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1. ABSTRACT

Recently, the mechanisms underlying 
epigenetic dysregulation associated with 
neurodevelopmental disorders have attracted increasing 
attention. Although most neurodevelopmental 
disorders in humans are multifaceted and encompass 
a wide range of symptoms, a small number of cases 
linked to specific single gene disruptions have been 
identified. The Drosophila genetic system provides 
excellent models for such diseases. This review 
will discuss recent advances in the study of human 
neurodevelopmental disorders associated with 
epigenetic dysregulation, particularly monogenic 
disorders established in relevant Drosophila models. 
Due to the vast range of genes affecting epigenetic 

dysregulation, we aim to provide a selective 
review of the disorders caused by aberrant histone 
modifications, with particular emphasis on enzymes 
regulating histone acetylation and methylation, in order 
to give the essential understanding of the nature of the 
neurodevelopmental disorders for rational therapeutic 
treatments.

2. INTRODUCTION

Epigenetic regulation can modulate biological 
functions with no alteration to the DNA sequence 
itself (1). Various types of mechanisms underlying 
epigenetic processes have been extensively studied 
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in recent decades, which are known to be distinct 
yet highly interrelated in function: DNA methylation, 
histone modification, noncoding RNA mechanisms, 
and chromatin (2, 3). It is well-accepted that these 
epigenetic alterations with consequent disruptions of 
normal signaling pathways might be important markers 
of status or progression in various human diseases (4). 
Such epigenetic dysregulation that triggers abnormal 
signaling cascades has been reported in the human 
brain as causing neurological problems (5).

Neurological disorders are characterized by 
cell loss accompanied by a reduction in cell numbers 
and consequent aberrant brain function, and have 
been dichotomized as neurodevelopmental and 
neurodegenerative disorders. Neurodevelopmental 
disorders are caused by abnormal brain development 
or damage at an early age, whereas neurodegenerative 
diseases arise due to the progressive loss of specific 
neuronal populations and involve age-related 
dysfunctions of neuronal maintenance over a lifetime 
(6). Neurodegenerative diseases are associated 
with the formation of cellular aggregates of toxic 
proteins, representative examples of which include 
Parkinson’s disease and Alzheimer’s disease (7). 
On the other hand, neurodevelopmental disorders 
include attention-deficit hyperactivity disorder, autism, 
learning disabilities, intellectual disability (ID; also 
known as mental retardation), conduct disorders, 
cerebral palsy, impairments in vision and hearing, 
and other developmental delays (8). Based on a 
survey conducted in 2006–2008, approximately 15% 
of children in the United States, aged 3 to 17 years, 
were affected by neurodevelopmental disorders (9). 
Most neurodevelopmental disorders are multifactorial 
and likely result from a combination of genetic and 
environmental risk factors, as is widely accepted 
for autism spectrum disorders (ASDs). However, 
some cases of neurodevelopmental disorders are 
associated with specific single gene disruptions, and 
such monogenic disorders are readily modeled for 
investigations of disease etiology leading to the logical 
development of therapeutic intervention strategies.

Drosophila is a model organism widely 
used as a tool for understanding many fundamental 
biological processes common to higher eukaryotes. 
Owing to complete sequencing and subsequent 
annotation of the Drosophila genome, the high degree 
of conservation in developmental processes between 
Drosophila and humans has been revealed (10). 
Moreover, about 77% of human disease-associated 
sequences in OMIM have been reported to show 
strong matches to sequences in the Drosophila 
sequence database (11).

In this review, we discuss monogenic 
disorders causing neurodevelopmental abnormalities 
via epigenetic dysregulation, particularly in histone 

acetylation and methylation, that are conserved 
between humans and Drosophila as shown in Figure 
1. In the following sections, we briefly outline general 
epigenetic regulation mechanisms and describe 
Drosophila models for human neurodevelopmental 
disorders caused by two major histone modifications, 
acetylation and methylation, with demonstrative 
examples of recent discoveries in the fly, emphasizing 
how Drosophila have expanded our knowledge 
concerning human neurodevelopmental disorders. 

3. GENERAL BASIS OF HISTONE ACETYLA-
TION AND HISTONE METHYLATION

The alterations of histones constitute 
key epigenetic mechanisms in which epigenetic 
markers are deposited or reversibly removed by 
specific enzymes (known as “writers” and “erasers,” 
respectively), and subsequently recognized by 
effector proteins (“readers”). The direct chemical 
modifications of histones by the three modifiers 
take place at the posttranslational level. The various 
posttranslational modifications (PTMs) in histone 
proteins can form a unique histone code, regulating 
gene activity at the transcriptional level by modifying 
DNA-histone interactions, which leads to structural 
changes and transcriptional activation or silencing (12, 
13). Histone PTMs include acetylation, methylation, 
phosphorylation, ubiquitination, sumoylation, 
ADP ribosylation, and citrullination via covalent 
modifications of specific residues primarily located 
at histone N-terminal tails (14–16). Among them, 
histone acetylation and methylation are the two major 
epigenetic modifications in terms of their roles in 
deciphering histone codes as well as gene regulation. 

3.1. Histone acetylation

Protein acetylation occurs mainly on lysine 
residues (17). The four core histones, H2A, H2B, H3, 
and H4, contain numerous lysine residues that are 
accessible to acetylation. Initially, modification events 
in the unstructured N-terminal histone tail domains 
were extensively studied. Thus, histone acetylation 
was mostly observed in N-terminal tails at histone 
H2A lysine 5(H2AK5), H2BK12/K15, H3K9/K14/K18/
K23/K36, and H4K5/K8/K12/K16, but later acetylation 
events at H3K56, H4K59, and H4K91 were also 
identified (18, 19) . 

