +W l
1x

l + b1)3

Softmax layer:
p = softmax(W2h)

words POS tags arc labels

ROOT has VBZ

He PRP
nsubj

has VBZ good JJ control NN . .

Stack Buffer

Configuration

Figure 2: Our neural network architecture.

{lc1(s2).t, s2.t, rc1(s2).t, s1.t}, we will extract
PRP, VBZ, NULL, JJ in order. Here we use a spe-
cial token NULL to represent a non-existent ele-
ment.

We build a standard neural network with one
hidden layer, where the corresponding embed-
dings of our chosen elements from Sw, St, Sl will
be added to the input layer. Denoting nw, nt, nl as
the number of chosen elements of each type, we
add xw = [eww1

; eww2
; . . . ewwnw

] to the input layer,
where Sw = {w1, . . . , wnw}. Similarly, we add
the POS tag features xt and arc label features xl to
the input layer.

We map the input layer to a hidden layer with
dh nodes through a cube activation function:

h = (Ww
1 xw + W t

1x
t + W l

1x
l + b1)

3

where Ww
1 2 Rdh⇥(d·nw), W t

1 2 Rdh⇥(d·nt),
W l

1 2 Rdh⇥(d·nl), and b1 2 Rdh is the bias.
A softmax layer is finally added on the top of

the hidden layer for modeling multi-class prob-
abilities p = softmax(W2h), where W2 2
R|T |⇥dh .

POS and label embeddings
To our best knowledge, this is the first attempt to
introduce POS tag and arc label embeddings in-
stead of discrete representations.

Although the POS tags P = {NN,NNP,
NNS,DT,JJ, . . .} (for English) and arc labels
L = {amod,tmod,nsubj,csubj,dobj, . . .}
(for Stanford Dependencies on English) are rela-
tively small discrete sets, they still exhibit many
semantical similarities like words. For example,
NN (singular noun) should be closer to NNS (plural

�1 �0.8 �0.6 �0.4 �0.2 0.2 0.4 0.6 0.8 1

�1

�0.5

0.5

1

cube
sigmoid

tanh
identity

Figure 3: Different activation functions used in
neural networks.

noun) than DT (determiner), and amod (adjective
modifier) should be closer to num (numeric mod-
ifier) than nsubj (nominal subject). We expect
these semantic meanings to be effectively captured
by the dense representations.

Cube activation function
As stated above, we introduce a novel activation
function: cube g(x) = x3 in our model instead
of the commonly used tanh or sigmoid functions
(Figure 3).

Intuitively, every hidden unit is computed by a
(non-linear) mapping on a weighted sum of input
units plus a bias. Using g(x) = x3 can model
the product terms of xixjxk for any three different
elements at the input layer directly:

g(w1x1 + . . . + wmxm + b) =
X

i,j,k

(wiwjwk)xixjxk +
X

i,j

b(wiwj)xixj . . .

In our case, xi, xj , xk could come from different
dimensions of three embeddings. We believe that
this better captures the interaction of three ele-

ROOT He has good control .
PRP VBZ JJ NN .

root

nsubj

punct
dobj

amod

1

ROOT has VBZ

He PRP

nsubj

has VBZ good JJ control NN . .

Stack Bu�er

Correct transition: SHIFT

1

Transition Stack Buffer A
[ROOT] [He has good control .] ;

SHIFT [ROOT He] [has good control .]
SHIFT [ROOT He has] [good control .]
LEFT-ARC(nsubj) [ROOT has] [good control .] A[nsubj(has,He)
SHIFT [ROOT has good] [control .]
SHIFT [ROOT has good control] [.]
LEFT-ARC(amod) [ROOT has control] [.] A[amod(control,good)
RIGHT-ARC(dobj) [ROOT has] [.] A[dobj(has,control)
.
RIGHT-ARC(root) [ROOT] [] A[root(ROOT,has)

Figure 1: An example of transition-based dependency parsing. Above left: a desired dependency tree,
above right: an intermediate configuration, bottom: a transition sequence of the arc-standard system.

Features UAS
All features in Table 1 88.0
single-word & word-pair features 82.7
only single-word features 76.9
excluding all lexicalized features 81.5

Table 2: Performance of different feature sets.
UAS: unlabeled attachment score.

• Incompleteness. Incompleteness is an un-
avoidable issue in all existing feature tem-
plates. Because even with expertise and man-
ual handling involved, they still do not in-
clude the conjunction of every useful word
combination. For example, the conjunc-
tion of s1 and b2 is omitted in almost all
commonly used feature templates, however
it could indicate that we cannot perform a
RIGHT-ARC action if there is an arc from s1
to b2.

• Expensive feature computation. The fea-
ture generation of indicator features is gen-
erally expensive — we have to concatenate
some words, POS tags, or arc labels for gen-
erating feature strings, and look them up in a
huge table containing several millions of fea-
tures. In our experiments, more than 95% of
the time is consumed by feature computation
during the parsing process.

So far, we have discussed preliminaries of

transition-based dependency parsing and existing
problems of sparse indicator features. In the fol-
lowing sections, we will elaborate our neural net-
work model for learning dense features along with
experimental evaluations that prove its efficiency.

3 Neural Network Based Parser

In this section, we first present our neural network
model and its main components. Later, we give
details of training and speedup of parsing process.

3.1 Model
Figure 2 describes our neural network architec-
ture. First, as usual word embeddings, we repre-
sent each word as a d-dimensional vector ewi 2 Rd

and the full embedding matrix is Ew 2 Rd⇥Nw

where Nw is the dictionary size. Meanwhile,
we also map POS tags and arc labels to a d-
dimensional vector space, where eti, e

l
j 2 Rd are

the representations of ith POS tag and jth arc la-
bel. Correspondingly, the POS and label embed-
ding matrices are Et 2 Rd⇥Nt and El 2 Rd⇥Nl

where Nt and Nl are the number of distinct POS
tags and arc labels.

We choose a set of elements based on the
stack / buffer positions for each type of in-
formation (word, POS or label), which might
be useful for our predictions. We denote the
sets as Sw, St, Sl respectively. For example,
given the configuration in Figure 2 and St =

[Chen et al. 2014]

Connectionist scores in symbolist models

Fruit
NP/NP

flies
NP

Fruit flies
NP/NP NP

>
NP

Fruit flies like bananas
NP/NP NP (S\NP)/NP NP

> >
NP S\NP

<
S

sglobal(e)

+ slocal(e)

!

Fruit
NP/NP

flies
NP

Fruit flies
NP/NP NP

>
NP

Fruit flies
NP/NP NP

>
NP

Fruit flies like bananas
NP/NP NP (S\NP)/NP NP

> >
NP S\NP

<
S

sglobal(eglobal)

slocal(elocal)

Figure 3: The hyperedge on the left requires computing both
the local and global score when placed on the agenda. Splitting
the hyperedge, as shown on the right, saves expensive compu-
tation of the global score if the local score alone indicates that
the parse is not worth exploring.

Admissible A
⇤

heuristic Since our full model
adds non-positive global scores to the existing lo-
cal scores, path scores under the full model cannot
be greater than path scores under the local model.
Upper bounds for path scores under the local model
also hold for path scores under the full model, and
we simply reuse the A⇤ heuristic from the local
model to guide the full model during parsing without
sacrificing optimality guarantees.

Incremental neural network construction The
recursive hidden representations used in sglobal(e)
can be computed in constant time during parsing.
When scoring a new hyperedge, its children must
have been previously scored. Instead of computing
the full recursion, we reuse the existing latent states
of the children and compute sglobal(e) with an in-
cremental forward pass over a single recursive unit
in the neural network. By maintain the latent states
of each parse, we incrementally build a single DAG-
structured LSTM mirroring the explored subset of
the hypergraph. This not only enables quick for-
ward passes during decoding, but also allows back-
propagation through the search space after decoding,
which is crucial for efficient learning (see Section 5).

Lazy global scoring The global score is expensive
to compute. We introduce an optimization to avoid
computing it when provably unnecessary. We split
each hyperedge e into two successive hyperedges,
elocal and eglobal, as shown in Figure 3. The score
for e, previously s(e) = slocal(e) + sglobal(e), is

also split between the two new hyperedges:

s(elocal) = slocal(elocal)

s(eglobal) = sglobal(eglobal)

Intuitively, this transformation requires A⇤ to verify
that the local score is good enough before comput-
ing the global score, which requires an incremental
forward pass over a recursive unit in the neural net-
work. In the example, this involves first summing
the supertag scores of Fruit and flies and inserting
the result back into the agenda. The score for ap-
plying the forward application rule to the recursive
representations is only computed if that item appears
again at the head of the agenda. In practice, the lazy
global scoring reduces the number of recursive units
by over 91%, providing a 2.4X speed up.

5 Learning

During training (Algorithm 1), we assume access to
sentences labeled with gold parse trees ŷ and gold
derivations Ê. The gold derivation Ê is a path from
; to ŷ in the parse forest.

A⇤ search with our global model is not guar-
anteed to terminate in sub-exponential time. This
creates challenges for learning—for example, it is
not possible in practice to use the standard struc-
tured perceptron update (Collins, 2002), because the
search procedure rarely terminates early in training.
Other common loss functions assume inexact search
(Huang et al., 2012), and do not optimize efficiency.

Instead, we optimize a new objective that is
tightly coupled with the search procedure. During
parsing, we would like hyperedges from the gold
derivation to appear at the top of the agenda A.
When this condition does not hold, A⇤ is searching
inefficiently, and we refer to this as a violation of the
agenda, which we formally define as:

v(Ê,A) = max
e2A

(g(PATH(e)) + h(e))

� max
e2A\Ê

(g(PATH(e)) + h(e))

where g(PATH(e)) is the score of the unique path to
e, and h(e) is the A⇤ heuristic. If all violations are
zero, we find the gold parse without exploring any
incorrect partial parses—maximizing both accuracy
and efficiency. Figure 1b shows such a case—if any
other nodes were explored, they would be violations.

[Lee et al. 2016]

Connectionist scores in symbolist models

[Kim et al. 2019]

