
Neutralization Reactions Mixing Acids & Bases

Acid/Base Neutralization

- A salt is any compound that can be derived from the neutralization of an acid and a base.
- The word "neutralization" is used because the acid and base properties of H+ and OH- are destroyed or neutralized.
- In the reaction, H+ and OH- combine to form HOH or H₂O (water molecules).
- A neutralization reaction is a type of *double* replacement reaction.

When acids and bases are mixed, a salt forms

NaOH + HCI
$$\rightarrow$$
 H₂O + NaCI base + acid \rightarrow water + salt

The cation (metal) from the base and the anion acid join to form the salt. The OH from the base and the H from the acid join to form water.

Example: Write the chemical reaction when lithium hydroxide is mixed with carbonic acid.

Step 1: write out the reactants

$$L_1OH + H_2CO_3 \rightarrow$$

Step 2: determine products...(make sure the salt is written with correct subscripts! Refer to Oxidation Chart.)

H₂O

Remember the "criss-cross" method-Ch. 20

LiOH + H₂CO₃ → Li₂CO₃ + H₂O

Step 3: balance the equation $\frac{\text{Remember balancing equations...}}{\text{Ch. 21 (use coefficients only)}}$ $\frac{\text{Ch. 21 (use coefficients only)}}{\text{2LiOH} + \text{H}_2\text{CO}_3 \rightarrow \text{Li}_2\text{CO}_3 + \text{2H}_2\text{O}}$

lithium hydroxide + carbonic acid → lithium carbonate + water

Example: Complete the neutralization reaction... $Ca(OH)_2 + H_2SO_4 \rightarrow$ Step 1: already completed for you $Ca(OH)_2 + H_2SO_4 \rightarrow$ Step 2: determine products...(make sure the salt is written with correct subscripts! Refer to Oxidation Chart.)

Charge of cation equals the Ca SO₄ charge of the anion...no need to add subscripts.

Step 3: balance the equation
$$\frac{\text{Remember balancing equations...}}{\text{Ch. 21 (use coefficients only)}}$$

$$\text{Ca(OH)}_2 + \text{H}_2\text{SO}_4 \rightarrow \text{2H}_2\text{O} + \text{CaSO}_4$$

calcium hydroxide + sulfuric acid → calcium sulfate + water

Example: Complete the neutralization reaction...
iron(II) hydroxide + phosphoric acid
Step 1: write out the reactants ... (make sure the acid
and base are written with correct subscripts! Oxidation Chart.)

$$Fe(OH)_2 + H_3PO_4 \rightarrow$$

Step 2: determine products...(Is the salt written with correct subscripts? Oxidation Chart.)

Fe(OH)₂ + H₃PO₄
$$\rightarrow$$

H₂O + Fe₃(PO₄)₂

Step 3: balance the equation $\frac{\text{Remember balancing equations...}}{\text{Ch. 21 (use coefficients only)}}$ $3\text{Fe}(OH)_2 + 2\text{H}_3\text{PO}_4 \rightarrow 6\text{H}_2\text{O} + \text{Fe}_3(\text{PO}_4)_2$

iron II hydroxide + phosphoric acid → iron II phosphate + water

Practice

Write balanced chemical equations for these neutralization reactions.

- 1) $Ba(OH)_2 + HCI$
- 2) calcium hydroxide + nitric acid
- 3) $AI(OH)_3 + H_2SO_4$
- 4) KOH + HCIO₂

- a) $Ba(OH)_2 + 2HCI \rightarrow BaCl_2 + 2H_2O$ barium hydroxide + hydrochloric acid \rightarrow barium chloride
- b) $Ca(OH)_2 + 2HNO_3 \rightarrow Ca(NO_3)_2 + 2H_2O$ calcium hydroxide + nitric acid \rightarrow calcium nitrate
- c) $2AI(OH)_3 + 3H_2SO_4 \rightarrow AI_2(SO_4)_3 + 6H_2O$ aluminum hydroxide + sulfuric acid \rightarrow aluminum sulfate
- d) KOH + $HCIO_2 \rightarrow KCIO_2 + H_2O$ potassium hydroxide + chlorous acid \rightarrow potassium chlorite