Histone lysine acetylation is regulated by 
various specific writers and erasers, such as lysine or 
histone acetyltransferase (HAT/KAT) and deacetylase 
complexes (HDAC/KDAC), respectively. Most HATs 
belong to one of four families based on their homologies: 
the Gcn5-related acetyltransferase (GNAT) family, the 
p300/CBP family, the SRC/p160 family, and the MYST 
family (named after its founding members, MOZ, Ybf2/
Sas3, Sas2, and Tip60) (20). In mammals, there are 
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18 HDAC enzymes that are divided into four separate 
categories called classes (Class I, II, III, and IV 
proteins) based on sequence similarities, all of which 
use either zinc-dependent (Class I, II, and IV) or NAD+-
dependent (Class III) mechanisms for deacetylation 

(21, 22). There have been difficulties in deciphering 
substrate specificity of HDACs due to their functional 
redundancy, and currently suggested that most HDAC 
can deacetylate all four core histones due to a lack of 
except for few cases (21).

Figure 1. Histone acetylation and methylation residues involved in neurodevelopmental disorders with their relevant models. In this figure, 17 
neurodevelopmental disorders associated with aberrant histone acetylation and/or methylation are shown. Arginine and lysine residues at the N-terminal 
ends of core histone proteins and some disease-associated lysine residues inside are shown. Among them, the residues known to be acetylated or 
methylated are highlighted in purple or blue squares, respectively. The association of the residues with neurodevelopmental disorders in this review 
are briefly described in the purple- or blue-lined textboxes depending on the types of histone modifications, acetylation or methylation, inside which the 
names of disorders, the related human genes and their Drosophila orthologs, and modifying activities are indicated. The writers (HAT and KMT) and the 
erasers (HDAC and KDM) are separately marked with symbols of a pencil and an eraser, respectively. RSTS1, Rubinstein-Taybi syndrome 1; RSTS2, 
Rubinstein-Taybi syndrome 2; MRD32, Autosomal dominant mental retardation 32; GTPTS, Genitopatellar syndrome; KABUK 1, Kabuki syndrome 1; 
KABUK 2, Kabuki syndrome 2; KLEFS1, Kleefstra syndrome 1; KLEFS2, Kleefstra syndrome 2; MRXSCJ, Mental retardation, X-linked, syndromic, 
Claes-Jensen type disorder; MRT65, Autosomal recessive mental retardation 65; SOTOS1, Sotos syndrome 1; WHS, Wolf-Hirschhorn syndrome; WVS, 
Weaver syndrome; WDSTS, Wiedemann-Steiner syndrome; SBIDDS, Short stature, brachydactyly, intellectual developmental disability, and seizures



Epigenetics of neurodevelopmental disorders and Drosophila 

1333 © 1996-2019

So far, histone acetylation is generally known 
to be associated with transcriptional activation in 
an untargeted and globalized manner by affecting 
most nucleosomes, which are repressed by histone 
deacetylation. It is intriguing that specific acetylatable 
lysine residues can function as sites which interact with 
other epigenetic regulatory factors, and that histone 
deacetylation can be necessary for gene activity (17, 
23). A wealth of evidence indicates that HAT and HDAC 
functions are critical for proper brain development and 
functionality. Lysine acetylation generally promotes 
cognitive performance, whereas the opposite process 
appears to negatively regulate cognition in multiple 
brain regions; accordingly, inhibition of HDACs has 
been proposed as a therapeutic approach for various 
neurological disorders (19, 24).

3.2. Histone methylation

Histone methylation occurs at lysine 
residues (H3K4/K9/K27/K36/K79, and H4K20) and 
arginine (histone H3 arginine 2 (H3R2)/R8/R17/R26, 
and H4R3) (25, 26). Lysine residues on histones 
are subject to mono-, di-, or trimethylation, whereas 
arginine residues can be mono- or dimethylated. 

Histone methylations of lysine residues are 
controlled by histone lysine methyltransferases (KMTs) 
and demethylases (KDMs), aberrant expression 
of which often plays a significant role in various 
pathological processes (22). KMTs are classified into 
two groups, the larger of which is comprised of SET 
domain-containing KMTs including the SET and MYND 
domain family and SET domain KMTs. The second 
group consists of non-SET domain-containing KMTs 
that are represented solely by KMT4 (Dot1-like KMT) 
(27). KDMs also have two groups: the lysine-specific 
demethylase (LSD) and Jumonji C-terminal domain 
(JmjC) families (22). 

In contrast to HDACs that globally regulate 
gene expression across different cell types, specific 
modifications by KMTs and KDMs can result in distinct 
functional outcomes, either transcriptional activation 
or repression, depending on the site and degree of 
methylation (28)(29). Key developmental genes carry 
repressive or activating histone lysine markers, such 
as trimethylation of H3K27 or H3K4, respectively, 
conferring a bivalent state to pluripotent embryonic 
stem cells (30).

Methylation of arginine residues in histones 
is achieved by the arginine methyltransferase (PRMT) 
family (31). In mammals, modification by arginine 
methylation is as common as phosphorylation 
and ubiquitination (32). Despite the controversy 
concerning the existence of arginine demethylases 
(RDMs), it was recently shown that certain histone 
lysine demethylases (KDMs) also possess arginine 

demethylation activity in vitro (33). The role of arginine 
methylation in human diseases has been rapidly 
emerging over the years (34). It has been reported that 
full deletion of PRMTs is an embryonic lethal mutation, 
and numerous links between arginine methylation and 
neurodegenerative diseases have been revealed over 
the last few years (35). 