Symbolist losses for connectionist models

dark

✓
<latexit sha1_base64="JqEnYvV6PtsKBJYmBVwEpjIMANw=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOOsmY2ZllplcIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrSqSw6PvfXmFtfWNzq7hd2tnd2z8oHx41rU4NhwbXUpt2xCxIoaCBAiW0EwMsjiS0ovHtzG89gbFCqwecJBDGbKjEQHCGTmp2cQTIeuWKX/XnoKskyEmF5Kj3yl/dvuZpDAq5ZNZ2Aj/BMGMGBZcwLXVTCwnjYzaEjqOKxWDDbH7tlJ45pU8H2rhSSOfq74mMxdZO4sh1xgxHdtmbif95nRQH12EmVJIiKL5YNEglRU1nr9O+MMBRThxh3Ah3K+UjZhhHF1DJhRAsv7xKmhfVwK8G95eV2k0eR5GckFNyTgJyRWrkjtRJg3DySJ7JK3nztPfivXsfi9aCl88ckz/wPn8Ao/ePKA==</latexit><latexit sha1_base64="JqEnYvV6PtsKBJYmBVwEpjIMANw=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOOsmY2ZllplcIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrSqSw6PvfXmFtfWNzq7hd2tnd2z8oHx41rU4NhwbXUpt2xCxIoaCBAiW0EwMsjiS0ovHtzG89gbFCqwecJBDGbKjEQHCGTmp2cQTIeuWKX/XnoKskyEmF5Kj3yl/dvuZpDAq5ZNZ2Aj/BMGMGBZcwLXVTCwnjYzaEjqOKxWDDbH7tlJ45pU8H2rhSSOfq74mMxdZO4sh1xgxHdtmbif95nRQH12EmVJIiKL5YNEglRU1nr9O+MMBRThxh3Ah3K+UjZhhHF1DJhRAsv7xKmhfVwK8G95eV2k0eR5GckFNyTgJyRWrkjtRJg3DySJ7JK3nztPfivXsfi9aCl88ckz/wPn8Ao/ePKA==</latexit><latexit sha1_base64="JqEnYvV6PtsKBJYmBVwEpjIMANw=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOOsmY2ZllplcIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrSqSw6PvfXmFtfWNzq7hd2tnd2z8oHx41rU4NhwbXUpt2xCxIoaCBAiW0EwMsjiS0ovHtzG89gbFCqwecJBDGbKjEQHCGTmp2cQTIeuWKX/XnoKskyEmF5Kj3yl/dvuZpDAq5ZNZ2Aj/BMGMGBZcwLXVTCwnjYzaEjqOKxWDDbH7tlJ45pU8H2rhSSOfq74mMxdZO4sh1xgxHdtmbif95nRQH12EmVJIiKL5YNEglRU1nr9O+MMBRThxh3Ah3K+UjZhhHF1DJhRAsv7xKmhfVwK8G95eV2k0eR5GckFNyTgJyRWrkjtRJg3DySJ7JK3nztPfivXsfi9aCl88ckz/wPn8Ao/ePKA==</latexit><latexit sha1_base64="JqEnYvV6PtsKBJYmBVwEpjIMANw=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOOsmY2ZllplcIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrSqSw6PvfXmFtfWNzq7hd2tnd2z8oHx41rU4NhwbXUpt2xCxIoaCBAiW0EwMsjiS0ovHtzG89gbFCqwecJBDGbKjEQHCGTmp2cQTIeuWKX/XnoKskyEmF5Kj3yl/dvuZpDAq5ZNZ2Aj/BMGMGBZcwLXVTCwnjYzaEjqOKxWDDbH7tlJ45pU8H2rhSSOfq74mMxdZO4sh1xgxHdtmbif95nRQH12EmVJIiKL5YNEglRU1nr9O+MMBRThxh3Ah3K+UjZhhHF1DJhRAsv7xKmhfVwK8G95eV2k0eR5GckFNyTgJyRWrkjtRJg3DySJ7JK3nztPfivXsfi9aCl88ckz/wPn8Ao/ePKA==</latexit>

✓̂
<latexit sha1_base64="Rf/CEMSo46DnrFJCOWqp5+j0RE4=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKthaaUDbbTbN0swm7E6GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvzKQw6LrfTmVtfWNzq7pd29nd2z+oHx51TZprxjsslanuhdRwKRTvoEDJe5nmNAklfwzHtzP/8YlrI1L1gJOMBwkdKREJRtFKvh9TLHyMOdLpoN5wm+4cZJV4JWlAifag/uUPU5YnXCGT1Ji+52YYFFSjYJJPa35ueEbZmI5431JFE26CYn7zlJxZZUiiVNtSSObq74mCJsZMktB2JhRjs+zNxP+8fo7RdVAIleXIFVssinJJMCWzAMhQaM5QTiyhTAt7K2Ex1ZShjalmQ/CWX14l3Yum5za9+8tG66aMowoncArn4MEVtOAO2tABBhk8wyu8Obnz4rw7H4vWilPOHMMfOJ8/epSR9Q==</latexit><latexit sha1_base64="Rf/CEMSo46DnrFJCOWqp5+j0RE4=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKthaaUDbbTbN0swm7E6GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvzKQw6LrfTmVtfWNzq7pd29nd2z+oHx51TZprxjsslanuhdRwKRTvoEDJe5nmNAklfwzHtzP/8YlrI1L1gJOMBwkdKREJRtFKvh9TLHyMOdLpoN5wm+4cZJV4JWlAifag/uUPU5YnXCGT1Ji+52YYFFSjYJJPa35ueEbZmI5431JFE26CYn7zlJxZZUiiVNtSSObq74mCJsZMktB2JhRjs+zNxP+8fo7RdVAIleXIFVssinJJMCWzAMhQaM5QTiyhTAt7K2Ex1ZShjalmQ/CWX14l3Yum5za9+8tG66aMowoncArn4MEVtOAO2tABBhk8wyu8Obnz4rw7H4vWilPOHMMfOJ8/epSR9Q==</latexit><latexit sha1_base64="Rf/CEMSo46DnrFJCOWqp5+j0RE4=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKthaaUDbbTbN0swm7E6GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvzKQw6LrfTmVtfWNzq7pd29nd2z+oHx51TZprxjsslanuhdRwKRTvoEDJe5nmNAklfwzHtzP/8YlrI1L1gJOMBwkdKREJRtFKvh9TLHyMOdLpoN5wm+4cZJV4JWlAifag/uUPU5YnXCGT1Ji+52YYFFSjYJJPa35ueEbZmI5431JFE26CYn7zlJxZZUiiVNtSSObq74mCJsZMktB2JhRjs+zNxP+8fo7RdVAIleXIFVssinJJMCWzAMhQaM5QTiyhTAt7K2Ex1ZShjalmQ/CWX14l3Yum5za9+8tG66aMowoncArn4MEVtOAO2tABBhk8wyu8Obnz4rw7H4vWilPOHMMfOJ8/epSR9Q==</latexit><latexit sha1_base64="Rf/CEMSo46DnrFJCOWqp5+j0RE4=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKthaaUDbbTbN0swm7E6GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvzKQw6LrfTmVtfWNzq7pd29nd2z+oHx51TZprxjsslanuhdRwKRTvoEDJe5nmNAklfwzHtzP/8YlrI1L1gJOMBwkdKREJRtFKvh9TLHyMOdLpoN5wm+4cZJV4JWlAifag/uUPU5YnXCGT1Ji+52YYFFSjYJJPa35ueEbZmI5431JFE26CYn7zlJxZZUiiVNtSSObq74mCJsZMktB2JhRjs+zNxP+8fo7RdVAIleXIFVssinJJMCWzAMhQaM5QTiyhTAt7K2Ex1ZShjalmQ/CWX14l3Yum5za9+8tG66aMowoncArn4MEVtOAO2tABBhk8wyu8Obnz4rw7H4vWilPOHMMfOJ8/epSR9Q==</latexit>

model compositional approx.

⇤<latexit sha1_base64="OlYXa5TGZ2jG1EJYshioKcqCJPw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBZBPJREBD0WvXhswX5AG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2M72Z++wmV5rF8MJME/YgOJQ85o8ZKjYt+ueJW3TnIKvFyUoEc9X75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia88TMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14lrcuq51a9xlWldpvHUYQTOIVz8OAaanAPdWgCA4RneIU359F5cd6dj0VrwclnjuEPnM8fcAGMrg==</latexit><latexit sha1_base64="OlYXa5TGZ2jG1EJYshioKcqCJPw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBZBPJREBD0WvXhswX5AG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2M72Z++wmV5rF8MJME/YgOJQ85o8ZKjYt+ueJW3TnIKvFyUoEc9X75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia88TMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14lrcuq51a9xlWldpvHUYQTOIVz8OAaanAPdWgCA4RneIU359F5cd6dj0VrwclnjuEPnM8fcAGMrg==</latexit><latexit sha1_base64="OlYXa5TGZ2jG1EJYshioKcqCJPw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBZBPJREBD0WvXhswX5AG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2M72Z++wmV5rF8MJME/YgOJQ85o8ZKjYt+ueJW3TnIKvFyUoEc9X75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia88TMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14lrcuq51a9xlWldpvHUYQTOIVz8OAaanAPdWgCA4RneIU359F5cd6dj0VrwclnjuEPnM8fcAGMrg==</latexit><latexit sha1_base64="OlYXa5TGZ2jG1EJYshioKcqCJPw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBZBPJREBD0WvXhswX5AG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2M72Z++wmV5rF8MJME/YgOJQ85o8ZKjYt+ueJW3TnIKvFyUoEc9X75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia88TMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14lrcuq51a9xlWldpvHUYQTOIVz8OAaanAPdWgCA4RneIU359F5cd6dj0VrwclnjuEPnM8fcAGMrg==</latexit>

⇤<latexit sha1_base64="OlYXa5TGZ2jG1EJYshioKcqCJPw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBZBPJREBD0WvXhswX5AG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2M72Z++wmV5rF8MJME/YgOJQ85o8ZKjYt+ueJW3TnIKvFyUoEc9X75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia88TMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14lrcuq51a9xlWldpvHUYQTOIVz8OAaanAPdWgCA4RneIU359F5cd6dj0VrwclnjuEPnM8fcAGMrg==</latexit><latexit sha1_base64="OlYXa5TGZ2jG1EJYshioKcqCJPw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBZBPJREBD0WvXhswX5AG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2M72Z++wmV5rF8MJME/YgOJQ85o8ZKjYt+ueJW3TnIKvFyUoEc9X75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia88TMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14lrcuq51a9xlWldpvHUYQTOIVz8OAaanAPdWgCA4RneIU359F5cd6dj0VrwclnjuEPnM8fcAGMrg==</latexit><latexit sha1_base64="OlYXa5TGZ2jG1EJYshioKcqCJPw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBZBPJREBD0WvXhswX5AG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2M72Z++wmV5rF8MJME/YgOJQ85o8ZKjYt+ueJW3TnIKvFyUoEc9X75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia88TMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14lrcuq51a9xlWldpvHUYQTOIVz8OAaanAPdWgCA4RneIU359F5cd6dj0VrwclnjuEPnM8fcAGMrg==</latexit><latexit sha1_base64="OlYXa5TGZ2jG1EJYshioKcqCJPw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBZBPJREBD0WvXhswX5AG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2M72Z++wmV5rF8MJME/YgOJQ85o8ZKjYt+ueJW3TnIKvFyUoEc9X75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia88TMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14lrcuq51a9xlWldpvHUYQTOIVz8OAaanAPdWgCA4RneIU359F5cd6dj0VrwclnjuEPnM8fcAGMrg==</latexit>

