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Abstract—Neuromorphic vision sensors record changes in log-
intensity and can achieve lower latency, higher temporal resolu-
tion and higher dynamic range than conventional active pixel
cameras. Furthermore, the in-sensor differential compression
presents the challenge of visualizing the camera’s output. As
such, we focus on mosaic reconstruction. A video reconstruction
method is studied and adapted to build a baseline mosaic. A
graph interpretation of the event stream is defined from which
a constrained least squares log-intensity reconstruction method
is introduced. Both mosaicing approaches are quantitatively
evaluated.

Keywords: Neuromorphic camera, event camera, DVS, mo-
saicing, image reconstruction, graph signal processing.

I. INTRODUCTION

Visual systems play an important role in survivability in the
animal world. Higher animals depend heavily on it to sense the
environment around them and have developed systems which
can operate successfully in both high, low and mixtures of
both lighting conditions. As such with the intent of improv-
ing current cameras they are a prime subject for study and
subsequent hardware reproduction.

Neuromorphic hardware draws inspiration from these sys-
tems to develop sensors [[1]], [2]]. There are several documented
neuromorphic vision sensors ranging from, asynchronous in-
tensity sensors [3]], spatial contrast sensors [4] and velocity
sensors [5]].

The focus of this work is on dynamic vision sensors (DVSs)
which record temporal magnitude changes [6]-[9)]. Hybrid
approaches that record both magnitude and temporal changes
[10]-[12] also exist. In contrast to conventional video cameras
which record a sequence of pictures (intensities of all pixels),
these sensors detect and transmit asynchronous changes in
logarithmic light intensity. These changes are recorded as
events which consist of a timestamp, pixel position and polar-
ity of the log-intensity change. Due to the analog continuous
measurement and log-intensity acquisition these systems are
able to provide 1) lower latency 2) faster updates in areas
of the image where intensity changes 3) higher dynamic
range, than conventional cameras [6]. And unlike conventional
cameras, the asynchronous nature of the acquisition results in
image compression at the sensor level. This compression thus
presents the inverse problem of finding the absolute intensity
of pixels.

We set out to develop a technique for image reconstruction,
since proper perception of scene details and uniform features
are hard for one to achieve from the output of a temporal
contrast camera. An example of the difficulty of perceiving
static features is presented in Fig. [T where a set of events is dis-
played. Furthermore, an intensity reconstruction can be used
as an intermediate step in adapting current computer vision
techniques to work with neuromorphic cameras. In the field
of image reconstruction, we set out to build a mosaic image
of the scene observable by the camera. Since neuromorphic
cameras possess a high temporal resolution and good dynamic

Fig. 1. Batch of 10* triggered events on a camera pan to the left while
observing Lena’s image. Only the polarity of the last event of each pixel
is shown. On and off events are represented in grey and black respectively.
Dataset obtained with a simulator of event cameras [13]].

range, they are prime candidates for fast scene acquisition
under with mixed, difficult, lighting conditions. Furthermore,
current neuromorphic cameras have low resolution and thus
mosaicing is a technique that can improve both the breadth
and definition of the observed scene.

These vision systems are referred here as event cameras
since this work focuses on signal processing and not on the
possible bio-analogies or specific hardware implementations.

A. Related work

Event cameras have proved useful in several applications
and one area in which they have been used profusely is
simultaneous localization and mapping (SLAM) [14[]—[18].
Some of these SLAM techniques intersect the scope of this
work since they either estimate an image as an intrinsic part of
the algorithm or one is easy to be produced as a by-product.

Reinbacher et al. [[16] propose a panoramic tracking method
that also generates a grayscale map of the scene. This map
represents the likelihood of an event occurring at a position,
which is proportional to the gradient magnitude of the log-
intensity. The authors also introduce the concept of segmenting
the camera path over the mosaic in order to estimate events.

Rebecq et al. [18|] propose a 6 degree of freedom (DOF)
tracking and mapping technique that relies on image-to-model
alignment for pose tracking and a projective voxel grid from
which a point cloud is extracted. The authors also present
an image/video reconstruction but point only to references,
not detailing how it was achieved from the quantities they
estimate.

Two works stand out in image reconstruction from an
event camera. In Bardow et al. [[19] the authors jointly es-
timate the velocity field and log-intensity in a spatiotemporal
window with an optimization process. Their objective is to
obtain a smooth velocity and log-intensity estimate of the
scene the camera is observing. The data term used models
the occurrence and no occurrence of an event. Furthermore,
multiple total variation (TV) regularization terms are added for
spatiotemporal optical flow and spatial image intensity. The
observed drawbacks of this approach are 1) noticeable image



saturation in some pixels 2) interpolation of log-intensity
change provided by an event due to the sliding window
approach. 3) lack of statistical modelling of the acquisition
process.

In Reinbacher et al. [20] image reconstruction is done in
two steps. In the first, events are “added” to an estimated
image according to the observation model, i.e. each new event
updates the intensity estimate by a multiplicative factor. And
in the second step, the main focus is regularization of image
intensities across spatiotemporal near events. This approach
was thought to be more promising as it 1) included statistical
modelling for the sensor observations 2) claimed better results
3) provided a software demo. As such, this work was used as
an image reconstruction starting point with the objective of
generating a mosaic.

In mosaicing from an event camera the work by Kim et
al. [[14], [15] stands out. They perform image reconstruction
and tracking on the mosaic and in 6 DOF respectively.
They resort to a pixel-wise extended Kalman filter (EKF) to
estimate image gradients from the event stream, discarding
the explicit relation between intensities introduced by an event.
The gradient image is integrated to yield a log-intensity image.