4. DROSOPHILA MODELS FOR HUMAN 
NEURODEVELOPMENTAL DISORDERS 

The functions and the structures of histone-
modifying enzymes are well-conserved between 
Drosophila and humans (21, 36). For example, 
HATs are grouped into 4 main families in humans, 
members of which have been identified in Drosophila 
(37). Thus, since the roles of histone PTMs are well-
known in human neural development (38–40). it is 
worth utilizing Drosophila models to study human 
neurodevelopmental disorders caused by epigenetic 
dysregulation. In the following sections, we discuss 
human neurodevelopmental disorders caused by the 
aberration of single genes with identified Drosophila 
homologs, which subsequently dysregulate histone 
PTMs as summarized in Table 1. Among the single 
gene aberrations, the human disorders associated 
with dysregulation of two types of histone modifiers is 
covered; the writers (HATs and KMTs) and the erasers 
(HDACs and KDMs). Examples of neurodevelopmental 
disorders caused by dysregulation of non-histone 
protein modification by histone-modifying enzymes 
(41) are not included here. 

4.1. Drosophila models for histone acetylation 
dysregulation

4.1.1.  Rubinstein-Taybi syndrome 1 and Rubin-
stein-Taybi syndrome 2

Rubinstein-Taybi syndrome-1 (RSTS1; OMIM 
180849) is caused by a heterozygous mutation in the 
gene encoding for CREB-binding protein (CREBBP), 
also known as KAT3A and CBP. This disease was 
named after Rubinstein and Taybi, who first reported a 
syndrome characterized by ID, broad thumbs and toes, 
and facial abnormalities (42). KAT3A is a coactivator 
for the cAMP-responsive transcription factor CREB. 
Patients with RSTS carry heterozygous point mutations 
in the KAT3A gene, suggesting that the loss of one 
functional copy of KAT3A triggers the developmentally 
abnormal condition (43). The heterozygous mice that 
had truncated Crebbp protein (residues 1 to 1084) 
containing the CREB-binding domain showed clinical 
features of RSTS (44).

On the other hand, Rubinstein-Taybi syndrome 
2 (RSTS2; OMIM 613684) is caused by a heterozygous 
mutation in the EP300 gene, also known as KAT3B, 
that encodes the adenovirus E1A-associated cellular 
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Table 1. List of neurodevelopmental disorders caused by mutations in histone acetylation or methylation-
related genes mentioned in this review and the related Drosophila genes

Histone 
Modification

Residue Disodrder OMIM Symptom Human 
Gene 
(synonym)

Function Target 
Sites in 
Histones

Drosophila 
Ortholog

Similarity 
*

 Acetylation Lysine

Rubinstein-Taybi 
syndrome 1 180849

ID, broad thumbs 
and toes, and facial 
abnormalities

KAT3A 
(CREBBP, 
CBP)

HAT

H3K14/
K18/ K23/
K27, 
H4K5/K8/ 
K12/K16

nej

67(a)

Rubinstein-Taybi 
syndrome 2 613684

craniofacial 
abnormalities, 
postnatal growth 
deficiency, broad 
thumbs, broad big 
toes, ID, and a 
propensity for the 
development of 
malignancies

KAT3B 
(EP300, 
p300)

HAT

H3K14/
K18/ K23/
K27, 
H4K5/K8/ 
K12/K17

32(a)

Autosomal 
dominant mental 
retardation 32 

616268

microcephaly, poor 
overall growth, and 
delayed psychomotor 
development with ID 
and absent speech

KAT6A 
(MYST3, 
MOZ)

HAT H3K9/K18/
K23

enok

23(a)

Genitopatellar 
syndrome 606170

microcephaly, 
severe psychomotor 
retardation, ID, genital 
abnormalities, missing 
or underdeveloped 
kneecaps, and other 
abnormalities

KAT6B 
(MYST4, 
MORF)

HAT H3K23 22(a)

Chromosome 
2q37 deletion 
syndrome

600430

developmental 
delay, ID, ASD, 
brachydactyly mental 
retardation (BDMR) 
syndrome, and 
dysmorphic facial 
features

HDAC4 HDAC

Lysine 
residues 
on all 
four core 
histones 

dHDAC4 33(a)

Chondrodysplasia 
with 
platyspondyly, 
distinctive 
brachydactyly, 
hydrocephaly, and 
microphthalmia 

300863

intrauterine growth 
retardation, 
hydrocephaly, 
macrocephaly, 
frontal bossing, 
and microphthalmia 
in affected males  
whereas a milder 
phenotype involving 
short stature and 
sometimes associated 
with mild ID in 
affected females

HDAC6 HDAC

Lysine 
residues 
on all 
four core 
histones 

dHDAC6 52.45(n)

Kabuki syndrome 
1 147920

congenital ID 
syndrome with 
additional features 
including postnatal 
dwarfism, a peculiar 
facies characterized 
by long palpebral 
fissures with eversion 
of the lateral third of 
the lower eyelids

KMT2D 
(MLL2, 
MLL4) 

KMT H3K4 trr 26(a)

Kabuki syndrome 
2 300867

a variety of 
phenotypes ranging 
from typical KABUK 
to a milder clinical 
presentation, and 
more common 
hypoglycaemia in 
KABUK 2 than in 
KABUK 1 

KDM6A 
(UTX) KDM  H3K27 dUtx 59.12(n)
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Methylation

Lysine

Kleefstra 
syndrome 1 610253

ID without speech 
development, 
hypotonia, and 
characteristic facial 
features

KMT1D 
(EHMT1, 
GLP1)

KMT  H3K9 dG9a 22(a)

Kleefstra 
syndrome 2 617768

delayed psychomotor 
development, 
variable ID, and mild 
dysmorphic features

KMT2C 
(MLL3) KMT H3K4 Lpt 32(a)

Mental 
retardation, 
X-linked, 
syndromic, Claes-
Jensen type 
disorder 

300534

severe ID, slowly 
progressive spastic 
paraplegia, facial 
hypotonia, and 
maxillary hypoplasia

KDM5C 
(JARID1C, 
MRXSCJ)

KDM H3K4

lid

35(a)

