Neutralization Reactions Mixing Acids \& Bases

Acid/Base Neutralization

- A salt is any compound that can be derived from the neutralization of an acid and a base.
- The word "neutralization" is used because the acid and base properties of $\mathrm{H}+$ and $\mathrm{OH}-$ are destroyed or neutralized.
- In the reaction, $\mathrm{H}+$ and OH - combine to form HOH or $\mathrm{H}_{2} \mathrm{O}$ (water molecules).
- A neutralization reaction is a type of double replacement reaction.

Writing neutralization equations

When acids and bases are mixed, a salt forms

The cation/metal) from the base and the anion acid join to form the salt. The OH from the base and the H from the acid join to form water .

Writing neutralization equations

Example: Write the chemical reaction when lithium hydroxide is mixed with carbonic acid.
Step 1: write out the reactants
${ }^{+} \mathrm{OH}+\mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow$
Step 2: deternhine products...(make sure the salt is written with conrect subscripts! Refer to Oxidation Chart.)

Remember the "criss-cross"
method-Ch. 20
$\mathrm{LiOH}+\mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{Li}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}$

Writing neutralization equations

$2 \mathrm{LiOH}+\mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{Li}_{2} \mathrm{CO}_{3}+2 \mathrm{H}_{2} \mathrm{O}$
lithium hydroxide + carbonic acid \rightarrow lithium carbonate + water

Writing neutralization equations

Example: Complete the neutralization reaction...
$\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow$
Step 1: already completed for you
$\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow$
Step 2: deternhine products...(make sure the salt is written with \&okect subscripts! Refer to Oxidation Chart.)
$\mathrm{H}_{2} \mathrm{O}+\mathrm{CaSO}_{4}$ Charge of cation equals the the anion...no

Writing neutralization equations

$\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{CaSO}_{4}$
calcium hydroxide + sulfuric acid \rightarrow calcium sulfate + water

Writing neutralization equations

Example: Complete the neutralization reaction... iron(II) hydroxide + phosphoric acid Step 1: write out the reactants ...(make sure the acid and base are written with correct subscripts! Oxidation Chart.)

$\mathrm{Fe}(\mathrm{OH})_{2}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow$

Writing neutralization equations

Step 2: determine products... (Is the salt written with correct subscripts? Oxidation Chart.)
$\mathrm{Fe}(\overline{\mathrm{O}} \mathrm{H})_{2}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow$
$\mathrm{H}_{2} \mathrm{O}+\mathrm{Fe},>\mathrm{Q}_{4}$
$\mathrm{H}_{2} \mathrm{O}+\mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
Step 3. balance the equation Remember balancing equations...
$3 \mathrm{Fe}(\mathrm{OH})_{2}+2 \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow 6 \mathrm{H}_{2} \mathrm{O}+\mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
iron II hydroxide + phosphoric acid \rightarrow iron II phosphate + water

Practice

Write balanced chemical equations for these neutralization reactions.

1) $\mathrm{Ba}(\mathrm{OH})_{2}+\mathrm{HCl}$
2) calcium hydroxide + nitric acid
3) $\mathrm{Al}(\mathrm{OH})_{3}+\mathrm{H}_{2} \mathrm{SO}_{4}$
4) $\mathrm{KOH}+\mathrm{HClO}_{2}$
a) $\mathrm{Ba}(\mathrm{OH})_{2}+2 \mathrm{HCl} \rightarrow \mathrm{BaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
barium hydroxide + hydrochloric acid \rightarrow barium chloride
b) $\mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}$
calcium hydroxide + nitric acid \rightarrow calcium nitrate
c) $2 \mathrm{Al}(\mathrm{OH})_{3}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+6 \mathrm{H}_{2} \mathrm{O}$ aluminum hydroxide + sulfuric acid \rightarrow aluminum sulfate
d) $\mathrm{KOH}+\mathrm{HClO}_{2} \rightarrow \mathrm{KClO}_{2}+\mathrm{H}_{2} \mathrm{O}$ potassium hydroxide + chlorous acid \rightarrow potassium chlorite