Furthermore, in the literature, there is also a lack of quanti-
tative comparisons between the different event camera image
and mosaic reconstruction algorithms.

B. Problem Formulation

In the work by Kim et al. [14], [15] the mosaic represen-
tation stores gradients. This leads to a large representation
since it requires six numbers to represent each pixel, two
of which are dedicated to storing the gradient vector and
four of which store its variance matrix. Furthermore, the
gradient representation does not ensure global accuracy of
the generated mosaic as the gradient representation disregards
constant factors.

Our goal is thus to produce techniques that resort to
the working principle of the camera to estimate directly an
intensity or log-intensity spherical mosaic. The first approach
we propose is adapting an existing regularized image re-
construction algorithm to mosaic reconstruction. The second
approach we propose is based on exploiting the structure
between mosaic pixels caused by events.

II. BACKGROUND
A. Perspective Camera

The perspective camera model is characterized with the
help of homogeneous coordinates. A point in z € R? is
mapped to the homogeneous coordinate & € P2, & = h (z) =
[x1 2 l]T and reversely a point in homogeneous coordi-
nates is transformed to inhomogeneous as z = h~! (%) =

[Z1/Z3 T2/ i’3]T. The perspective camera model takes a
point in space X € R? in the same reference frame as the
camera and projects it to the sensor domain, z¢c € Q¢ C R?
with zc = h™1(KX¢), where K € R3*3 is the camera
calibration matrix.

Camera pose is given as a transformation from camera to
world coordinates, Xy = RXc + T with R € SO(3),T €
R3, rotation matrix and translation respectively. Therefore a
point in the world Xy is projected on to the camera sensor
with

zo=h"" (KR (Xw —T)) (1)

and back-projection is achieved with
Xw = RK 'h(zc) + T. )

B. Working Principle of Event Cameras

Event cameras considered in this work record log-intensity
changes in the scene. These changes are encoded as events.
An event is a triple (x,6,t) where z € Q¢ C N2 is
the pixel coordinate in the camera domain, § € {—1,1} is
the event polarity that encodes if there was an increase or
decrease in log-intensity and ¢ € R is the time at which the
event occurred in camera time. The notation used throughout
this work uses a transformation of the camera stream where
it includes knowledge of the camera acquisition parameters
and introduces a temporal index. Therefore an event in the
data stream D = id(k) :k=1,...,K} is represented as
d® = (2™, 5% t()) where k indexes events such that
k' > k if and only if t*) > ¢(*) and 6 is log-intensity
change calculated from event polarity and camera event trigger
parameters at (),

Simply put, an event is triggered once the intensity value
I‘g?,l) observed by a pixel z(*) changes enough over time such
that

logT%) —logT% 7)) = 5(*) 3)

plk—T7)

where k — 7 = max (k:’ K <k, 2®) = 2®) is the index

of the previous event that fired at pixel z(*). Note that since
the trigger condition is on logarithmic intensities, due to the
properties of the logarithm, one can interpret it as a temporal
contrast condition. When working with log-intensities the
trigger condition reduces to
(k) k—T) k

V(i) 77_,5(1@77) =6k, 4
Note that instead of sampling log-intensity at a fixed temporal
rate, it is continuously measured and events are generated
when log-intensity changes by a trigger threshold.

III. IMAGE RECONSTRUCTION FROM EVENTS

In this section are the main aspects and analysis of the
image reconstruction proposed by Reinbacher et al. [20].
This approach iteratively estimates the observed camera image
with each event (or small batches) therefore creating a video
sequence. Fundamentally it is an event accumulator in the
camera domain, coupled with a filter. The filtering is posed as
an optimization problem whose objective function is a maxi-
mum likelihood estimator coupled with TV regularization.

A. Event Update

The event trigger condition (3) can be rewritten as
), =1l exp (60) 5)

for the k-th event, d®) = (2(®) §(¥) ¢(*)) in the stream. By
representing the event trigger condition this way it is possible
to interpret it as relating two images of the scene at different
times and therefore also as an update function. Proceeding
with this thought, one can say the image that is to be updated is
a previously known estimate of the intensities observed by the
camera u(*~1) and that the application of the update function
results in a noisy image observation f(*). In the presence
of noise, one can estimate an image in which its effects are
suppressed by leveraging knowledge about the noise process.
As such the relationship between the estimated image for the



previous event u(*~1) and an updated image f*) with the k-th
event is

o Jul e (60) 7 =2 ©)
S W/ & # 2
for all # € Q¢, and that upon initialization f(© = (9,

Note that the explicit definition of the update function is
different from Reinbacher et al. [20], since the authors do not
. " (k) .
make clear where intensities of f; come from, for pixels
that did not generate an event & # 2(*). If the case is that
pixels that did not trigger an event keep the same intensity
the definitions coincide. If the case is that the whole image
u*=1) is meant to be copied to f*) and pixels that did not
trigger an event are updated, the definitions differ. We argue
that the first definition is more sensible since it keeps pixel
intensities intact throughout subsequent filtering performed to
incorporate events in other pixels. Otherwise, pixel intensities
of areas without events would drift due to filtering and the
information of the previously included events would be lost.

B. Objective Function

The observed image f(*) is assumed to be corrupted by
Poisson noise [21]. This, in turn, implies that noise is de-
pendent on image intensity. The maximum likelihood (ML)
estimator [20] can be used as basis for a data term of a
regularization process that reconstructs conventional images
from events.