 Autosomal 
recessive mental 
retardation 65 

618109

poor overall 
growth, neonatal 
feeding difficulties, 
dolichocephaly, 
ID, and moderate 
learning disabilities 

KDM5B 
(JARID1B, 
MRT65)

KDM H3K4 36 (a)

Sotos syndrome 1 117550

childhood overgrowth, 
facial dysmorphism, 
macrocephaly, and 
non-progressive 
neurological delay 

KMT3B 
(NSD1, 
SOTOS1)

KMT H3K36

NSD

25(a)

Wolf-hirschhorn 
syndrome 194190

delayed growth and 
ID, microcephaly, 
“Greek helmet” facies, 
and closure defects

KMT3F, 
KMT3G 
(NSD2, 
WHSC1, 
MMSET)

KMT H3K37 23(a)

Weaver syndrome 277590

considerable 
phenotypic overlap 
with SOTOS 
syndrome

KMT6, 
KMT6A 
(EZH2)

KMT H3K27 E(z) 56.56(n)

Wiedemann-
Steiner syndrome 605130

extremely rare 
neurodevelopmental 
condition 
accompanied by 
microcephaly, short 
stature, an autism-
like phenotype, and 
aggression 

KMT2A 
(MLL1, 
MLL, TRX1)

KMT H3K4 trx 18(a)

Arginine

Short stature, 
brachydactyly, 
intellectual 
developmental 
disability, and 
seizures

617157

global delayed 
development, 
microcephaly, ID, 
brachydactyly, and 
short metacarpals 

PRMT7 RMT H4R3 Art7 50.65(n)

p300 transcriptional co-activator protein. RSTS2 is a 
disorder characterized by craniofacial abnormalities, 
postnatal growth deficiency, broad thumbs, broad 
big toes, ID, and a propensity for the development of 
malignancies. RSTS2 displays a milder phenotype 
than RSTS1. About 50 to 70% of patients have RSTS1 
due to a mutation in the KAT3A gene, whereas RSTS2 
is much less common; only about 3% of patients 
have mutations in the KAT3B gene. A fraction of 
the intracellular HDAC1 protein is incorporated in a 
multiprotein complex containing several components, 
including KAT3B that can acetylate HDAC1, leading 
to its inactivation and modulation of transcription (45). 

Among the four different HAT families 
mentioned previously in section 3.1., KAT3B and 
KAT3A belong to the p300/CBP family, as the names 

imply. Although sharing 86% amino acid sequence 
homology (46), the functions of KAT3B and KAT3A 
are overlapped but distinct; they have significant HAT 
activity on the same core histone substrates (H3K14/
K18/K23/K27 and H4K5/K8/K12/K16) with differences 
in specificity and selectivity (47, 48). p300/CBP family 
members are required for proper brain development 
(49–51). 

Drosophila has a single p300/CBP homolog, 
nejire (nej). It acetylates several nuclear proteins, 
including histone H3K18, H3K27, and H4K8 (52) (53) 
(54). It was shown that nej is necessary for the in vivo 
activation of a specific target gene as well as for the 
global acetylation of H4, suggesting a role in regulating 
global histone acetylation throughout the developing 
organism (54). In addition, nej is an intrinsic component 
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for circadian-controlled transcription and participates 
in a postsynaptic regulatory system that controls 
functional synaptic development (55, 56).

4.1.2.  Autosomal dominant mental retardation 32 
and genitopatellar syndrome

Autosomal dominant mental retardation 32 
(MRD32; OMIM 616268) is caused by a heterozygous 
mutation in the KAT6A gene. KAT6A (known as MYST3 
and MOZ) is a MYST-family histone acetyltransferase, 
and reported to acetylate H3K9/K18/K23 residues (57, 
58). Common features of MRD32 patients include 
microcephaly, poor overall growth, and delayed 
psychomotor development with ID and absent speech. 
Studies of patient cells showed alterations in the 
acetylation of H3K9 and H3K18, as well as changes in 
signaling downstream of p53, suggesting disruption of 
multiple pathways involved in apoptosis, metabolism, 
and transcriptional regulation (57). 

Genitopatellar syndrome (GTPTS; OMIM 
606170) is a rare autosomal dominant disorder 
caused by a heterozygous mutation in the KAT6B 
gene. Like KAT6A, KAT6B (MYST4 and MORF) is 
also a MYST-family histone acetyltransferase, and 
known to acetylate the H3K23 residue (59). Various 
gene mutations leading to C-terminal truncations in 
MORF cause the rare genitopatellar syndrome (OMIM 
606170), a condition characterized by microcephaly, 
severe psychomotor retardation, ID, genital 
abnormalities, missing or underdeveloped kneecaps, 
and other abnormalities (60, 61). KAT6B is required for 
RUNX2-dependent transcriptional activation and may 
be involved in cerebral cortex development.

The two mammalian KAT6 genes, described 
above as KAT6A and its paralog KAT6B, have been 
identified thus far (62, 63), whereas Drosophila KAT6, 
named Enoki mushroom (Enok), has been reported as 
a critical factor in neuroblast proliferation (64). KAT6 
complexes are composed of multisubunits and are 
highly conserved between flies and mammals, strongly 
suggesting that KAT6 HATs play crucial and conserved 
roles in a wide range of species (65). Enok acetylates 
lysine residues on histones, including H3K23, in order to 
regulate gene transcription. The disruption of Enok HAT 
activity in neuroblasts resulted in defective development 
of the mushroom body of the fly memory center due to 
an arrest in neuroblast proliferation rather than a failure 
in either cell fate switching or axon branching (66). Later, 
it was revealed that the Enok complex promotes G1/S 
transition by interacting with the proliferating cell nuclear 
antigen (PCNA) unloader Elg1 complex and inhibiting 
its PCNA-unloading function.