⌘
<latexit sha1_base64="TZ6dp5tyCBo6NdZnLwRhzdKcg4s=">AAAB63icbVA9SwNBEN2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fszgnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelEhh0fe/vdLa+sbmVnm7srO7t39QPTxq2zg1HFo8lrHpRMyCFBpaKFBCJzHAVCThMZrc5v7jExgrYv2A0wRCxUZaDAVnmEs9QNav1vy6PwddJUFBaqRAs1/96g1inirQyCWzthv4CYYZMyi4hFmll1pIGJ+wEXQd1UyBDbP5rTN65pQBHcbGlUY6V39PZExZO1WR61QMx3bZy8X/vG6Kw+swEzpJETRfLBqmkmJM88fpQBjgKKeOMG6Eu5XyMTOMo4un4kIIll9eJe2LeuDXg/vLWuOmiKNMTsgpOScBuSINckeapEU4GZNn8krePOW9eO/ex6K15BUzx+QPvM8fCOKOOA==</latexit><latexit sha1_base64="TZ6dp5tyCBo6NdZnLwRhzdKcg4s=">AAAB63icbVA9SwNBEN2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fszgnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelEhh0fe/vdLa+sbmVnm7srO7t39QPTxq2zg1HFo8lrHpRMyCFBpaKFBCJzHAVCThMZrc5v7jExgrYv2A0wRCxUZaDAVnmEs9QNav1vy6PwddJUFBaqRAs1/96g1inirQyCWzthv4CYYZMyi4hFmll1pIGJ+wEXQd1UyBDbP5rTN65pQBHcbGlUY6V39PZExZO1WR61QMx3bZy8X/vG6Kw+swEzpJETRfLBqmkmJM88fpQBjgKKeOMG6Eu5XyMTOMo4un4kIIll9eJe2LeuDXg/vLWuOmiKNMTsgpOScBuSINckeapEU4GZNn8krePOW9eO/ex6K15BUzx+QPvM8fCOKOOA==</latexit><latexit sha1_base64="TZ6dp5tyCBo6NdZnLwRhzdKcg4s=">AAAB63icbVA9SwNBEN2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fszgnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelEhh0fe/vdLa+sbmVnm7srO7t39QPTxq2zg1HFo8lrHpRMyCFBpaKFBCJzHAVCThMZrc5v7jExgrYv2A0wRCxUZaDAVnmEs9QNav1vy6PwddJUFBaqRAs1/96g1inirQyCWzthv4CYYZMyi4hFmll1pIGJ+wEXQd1UyBDbP5rTN65pQBHcbGlUY6V39PZExZO1WR61QMx3bZy8X/vG6Kw+swEzpJETRfLBqmkmJM88fpQBjgKKeOMG6Eu5XyMTOMo4un4kIIll9eJe2LeuDXg/vLWuOmiKNMTsgpOScBuSINckeapEU4GZNn8krePOW9eO/ex6K15BUzx+QPvM8fCOKOOA==</latexit><latexit sha1_base64="TZ6dp5tyCBo6NdZnLwRhzdKcg4s=">AAAB63icbVA9SwNBEN2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fszgnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelEhh0fe/vdLa+sbmVnm7srO7t39QPTxq2zg1HFo8lrHpRMyCFBpaKFBCJzHAVCThMZrc5v7jExgrYv2A0wRCxUZaDAVnmEs9QNav1vy6PwddJUFBaqRAs1/96g1inirQyCWzthv4CYYZMyi4hFmll1pIGJ+wEXQd1UyBDbP5rTN65pQBHcbGlUY6V39PZExZO1WR61QMx3bZy8X/vG6Kw+swEzpJETRfLBqmkmJM88fpQBjgKKeOMG6Eu5XyMTOMo4un4kIIll9eJe2LeuDXg/vLWuOmiKNMTsgpOScBuSINckeapEU4GZNn8krePOW9eO/ex6K15BUzx+QPvM8fCOKOOA==</latexit>

blue⌘
<latexit sha1_base64="TZ6dp5tyCBo6NdZnLwRhzdKcg4s=">AAAB63icbVA9SwNBEN2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fszgnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelEhh0fe/vdLa+sbmVnm7srO7t39QPTxq2zg1HFo8lrHpRMyCFBpaKFBCJzHAVCThMZrc5v7jExgrYv2A0wRCxUZaDAVnmEs9QNav1vy6PwddJUFBaqRAs1/96g1inirQyCWzthv4CYYZMyi4hFmll1pIGJ+wEXQd1UyBDbP5rTN65pQBHcbGlUY6V39PZExZO1WR61QMx3bZy8X/vG6Kw+swEzpJETRfLBqmkmJM88fpQBjgKKeOMG6Eu5XyMTOMo4un4kIIll9eJe2LeuDXg/vLWuOmiKNMTsgpOScBuSINckeapEU4GZNn8krePOW9eO/ex6K15BUzx+QPvM8fCOKOOA==</latexit><latexit sha1_base64="TZ6dp5tyCBo6NdZnLwRhzdKcg4s=">AAAB63icbVA9SwNBEN2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fszgnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelEhh0fe/vdLa+sbmVnm7srO7t39QPTxq2zg1HFo8lrHpRMyCFBpaKFBCJzHAVCThMZrc5v7jExgrYv2A0wRCxUZaDAVnmEs9QNav1vy6PwddJUFBaqRAs1/96g1inirQyCWzthv4CYYZMyi4hFmll1pIGJ+wEXQd1UyBDbP5rTN65pQBHcbGlUY6V39PZExZO1WR61QMx3bZy8X/vG6Kw+swEzpJETRfLBqmkmJM88fpQBjgKKeOMG6Eu5XyMTOMo4un4kIIll9eJe2LeuDXg/vLWuOmiKNMTsgpOScBuSINckeapEU4GZNn8krePOW9eO/ex6K15BUzx+QPvM8fCOKOOA==</latexit><latexit sha1_base64="TZ6dp5tyCBo6NdZnLwRhzdKcg4s=">AAAB63icbVA9SwNBEN2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fszgnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelEhh0fe/vdLa+sbmVnm7srO7t39QPTxq2zg1HFo8lrHpRMyCFBpaKFBCJzHAVCThMZrc5v7jExgrYv2A0wRCxUZaDAVnmEs9QNav1vy6PwddJUFBaqRAs1/96g1inirQyCWzthv4CYYZMyi4hFmll1pIGJ+wEXQd1UyBDbP5rTN65pQBHcbGlUY6V39PZExZO1WR61QMx3bZy8X/vG6Kw+swEzpJETRfLBqmkmJM88fpQBjgKKeOMG6Eu5XyMTOMo4un4kIIll9eJe2LeuDXg/vLWuOmiKNMTsgpOScBuSINckeapEU4GZNn8krePOW9eO/ex6K15BUzx+QPvM8fCOKOOA==</latexit><latexit sha1_base64="TZ6dp5tyCBo6NdZnLwRhzdKcg4s=">AAAB63icbVA9SwNBEN2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fszgnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelEhh0fe/vdLa+sbmVnm7srO7t39QPTxq2zg1HFo8lrHpRMyCFBpaKFBCJzHAVCThMZrc5v7jExgrYv2A0wRCxUZaDAVnmEs9QNav1vy6PwddJUFBaqRAs1/96g1inirQyCWzthv4CYYZMyi4hFmll1pIGJ+wEXQd1UyBDbP5rTN65pQBHcbGlUY6V39PZExZO1WR61QMx3bZy8X/vG6Kw+swEzpJETRfLBqmkmJM88fpQBjgKKeOMG6Eu5XyMTOMo4un4kIIll9eJe2LeuDXg/vLWuOmiKNMTsgpOScBuSINckeapEU4GZNn8krePOW9eO/ex6K15BUzx+QPvM8fCOKOOA==</latexit>

square⌘
<latexit sha1_base64="TZ6dp5tyCBo6NdZnLwRhzdKcg4s=">AAAB63icbVA9SwNBEN2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fszgnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelEhh0fe/vdLa+sbmVnm7srO7t39QPTxq2zg1HFo8lrHpRMyCFBpaKFBCJzHAVCThMZrc5v7jExgrYv2A0wRCxUZaDAVnmEs9QNav1vy6PwddJUFBaqRAs1/96g1inirQyCWzthv4CYYZMyi4hFmll1pIGJ+wEXQd1UyBDbP5rTN65pQBHcbGlUY6V39PZExZO1WR61QMx3bZy8X/vG6Kw+swEzpJETRfLBqmkmJM88fpQBjgKKeOMG6Eu5XyMTOMo4un4kIIll9eJe2LeuDXg/vLWuOmiKNMTsgpOScBuSINckeapEU4GZNn8krePOW9eO/ex6K15BUzx+QPvM8fCOKOOA==</latexit><latexit sha1_base64="TZ6dp5tyCBo6NdZnLwRhzdKcg4s=">AAAB63icbVA9SwNBEN2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fszgnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelEhh0fe/vdLa+sbmVnm7srO7t39QPTxq2zg1HFo8lrHpRMyCFBpaKFBCJzHAVCThMZrc5v7jExgrYv2A0wRCxUZaDAVnmEs9QNav1vy6PwddJUFBaqRAs1/96g1inirQyCWzthv4CYYZMyi4hFmll1pIGJ+wEXQd1UyBDbP5rTN65pQBHcbGlUY6V39PZExZO1WR61QMx3bZy8X/vG6Kw+swEzpJETRfLBqmkmJM88fpQBjgKKeOMG6Eu5XyMTOMo4un4kIIll9eJe2LeuDXg/vLWuOmiKNMTsgpOScBuSINckeapEU4GZNn8krePOW9eO/ex6K15BUzx+QPvM8fCOKOOA==</latexit><latexit sha1_base64="TZ6dp5tyCBo6NdZnLwRhzdKcg4s=">AAAB63icbVA9SwNBEN2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fszgnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelEhh0fe/vdLa+sbmVnm7srO7t39QPTxq2zg1HFo8lrHpRMyCFBpaKFBCJzHAVCThMZrc5v7jExgrYv2A0wRCxUZaDAVnmEs9QNav1vy6PwddJUFBaqRAs1/96g1inirQyCWzthv4CYYZMyi4hFmll1pIGJ+wEXQd1UyBDbP5rTN65pQBHcbGlUY6V39PZExZO1WR61QMx3bZy8X/vG6Kw+swEzpJETRfLBqmkmJM88fpQBjgKKeOMG6Eu5XyMTOMo4un4kIIll9eJe2LeuDXg/vLWuOmiKNMTsgpOScBuSINckeapEU4GZNn8krePOW9eO/ex6K15BUzx+QPvM8fCOKOOA==</latexit><latexit sha1_base64="TZ6dp5tyCBo6NdZnLwRhzdKcg4s=">AAAB63icbVA9SwNBEN2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fszgnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelEhh0fe/vdLa+sbmVnm7srO7t39QPTxq2zg1HFo8lrHpRMyCFBpaKFBCJzHAVCThMZrc5v7jExgrYv2A0wRCxUZaDAVnmEs9QNav1vy6PwddJUFBaqRAs1/96g1inirQyCWzthv4CYYZMyi4hFmll1pIGJ+wEXQd1UyBDbP5rTN65pQBHcbGlUY6V39PZExZO1WR61QMx3bZy8X/vG6Kw+swEzpJETRfLBqmkmJM88fpQBjgKKeOMG6Eu5XyMTOMo4un4kIIll9eJe2LeuDXg/vLWuOmiKNMTsgpOScBuSINckeapEU4GZNn8krePOW9eO/ex6K15BUzx+QPvM8fCOKOOA==</latexit>

[Andreas et al. 2016]

L(),

Symbolist losses for connectionist models

Zero-Shot Task Generalization with Multi-Task Deep Reinforcement Learning

� (gA, gB) = '(gA) � '(gB) is the difference vector be-
tween two tasks in the embedding space, and ⌧dis and ⌧diff
are constant threshold distances. Intuitively, the first con-
straint enforces the analogy (i.e., parallelogram structure
in the embedding space; see Mikolov et al. (2013); Reed
et al. (2015)), while the other constraints prevent trivial so-
lutions. We incorporate these constraints into the following
objectives based on contrastive loss (Hadsell et al., 2006):

Lsim = EgA...D⇠Gsim

⇥
k� (gA, gB)�� (gC , gD) k2

⇤

Ldis = EgA...D⇠Gdis

h
(⌧dis � k� (gA, gB)�� (gC , gD) k)2+

i

Ldiff = EgA,B⇠Gdiff

h
(⌧diff � k� (gA, gB) k)

2
+

i
,

where (·)+ = max(0, ·) and Gsim,Gdis,Gdiff are sets of
task parameters that satisfy corresponding conditions in the
above three constraints. The final analogy-making objec-
tive is the weighted sum of the above three objectives.

3.2. Training
The parameterized skill is trained on a set of tasks (G0

⇢ G)
through the actor-critic method with generalized advantage
estimation (Schulman et al., 2016). We also found that
pre-training through policy distillation (Rusu et al., 2016;
Parisotto et al., 2016) gives slightly better results as dis-
cussed in Tessler et al. (2017). Throughout training, the
parameterized skill is also made to predict whether the cur-
rent state is terminal or not through a binary classification
objective, and the analogy-making objective is applied to
the task embedding separately. The full details of the learn-
ing objectives are described in the Appendix.