To maintain smooth areas with sharp transitions the TV
regularizer is used on image intensities, as it models natural
image statistics where image patches contain small variation
but present sharp intensity transitions between them. Further-
more, event timestamp data is introduced in the regularizer
with the assumption that temporal close events are triggered
by the same structure and hence it is favourable that they have
similar intensities. Taking into account both these quantities
results in a spatiotemporal regularization.

Gradients V) in this approach are calculated with the

metric g*) of the manifold S*) defined by

¢ :Qc — SH e R
T. @)
T+ [1’1, T2, T]a(ck)]
The time since the last event at pixel x is ng,k) and is defined
for the k-th event as

0
(k) _ )
"z —{tm_t(kr) 7

max (k' : k' < k, ) = z). The mani-
fold can be interpreted as a way to encode optical flow,
which has proved useful in removing artefacts and noise
from videos [22]. By formulating the problem on manifold
S, the timestamp data influences the estimation whenever
it is not uniform across pixels. With this extra information,
the TV penalizes small gradients in both intensity and time,
while favouring sharp transitions between zones that generated
events at different times and have different intensities.

Reconstruction is thus performed by minimizing the sum of
the regularizer and the data term

uF) = arg min / vauc)usHl + A (us _ fgk) logus) ds
u S(k)
)

z =z
x# 2k’

®)

where kK — 7 =

in which A is a parameter that penalises deviations of the
image to be estimated u from the noisy observed image f*).

C. Discretization

From (9) one writes the continuous formulation for recon-
struction in the image space (¢ as

u(k) =arg min / @[ va(k)qul +
u Q¢

A (ux _ 0 10g ux) } da

S.t. Uy € [Umin, umam]

(10)

In order to implement this formulation it is necessary to create
a discrete model suitable for numeric computation. Therefore
the image domain ¢ is discretized into a Vo x U grid where
images are represented as matrices in RV *U¢ In this method,
the notation for indexing the discretized image domain Q¢ is
1,7 instead of vector x. With this the minimization problem
(I0) becomes

. k [ (K
muln HLg(k)qu(k) + )\Z (uij — fz,(j ) loguij) ij)
0,J
st Ui € [Umin, Umaz)
(11
where u;;, fi(f), Ggf) € RVexUc and the first term is defined
with the g-tensor norm for A € RVexUex3 aq Al =

D \/Ggf) 2 (Aijl)Q, where Gl(f) > 1. This norm can

be interpreted as the /;-norm in the first two indexes of A
(indexes 7, j i.e. the image domain) of the weighted sum by

\/ Ggf) of the 3-norm along the third direction of A (index

). When applied as ||Lg<k)u|| () it yields a ¢1-norm on the
image domain of the Weightedg gradient norm of each pixel.

D. Iterations for the Discretized Formulation

The optimization problem (TI) can be approximated by a
primal-dual formulation which may be solved by Algorithm 1
of Chambolle, Pock [23]]. It estimates iteratively a dual variable
in one space in order to provide a better approximation of R,
and then the variable of interest, the primal, in another. As
such the primal-dual formulation of the discrete formulation

(TI) is

minm;ix (p, Lyayu) — Hp”Z(k) +

)\Z (uij — fi(f) loguij) @ (12)
4,J

s.t. Ui € [Uminaumax]

The step updates for (I2) are then
u" ) = (I +70D)™" (u(”) — TL;(k)p(”))
p(n+1) =(I+08R*)_1 (p(n)+ ,

oLy [u("H) + H(u(""’l) - u("))D

13)

with 6 € [0,1]. Note that these variables are indexed by n as
they represent iterates to solve the optimization problem
for a fixed f*). As an optional feature, the manifold image
may be filtered since it is used to compute a gradient used in
the regularization. Hence, to compute a denoised version of the



time since last event image, it is assumed that spatiotemporal
close events have been triggered by the same entities and
therefore the modified Rudin-Osher-Fatemi (ROF) model [23|]
is used.

E. Effects of Formulation Terms in Reconstruction

In this section successive incremental steps are taken to
detail the effects of each component of the optimization until
the complete formulation presented by Reinbacher et al.
is reached. To simulate the intermediate formulations the step
iterates of the primal-dual algorithm (T3 are used with slight
modifications in order to highlight desired features. In the
formulations without manifold, the time since last event for
every pixel was set to zero, effectively creating a flat manifold.
For formulations with just the regularizer, A = 0 was set.

1) Integration of Events: A first approach to produce the
video sequence is to update the initial estimate with the stream
of events by using the camera’s firing principle (3) as used in
equation (6) and setting f*) = u(*), Since it does not filter
images, the simple event integration leads to very dissimilar
pixel values in which it is impossible to perceive what the
camera is recording.

2) Regularized Image Reconstruction: In this sub-section,
we aim to present the formulation without the manifold. We
start by analysing the role of the data term and then the
regularizer.

The first approach is to use just the data term D, which is
the ML estimator. Since u, — fék) 10% u, 18 a convex function
of u, whose minimizer is u, = :Ek we may conclude that
the result of only using the data term is equal to one obtained
by simple event integration.

To model natural image statistics a total variation regularizer
is used, which enforces patches with small gradient and allows
sharp transitions between them. To study the regularizer, the
formulation @]) is used with A = 0. But, it is clear right
away that the solution is any w, constant for all z € Qc¢.
Therefore, to gain insight on the effects of the regularizer the
optimization iterates are slightly modified. Since )\ is zero
to cancel out the data term, the standard way to introduce
data from events is broken. As such in the first iterate of
(T3) the optimization variable u is initialized as f*) and
updated normally in the following iterates. Comparing the
results, with the ones from event integration one is able to
observe the effects of the regularizer, which filtered the image
by significantly attenuating noise and produced an image in
which it is already possible to discern what the camera is
recording.