4.1.3.  Chromosome 2q37 deletion syndrome

Chromosome 2q37 deletion syndrome 
(OMIM 600430) is caused by a contiguous gene 

deletion of several genes on chromosome 2q37.2, 
one of which is HDAC4. Patients with chromosome 
2q37 deletion syndrome show highly variable clinical 
manifestations likely resulting from deletions of various 
genes at various sizes. Variable clinical features 
include developmental delay, ID, ASD, brachydactyly 
mental retardation syndrome, and dysmorphic facial 
features. 

HDAC4 is highly expressed in the brain 
(67), and it interacts with multiple transcription factors 
which are necessary for brain development, including 
myocyte enhancer factor 2A (MEF2A) (68). In humans, 
deletion, duplication, and haploinsufficiency of HDAC4 
lead to mental retardation, suggesting that HDAC4 
plays an important role in neurodevelopment which is 
directly linked to cognitive function (69, 70).

Similar to human HDAC4, the repression 
of HDAC4 in Drosophila results in the impairment of 
synaptic plasticity as well as learning and memory 
deficits due to a failure to properly redirect MEF2 (71). 
In addition, it has been reported that the homeostasis 
of HDAC4 is crucial for the maintenance of cognitive 
function by regulating many other transcription genes 
involved in synaptic plasticity, neuronal survival, and 
neurodevelopment (72). 

4.1.4.  Chondrodysplasia with platyspondyly, dis-
tinctive brachydactyly, hydrocephaly, and micro-
phthalmia

Chondrodysplasia with platyspondyly, 
distinctive brachydactyly, hydrocephaly, and 
microphthalmia (OMIM 300863) is an X-linked 
dominant disorder caused by a mutation in the HDAC6 
gene (300272) (73). Affected males show intrauterine 
growth retardation, hydrocephaly, macrocephaly, 
frontal bossing, and microphthalmia, whereas affected 
females have a milder phenotype involving short 
stature and sometimes associated with mild mental 
retardation. A study of a family with this disorder 
demonstrated that it results from mutations in the 
3′ untranslated regions of HDAC6 which suppress 
miR433-mediated posttranscriptional regulation and 
cause overexpression of HDAC6 (74). 

Perry et al. showed that Drosophila HDAC6 
is expressed in neurons and dHDAC6 knockdown flies 
have a learning deficit, suggesting that it plays a role 
in memory formation, probably by modulating synaptic 
plasticity through the active-zone scaffold Bruchpilot 
(75). Using a Drosophila Parkinson’s disease model 
constructed by ectopic expression of human alpha-
synuclein, it was found that dHDAC6 plays a critical 
role in the protection of DA neurons and formation of 
alpha-synuclein inclusions (76). On the contrary, in a 
Drosophila Alzheimer model with ectopic expression 
of human tau, a dHDAC6 null mutation rescued tau-
induced microtubule defects in both muscles and 
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neurons, suggesting that dHDAC6 may be a unique 
potential drug target for AD and related tauopathies 
(77).

4.2. Drosophila models for histone methylation 
dysregulation

4.2.1.  Kabuki syndrome 1 and Kabuki syndrome 2

Kabuki syndrome 1 (KABUK 1; OMIM 
147920) is a congenital mental retardation syndrome 
with additional features including postnatal dwarfism, 
a peculiar facies characterized by long palpebral 
fissures with eversion of the lateral third of the lower 
eyelids (78). KABUK 1 is caused by a heterozygous 
mutation in the KMT2D gene (also known as MLL2 or 
MLL4). Heterozygous autosomal dominant mutations 
in KMT2D were found in more than 50 percent of 
patients with KABUK1, whereas X-linked mutations 
in KDM6A (also known as Utx) were reported to 
contribute to less than 10 percent of the incidence of 
this syndrome, known as Kabuki syndrome 2 (KABUK2; 
OMIM 300867) (79). It was reported that patients with 
KABUK 2 display a variety of phenotypes, ranging 
from typical KABUK to a milder clinical presentation. 
Hypoglycaemia is more common in KABUK 2 than in 
KABUK 1 (79, 80). 

KMT2D methylates H3K4 residues, 
representing a specific tag for epigenetic transcriptional 
activation. KMT2D is a prominent mammalian H3K4 
mono-methyltransferase that acts on enhancer region 
(81). KMT2D is widely expressed in adult tissues and is 
essential for the expression of cell-type-specific genes 
during neuronal and osteoblast differentiation (82) 
(83). The trithorax related (trr) gene in Drosophila is a 
homolog of human KMT2D, but its homology is limited 
to the C-terminal SET domain of KMT2D. Consistent 
with the role of KMT2D in mammals, trr was shown to 
regulate H3K4me1 (84) Koemans et al. (2017) found 
that KMT2D binds to the promoters of many genes 
involved in neuronal processes in the fly brain and that 
trr-specific knockdown in the mushroom body of the fly 
brain resulted in impaired short-term memory (85) It 
is intriguing that H3K4 monomethylation catalyzed by 
trr is unnecessary for development and viability (86). 
However, trr mutants displayed subtle developmental 
phenotypes when subjected to temperature stress, 
suggesting H3K4me1 may act on cis-regulatory 
elements in specific settings to fine-tune transcriptional 
regulation in response to environmental stress. 

