

Neutrino Mass and Proton Decay in Renormalizable SO(10)

R. N. Mohapatra

MARYLAND

Bethe Forum on "*Grand unification in real world*", Bonn 2018

Grand Unified Theories (GUTs): Elegant and ambitious

Unifies all matter and forces

• Makes theory more predictive e.g. can predict $\sin^2 \theta_W$ + more

Also quantizes electric charges

Why SUSY GUTs

Couplings unify at scale ~10¹⁶ GeV with susy breaking at TeV required to solve gauge hierarchy problem

(Dimopoulos, Raby, Wilczek'81; Ibanez, Ross'81)

Where is SUSY?

Key prediction:proton decay • GUT group \rightarrow Q-L unification \rightarrow proton decay $p \rightarrow e^+ \pi^0$; $p \rightarrow K^+ + \bar{\nu}$ no evidence yet Super-K(22.5kt) Soudan Frejus Kamiokande IMB Hyper-K (187kt*2) $p \to e^+ \pi^0$ minimal SU(5) minimal SUSY SU(5) $p \rightarrow e^+ \pi^0$ flipped SU(5) predictions SUSY SO(10) 6D SO(10) non-SUSY SO(10) G224D $p \rightarrow e^+ K^0$ JUNE(20kt) $p \rightarrow \mu^+ K^0$ $n \to \bar{\nu} K^0$ **DUNE (40 kt)** KamLAND $p \rightarrow \overline{\nu} K^+$ Hyper-K minimal SUSY SU(5) non-minimal SUSY SU(5) $p \rightarrow \overline{\nu} K^+$ predictions SUSY SO(10) 10³¹ 10³⁵ 33 34 32 10 10 10 τ/B (years)

No SUSY, No proton decay why pursue GUTs?

Neutrino masses have provided new life to GUTs

Neutrino masses: 20 years before <1998

Neutrino masses and mixings now

NuFIT 3.2 (2018)

	Normal Ordering (best fit)		Inverted Ordering $(\Delta \chi^2 = 4.14)$		Any Ordering
	bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	3σ range
$\sin^2 \theta_{12}$	$0.307^{+0.013}_{-0.012}$	$0.272 \rightarrow 0.346$	$0.307^{+0.013}_{-0.012}$	$0.272 \rightarrow 0.346$	$0.272 \rightarrow 0.346$
$\theta_{12}/^{\circ}$	$33.62_{-0.76}^{+0.78}$	$31.42 \rightarrow 36.05$	$33.62_{-0.76}^{+0.78}$	$31.43 \rightarrow 36.06$	$31.42 \rightarrow 36.05$
$\sin^2\theta_{23}$	$0.538\substack{+0.033\\-0.069}$	$0.418 \rightarrow 0.613$	$0.554^{+0.023}_{-0.033}$	$0.435 \rightarrow 0.616$	$0.418 \rightarrow 0.613$
$\theta_{23}/^{\circ}$	$47.2^{+1.9}_{-3.9}$	$40.3 \rightarrow 51.5$	$48.1^{+1.4}_{-1.9}$	$41.3 \rightarrow 51.7$	$40.3 \rightarrow 51.5$
$\sin^2\theta_{13}$	$0.02206\substack{+0.00075\\-0.00075}$	$0.01981 \rightarrow 0.02436$	$0.02227\substack{+0.00074\\-0.00074}$	$0.02006 \to 0.02452$	$0.01981 \to 0.02436$
$\theta_{13}/^{\circ}$	$8.54_{-0.15}^{+0.15}$	$8.09 \rightarrow 8.98$	$8.58^{+0.14}_{-0.14}$	$8.14 \rightarrow 9.01$	$8.09 \rightarrow 8.98$
$\delta_{\rm CP}/^\circ$	234^{+43}_{-31}	$144 \to 374$	278^{+26}_{-29}	$192 \to 354$	$144 \to 374$
$\frac{\Delta m_{21}^2}{10^{-5} \text{ eV}^2}$	$7.40\substack{+0.21 \\ -0.20}$	$6.80 \rightarrow 8.02$	$7.40\substack{+0.21 \\ -0.20}$	$6.80 \rightarrow 8.02$	$6.80 \rightarrow 8.02$
$\frac{\Delta m^2_{3\ell}}{10^{-3}~{\rm eV}^2}$	$+2.494^{+0.033}_{-0.031}$	$+2.399 \rightarrow +2.593$	$-2.465^{+0.032}_{-0.031}$	$-2.562 \rightarrow -2.369$	$ \begin{bmatrix} +2.399 \to +2.593 \\ -2.536 \to -2.395 \end{bmatrix} $

Cosmology $\sum m_{\nu} [eV] < 0.3$

Things we do not know

Mass ordering

- CP phase δ_{CP} (DUNE, T2K,..)
- Are their sterile neutrinos?
- Absolute scale $\sum m_{\nu}$
- Are they Majorana or Dirac? (This talk assumes 3 neutrinos!)

Neutrino mass and revival of GUTs

 $m_{\nu} \neq 0$ needs new physics beyond SM.