3.3. Experiments
Environment. We developed a 3D visual environment
using Minecraft based on Oh et al. (2016) as shown in
Figure 1. An observation is represented as a 64 ⇥ 64
pixel RGB image. There are 7 different types of objects:
Pig, Sheep, Greenbot, Horse, Cat, Box, and Ice. The
topology of the world and the objects are randomly gen-
erated for every episode. The agent has 9 actions: Look

(Left/Right/Up/Down), Move (Forward/Backward), Pick

up, Transform, and No operation. Pick up removes the ob-
ject in front of the agent, and Transform changes the object
in front of the agent to ice (a special object).

Implementation Details. The network architecture of
the parameterized skill consists of 4 convolution layers
and one LSTM (Hochreiter and Schmidhuber, 1997) layer.
We conducted curriculum training by changing the size
of the world, the density of object and walls according
to the agent’s success rate. We implemented actor-critic
method with 16 CPU threads based on Sukhbaatar et al.
(2015). The parameters are updated after 8 episodes for
each thread. The details of architectures and hyperparame-
ters are described in the Appendix.

Scenario Analogy Train Unseen

Independent ⇥ 0.3 (99.8%) -3.7 (34.8%)
X 0.3 (99.8%) 0.3 (99.5%)

Object-dependent ⇥ 0.3 (99.7%) -5.0 (2.2%)
X 0.3 (99.8%) 0.3 (99.7%)

Inter/Extrapolation ⇥ -0.7 (97.5%) -2.2 (24.9%)
X -0.7 (97.5%) -1.7 (94.5%)

Table 1: Performance on parameterized tasks. Each entry shows
‘Average reward (Success rate)’. We assume an episode is suc-
cessful only if the agent successfully finishes the task and its ter-
mination predictions are correct throughout the whole episode.

Results. To see how useful analogy-making is for gen-
eralization to unseen parameterized tasks, we trained and
evaluated the parameterized skill on three different sets of
parameterized tasks defined below1.

• Independent: The task space is defined as G = T ⇥ X ,
where T = {Visit, Pick up,Transform} and X is the set
of object types. The agent should move on top of the
target object given ‘Visit’ task and perform the corre-
sponding actions in front of the target given ‘Pick up’
and ‘Transform’ tasks. Only a subset of tasks are en-
countered during training, so the agent should generalize
over unseen configurations of task parameters.

• Object-dependent: The task space is defined as G =
T

0
⇥ X , where T

0 = T [{Interact with}. We divided
objects into two groups, each of which should be either
picked up or transformed given ‘Interact with’ task. Only
a subset of target object types are encountered during
training, so there is no chance for the agent to generalize
without knowledge of the group of each object. We ap-
plied analogy-making so that analogies can be made only
within the same group. This allows the agent to perform
object-dependent actions even for unseen objects.

• Interpolation/Extrapolation: The task space is defined
as G = T ⇥ X ⇥ C, where C = {1, 2, ..., 7}. The
agent should perform a task for a given number of times
(c 2 C). Only {1, 3, 5} ⇢ C is given during training,
and the agent should generalize over unseen numbers
{2, 4, 6, 7}. Note that the optimal policy for a task can be
derived from T ⇥X , but predicting termination requires
generalization to unseen numbers. We applied analogy-
making based on arithmetic (e.g., [Pick up, X, 2] : [Pick
up, X, 5] :: [Transform, Y, 3] : [Transform, Y, 6]).

As summarized in Table 1, the parameterized skill with
our analogy-making objective can successfully generalize
to unseen tasks in all generalization scenarios. This sug-
gests that when learning a representation of task parame-
ters, it is possible to inject prior knowledge in the form of
the analogy-making objective so that the agent can learn to

1The sets of subtasks used for training and evaluation are de-
scribed in the Appendix.

[Oh et al. 2017]

Symbol processing in connectionist models

green after red twice

× ×

Symbol processing in connectionist models
DIS TR IBUTE D R E P R E S E NTATIO N O F S YMBO LIC S TR UC TUR E 179

®

0
Filler [~ 0

(Letter)

@

@

@ @ @ @

@ ,@ @ @

0 O 0 0

@ @ @ @

@ @ @ @

© 0 ® @

Role (Position)
Fig, 5. A pure ly loca l te ns or product re pre s e nta tion of four-le tte r s trings .

De finition 2.14. Le t ~r/n be the te ns or p roduc t re p re s e n ta tion o f S induce d b y
a role de compos ition F/R o f S a nd two conne ctionis t re pre s e n ta tions ~F a nd
~R" The n ~F/n is a pure ly local tensor product representation if ~F a nd ~R a re
bo th loca l re pre s e n ta tions .

This ca s e is illus tra te d for the re pre s e n ta tion o f s trings in Fig. 5. If the fille r
a nd ro le pa tte rns bo th involve the a ctivity o f only a s ingle p roce s s or, the n the
te ns o r p roduc t pa tte rn re pre s e nting the ir binding will a ls o involve only a s ingle
unit. In o the r words , if 1/f F a nd qt R a re bo th loca l re pre s e n ta tions , the n IIJF/R is a
loca l re p re s e n ta tion o f individua l bindings .

P ure ly loca l te ns or p roduc t re pre s e n ta tions ha ve be e n us e d a long with the
pos itiona l ro le de compos ition o f s trings in ma ny conne ctionis t mode ls ; for
e xa mple :

• As wa s a lre a dy me n tione d in S e ction 1.1 a nd illus tra te d in Fig. 1, NETta lk
[35] us e s the pure ly loca l re p re s e n ta tion o f Fig. 5 to re p re s e n t s e ve n-le tte r
input s trings .

• The in te ra c tive a ctiva tion mode l o f the pe rce p tion o f le tte rs in words [23,
32] us e s the re p re s e n ta tion s hown in Fig. 5 for re pre s e nting four-le tte r
s trings , a t its in te rme dia te o r "le tte r" le ve l o f re pre s e n ta tion . This to6 is a
pure ly loca l te ns or p roduc t re pre s e n ta tion .

DIS TR IBUTE D R E P R E S E NTATIO N O F S YMBO LIC S TR UC TUR E 175

a moun t o f e ne rgy in a pa rticula r fre que ncy ba nd ove r time . For the role s he re
we ta ke a s e rie s o f time points a nd for the fille rs the a moun t o f e ne rgy in the
ba nd. In Fig. 3, the role s a re re pre s e nte d a s pa tte rns o f a ctivity ove r five units .
Ea ch role rp is a time poin t a nd is re pre s e nte d a s a pe a ke d pa tte rn ce nte re d a t
unit p ; the figure s hows the ca s e p = 4. Ea ch fille r f6 is a n e ne rgy le ve l; in Fig. 3
this is re pre s e nte d a s a pa tte rn o f a ctivity ove r four units : a s ingle pe a k
ce nte re d a t the e ne rgy le ve l be ing re pre s e nte d . The binding pa tte rn is a
two-dime ns iona l pe a k ce nte re d a t the point whos e x- a nd y-coordina te s a re the
time a nd e ne rgy va lue s be ing bound toge the r.

The e xa mple of Fig. 3 is vis ua lly tra ns pa re nt be ca us e of the s imple ge ome tri-
ca l s tructure o f the pa tte rns . Of cours e the re is nothing in the binding
me cha nis m its e lf tha t re quire s this . The dis tribute d re pre s e nta tion of role s a nd
fille rs ca n be a rbitra ry pa tte rns a nd in ge ne ra l the te ns or product o f the s e
pa tte rns will be e ve n more vis ua lly opa que tha n a re the pa tte rns for the role s
a nd fille rs : s e e Fig. 4. Howe ve r the ma the ma tica l s implicity o f te ns or product
binding ma ke s the ge ne ra l ca s e a s e a s y to a na lyze a s s pe cia l ca s e s like tha t o f
Fig. 3.

2.2.4. Tensor product representation

P utting toge the r the pre vious re pre s e nta tions , we ha ve :

De finition 2.10. Le t F/R be a role de compos ition of S , a nd le t ~F a nd ~n be
conne ctionis t re pre s e nta tions o f the fille rs a nd role s . The n the corre s ponding

Fille r

0

0

@

@ 0 0 @ O

• © 0 • @

• @ 0 • •

@ 0 0 @

• @ 0 • •
Role

Fig. 4. A ge ne ric e xa mple o f the te ns or product re pre s e nta tion o f a fille r/ro le binding.
[Smolensky 1990]

Symbolist processing in connectionist models

exists

and

red above

circle

yes↦
↦

↦

[Bottou et al. 97, Socher et al. 2011]

yes

[Andreas et al. 2016]

(Is this even the right taxonomy?)

0.7 � + 0.3 �

The cat drank The cat drank

(a) Inside Pass (b) Outside Pass

The cat drank The cat drank

e(i, j) e(i, j)a(i, j) a(i, j) b(i, j)

i0
j0 i1

j1
i0

j0

ā(k)

b̄(k)

Figure 2: The inside and outside pass of DIORA for the input ‘the cat drank’. a) The inside pass: The blue
inside vector ā(k) for the phrase ‘the cat drank’ is a weighted average of the compositions for the two possible
segmentations - ((the cat), drank) and (the, (cat drank)). The scalar weights come from a learned compatibility
function. b) The outside pass: The red outside vector b̄(k) for the phrase ‘the cat’ is a function of the outside vector
of its parent ‘the cat drank’ and the inside vector of its sibling ‘drank’.

ing all outside context. Thus, we perform an addi-
tional top-down outside calculation for each node
in the tree, providing external context into the sub-
tree representations in each chart cell. The model
is then trained with the objective that the outside
representations of the leaf cells should reconstruct
the corresponding leaf input word, analogous to
masked language model (Devlin et al., 2019) pre-
training, except by using dynamic programming
we predict every word from a completely un-
masked context. The single most likely tree can be
recovered using the CKY algorithm and compati-
bility scores between constituents. Previous work
either predict trees that are not well aligned with
known treebanks (Yogatama et al., 2017; Choi
et al., 2018), or has no mechanism for explicitly
modeling phrases, requiring a complex procedure
to extract syntactic structures (Shen et al., 2018).

To probe different properties of our model, we
run experiments on unsupervised parsing, seg-
ment recall, and phrase representations. DIORA
achieves multiple new state-of-the-art results for
unsupervised constituency parsing (absolute im-
provements of 13.7%, 11.5%, and 7.8% on WSJ,
WSJ-40, and MultiNLI), has a greater recall on
more constituent types than a strong baseline, and
produces meaningful phrase representations.

2 DIORA: Deep Inside-Outside

Recursive Autoencoders

Our goal is to design a model and unsupervised
training procedure that learns structure from raw
text. The design of DIORA is based on our
hypothesis is that the most effective compres-
sion of a sentence will be derived from following

the true syntactic structure of the underlying in-
put. Our approach builds on previous latent tree
chart parsers which are augmented with the inside-
outside algorithm (Baker, 1979; Lari and Young,
1990) and trained to reproduce each input word
from its outside context. Based on our hypothe-
sis, loosely inspired by the linguistic “substitution
principle” (Frege, 1960), the model will best re-
construct the input by discovering and exploiting
syntactic regularities of the text.

The inside pass of our method recursively com-
presses the input sequence, at each step inputting
the vector representations of the two children into
a composition function (§2.1.1) that outputs an in-
side vector representation of the parent. This pro-
cess continues up to the root of the tree, eventu-
ally yielding a single vector representing the en-
tire sentence (Figure 2a). This is loosely analo-
gous to the compression step of an autoencoder
and equivalent to existing latent tree chart parsers
forward pass (Maillard et al., 2017). Follow-
ing this, we initiate the outside pass of our algo-
rithm with a generic (root) representation that is
learned as a separate parameter. As the outside
step of the inside-outside algorithm (Figure 2b),
we unfold until finally producing representations
of the leaf nodes. These leaves are then optimized
to reconstruct the input sentence as done in an
autoencoder-based deep neural network.