On the contrary, KDM6A specifically 
demethylates trimethylated and dimethylated H3K27 
residues, but not the monomethylated residues that 
are a hallmark of silent chromatin (87, 88). It plays a 
central role in the regulation of posterior development 
in vertebrates by regulating HOX gene expression (87). 
Since H3K4 methylation is concomitant with H3K27 

demethylation (89), the dysregulation of KMT2D and 
KDM6A may cause two similar syndromes, KABUK1 
and 2, respectively. Drosophila carries a single KDM6 
ortholog (90); thus, the Drosophila homolog of KDM6A 
is dUtx (also known as ubiquitously transcribed 
tetratricopeptide repeat protein, X chromosome). 
dUtx is also a JmjC domain-containing protein that 
specifically demethylates di- and trimethylated H3K27 
(90). It has been revealed that dUtx is involved in various 
biological processes such as autophagic cell death, 
negative regulation of the Notch signaling pathway, 
DNA damage response, and wound healing (91–94). 
Using Drosophila mutants expressing an inactive dUtx 
protein, Copur and Muller (2018) reported that dUtx 
demethylase activity is essential not only in the earliest 
embryonic stages, but also to sustain viability in adult 
flies (95). These Drosophila mutants exhibit the same 
phenotypes shown by animals lacking the Utx protein, 
such as abnormal regulation of HOX gene expression, 
indicating that dUtx is indeed a functional ortholog of 
human KDM6A. 

4.2.2.  Kleefstra syndrome 1

Kleefstra syndrome 1 (KLEFS1; OMIM 
610253) is caused by a heterozygous mutation in 
the Euchromatin histone methyltransferase 1 gene 
(EHMT1; also known as KMT1D or G9a-Like Protein 1 
(GLP1)). EHMT1 specifically mono- and dimethylates 
H3K9 in euchromatin, which marks a specific tag for 
epigenetic transcriptional repression by recruiting 
HP1 proteins. It also weakly methylates H3K27me. 
This protein has been known to act in the silencing 
of MYC- and E2F-responsive genes and therefore 
could play a role in G0/G1 transition during the cell 
cycle. Kleefstra et al. (2009) reported KLEFS1 patients 
who have intragenic EHMT1 mutations with the core 
phenotype of the deletion syndrome, including mental 
retardation without speech development, hypotonia, 
and characteristic facial features (96). 

In addition to EHMT1, the human genome 
encodes another EHMT gene, EHMT2 (also known as 
KMT1C or G9A), and dG9a is a Drosophila homolog of 
both EHMT genes. Although dG9a is widely expressed 
in the nervous system, dG9a-mutant flies remain viable 
(97). This gene contributes to multiple processes 
including dendrite morphogenesis, larval locomotory 
behavior, and short and long-term memory, and is 
currently known as a key cognition regulator of an 
epigenetic program controlling learning and memory 
genes (98, 99). In dG9a-mutant flies, loss of H3K9 
dimethylation occurs at 5% of the euchromatic genome 
and is enriched at the distinct classes of genes that 
control neuronal and behavioral processes. Like trr, 
dG9a is also required in the mushroom body for short 
term memory. Transcriptional profiling of two mutant 
fly heads, pan-neuronal trr knockdown, and dG9a-null 
mutants identified that many misregulated genes are 
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significantly overlapped, including factors involved in 
the regulation of synaptic plasticity. It is noteworthy 
that these findings indicate the molecular convergence 
between the KMT2 and EHMT protein families, which 
may contribute to a molecular network involved in both 
fly and human neurodevelopment (100).

4.2.3.  Kleefstra syndrome 2

Kleefstra syndrome 2 (KLEFS2; OMIM 
617768) is an autosomal dominant neurodevelopmental 
disorder characterized by delayed psychomotor 
development, variable ID, and mild dysmorphic 
features, and is caused by a heterozygous mutation 
in the KMT2C (also known as MLL3) gene. KMT2C 
exhibits histone methylation activity at H3K4, is involved 
in transcriptional coactivation, leukemogenesis, and 
developmental disorders.

The Drosophila homolog of KMT2C, the Lost 
plant homeodomains (PHDs) of trr (Lpt) gene, encodes 
a protein highly related to the N-terminus of MLL3/4; 
this protein is copurified with the trr complex (84). It 
has been reported that Lpt is required for the activation 
of targets of the hormone ecdysone and it plays a 
critical role in development and tissue patterning 
through regulation of the conserved Decapentaplegic 
signaling pathway (101). It has been revealed that Lpt 
is required for proper global trimethylation of H3K4 
and that hormone-stimulated transcription requires 
chromatin binding by Lpt, H3K4 methylation by trr, 
and H3K27 demethylation by the demethylase Utx 
(102). These are very interesting results since three 
epigenetic regulators, Lpt, trr, and Utx, are thought 
to regulate chromatin structure at transcriptional 
enhancer regions.

4.2.4.  Mental retardation, X-linked, syndromic, 
Claes-Jensen type disorder and autosomal reces-
sive mental retardation 65 

Mammals encode four KDM5 paralogs: 
KDM5A, KDM5B, KDM5C, and KDM5D. KDM5 
family proteins share a similar domain structure that 
allows them to influence gene expression through 
several distinct mechanisms. The JmjC domain is 
the enzymatic core of KDM5 proteins, and the only 
known role of this domain is to demethylate histone 
H3 trimethylated at H3K4. In addition to removing 
H3K4me3, KDM5 proteins have two other domains 
that recognize the methylation status of H3K4. The 
C-terminal PHD motif binds to di- and trimethylated 
H3K4, and the N-terminal PHD recognizes histone 
H3 that is unmethylated at K4 (103, 104). Mutations 
in KDM5 family histone demethylases cause ID in 
humans. 

Mental retardation, X-linked, syndromic, 
Claes-Jensen-type disorders (MRXSCJ; OMIM 

300534) are caused by a mutation in the KDM5C gene, 
also known as JARID1C or MRXSCJ, and phenotypes 
of such disorders include severe mental retardation, 
slowly progressive spastic paraplegia, facial hypotonia, 
and maxillary hypoplasia. KDM5C specifically 
demethylates trimethylated and dimethylated, but not 
monomethylated, H3K4. It has been reported that 
KDM5C participates in transcriptional repression of 
neuronal genes by recruiting histone deacetylases and 
RE-1 silencing transcription factor at neuron-restrictive 
silencer elements. 