Joining the data fidelity term and the regularizer, in the
Cartesian plane, produced a smoother and more accurate
images when compared to the previous results.

3) Regularized Image Reconstruction on Manifold: In this
sub-section, the manifold is introduced in the reconstruction.
It is noted that the manifold used in these simulations was
derived from event timestamp data in seconds. The authors
[20] do not specify the time unit in which the manifold is
defined. This should be explicit and a multiplicative factor
should be introduced to change the scale of the manifold,
as it would allow to modulate the amount with which image
gradients are affected by manifold geometry.

By mapping the images v and f onto the manifold, one
introduces extra information from the data stream into the
reconstruction. Performing the optimization on the manifold
can be interpreted as taking images on the image plane (2

and stretching them to comply with the height data of map
. As defined, when a gradient is evaluated in this manifold,
it is large between patches that were generated at different
time instants and also large between patches that have different
intensities. By the same reasoning as in the previous section, in
order to simulate this formulation the optimization iterates is
slightly modified by initializing v as f(*). The results obtained,
when compared to the equivalent test without the manifold
present no significant difference.

As tested, when the data term is coupled with the regularizer
in the manifold no further qualitative gains are achieved.

IV. MOSAICING WITH EVENT CAMERAS

Mosaicing is an image processing technique that takes
the output of one or more cameras and combines them,
usually to obtain a larger field of view. By merging successive
measurements from the same camera, or multiple cameras with
different perspectives, on an area of the mosaic one obtains
super-resolution properties.

A. Mosaicing from Reconstructed Video

In order to obtain a baseline method for event mosaic
reconstruction one can resort to video frames v(*) | i.e. use the
video reconstruction algorithm of Sec.[[Tl]to estimate snapshots
of the scene. The pipeline, starts by using a batch of K events
to build a video frame u(*). From there the timestamp of event
|k — (K’ +1)/2] is used to interpolate camera pose from the
set of known poses P. This pose is used to project the image
on to the mosaic with the framework detailed in Sec.

1) Mosaicing with a Pan-Tilt Camera: The goal is to define
how the image observed by the camera sensor is projected on
to the mosaic. This mosaic stores the intensity information
that is obtained when the camera is panned and tilted over the
scene.

In order to store the whole scene and since camera motion
is assumed to consist of only rotations a spherical projection is
used. The mosaic reference frame is defined to be the same as
world coordinates X £ X w , such that the forward spherical
projection is defined as

¢ =tan' (Xps, Xns,)
0 =sin~! X a1y
NESTRSS RS (14)
.13]\/[1 = fM1¢ + ch
Trm, = fanf+car,

where fur,, far,, Cary, €, are projection parameters that de-
termine respectively the size and centre of the mosaic. The
geometry of this projection is depicted in Fig. [2| Note that the
2-argument arctangent function is used in order to preserve
quadrant information and therefore ¢ € |—, 7], whilst at this
stage 0 € [—7/2,7/2].

Once again back-projection can not retrieve the exact 3D
point as the distance of X; to Oy is lost in the forward pro-
jection (T4). In order to invert the underdetermined system of
equations the equation X7, = cos (¢) is introduced. This
equation respects the geometry of the projection, depicted in
Fig. [2} but constrains the point (X, , Xz, ) to the unit circle



X p,y QM

Fig. 2. Spherical projection illustration for a point X, in the mosaic
reference frame. The projection angles (¢,6) are shown for the ray that
passes through the origin and Xjs. The corresponding projected point x s
is shown in the mosaic domain ;. Note that 2;; is indexed with an
affine transformation of the projection angles and hence a straightforward
projection is when (¢,0) = (0,0) wich yields xps = (cary,cm. ) This
is why, for illustrative purposes, the mosaic domain is represented2 in that
respective location, but another one could be chosen.

in the X7, Opr X, plane. With some algebraic manipulation,
one can now write the reverse projection as

_ Tymy;—CM
o =T
Ty, —CM
A
X, = cos(¢) (as)
XM1 = sin ((;5)
Xy, =tan(0)

Note that due to the domain of the tangent function now 6 €
|—7/2,7/2[, which means that the poles can not be mapped.

2) Mosaic Discretization: Since the models presented in
the previous chapter are for continuous domains, some mod-
ifications are needed when they are used with real cameras
and computer representations. The camera sensor domain
is actually a discrete grid and the mosaic is discretized to
be represented in the computer. As such the camera and
mosaic domains are respectively, Q¢ = [1,V¢] x [1,Uc]
and Qp; = [1,Vy] x [1,Unp]. Intensities in the mosaic
are represented as I' € RY™*Um and log-intensities as
v E RVMXUM The E/rOJectlon parameters are thus defined as
fa, = 27r, fa, = My, = QM, CyM, = Vé” in order for
the whole scene to be able to be stored in the mosaic. Indexing
these domains requires positive natural numbers which can be
obtained by rounding to the nearest integer the results of the
projection maps (), (T4)), but this is insufficient for a complete
representation. As soon as the pixel grids are introduced,
the one to one correspondence between mosaic and camera
domains is broken. Therefore in the discrete setting, all the
pixels in a projection patch need to be computed in order to
have a full map from one domain to the other.