2.1 Filling the Chart with Inside-Outside

Each inside representation is the root of a particu-
larly sub-tree, and that representation is generated
by considering only the descendant constituents
within that sub-tree, ignoring any outside context.
After the inside representations are calculated, we

[Drozdov et al. 2018]

(How much of this do we need?)

[https://super.gluebenchmark.com/leaderboard/]

https://super.gluebenchmark.com/leaderboard/

(How much of this do we need?)

(1a) The paramedic performed CPR on the passenger
even though she/he/they knew it was too late.

(2a) The paramedic performed CPR on the passenger
even though she/he/they was/were already dead.

(1b) The paramedic performed CPR on someone
even though she/he/they knew it was too late.

(2b) The paramedic performed CPR on someone
even though she/he/they was/were already dead.

Figure 2: A “Winogender” schema for the occupation
paramedic. Correct answers in bold. In general, OC-
CUPATION and PARTICIPANT may appear in either or-
der in the sentence.

TICIPANT).5 We aimed to write sentences where
(1) pronoun resolution was as unambiguous for
humans as possible (in the absence of additional
context), and (2) the resolution would not be af-
fected by changing pronoun gender. (See Figure
2.) Nonetheless, to ensure that our own judgments
are shared by other English speakers, we vali-
dated all 720 sentences on Mechanical Turk, with
10-way redundancy. Each MTurk task included
5 sentences from our dataset, and 5 sentences
from the Winograd Schema Challenge (Levesque
et al., 2011)6, though this additional validation
step turned out to be unnecessary.7 Out of 7200
binary-choice worker annotations (720 sentences
⇥ 10-way redundancy), 94.9% of responses agree
with our intended answers. With simple major-
ity voting on each sentence, worker responses
agree with our intended answers for 718 of 720
sentences (99.7%). The two sentences with low
agreement have neutral gender (“they”), and are
not reflected in any binary (female-male) analysis.

Correlation (r) RULE STAT NEURAL

B&L 0.87 0.46 0.35
BLS 0.55 0.31 0.31

Table 1: Correlation values for Figures 3 and 4.

5Unlike Winograd schemas, we are not primarily con-
cerned with whether these sentences are “hard” to solve, e.g.,
because they would require certain types of human knowl-
edge or could not be easily solved with word co-occurrence
statistics.

6We used the publicly-available examples from
https://cs.nyu.edu/faculty/davise/
papers/WinogradSchemas/WSCollection.html

7In the end, we did not use the Winograd schemas to fil-
ter annotators, as raw agreement on the Winogender schemas
was much higher to begin with (94.9% Winogender vs.
86.5% Winograd).

Figure 3: Gender statistics from Bergsma and Lin
(2006) correlate with Bureau of Labor Statistics 2015.
However, the former has systematically lower female
percentages; most points lie well below the 45-degree
line (dotted). Regression line and 95% confidence in-
terval in blue. Pearson r = 0.67.

4 Results and Discussion

We evaluate examples of each of the three coref-
erence system architectures described in 2: the
Lee et al. (2011) sieve system from the rule-
based paradigm (referred to as RULE), Durrett
and Klein (2013) from the statistical paradigm
(STAT), and the Clark and Manning (2016a) deep
reinforcement system from the neural paradigm
(NEURAL).

By multiple measures, the Winogender schemas
reveal varying degrees of gender bias in all three
systems. First we observe that these systems do
not behave in a gender-neutral fashion. That is to
say, we have designed test sentences where cor-
rect pronoun resolution is not a function of gen-
der (as validated by human annotators), but system
predictions do exhibit sensitivity to pronoun gen-
der: 68% of male-female minimal pair test sen-
tences are resolved differently by the RULE sys-
tem; 28% for STAT; and 13% for NEURAL.

Overall, male pronouns are also more likely to
be resolved as OCCUPATION than female or neu-
tral pronouns across all systems: for RULE, 72%
male vs 29% female and 1% neutral; for STAT,
71% male vs 63% female and 50% neutral; and
for NEURAL, 87% male vs 80% female and 36%
neutral. Neutral pronouns are often resolved as
neither OCCUPATION nor PARTICIPANT, possibly
due to the number ambiguity of “they/their/them.”

Break

There's a lot we still don't know

(1) Can we usefully formalize "symbol-like" generalization
in a task-independent way?

(2) Under what conditions do generic neural models
already succeed at symbolic generalization?

(3) To what extent are successes supported by implicit
symbol manipulation operations in vector space?

(4) What modeling tools are available to us beyond the
standard seq2seq toolkit for dealing with failures?

There's a lot we still don't know

(1) Can we usefully formalize "symbol-like" generalization
in a task-independent way?

(2) Under what conditions do generic neural models
already succeed at symbolic generalization?

(3) To what extent are successes supported by implicit
symbol manipulation operations in vector space?

(4) What modeling tools are available to us beyond the
standard seq2seq toolkit for dealing with failures?

Goal for this 6.884: answer these questions!

Symbolic generalization

(1) Can we usefully formalize "symbol-like" generalization in a task-
independent way? To what extent do current models already do it?

Symbolic generalization

(1) Can we usefully formalize "symbol-like" generalization in a task-
independent way? To what extent do current models already do it?

Query set
zup dax wif !!!
lug zup lug wif dax zup !!!!!!
lug dax dax wif lug !!!!!

Support set
wif !
lug !
zup !

dax !
wif !
lug !

Support set

wif zup dax !!!
lug dax lug zup lug !!!!!
dax wif lug !!!

Query set

dax dax !!
wif dax lug zup lug wif !!!!!!
wif lug lug !!!

Query set

dax !
lug !
zup !

Support set

Meta-training episodes Test episodePossible inputs: dax, wif, lug, zup
Possible outputs: !, !, !, !

… … … … … …

Figure 2: The mutual exclusivity task showing two meta-training episodes (left) and one test episode (right).
Each episode requires executing instructions in a novel language of 4 input pseudowords (“dax”, “wif”, etc.) and
four output actions (“red”, “yellow”, etc.). Each episode has a random mapping from pseudowords to meanings,
providing three isolated words and their outputs as support. Answering queries requires concatenation as well as
reasoning by mutual exclusivity to infer the fourth mapping (“dax” means “blue” in the test episode).

To answer the queries, a model must acquire two abilities inspired by human generalization patterns
[18]: 1) using isolated symbol mappings to translate concatenated symbol sequences, and 2) using
mutual exclusivity (ME) to resolve unseen mappings. Children use ME to help learn the meaning of
new words, assuming that an object with one label does not need another [26]. When provided with a
familiar object (e.g., a cup) and an unfamiliar object (e.g., a cherry pitter) and asked to “Show me the
dax,” children tend to pick the unfamiliar object rather than the familiar one.

Adults also use ME to help resolve ambiguity. When presented with episodes like Figure 2 in
a laboratory setting, participants use ME to resolve unseen mappings and translate sequences in
a symbol-by-symbol manner. Most people generalize in this way spontaneously, without any
instructions or feedback about how to respond to compositional queries [18]. An untrained meta
seq2seq learner would not be expected to generalize spontaneously – human participants come to the
task with a starting point that is richer in every way – but computational models should nonetheless be
capable of these inferences if trained to make them. This is a challenge for neural networks because
the mappings change every episode, and standard architectures do not reason using ME. In fact,
standard networks map novel inputs to familiar outputs, which is the opposite of ME [9].

Experimental setup. During meta-training, each episode is generated by sampling a random mapping
from four input symbols to four output symbols (19 permutations used for meta-training and 5 for
testing). The support set shows how three symbols should be translated, while one is withheld. The
queries consist of arbitrary concatenations of the pseudowords (length 2 to 6) which can be translated
symbol-by-symbol to produce the proper output responses (20 queries per episode). The fourth input
symbol, which was withheld from the support, is used in the queries. The model must learn how to
use ME to map this unseen symbol to an unseen meaning rather than a seen meaning (Figure 2).

Results. Meta seq2seq successfully learns to reason with ME to answer queries, achieving 100%
accuracy (SD = 0%). Based on the isolated mappings stored in memory, the network learns to
translate sequences of those items. Moreover, it can acquire and use new mappings at test time,
utilizing only its external memory and the activation dynamics. By learning to use ME, the network
shows it can reason about the absence of symbols in the memory rather than simply their presence.
The attention weights and use of memory is visualized and presented in the appendix (Figure A.1).

4.3 Experiment: Adding a new primitive through permutation meta-training

This experiment evaluates meta seq2seq learning on the SCAN task of adding a new primitive [16].
Models are trained to generalize compositionally by decomposing the original SCAN task into
a series of related seq2seq sub-tasks. The goal is to learn a new primitive instruction and use it
compositionally, operationalized in SCAN as the “add jump” split [16]. Models learn a new primitive
“jump” and aim to use it in combination with other instructions, resembling the “to Facebook” example
introduced earlier in this paper. First, the original seq2seq problem from [16] is described. Second,
the adapted problem for training meta seq2seq learners is described.

5

Characterizing generalization

d a → d a
b c → b c
a b → a b

c a → c a

4 chars
→ 52% accuracy

(1) Can we usefully formalize "symbol-like" generalization in a task-
independent way? To what extent do current models already do it?

Characterizing generalization

d a → d a
b c → b c
a b → a b

c a → c a

4 chars
→ 52% accuracy

d a → d a
b c → b c
a b → a b

c a → c a

6 chars
→ 82% accuracy

d e → d e
b c → b c
h b → h b

c a → c a

7 chars
→ 100% accuracy

(1) Can we usefully formalize "symbol-like" generalization in a task-
independent way? To what extent do current models already do it?

Recognizing symbolic processing

(2) To what extent are successes supported by implicit symbol-
manipulation operations? How are these operations
implemented?

Recognizing symbolic processing

(2) To what extent are successes supported by implicit symbol-
manipulation operations? How are these operations
implemented?

Published as a conference paper at ICLR 2019

E

3 6

3 7 6

7

(a)

3

5

-4 -1 7

-12 -3 21

-20 -5 35

(b)

+

3 r1 7 r2 6 r3
(1)

(2)

(3)

(4)

(5)
E

(c)
(d)

Figure 2: (a) A unidirectional sequence-to-sequence autoencoder. (b) The tensor product operation.
(c) A TPDN trained to approximate the encoding E from the autoencoder: (1) The fillers and roles
are embedded. (2) The fillers and roles are bound together using the tensor product. (3) The tensor
products are summed. (4) The sum is flattened into a vector by concatenating the rows. (5) A linear
transformation is applied to get the final encoding. (d) The architecture for evaluation: using the
original autoencoder’s decoder with the trained TPDN as the encoder.

2 APPROXIMATING RNN AUTOENCODER REPRESENTATIONS

To establish the effectiveness of the TPDN at uncovering the structural representations used by
RNNs, we first apply the TPDN to sequence-to-sequence networks trained on an autoencoding ob-
jective: they are expected to encode a sequence of digits and then decode that encoding to reproduce
the same sequence (Figure 2a). In addition to testing the TPDN, this experiment also addresses a sci-
entific question: do different architectures (specifically, unidirectional, bidirectional, and tree-based
sequence-to-sequence models) induce different representations?

2.1 EXPERIMENTAL SETUP

Digit sequences: The sequences consisted of the digits from 0 to 9. We randomly generated 50,000
unique sequences with lengths ranging from 1 to 6 inclusive and averaging 5.2; these sequences were
divided into 40,000 training sequences, 5,000 development sequences, and 5,000 test sequences.