Autosomal recessive mental retardation 
65 (MRT65; OMIM 618109) displays poor overall 
growth and is caused by a homozygous or compound 
heterozygous mutation in the KDM5B gene that 
demethylates trimethylated, dimethylated, and 
monomethylated H3K4. Patients with this disease 
show neonatal feeding difficulties, dolichocephaly, ID, 
and moderate learning disabilities. This demethylase 
acts as a transcriptional corepressor for FOXG1B 
and PAX9 and positively regulates the proliferation of 
breast cancer cells by repressing tumor suppressor 
genes such as BRCA1 and HOXA5 (105).

Unlike humans, who have four KDM5 
proteins, the Drosophila genome encodes a single 
KDM5 protein known as little imaginal discs (Lid). The 
Lid protein is a trimethyl H3K4 histone demethylase 
that regulates transcription through both demethylase-
dependent and demethylase-independent 
mechanisms. So far, dKDM5 has been reported to play 
a role in regulating various biological processes, such 
as cell growth, circadian rhythm, stress resistance, 
hematopoiesis, and fertility. Recently, Zamurrad et 
al. (2018) revealed that the mutant flies with an allele 
corresponding to human mutant KDM5C that causes 
the MRXSCJ disorder showed impaired learning and 
memory. This result confirms that KDM5C is a key 
cause of the cognitive phenotypes associated with 
this disorder, accordingly exhibiting further use of 
Drosophila as a disease model to better understand 
human neurodevelopmental disorders caused by 
epigenetic dysregulation (106). 

4.2.5.  Sotos syndrome 1 and Wolf-Hirshhorn 
syndrome

Sotos syndrome 1 (SOTOS1; OMIM 117550) 
is an autosomal dominant disorder characterized 
by childhood overgrowth, facial dysmorphism, 
macrocephaly, and non-progressive neurological 
delay (107). This disease is caused by heterozygous 
mutations in KMT3B, also known as Nuclear Receptor 
SET Domain-Containing Protein 1 (NSD1) (108). 
NSD1 methylates H3K36 and is capable of either 
negatively or positively influencing transcription 
depending on cellular context. Interestingly, NSD1 
duplication resulted in a phenotypic outcome which 
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greatly contrasts with that of SOTOS1, exhibiting 
microcephaly and growth retardation, and indicating 
the importance of proper NSD1 expression during 
brain development (109). On the contrary, deficiency of 
NSD2 (also known as KMT3F, KMT3G, and MMSET) 
is associated with Wolf-Hirshhorn syndrome (WHS; 
OMIM 194190), key features of which include delayed 
growth and ID, microcephaly, “Greek helmet” facies, 
and closure defects (110). It is well-established that 
overexpression of NSD2 via translocation is involved 
in the formation of various tumors. It is intriguing 
that defects in two genes of the same family, NSD1 
and NSD2, exhibit oppositional phenotypes, such as 
microcephaly in WHS and macrocephaly in SOTOS 
patients. 

Mammals encode three NSD paralogs, 
NSD1, NSD2, and NSD3, while the Drosophila 
genome has a single NSD protein; all of these mono- 
and dimethylate H3K36 (111). It has been reported 
that NSD functions in the regulation of several genes, 
such as opposite modulators in transcript initiation and 
elongation, a novel insulator-binding protein cofactor, 
and hHP1a-interacting proteins for heterochromatin 
enrichment (112, 113). Also, NSD is one of the 
downstream targets of the DRE/DREF pathway 
that is associated with various cellular processes 
in Drosophila (114). So far, despite the existence of 
Drosophila NSD as the ortholog of human NSD family 
members, a Drosophila model for the two human 
diseases described above has yet to be demonstrated. 
However, ubiquitous overexpression of NSD in the fly 
caused developmental delay and reduced body size at 
the larval stage, characteristic of NSD-overexpressed 
phenotypes by NSD1 duplications reported in human 
disorders with growth retardation (109). The whole-
body high expression of NSD resulted in pupal lethality 
due to apoptosis via the activation of Jun-N-terminal 
kinase, indicating possible molecular mechanisms that 
may reveal a novel pathway involved in NSD1-related 
human diseases (115). 

4.2.6.  Weaver syndrome

Weaver syndrome (WVS; OMIM 277590), 
which shows considerable phenotypic overlap with 
SOTOS syndrome, is caused by a mutation in the KMT6 
(also known as the Enhancer of Zeste 2 Polycomb 
Repressive Complex 2 (PRC2) Subunit (EZH2), or 
KMT6A) gene that mono-, di- and trimethylates H327. 
PRC2 is one of the two classes of polycomb-group 
(PcG) proteins and it silences developmental genes 
to determine specific differentiated cell identities. 
KMT6 plays a major role in forming trimethylated 
H3K27, which is required to determine embryonic 
stem cell identity and achieve proper differentiation. 
Several studies have shown that EZH2 deficiencies in 
animal models induced abnormal neurogenesis during 
embryonic development as well as adult hippocampal 

neurogenesis (116, 117). These results suggest that 
EZH2-induced H3K27 methylation plays an important 
role in various processes of neurodevelopment, 
the dysfunction of which might be closely related 
to ID in patients with WVS. The PRC2/EED-EZH2 
complex may also serve as a recruiting platform for 
DNA methyltransferases, thereby linking two distinct 
epigenetic repression systems. In addition, it was 
found that NSD2 overexpression not only causes 
a global increase in H3K36 dimethylation but also 
a reduction in trimethylation on H3K27 across the 
genome (118), indicating the interplay between NSD2 
and EZH2, which may explain why WVS displays 
similar phenotypes with SOTOS1 despite of the 
different origins of their affected genes.