The set of camera poses associated with the event stream
Dis P = {p(l) = 1,...,L}. A pose is p) =
(RO, 7W, s()) where its elements are respectively a rotation
matrix, a position and time in which they were recorded.
The algorithms detailed in the thesis systematize how the
projection map II (x(’“),t(k),P) projects a camera pixel on
to the mosaic can be computed.

B. Mosaicing Directly from Events

The following sections focus on building an algorithm to
generate a panoramic image of the scene directly from the
event stream. A graph that relates scene points is built based on

the event firing principle and knowledge of the camera pose.
This graph is then used in a quadratic optimization problem
with linear constraints to estimate scene log-intensities.

1) Single Pixel Camera: Consider a single pixel event
camera with a known camera pose, e.g. provided by an
odometry sensor. When a pan and tilt motion is performed,
one can build an oriented path in the scene of intensities
observed by the pixel. Furthermore, this path can be segmented
by events and is the basis for a graph in which vertices
represent scene points that triggered a brightness change and
edges denote brightness changes between scene points. The
log-intensity observed by the camera is defined as a function
on this graph, i.e. each node has an assigned log-intensity.

2) Building the Graph from the Event Stream of a Multipixel
Camera: The focus now is on a camera with Vo x U pixels.
Due to the underlying mosaic representation, a camera pixel
can image multiple pixels of the mosaic. As such, each camera
pixel builds a graph like in the single pixel case but vertices
are now a set of mosaic pixels. For each camera pixel z € Q¢
a time series of sets is created. For £ = 0,..., K, let the set
A&k) denote the most recent (at the time of the k-th event, (%))
mosaic region that projected to camera pixel = and triggered
an event. This time series is built recursively for all z € Q¢,
by initializing AY 11 (z,0,P), where II is the projection
map. And updating with the k-th event

AP 1 (as(k tB),P) Lz =z 16
ASU’C) ALY o # x®) (16)

Note that the projection region of a camera pixel only changes
when an event is triggered. To make the notation more clearly
distinguish between the two mosaic sets that triggered an event
the set B® 2 A¥Y is introduced.

The graph mentioned in the single pixel camera case, can
be defined as the directed weighted graph G = (V, &, W) for
the multipixel event camera. Its vertex set is the union of all
the projection sets without repetitions

LKD)

Edges are defined between sets generated by an event, exclud-
ing self-loops,

V = unique ({A((k), L for k=1,. (17)

e={( v =A%, v=B,

AR, #BY), k= 1,‘..,K} (18)
and edge weights are event log-intensity change
W= o (@' 0w (AL, B, )) = o0
AR #BY) k= 1K} (19)

Edges are kept as ordered pairs of vertices in order to
preserve edge direction. This is crucial as without direction
the weight could not define unequivocally a change in log-
intensity between node values. Self-loops are not allowed in
(18), (I9) as edge weights are different from zero and if it
were to exist a self-loop in the graph it would imply that a set
of mosaic pixel log-intensities differs from itself a non-zero
amount, which is impossible.

The objective is now devising a technique to compute log-
intensities for all pixels in the vertices, i.e. computing the
function whose argument is a pixel and returns a log-intensity.



3) Event Constraints: The graph built with the events is
now used to compute constraints on the log-intensity, where
each constraint is a modified version of the event trigger
condition (). This modification is made to allow comparisons
between two sets of pixels instead of single pixels. As such
the event trigger condition is,

]:('Yv’) —F(w)=w ((v’,v)),

where F is the mixture model and ~, are the the mosaic
log-intensities for each pixel in the set v. In this work two
simplified mixture models are considered, the first,

V(v ,v) €€ (20)

1 1
m Z Vo — mZ’yT =w((v,v), V., v)e& 1)

zev’ TEV

computes the mean of each set and uses them as the log-
intensities that triggered the event, i.e. gives an uniform weight
for pixels in a set. The second,

Z Vo — Z% =w((v,v)), V', v)e&

TEV

(22)

ey’

sums all the intensities for each set, effectively giving an
uniform weight for all pixels in both sets.

4) Quadratic Log-Intensity Reconstruction: Given the
graph G = (V,£,WV) built from the stream of events and an
initial guess on mosaic log-intensities 7, the proposed method
minimizes the sum of squared errors between the guess and
a solution that respects event constraints. Since we seek to
estimate individual pixels, let V' = {z : © € v,v € V} denote
the set of all the pixels whose log-intensity is to be estimated.
The problem is thus formalized as

arg min Z (e — V)
{’ym:zGV/} eV’

1 1 (23)
S't'i, Z Yz — 77 Z’V:L’ =w ((0/70)) 7V(IU/7/U) €&
|U | zev’ |U| TEV
for the mean mixture of log-intensities, and as
arg min Z (e — 72)?
{’YminV/} eV’
(24)
st 7 = e = w (v, 0), V() € €
eV’ TEV

for the uniform mixture of log-intensities. Note that the initial
guess 7 can be the original mosaic with some noise added,
only a part of the mosaic or a simple initialization with a
uniform mosaic.

Note that the reconstruction is performed for pixels in
V', which are mosaic pixels between which an event was
triggered. As such this reconstruction is done for a subset of
mosaic pixels. It does not provide mosaic inpainting as usually
happens with total variation functionals.

C. Implementation of Event-Based Mosacing

In this section is detailed a technique to solve the aforemen-
tioned optimization problem, some implementation aspects
and limits.