Architectures: For all sequence-to-sequence networks, we used gated recurrent units (GRUs, Cho
et al. (2014)) as the recurrent units. We considered three encoder-decoder architectures: unidirec-
tional, bidirectional, and tree-based.3 The unidirectional encoders and decoders follow the setup of
Sutskever et al. (2014): the encoder is fed the input elements one at a time, left to right, updating
its hidden state after each element. The decoder then produces the output sequence using the final
hidden state of the encoder as its input. The bidirectional encoder combines left-to-right and right-to-
left unidirectional encoders (Schuster & Paliwal, 1997); for symmetry, we also create a bidirectional
decoder, which has both a left-to-right and a right-to-left unidirectional decoder whose hidden states
are concatenated to form bidirectional hidden states from which output predictions are made. Our
final topology is tree-based RNNs (Pollack, 1990; Socher et al., 2010), specifically the Tree-GRU
encoder of Chen et al. (2017) and the tree decoder of Chen et al. (2018). These architectures require
a tree structure as part of their input; we generated a tree for each sequence using a deterministic
algorithm that groups digits based on their values (see Appendix C). To control for initialization
effects, we trained five instances of each architecture with different random initializations.

Role schemes: We consider 6 possible methods that networks might use to represent the roles of
specific digits within a sequence; see Figure 3a for examples of these role schemes.

1. Left-to-right: Each digit’s role is its index in the sequence, counting from left to right.
2. Right-to-left: Each digit’s role is its index in the sequence, counting from right to left.
3. Bidirectional: Each digit’s role is an ordered pair containing its left-to-right index and its

right-to-left index (compare human representations of spelling, Fischer-Baum et al. 2010).
4. Wickelroles: Each digit’s role is the digit before it and the digit after it (Wickelgren, 1969).

3For this experiment, the encoder and decoder always matched in type.

3

Multimodal Generative Models for Compositional Representation Learning

We compute TRE on the ShapeWorld dataset1 (Kuhnle and Copestake, 2017) which
contains images of geometric shapes with di↵erent colors, positions, rotations, and sizes
along with captions describing the scene (e.g. “A red square above a blue circle”).

Object Op.Object Op.

Scene Op.

shape:
color: blue
size: small
position: (5,5)
rotation: 0 rotation: 90 rotation: 45

shape:
color: purple
size: large
position: (10,7)

shape:
color: orange
size: normal
position: (5,10)

Object Op.Image

Figure 5: Setup for the oracle representation used to compute TRE. The “Object” operator
is a small neural network over the features of the object. The “Scene” operator
is a deterministic average.

We initialize a vector embedding for each possible color, shape, size, x coordinate, and
y coordinate. Then, we define two compositional operators: first, the “Object” operator
ingests the vectorized color, shape, size, and position and returns a single “Object” vector.
We parameterize the “Object” operator as a MLP of varying depth. ((Andreas, 2019)
assumed fixed composition by averaging, which corresponds to the special case where the
“Object” MLP is linear.) Second, the “Scene” operator averages a set of “Object” vectors
into a “Scene” vector. See Fig. 5 for an example. The primitive embeddings and the
parameters of the “Object” operator are optimized with SGD using the distance between our
image representation and the corresponding “Scene” vector as an objective. We experiment
with L1 and L2 distance. Constructing the oracle representation in this manner ensures
an object-oriented representation. Thus, we can treat the TRE score with respect to the
variational image representation as a measure of its abstraction.

Table 4 measures how well VAEVAE and VAEGAN image representations can be re-
constructed from the oracle representation. Compared to unimodal baselines, our model
family has consistently lower TRE scores. This indicates that the representations learned
mutimodally better reflect the underlying object features of this domain, abstracting away
from the lower level visual information. Also, VAEGAN consistently outperforms VAEVAE,
which suggests that a stronger visual model is important for capturing compositionality. As
we vary the expressivity of the “Object” MLP from purely linear to three layers with ReLU,
the patterns remain consistent. In the supplement Sec. E, we explore a weaker version of
TRE where we use a bag-of-words feature set to represent language (e.g. color of triangles,
number of triangles, color of squares, etc) with summation as the composition operator, as
done in (Andreas, 2019). We find similar patterns to Table 4.

8.2 Object Detection

In addition to measuring compositionality directly, we can infer the impact of language on
visual representations through transfer tasks that require knowledge of objects, relations,
and attributes. Here, we consider bounding box prediction. The hypothesis is that image

1. We use a simplified Python implementation of ShapeWorld (https://github.com/jayelm/

minishapeworld) that allows us to store colors, positions, rotations, and sizes of rendered shapes.

19

z

Multimodal Generative Models for Compositional Representation Learning

We compute TRE on the ShapeWorld dataset1 (Kuhnle and Copestake, 2017) which
contains images of geometric shapes with di↵erent colors, positions, rotations, and sizes
along with captions describing the scene (e.g. “A red square above a blue circle”).

Object Op.Object Op.

Scene Op.

shape:
color: blue
size: small
position: (5,5)
rotation: 0 rotation: 90 rotation: 45

shape:
color: purple
size: large
position: (10,7)

shape:
color: orange
size: normal
position: (5,10)

Object Op.Image

Figure 5: Setup for the oracle representation used to compute TRE. The “Object” operator
is a small neural network over the features of the object. The “Scene” operator
is a deterministic average.

We initialize a vector embedding for each possible color, shape, size, x coordinate, and
y coordinate. Then, we define two compositional operators: first, the “Object” operator
ingests the vectorized color, shape, size, and position and returns a single “Object” vector.
We parameterize the “Object” operator as a MLP of varying depth. ((Andreas, 2019)
assumed fixed composition by averaging, which corresponds to the special case where the
“Object” MLP is linear.) Second, the “Scene” operator averages a set of “Object” vectors
into a “Scene” vector. See Fig. 5 for an example. The primitive embeddings and the
parameters of the “Object” operator are optimized with SGD using the distance between our
image representation and the corresponding “Scene” vector as an objective. We experiment
with L1 and L2 distance. Constructing the oracle representation in this manner ensures
an object-oriented representation. Thus, we can treat the TRE score with respect to the
variational image representation as a measure of its abstraction.

Table 4 measures how well VAEVAE and VAEGAN image representations can be re-
constructed from the oracle representation. Compared to unimodal baselines, our model
family has consistently lower TRE scores. This indicates that the representations learned
mutimodally better reflect the underlying object features of this domain, abstracting away
from the lower level visual information. Also, VAEGAN consistently outperforms VAEVAE,
which suggests that a stronger visual model is important for capturing compositionality. As
we vary the expressivity of the “Object” MLP from purely linear to three layers with ReLU,
the patterns remain consistent. In the supplement Sec. E, we explore a weaker version of
TRE where we use a bag-of-words feature set to represent language (e.g. color of triangles,
number of triangles, color of squares, etc) with summation as the composition operator, as
done in (Andreas, 2019). We find similar patterns to Table 4.

8.2 Object Detection

In addition to measuring compositionality directly, we can infer the impact of language on
visual representations through transfer tasks that require knowledge of objects, relations,
and attributes. Here, we consider bounding box prediction. The hypothesis is that image

1. We use a simplified Python implementation of ShapeWorld (https://github.com/jayelm/

minishapeworld) that allows us to store colors, positions, rotations, and sizes of rendered shapes.

19

x

Improving model performance

(3) What modeling tools are available to us beyond the standard
seq2seq toolkit for dealing with failures?

Improving model performance

(3) What modeling tools are available to us beyond the standard
seq2seq toolkit for dealing with failures?

f
✓

<latexit sha1_base64="JqEnYvV6PtsKBJYmBVwEpjIMANw=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOOsmY2ZllplcIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrSqSw6PvfXmFtfWNzq7hd2tnd2z8oHx41rU4NhwbXUpt2xCxIoaCBAiW0EwMsjiS0ovHtzG89gbFCqwecJBDGbKjEQHCGTmp2cQTIeuWKX/XnoKskyEmF5Kj3yl/dvuZpDAq5ZNZ2Aj/BMGMGBZcwLXVTCwnjYzaEjqOKxWDDbH7tlJ45pU8H2rhSSOfq74mMxdZO4sh1xgxHdtmbif95nRQH12EmVJIiKL5YNEglRU1nr9O+MMBRThxh3Ah3K+UjZhhHF1DJhRAsv7xKmhfVwK8G95eV2k0eR5GckFNyTgJyRWrkjtRJg3DySJ7JK3nztPfivXsfi9aCl88ckz/wPn8Ao/ePKA==</latexit><latexit sha1_base64="JqEnYvV6PtsKBJYmBVwEpjIMANw=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOOsmY2ZllplcIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrSqSw6PvfXmFtfWNzq7hd2tnd2z8oHx41rU4NhwbXUpt2xCxIoaCBAiW0EwMsjiS0ovHtzG89gbFCqwecJBDGbKjEQHCGTmp2cQTIeuWKX/XnoKskyEmF5Kj3yl/dvuZpDAq5ZNZ2Aj/BMGMGBZcwLXVTCwnjYzaEjqOKxWDDbH7tlJ45pU8H2rhSSOfq74mMxdZO4sh1xgxHdtmbif95nRQH12EmVJIiKL5YNEglRU1nr9O+MMBRThxh3Ah3K+UjZhhHF1DJhRAsv7xKmhfVwK8G95eV2k0eR5GckFNyTgJyRWrkjtRJg3DySJ7JK3nztPfivXsfi9aCl88ckz/wPn8Ao/ePKA==</latexit><latexit sha1_base64="JqEnYvV6PtsKBJYmBVwEpjIMANw=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOOsmY2ZllplcIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrSqSw6PvfXmFtfWNzq7hd2tnd2z8oHx41rU4NhwbXUpt2xCxIoaCBAiW0EwMsjiS0ovHtzG89gbFCqwecJBDGbKjEQHCGTmp2cQTIeuWKX/XnoKskyEmF5Kj3yl/dvuZpDAq5ZNZ2Aj/BMGMGBZcwLXVTCwnjYzaEjqOKxWDDbH7tlJ45pU8H2rhSSOfq74mMxdZO4sh1xgxHdtmbif95nRQH12EmVJIiKL5YNEglRU1nr9O+MMBRThxh3Ah3K+UjZhhHF1DJhRAsv7xKmhfVwK8G95eV2k0eR5GckFNyTgJyRWrkjtRJg3DySJ7JK3nztPfivXsfi9aCl88ckz/wPn8Ao/ePKA==</latexit><latexit sha1_base64="JqEnYvV6PtsKBJYmBVwEpjIMANw=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOOsmY2ZllplcIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrSqSw6PvfXmFtfWNzq7hd2tnd2z8oHx41rU4NhwbXUpt2xCxIoaCBAiW0EwMsjiS0ovHtzG89gbFCqwecJBDGbKjEQHCGTmp2cQTIeuWKX/XnoKskyEmF5Kj3yl/dvuZpDAq5ZNZ2Aj/BMGMGBZcwLXVTCwnjYzaEjqOKxWDDbH7tlJ45pU8H2rhSSOfq74mMxdZO4sh1xgxHdtmbif95nRQH12EmVJIiKL5YNEglRU1nr9O+MMBRThxh3Ah3K+UjZhhHF1DJhRAsv7xKmhfVwK8G95eV2k0eR5GckFNyTgJyRWrkjtRJg3DySJ7JK3nztPfivXsfi9aCl88ckz/wPn8Ao/ePKA==</latexit>