The Drosophila homolog of KMT6 is called 
the enhancer of zeste (E(z)) and is capable of 
methylating H3K27. It was reported that E(z) is the 
catalytic component of PRC2 in Drosophila, indicating 
evolutionally conserved roles of KMT6 in various 
functions in terms of fly neurodevelopment. PcG 
genes are essential for normal neuroblast survival in 
the postembryonic CNS of Drosophila. The absence of 
E(z) causes various neuronal developmental defects, 
and the proliferation of postembryonic neuroblast 
clones is dramatically reduced (119, 120). 

4.2.7.  Weidemann-Steiner syndrome

Wiedemann-Steiner syndrome (WDSTS; 
OMIM 605130) is caused by a heterozygous mutation 
in the KMT2A gene (also known as MLL1, MLL, 
or TRX1) that encodes a catalytic subunit of the 
MLL1/MLL complex. WDSTS is an extremely rare 
neurodevelopmental condition accompanied by 
microcephaly, short stature, an autism-like phenotype, 
and aggression (121). In the MLL1/MLL complex, 
KMT2A specifically mediates H3K4 methylation, a 
specific tag for epigenetic transcriptional activation, 
and plays an essential role in early development and 
hematopoiesis (122, 123). Interestingly, the abnormal 
brain functions of WDSTS patients were recapitulated 
in KMT2A heterozygous mutant mice, which displayed 
profound deficits in long-term contextual fear memory 
(124, 125). However, it has been also reported that the 
genes affected by decreased H3K4 trimethylation in 
hippocampal neurons of Kmt2a-lacking mice display a 
significant overlap to the changes observed in the model 
mouse for Alzheimer’s disease (126), suggesting a role 
of dysfunction of Kmt2a-mediated H3K4 methylation in 
the pathogenesis of neurodegenerative diseases.

Like KMT2A, the Drosophila homolog, 
trithorax (trx), is a chromatin-modifying enzyme that 
methylates histone H3K4 (84). This activity promotes 
further acetylation of a gene, and antagonizes the 
epigenetic silencing by PRC2 in neuroblast (127). In 
addition, Trx was shown to contribute to axon growth in 
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visual system wiring and germ cell migration (128, 129), 
thus indicating its critical role in fly neurodevelopment.

4.2.8.  Short stature, brachydactyly, intellectual 
developmental disability, and seizures

Short stature, brachydactyly, intellectual 
developmental disability, and seizures (SBIDDS; 
OMIM 617157) is characterized by global delayed 
development, microcephaly, intellectual disabilities, 
brachydactyly, and short metacarpals (130). SBIDDS 
is caused by multiple heterozygous mutation in the 
PRMT7 gene that encodes an enzyme to mediate 
the symmetric dimethylation of the arginine residue 
at H4R3, possibly leading to recruit DNMTs at this 
site (131, 132). In the cellular differentiation of NT2/
D1 stem cells, opposing effects between KMT2D-
catalyzed H3K4 methylation and PRMT7-catalyzed 
H4R3 symmetric dimethylation via trans regulation 
have been demonstrated on cellular differentiation 
(82). PRMT7 plays a role in a wide range of biological 
processes, including neuronal differentiation, small 
nuclear ribonucleoprotein (snRNP) biogenesis, and 
regulation of the Wnt signaling pathway via generating 
methylarginines not only on histone proteins but also 
other proteins such as snRNPs. 

The Drosophila Arginine methyltransferase 
7 (Art7), is an ortholog of the human PRMT7 (133). 
The loss of Art7 resulted in pupal lethality, indicating an 
essential role of the gene for fly development (134). Like 
PRMT7, Art7 symmetrically dimethylates Sm proteins, 
a part of snRNPs, in Drosophila (134). However, it is 
not certain yet that Art7 is the functional ortholog of 
the human PRMT7. Sm protein methylation is a critical 
requirement for mammalian snRNP biogenesis (135). 
In contrast, however, Art7-depletion in flies displayed 
reduced Sm protein dimethylation levels similar to 
the result of the RNAi experiments with S2 cells, but 
did not affect snRNP assembly (134), indicating that 
functional differences may exist between Drosophila 
and humans. The histone modification by Art7 as well 
as its roles on neurodevelopment in Drosophila has not 
been reported, thus further studies on the role of Art7 in 
brain development using the Art7-deleted Drosophila 
model are necessary to identify the epigenetic causes 
of mental retardation seen in patients with SBIDDS 
syndrome.

5. PERSPECTIVES

As listed in Table 1, the Drosophila genome 
carries many orthologs that are counterparts of the 
genes causing neurodevelopmental human disorders. 
Although it is true that the Drosophila model has 
distinctive advantages as we have described, there 
are also some limitations to its use in all human 
disease studies caused by epigenetic mechanisms. 
For example, Drosophila does not produce any of the 

typical DNA methyltransferases while DNA methylation 
in Drosophila has been suggested to serve a role in 
controlling retrotransposon silencing and genome 
stability due to the obvious DNA methylation activity 
and the existence of DNA methylation in its genome. 
Furthermore, the signaling systems and genes 
involved in Drosophila may be completely different 
from those in humans. Thus, although there are some 
genes known to promote abnormal neurodevelopment 
following mutation in Drosophila, it would be another 
matter whether mutations in their pseudogenes lead to 
neurodevelopmental diseases in humans. In addition, 
compared with numerous studies on the molecular 
mechanisms mediated by epigenetically regulated 
or regulating genes, there are relatively few studies 
on phenotypes of fly disease models related with 
these genes. Despite these limitations, however, the 
Drosophila model is very efficient for studying the 
function of the genes responsible for human diseases, 
as many of these genes induce similar disorders in 
Drosophila. In the future, more detailed studies on the 
role of epigenetic regulation in brain development and 
related phenotypes using Drosophila models will be 
necessary to identify the causes of mental retardation 
in patients with various neurodevelopmental disorders.
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