1) Minimization Method: In order to compute a simple
solution for the problems, and (24), they are rewritten
in a manner that the optimization variable is a vector instead
of a 2-D matrix. This takes the form of

argmin 27 Az + bz
z ; (25)
st. Cz=d

where 2z € RV is the log-intensity of the pixels involved in
the constraints generated by the events. To match the pixel co-
ordinates in the set V' and its corresponding optimization vari-
able in z an invertible proxy function H : V' — {1,...,|V'|}

is introduced. Matrices A € RW‘XWLb € RVl can be
defined such that for each z € V'

_ 1 i=j=H() _ _on
[A]zj - {O ,OtherWiSC 3bH(:C) - 27@7 (26)
where it is noted that A is the identity matrix. In order to con-
struct the constraints an edge labelling £ : £ — {1,...,|&|}
is used, such that for an edge (v',v) € £
|U1/| ‘71| i E{H(z):x ev Nu}
|3/| ,jeE{H(x):xev \ v}
[C][,(U/,'u),j = 1 . H . AT
T ,jE{H(x):x ev\v'}
0 , otherwise
dﬁ(v’,v) =w ((U/a U))
(27
for the mean mixture of log-intensities and
1 Jje{H(z):zev \v}
[C’]E(v,w))j =<¢-1 ,je{H(z):zev\V}, 28)

0 , otherwise
dﬁ(v’,v) =w ((U/7 U))
for the uniform mixture of log-intensities where in both cases

Ce RIEXV| ,d € RI€l_ In the mean mixture of log-intensities
whenever both mosaic projection sets v’, v intersect and
have the same cardinality, the pixels of the intersection will not
be constrained in the optimization. The same also happens for
the uniform mixture of log-intensities (28) but independently
of set cardinalities. Both these behaviours although not ideal
are a consequence of the mixture models (21), used since
the variables in the intersection of v/, v cancel out.

With the Karush-Kuhn-Tucker conditions [24] it is possible
to compute a system of equations for the minimizer

A+ AT CT| 2] _|-b
C 0[N | d]|”
This system may be solved directly or by block elimination
with Schur complements [24]] in order to reduce computational
complexity. This technique is applicable whenever A + A7 is

invertible which in this case is always since A + AT = 2I.
The algorithm is presented in Alg.

(29)

Algorithm 1 Steps to compute the mosaic reconstruction with
a batch of events
procedure EVENT BATCH UPDATE(), C, d)
Compute S = f%C’CT and b=d + %Cb
Find A by solving SA = b
Find 2z by computing z = % (—b - CTA)
end procedure




2) Specific Aspects: The success of the algorithm is de-
pendent on matrix S in Alg. [I] being invertible, which is not
always the case.

In Fig. [3| are shown the effects of changing parameters in
this optimization problem. The first effect, is how the number
of edges |€| changes with mosaic resolution. Note that the
plots of |€| are mostly hidden behind the yellow curves for
s-rank (C). In Figs. one can see (the deviation from a
unit slope line for batch sizes less than 102) that the number
of edges |€’| is not equal to the number of events in the batch
since there are discarded events. This is due to insufficient
mosaic resolution that for small camera movements produces
equal projection sets AR = gk

) ()

The second is how the number of referenced mosaic pixels
[V'| is increased when the mosaic pixel count quadruples.

The third is the effect of mosaic pixel mixture functions on
the invertibility of matrix .S, which is crucial in Alg. [1} Here,
matrices S, S2 are computed respectively from matrices (27),
(28) as specified in Alg.[I] To get a sense of the invertibility of
S1,52 a lower bound of the 1-norm condition number [25],
[26], & is used. Note that since it is a lower bound, S, 5%
can be non-invertible and 4 finite. Although both mixture
functions appear to produce similar condition numbers, the
mean mixture of log-intensities did provide a more stable point
in which its condition number & (S7) goes to infinity with
respect to the batch size.

In fourth, for batch sizes around 10* and above the slope of
the number of referenced mosaic pixels |)V’| starts to taper
off. This happens independently of mosaic resolution. An
explanation for this might be that as batch size increases more
complex relationships are added to the graph making it more
connected, instead adding new nodes with simple relations.
As such the number of variables |)V’| starts to tend toward the
number of constraints |£]. On the other hand, problems from
camera pose uncertainty (and subsequent accumulation of
projection errors) and errors in camera pixel triggering might
lead to a malformed graph. Note that by the time the linear
growth of V'] is broken, S can not be successfully inverted
(see lots of ). Resorting to the structural rank [27], which is
the maximum rank a sparse matrix can achieve with its pattern
of zero entries, reveals that for the most part when |€| < |V,
s-rank (C) = |€| and s-rank (S) = |€|. This is a good
indication, but since the structural rank s-rank (S) > rank (.5)
no conclusive remark can be made about the invertibility of
matrix S with this metric when s-rank (S) = |£|. When
s-rank (C') < |£|, which happens for data-points above batch
sizes of 10%, matrix S is not invertible.

In fifth, it is noted that both |€],|V’| have the same values
for different mixture models as they are properties of the
graph.

Instead of using the complete dataset all at once, disjoint
subsets of the event stream of K’ events are used to build the
graph and run the optimization problem.

In order for tests to run within reasonable time and with
stable outputs the chosen parameters to run this algorithm were
(Var, Upnr) = (1024,2048) and a batch size of 103.

V. MOSAICING EXPERIMENTS AND RESULTS

In this chapter are presented experimental results from
the proposed mosaicing methods and metrics to objectively
compare their results. The focus of the evaluation is on the
quality of the reconstructions relative to the ground truth and
execution times.

10° T T T T P =
e
—=— €] = e
—e— V| =

100 ‘ ‘ ‘ ‘
10° 10' 102 10° 10* 10°
Batch size

(a) Mean pixel mixture model, (Vas, Upr) = (1024, 2048).