✓̂
<latexit sha1_base64="Rf/CEMSo46DnrFJCOWqp5+j0RE4=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKthaaUDbbTbN0swm7E6GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvzKQw6LrfTmVtfWNzq7pd29nd2z+oHx51TZprxjsslanuhdRwKRTvoEDJe5nmNAklfwzHtzP/8YlrI1L1gJOMBwkdKREJRtFKvh9TLHyMOdLpoN5wm+4cZJV4JWlAifag/uUPU5YnXCGT1Ji+52YYFFSjYJJPa35ueEbZmI5431JFE26CYn7zlJxZZUiiVNtSSObq74mCJsZMktB2JhRjs+zNxP+8fo7RdVAIleXIFVssinJJMCWzAMhQaM5QTiyhTAt7K2Ex1ZShjalmQ/CWX14l3Yum5za9+8tG66aMowoncArn4MEVtOAO2tABBhk8wyu8Obnz4rw7H4vWilPOHMMfOJ8/epSR9Q==</latexit><latexit sha1_base64="Rf/CEMSo46DnrFJCOWqp5+j0RE4=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKthaaUDbbTbN0swm7E6GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvzKQw6LrfTmVtfWNzq7pd29nd2z+oHx51TZprxjsslanuhdRwKRTvoEDJe5nmNAklfwzHtzP/8YlrI1L1gJOMBwkdKREJRtFKvh9TLHyMOdLpoN5wm+4cZJV4JWlAifag/uUPU5YnXCGT1Ji+52YYFFSjYJJPa35ueEbZmI5431JFE26CYn7zlJxZZUiiVNtSSObq74mCJsZMktB2JhRjs+zNxP+8fo7RdVAIleXIFVssinJJMCWzAMhQaM5QTiyhTAt7K2Ex1ZShjalmQ/CWX14l3Yum5za9+8tG66aMowoncArn4MEVtOAO2tABBhk8wyu8Obnz4rw7H4vWilPOHMMfOJ8/epSR9Q==</latexit><latexit sha1_base64="Rf/CEMSo46DnrFJCOWqp5+j0RE4=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKthaaUDbbTbN0swm7E6GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvzKQw6LrfTmVtfWNzq7pd29nd2z+oHx51TZprxjsslanuhdRwKRTvoEDJe5nmNAklfwzHtzP/8YlrI1L1gJOMBwkdKREJRtFKvh9TLHyMOdLpoN5wm+4cZJV4JWlAifag/uUPU5YnXCGT1Ji+52YYFFSjYJJPa35ueEbZmI5431JFE26CYn7zlJxZZUiiVNtSSObq74mCJsZMktB2JhRjs+zNxP+8fo7RdVAIleXIFVssinJJMCWzAMhQaM5QTiyhTAt7K2Ex1ZShjalmQ/CWX14l3Yum5za9+8tG66aMowoncArn4MEVtOAO2tABBhk8wyu8Obnz4rw7H4vWilPOHMMfOJ8/epSR9Q==</latexit><latexit sha1_base64="Rf/CEMSo46DnrFJCOWqp5+j0RE4=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKthaaUDbbTbN0swm7E6GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvzKQw6LrfTmVtfWNzq7pd29nd2z+oHx51TZprxjsslanuhdRwKRTvoEDJe5nmNAklfwzHtzP/8YlrI1L1gJOMBwkdKREJRtFKvh9TLHyMOdLpoN5wm+4cZJV4JWlAifag/uUPU5YnXCGT1Ji+52YYFFSjYJJPa35ueEbZmI5431JFE26CYn7zlJxZZUiiVNtSSObq74mCJsZMktB2JhRjs+zNxP+8fo7RdVAIleXIFVssinJJMCWzAMhQaM5QTiyhTAt7K2Ex1ZShjalmQ/CWX14l3Yum5za9+8tG66aMowoncArn4MEVtOAO2tABBhk8wyu8Obnz4rw7H4vWilPOHMMfOJ8/epSR9Q==</latexit>?

⇤<latexit sha1_base64="OlYXa5TGZ2jG1EJYshioKcqCJPw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBZBPJREBD0WvXhswX5AG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2M72Z++wmV5rF8MJME/YgOJQ85o8ZKjYt+ueJW3TnIKvFyUoEc9X75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia88TMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14lrcuq51a9xlWldpvHUYQTOIVz8OAaanAPdWgCA4RneIU359F5cd6dj0VrwclnjuEPnM8fcAGMrg==</latexit><latexit sha1_base64="OlYXa5TGZ2jG1EJYshioKcqCJPw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBZBPJREBD0WvXhswX5AG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2M72Z++wmV5rF8MJME/YgOJQ85o8ZKjYt+ueJW3TnIKvFyUoEc9X75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia88TMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14lrcuq51a9xlWldpvHUYQTOIVz8OAaanAPdWgCA4RneIU359F5cd6dj0VrwclnjuEPnM8fcAGMrg==</latexit><latexit sha1_base64="OlYXa5TGZ2jG1EJYshioKcqCJPw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBZBPJREBD0WvXhswX5AG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2M72Z++wmV5rF8MJME/YgOJQ85o8ZKjYt+ueJW3TnIKvFyUoEc9X75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia88TMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14lrcuq51a9xlWldpvHUYQTOIVz8OAaanAPdWgCA4RneIU359F5cd6dj0VrwclnjuEPnM8fcAGMrg==</latexit><latexit sha1_base64="OlYXa5TGZ2jG1EJYshioKcqCJPw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBZBPJREBD0WvXhswX5AG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2M72Z++wmV5rF8MJME/YgOJQ85o8ZKjYt+ueJW3TnIKvFyUoEc9X75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia88TMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14lrcuq51a9xlWldpvHUYQTOIVz8OAaanAPdWgCA4RneIU359F5cd6dj0VrwclnjuEPnM8fcAGMrg==</latexit>

⇤<latexit sha1_base64="OlYXa5TGZ2jG1EJYshioKcqCJPw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBZBPJREBD0WvXhswX5AG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2M72Z++wmV5rF8MJME/YgOJQ85o8ZKjYt+ueJW3TnIKvFyUoEc9X75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia88TMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14lrcuq51a9xlWldpvHUYQTOIVz8OAaanAPdWgCA4RneIU359F5cd6dj0VrwclnjuEPnM8fcAGMrg==</latexit><latexit sha1_base64="OlYXa5TGZ2jG1EJYshioKcqCJPw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBZBPJREBD0WvXhswX5AG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2M72Z++wmV5rF8MJME/YgOJQ85o8ZKjYt+ueJW3TnIKvFyUoEc9X75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia88TMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14lrcuq51a9xlWldpvHUYQTOIVz8OAaanAPdWgCA4RneIU359F5cd6dj0VrwclnjuEPnM8fcAGMrg==</latexit><latexit sha1_base64="OlYXa5TGZ2jG1EJYshioKcqCJPw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBZBPJREBD0WvXhswX5AG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2M72Z++wmV5rF8MJME/YgOJQ85o8ZKjYt+ueJW3TnIKvFyUoEc9X75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia88TMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14lrcuq51a9xlWldpvHUYQTOIVz8OAaanAPdWgCA4RneIU359F5cd6dj0VrwclnjuEPnM8fcAGMrg==</latexit><latexit sha1_base64="OlYXa5TGZ2jG1EJYshioKcqCJPw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBZBPJREBD0WvXhswX5AG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2M72Z++wmV5rF8MJME/YgOJQ85o8ZKjYt+ueJW3TnIKvFyUoEc9X75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia88TMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14lrcuq51a9xlWldpvHUYQTOIVz8OAaanAPdWgCA4RneIU359F5cd6dj0VrwclnjuEPnM8fcAGMrg==</latexit>

⌘
<latexit sha1_base64="TZ6dp5tyCBo6NdZnLwRhzdKcg4s=">AAAB63icbVA9SwNBEN2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fszgnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelEhh0fe/vdLa+sbmVnm7srO7t39QPTxq2zg1HFo8lrHpRMyCFBpaKFBCJzHAVCThMZrc5v7jExgrYv2A0wRCxUZaDAVnmEs9QNav1vy6PwddJUFBaqRAs1/96g1inirQyCWzthv4CYYZMyi4hFmll1pIGJ+wEXQd1UyBDbP5rTN65pQBHcbGlUY6V39PZExZO1WR61QMx3bZy8X/vG6Kw+swEzpJETRfLBqmkmJM88fpQBjgKKeOMG6Eu5XyMTOMo4un4kIIll9eJe2LeuDXg/vLWuOmiKNMTsgpOScBuSINckeapEU4GZNn8krePOW9eO/ex6K15BUzx+QPvM8fCOKOOA==</latexit><latexit sha1_base64="TZ6dp5tyCBo6NdZnLwRhzdKcg4s=">AAAB63icbVA9SwNBEN2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fszgnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelEhh0fe/vdLa+sbmVnm7srO7t39QPTxq2zg1HFo8lrHpRMyCFBpaKFBCJzHAVCThMZrc5v7jExgrYv2A0wRCxUZaDAVnmEs9QNav1vy6PwddJUFBaqRAs1/96g1inirQyCWzthv4CYYZMyi4hFmll1pIGJ+wEXQd1UyBDbP5rTN65pQBHcbGlUY6V39PZExZO1WR61QMx3bZy8X/vG6Kw+swEzpJETRfLBqmkmJM88fpQBjgKKeOMG6Eu5XyMTOMo4un4kIIll9eJe2LeuDXg/vLWuOmiKNMTsgpOScBuSINckeapEU4GZNn8krePOW9eO/ex6K15BUzx+QPvM8fCOKOOA==</latexit><latexit sha1_base64="TZ6dp5tyCBo6NdZnLwRhzdKcg4s=">AAAB63icbVA9SwNBEN2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fszgnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelEhh0fe/vdLa+sbmVnm7srO7t39QPTxq2zg1HFo8lrHpRMyCFBpaKFBCJzHAVCThMZrc5v7jExgrYv2A0wRCxUZaDAVnmEs9QNav1vy6PwddJUFBaqRAs1/96g1inirQyCWzthv4CYYZMyi4hFmll1pIGJ+wEXQd1UyBDbP5rTN65pQBHcbGlUY6V39PZExZO1WR61QMx3bZy8X/vG6Kw+swEzpJETRfLBqmkmJM88fpQBjgKKeOMG6Eu5XyMTOMo4un4kIIll9eJe2LeuDXg/vLWuOmiKNMTsgpOScBuSINckeapEU4GZNn8krePOW9eO/ex6K15BUzx+QPvM8fCOKOOA==</latexit><latexit sha1_base64="TZ6dp5tyCBo6NdZnLwRhzdKcg4s=">AAAB63icbVA9SwNBEN2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fszgnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelEhh0fe/vdLa+sbmVnm7srO7t39QPTxq2zg1HFo8lrHpRMyCFBpaKFBCJzHAVCThMZrc5v7jExgrYv2A0wRCxUZaDAVnmEs9QNav1vy6PwddJUFBaqRAs1/96g1inirQyCWzthv4CYYZMyi4hFmll1pIGJ+wEXQd1UyBDbP5rTN65pQBHcbGlUY6V39PZExZO1WR61QMx3bZy8X/vG6Kw+swEzpJETRfLBqmkmJM88fpQBjgKKeOMG6Eu5XyMTOMo4un4kIIll9eJe2LeuDXg/vLWuOmiKNMTsgpOScBuSINckeapEU4GZNn8krePOW9eO/ex6K15BUzx+QPvM8fCOKOOA==</latexit>