108
—a— €] 5
—=— V| g8 2
5L s-rank (C) =
10 =k (5) R
r,IZI
=g

L ,‘Z‘/ 4

10* =
3o
o
103 =t E
P
j
=
102 £ % El
s

gy

° z E/Z/Z/a e 3
—8—
N i ‘ | ‘
10° 10° 102 10° 104 10°

Batch size

(b) Mean pixel mixture model, (Vas, Upr) = (2048, 4096).

105 T T T T g - =
= = =
=V = -

s-rank (C) o
10% F |[—E—R(S2) M 4

10% £ pd E

100 | | | |
10° 10' 102 10° 10% 10°
Batch size

(c) Uniform pixel mixture model, (Vs, Ups) = (1024, 2048).

108
—e— €] st |
—a— V| et

5L s-rank (C) =

10 o £ (S) =
’,IZI
e

4 L e 4

10 =
P=g
o
10% £ = E
r,EI
=
102 F = 3
-t
) _a
i 8
Ml / \E'/IZ E|
=
10° 10' 102 10° 10* 10°
Batch size

(d) Uniform pixel mixture model, (Vas, Upr) = (2048, 4096).

Fig. 3. Effects of batch size in the number of graph edges created, number of
mosaic pixels calculated and lower bound on the 1-norm condition number of
the sparse matrices S. Plots are shown for two different mosaic pixel mixture
models and two mosaic resolutions. Points with infinite value are not plotted.



Fig. 4. Ground truth intensity mosaic observed by the camera.

Fig. 5. Intensity mosaic reconstruction of method 1.

A. Dataset

The dataset used in the experiments and the objective
comparisons is a dataset that covers part of a scene. It consists
of a camera rotation, along its optical axis, to the right by
ninety degrees and a left pan that traverses the scene two and
a quarter times at slightly different heights. The ground truth
intensity mosaic observable by the camera in this dataset is
presented in Fig. [4]

B. Mosaic Reconstruction Method 1

In this section are presented the results of mosaicing from
reconstructed video, as detailed in Sec.

The reconstruction parameters for method 1 are adjusted
as to (i) speed up processing by using K’ events per batch
(ii) match the camera’s trigger thresholds, by setting 6™ and 6~
(iii) adequate image persistence to camera movement speed by
setting A (iv) output an image in the [0, 1] range for posterior
comparison with the ground truth by adjusting w,,,;,, and Uy, qz-
The values of the parameters used are presented in Tab.[I] and

TABLE I
PARAMETERS USED IN THE MOSAIC RECONSTRUCTION OF METHOD 1.

A 5t 0~

Umin Umax K’
500 0.2 —0.2 2.2204 x 10~ 16 1 10%
PDmaxIter T o [
T
50 i 1 1

the resulting mosaic is presented in Fig. [5]

This mosaicing method provides a reconstruction that en-
ables a fair perception of the scene. But it leaves some
streaking on the trailing edge of the image observed by the
camera, with which it is possible to discern camera direction in
the last pass over an area (most visible in the top-right). This is
due to small blemishes present in the reconstruction (visible in
the top-left) coupled with the persistence of projected images
in the mosaic domain. This technique also introduces pasting
artefacts (visible in the top-centre), which are likely due to the
limited area that is being accounted for in the reconstruction,
i.e. the camera domain, resulting in a local reconstruction that
is not consistent in the whole mosaic.

< \?

(a) Mean mixture of log-intensities.

(b) Uniform mixture of log-intensities.

Fig. 6. Log-intensity mosaic reconstruction of method 2.

C. Mosaic Reconstruction Method 2

In this section are presented the results of mosaicing directly
from events, as introduced in Sec. [V-B] The output of
method 2 is shown in Fig. [§] for the mean mixture of log-
intensities (Z1)) and the uniform mixture (22) functions. Mosaic
initialization was naive (mosaic pixel values set to zero) for
both and the reconstruction parameters are 7 = 0.2, §~ =
-0.2, K' =103

The reconstruction from the mean mixture of log-intensities
is smoother and visually more similar to the ground truth than
the one with the uniform mixture. This difference is most
notable in the mosaic centre in the mountains and roundabout.

D. Mosaic Reconstruction Quality

Since method 2 builds a non-dense mosaic image the
metrics used to evaluate its reconstruction and the one obtained
with method 1 will take into account only the pixels computed
in the former. Therefore metrics that rely on dense local
pixel structure, e.g. structural similarity (SSIM), to evaluate
performance will not be used. Furthermore, the mosaic images
from method 2 are exponentiated to yield intensity mosaics.

1) Affine Transformation of Intensities: Since ground truth
and reconstructed images come from different sources they
possess varying offsets and scales.

As such image intensities are subjected to an affine transfor-
mation before the metrics presented in the following sections
are computed. Since there are multiple offsets in the mosaics,
each mosaic has its mean subtracted in order to have intensities
centred about 0. And although event trigger parameters are the
same, the methods provided mosaics with varying intensity
spreads, therefore mosaic images were scaled to have unit
variance. This normalization of image intensities is computed
for the last keyframe of each reconstruction and used to scale
all the previous keyframes in order to minimize variability
before computing metrics. Formally, for the mosaic of each
reconstruction technique u, o are computed as

2
erw I, o2 — Zg;evf (Fx - PJ)
12 V-1

b= (30)
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Fig. 7. MSE metric for methods 1 and 2.

for the last keyframe and the transformation B, =
(Tx —p) /o, x € Q is applied to all keyframes. To obtain
the normalized ground truth A the same equations are used,
but note that it is a single image of the observable scene and
therefore all reconstruction methods are compared to the final
mosaic image, shown in Fig.