⌘
<latexit sha1_base64="TZ6dp5tyCBo6NdZnLwRhzdKcg4s=">AAAB63icbVA9SwNBEN2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fszgnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelEhh0fe/vdLa+sbmVnm7srO7t39QPTxq2zg1HFo8lrHpRMyCFBpaKFBCJzHAVCThMZrc5v7jExgrYv2A0wRCxUZaDAVnmEs9QNav1vy6PwddJUFBaqRAs1/96g1inirQyCWzthv4CYYZMyi4hFmll1pIGJ+wEXQd1UyBDbP5rTN65pQBHcbGlUY6V39PZExZO1WR61QMx3bZy8X/vG6Kw+swEzpJETRfLBqmkmJM88fpQBjgKKeOMG6Eu5XyMTOMo4un4kIIll9eJe2LeuDXg/vLWuOmiKNMTsgpOScBuSINckeapEU4GZNn8krePOW9eO/ex6K15BUzx+QPvM8fCOKOOA==</latexit><latexit sha1_base64="TZ6dp5tyCBo6NdZnLwRhzdKcg4s=">AAAB63icbVA9SwNBEN2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fszgnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelEhh0fe/vdLa+sbmVnm7srO7t39QPTxq2zg1HFo8lrHpRMyCFBpaKFBCJzHAVCThMZrc5v7jExgrYv2A0wRCxUZaDAVnmEs9QNav1vy6PwddJUFBaqRAs1/96g1inirQyCWzthv4CYYZMyi4hFmll1pIGJ+wEXQd1UyBDbP5rTN65pQBHcbGlUY6V39PZExZO1WR61QMx3bZy8X/vG6Kw+swEzpJETRfLBqmkmJM88fpQBjgKKeOMG6Eu5XyMTOMo4un4kIIll9eJe2LeuDXg/vLWuOmiKNMTsgpOScBuSINckeapEU4GZNn8krePOW9eO/ex6K15BUzx+QPvM8fCOKOOA==</latexit><latexit sha1_base64="TZ6dp5tyCBo6NdZnLwRhzdKcg4s=">AAAB63icbVA9SwNBEN2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fszgnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelEhh0fe/vdLa+sbmVnm7srO7t39QPTxq2zg1HFo8lrHpRMyCFBpaKFBCJzHAVCThMZrc5v7jExgrYv2A0wRCxUZaDAVnmEs9QNav1vy6PwddJUFBaqRAs1/96g1inirQyCWzthv4CYYZMyi4hFmll1pIGJ+wEXQd1UyBDbP5rTN65pQBHcbGlUY6V39PZExZO1WR61QMx3bZy8X/vG6Kw+swEzpJETRfLBqmkmJM88fpQBjgKKeOMG6Eu5XyMTOMo4un4kIIll9eJe2LeuDXg/vLWuOmiKNMTsgpOScBuSINckeapEU4GZNn8krePOW9eO/ex6K15BUzx+QPvM8fCOKOOA==</latexit><latexit sha1_base64="TZ6dp5tyCBo6NdZnLwRhzdKcg4s=">AAAB63icbVA9SwNBEN2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fszgnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelEhh0fe/vdLa+sbmVnm7srO7t39QPTxq2zg1HFo8lrHpRMyCFBpaKFBCJzHAVCThMZrc5v7jExgrYv2A0wRCxUZaDAVnmEs9QNav1vy6PwddJUFBaqRAs1/96g1inirQyCWzthv4CYYZMyi4hFmll1pIGJ+wEXQd1UyBDbP5rTN65pQBHcbGlUY6V39PZExZO1WR61QMx3bZy8X/vG6Kw+swEzpJETRfLBqmkmJM88fpQBjgKKeOMG6Eu5XyMTOMo4un4kIIll9eJe2LeuDXg/vLWuOmiKNMTsgpOScBuSINckeapEU4GZNn8krePOW9eO/ex6K15BUzx+QPvM8fCOKOOA==</latexit>

⌘
<latexit sha1_base64="TZ6dp5tyCBo6NdZnLwRhzdKcg4s=">AAAB63icbVA9SwNBEN2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fszgnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelEhh0fe/vdLa+sbmVnm7srO7t39QPTxq2zg1HFo8lrHpRMyCFBpaKFBCJzHAVCThMZrc5v7jExgrYv2A0wRCxUZaDAVnmEs9QNav1vy6PwddJUFBaqRAs1/96g1inirQyCWzthv4CYYZMyi4hFmll1pIGJ+wEXQd1UyBDbP5rTN65pQBHcbGlUY6V39PZExZO1WR61QMx3bZy8X/vG6Kw+swEzpJETRfLBqmkmJM88fpQBjgKKeOMG6Eu5XyMTOMo4un4kIIll9eJe2LeuDXg/vLWuOmiKNMTsgpOScBuSINckeapEU4GZNn8krePOW9eO/ex6K15BUzx+QPvM8fCOKOOA==</latexit><latexit sha1_base64="TZ6dp5tyCBo6NdZnLwRhzdKcg4s=">AAAB63icbVA9SwNBEN2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fszgnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelEhh0fe/vdLa+sbmVnm7srO7t39QPTxq2zg1HFo8lrHpRMyCFBpaKFBCJzHAVCThMZrc5v7jExgrYv2A0wRCxUZaDAVnmEs9QNav1vy6PwddJUFBaqRAs1/96g1inirQyCWzthv4CYYZMyi4hFmll1pIGJ+wEXQd1UyBDbP5rTN65pQBHcbGlUY6V39PZExZO1WR61QMx3bZy8X/vG6Kw+swEzpJETRfLBqmkmJM88fpQBjgKKeOMG6Eu5XyMTOMo4un4kIIll9eJe2LeuDXg/vLWuOmiKNMTsgpOScBuSINckeapEU4GZNn8krePOW9eO/ex6K15BUzx+QPvM8fCOKOOA==</latexit><latexit sha1_base64="TZ6dp5tyCBo6NdZnLwRhzdKcg4s=">AAAB63icbVA9SwNBEN2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fszgnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelEhh0fe/vdLa+sbmVnm7srO7t39QPTxq2zg1HFo8lrHpRMyCFBpaKFBCJzHAVCThMZrc5v7jExgrYv2A0wRCxUZaDAVnmEs9QNav1vy6PwddJUFBaqRAs1/96g1inirQyCWzthv4CYYZMyi4hFmll1pIGJ+wEXQd1UyBDbP5rTN65pQBHcbGlUY6V39PZExZO1WR61QMx3bZy8X/vG6Kw+swEzpJETRfLBqmkmJM88fpQBjgKKeOMG6Eu5XyMTOMo4un4kIIll9eJe2LeuDXg/vLWuOmiKNMTsgpOScBuSINckeapEU4GZNn8krePOW9eO/ex6K15BUzx+QPvM8fCOKOOA==</latexit><latexit sha1_base64="TZ6dp5tyCBo6NdZnLwRhzdKcg4s=">AAAB63icbVA9SwNBEN2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fszgnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelEhh0fe/vdLa+sbmVnm7srO7t39QPTxq2zg1HFo8lrHpRMyCFBpaKFBCJzHAVCThMZrc5v7jExgrYv2A0wRCxUZaDAVnmEs9QNav1vy6PwddJUFBaqRAs1/96g1inirQyCWzthv4CYYZMyi4hFmll1pIGJ+wEXQd1UyBDbP5rTN65pQBHcbGlUY6V39PZExZO1WR61QMx3bZy8X/vG6Kw+swEzpJETRfLBqmkmJM88fpQBjgKKeOMG6Eu5XyMTOMo4un4kIIll9eJe2LeuDXg/vLWuOmiKNMTsgpOScBuSINckeapEU4GZNn8krePOW9eO/ex6K15BUzx+QPvM8fCOKOOA==</latexit>

Admin

A note on enrollment

A note on enrollment

😢

A note on enrollment

Final decisions will go out this weekend.

Priority for:
- PhD students
- students with prior NLP / ling experience

Syllabus online!

Background

Neural networks

Language

"Classical AI"
AI: a Modern Approach, Russell and Norvig

Linguistic fundamentals for natural language processing, Bender

Deep learning, Goodfellow and Courville

NLP
http://web.mit.edu/jda/www/teaching/6.864/

http://web.mit.edu/jda/www/teaching/6.864/

Course components

Reading responses & participation

In-class presentations

Final project

Reading responses & participation

By Thursday night before class:

add a comment to the Piazza thread for the day's readings
 or
write a response to someone else's comment!

In class:

ask lots of questions!

Reading logistics

Piazza:

https://piazza.com/class/kecwn7kgtec743

Feel free to use for other discussion as well.

https://piazza.com/class/kecwn7kgtec743

In-class presentations

Sign up for a presentation slot.

Meet with me on Wednesday before your presentation.

Present in class!

Presentation logistics

Sign-up spreadsheet:

https://docs.google.com/spreadsheets/d/1VEmxvc-
tKo7AeDypkPQgHRe0dVFSUJex6E-jY5JPKas/edit?
usp=sharing

Email me [jda@mit.edu] to set up a check-in time.

(Tues morning & Weds are flexible.)

mailto:jda@mit.edu

Final project

Say something new about neuro-symbolic NLP!

(combining with your own research / other projects
is strongly encouraged)

Preference for groups of 2-4.

Project logistics

Use Piazza to find groups.

2 written assignments:

Project proposal (due 2 Oct)

Project writeup (due 4 Dec)

Feel free to reach out with other questions!

2 in-person assignments:

Preliminary discussion

Final presentation

Class / Zoom logistics

I prefer that people have their cameras on (but it's fine
if you don't want to).

Please mute yourself except when speaking and use the
"raise hand" feature.

Class runs from 11:35-1:25 with a 10-minute break.

Office hours 2-4 on Thurs (email me to schedule).

"Grading"

33% participation

33% presentation

33% project

Other disclaimers

THIS IS NOT A NORMAL SEMESTER

I hope this class is a source of joy.

If it becomes a source of stress,
let me know and we'll find a way

to fix it!

Important websites

Course homepage

Piazza

Project signup
https://docs.google.com/spreadsheets/d/1VEmxvc-
tKo7AeDypkPQgHRe0dVFSUJex6E-jY5JPKas/edit?usp=sharing

https://piazza.com/class/kecwn7kgtec743

http://web.mit.edu/jda/www/teaching/6.884/

https://docs.google.com/spreadsheets/d/1VEmxvc-tKo7AeDypkPQgHRe0dVFSUJex6E-jY5JPKas/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1VEmxvc-tKo7AeDypkPQgHRe0dVFSUJex6E-jY5JPKas/edit?usp=sharing
https://piazza.com/class/kecwn7kgtec743
http://web.mit.edu/jda/www/teaching/6.884/

Topic outline

11 September: composition

18 September: syntax and reasoning

25 September: pretraining and scale

(1) Can we usefully formalize "symbol-like" generalization in a task-
independent way? To what extent do current models already do it?

Recognizing symbolic processing

(2) To what extent are successes supported by implicit symbol-
manipulation operations? How are these operations
implemented?

2 October: connectionist symbol processing

9 October: discrete representations

16 October: modular representations

23 October: modular computations

Encouraging symbolic generalization

(3) What modeling tools are available to us beyond the standard
seq2seq toolkit for dealing with failures?

11 September: structured neural models

18 September: structured losses

25 September: structured data and meta-learning

Sample project 1

(1) Can we usefully formalize "symbol-like" generalization in a task-
independent way? To what extent do current models already do it?

Large-scale empirical study of generalization on
synthetic sequence data.

How do training set size, vocabulary size, syntactic
complexity and frequency distribution affect empirical
properties of symbolic generalization?

Sample project 2

Investigation of implicit types and type constraints
in neural sequence models.

Do pretrained sequence model representations encode
abstract notions of syntactic type and constituency?

(2) To what extent are successes supported by implicit symbol-
manipulation operations? How are these operations
implemented?

Sample project 3

(3) What modeling tools are available to us beyond the standard
seq2seq toolkit for dealing with failures?

New sequence modeling architectures (e.g.
transformers with tree-shaped attention).

Does imposing linguistically motivated structure on
generic sequence models improve their generalization
on ordinary tasks and hard ones?

Your jobs for next class

1. Have a nice weekend 😀

2. Sign up for a project presentation

3. Do the reading for next class

See you next week!