2) Metric: In order to measure deviation from the reference
mosaic three metrics are used. The first is the mean squared
error (MSE),

MSE (4, B) = Z M

@31
= WV

where V'’ is the subset of computed mosaic pixels and A, B
are respectively the ground truth and the reconstruction.

The metric is presented in Fig.[/|and it was calculated at the
same dataset pose/time as the keyframes from the simulator,
which corresponds to a sample period of 1 ms. Note that
the curves of the metrics for method 1 show a dotted pattern
instead of continuous. This is due to the event batch size being
constant and in those sections of the dataset less events per
time unit are generated, it thus happens that a batch size might
include multiple keyframes.

In terms of MSE, Fig.[/| method 1 presents itself as the best
method. Method 2 with mean mixture function comes second
with the best reconstruction, but around the 750th keyframe
there is a huge spike in the MSE as the reconstruction
produced a mosaic with extreme mosaic intensities. This is
an inherent feature of this mixture function. Furthermore, this
metric presents a problem as it has minimal variation for the
reconstructions of method 2, even though they go from zero
to semi-dense mosaics where a fair perception of the scene is
possible. Simply by looking at the metric one would assume
that the final mosaic is very similar to the initialization. Once
again, note that these metrics are only evaluating intensities
that were estimated by both method 1 and 2.

E. Execution Time

Due to the large amounts of events that event cameras can
generate it is important to have fast methods to process data.
In Fig. 8| are presented wall-clock execution times for different
batch sizes using the MATLAB implementations. For method
1 the legend entries refer to (i) the time it takes to build image
f with equation (6), (ii) how long the primal-dual iterates
of equation take, (iii) how much time image projection
on to the mosaic takes, (iv) sum of the previous. The legend
for method 2 refers to (i) the time it takes to build matrices
b, C, d for which it is required to find pixel projections on the
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Fig. 8. Breakdown of batch processing wall-clock times by method and
operation performed.

mosaic and retrieving their intensities, (ii) how long it takes
to compute intensities with Alg. [T} (iii) the time it takes to
write the reconstruction back on to the mosaic, (iv) sum of
the previous. The temporal breakdown for method 2 does not
detail the usage of a specific mixture function as there is no
significant difference between the ones introduced.

In the execution-time breakdown for method 1, the time
to process a batch is relatively constant and the majority of
time taken to process a batch is devoted to finding pixel
projections. For batch sizes above 103 the time to include
events in the reconstruction increases linearly with batch size,
where it starts to take on a more significant portion of the batch
processing time. For method 2 the execution-time increases
linearly between batch sizes of 10 and 104, and as the first
method, the majority of time is dedicated to projections. Batch
sizes of 10* or more have a considerable penalty as it takes an
order of magnitude more to process an event, which is likely
due to the size of memory operations. For batch sizes of up
to 10* method 2 is faster as it only needs to compute one
projection for each event, whilst method 1, independently of
batch size, computes a projection for the whole camera frame,
which totals 240 x 180 = 43200 projections. Although it is
possible to add large numbers of events per batch in method 1,
the reconstruction quality is reduced as the number of events
is increased and eventually the optimization step can not filter
properly the image. In contrast method 2 fares the best when
more events per batch are used, up to the point where the
reconstruction becomes infeasible, as discussed in Sec.

VI. CONCLUSION AND FUTURE WORK

In this section the work is discussed, the contributions made
are highlighted and hints for future work are proposed.



A. Discussion

The video reconstruction presented in Sec. [I1I| proved quali-
tatively successful. But the reconstruction quality is extremely
dependent on multiple parameters, leading to a high dimen-
sionality search space in which fine tuning is needed to pro-
vide the best results for different environments. Furthermore
the added complexity of performing the reconstruction on
a manifold did not provide significant gains in qualitative
reconstruction quality.

The first method presented in Sec. shows how a video
reconstruction algorithm can easily be adapted to build a
mosaic, even though some limitations of the camera domain
reconstruction are present.

The graph interpretation of the event stream in Sec.
presents is conceptually sound, but it could fall apart when
1) pixel information is lost 2) substantial noise is present in
either poses or pixel event triggering. Any one or the combina-
tion of both can make the graph an incoherent representation
of the observed intensities.

Two linear pixel log-intensity mixture models were pro-
posed for method 2 since they are simple and allow it to
be a quadratic program. But these mixture models are not
guaranteed to be the best way to compute an overall log-
intensity from a set of pixels and vice versa, as used in this
work.

Some difficulties were encountered in Sec. [V] as mosaics
with a dense and semi-dense reconstruction were to be com-
pared. Based on the used metrics, method 1 fared better than
method 2, but for a human interpretation of the scene one can
argue that method 2 is also a viable alternative as its non-dense
estimation allows a good perception of the scene.

B. Contributions

The contributions of this work are the interpretation and
formalization of the event stream as a graph and proposal of
a fast and simple reconstruction algorithm. Furthermore the
equations of Reinbacher et al. [20] were detailed, components
of their algorithm were studied and it was used as a tool to
build a benchmark mosaic. Finally metrics were proposed and
an evaluation of performance against the ground truth was
performed.

C. Future Work

By simplification of the projection subsystem, the method
proposed in Sec.|IV|may be convenient for image or video re-
construction in the camera plane/grid, i.e. without the mosaic.
Graph interpretations of the event stream that lead to other
graph representations would also be interesting to pursue.
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