Two new puzzles from neutrino mass discovery

(i) $m_
u \ll m_q, m_\ell$

(ii) Lepton mixing patterns different from quarks

Seesaw paradigm for tiny neutrino mass fits well in GUTs SM+ RH neutrinos V_R but with heavy Majorana mass

(Minkowski'77; Mohapatra, Senjanovic; Gell-Mann, Ramond, Slansky; Yanagida; Glashow'79)

Q-L unification → m_{D33} ~ m_t → M_{ν_R} ~ 10¹⁴ GeV
 Fits well into GUT framework since M_{ν_R} ~ M_U

GUT group SO(10): Just right for seesaw

- Two key ingredients of seesaw:
 - (a) right handed neutrino(b) B-L symmetry
- Both are automatic in SO(10) unification:
- $\bullet SO(10) \supset B L$
- Fundamental {16}- rep \supset SM fermions + N_R

$$\begin{pmatrix} \boldsymbol{u} & \boldsymbol{u} & \boldsymbol{u} & \boldsymbol{\nu} \\ \boldsymbol{d} & \boldsymbol{d} & \boldsymbol{d} & \boldsymbol{e} \end{pmatrix}_{L,R}$$

GUT model building

(i) Coupling unification

(ii) GUT symmetry and fermions

(iii) Symmetry breaking (Higgs sector)

GUT model building

(i) Coupling unification (SO(10)→MSSM)

(ii) GUT symmetry and fermions \checkmark

(iii) Symmetry breaking (Higgs sector) (Many ways)

Two ways to break B-L to get seesaw in SO(10) models Class I: Use {16_H}+{16_H}

Class II: {126}+{126}

Two ways to break B-L and two classes of SO(10) models Class I: Use {16_H}+{16_H}

(a) Breaks R-Parity; so no natural DM;

- (b) Higher dim operators for fermion masses:
 - > 63 parameters in the fermion sector
 - (c) *String th. leads naturally to 16_H fields !*
- Class II: {126}+{126}

(a) R-parity automatic; Neutralino DM natural(b) with 10+126, # param=18 for fermions;

very predictive; ideal model for neutrinos (Babu, Mohapatra'93)

Is this diverse pattern even compatible with auark-lepton unification inherent in GUTs?

Two approaches to quarklepton flavor in SO(10) GUTs

 Minimal SO(10) models without flavor sym. Can meet the challenge

Flavor symmetry augmented GUTs to understand needed Yukawa texture

Two renormalizable SO(10) SUSY GUT models Scenario: SO(10) \rightarrow MSSM \rightarrow SM Note: $16_F \times 16_F = 10 + 126 + 120$

 Minimal renormalizable models with 10+126-Higgs (# param 18)(Babu, RNM'93)

 $W = h\psi\psi H + f\psi\psi\bar{\Delta}$

Next: 10+126+120+CP (# param=17+3)

 $W = h\psi\psi H + f\psi\psi\bar{\Delta} + g\psi\psi\Sigma$ (Dutta, Mimura, RNM'04; Bertolini, Frigerio, Malinsky'04)

Flavor in minimal SO(10): 10+126

 $M_{u} = hv_{u} + f\kappa_{u}; \quad M_{d} = hv_{d} + f\kappa_{d}; \quad \text{(Babu, RNM'92)}$ $M_{\nu}^{D} = hv_{u} - 3f\kappa_{u}; \quad M_{l} = hv_{d} - 3f\kappa_{d};$ $M_{\nu} = fv_{L} - M_{d} \frac{1}{fv_{R}} M_{d} ; \quad f = \frac{1}{4\kappa_{d}} (M_{d} - M_{\ell})$

• in GUTs $m_b(M_U) \simeq m_\tau(M_U)$ endows \mathcal{M}_ν with different flavor structure compared to $M_{u,e,d}$ and if f term dominates \mathcal{M}_ν (Type II), leads to maximal θ_{23} . (Bajc, Senjanovic, Vissani'2003)

Type II seesaw dominance

What is type II seesaw: Add triplet to standard model; seesaw formula arises from

Lazaridis, Shafi, Wetterich; RNM, Senjanovic

Schechter, Valle'81

Small nu mass from GUT scale triplet mass
 Triplet present in 126-Higgs field $\mathcal{M}_{\nu} = f \frac{v_{wk}^2}{M_{\Phi_3}}$

How does type II seesaw lead to maximal mixing?

Consider 2 gen \mathcal{M}_{ν}

 $\mathcal{M}_{\nu} = c(M_d - M_\ell)$

$$M_d = m_b \begin{pmatrix} \sim \lambda^2 & \sim \lambda^2 \\ \sim \lambda^2 & 1 \end{pmatrix} M_\ell = m_\tau \begin{pmatrix} a_1 \lambda^2 & a_2 \lambda^2 \\ a_2 \lambda^2 & 1 \end{pmatrix}$$

• Suppose at GUT scale $m_b \simeq m_\tau (1 + \lambda^2)$ • Then $\mathcal{M}_{\nu} = \begin{pmatrix} a'\lambda^2 & b'\lambda^2 \\ b'\lambda^2 & \lambda^2 \end{pmatrix}$

 \blacksquare $a_1, a_2, a', b' \sim 1$ → large $heta_{23}$ natural_(Bajc, Senjanovic, Vissani)

Moving on to 3 generations

M^I_d and M_I typical:

$$M_{d,\ell} \approx m_{b,\tau}$$

$$\int_{-\infty}^{\infty} \begin{pmatrix} \sim \lambda^4 & \sim \lambda^5 & \sim \lambda^3 \\ \sim \lambda^5 & \sim \lambda^2 & \sim \lambda^2 \\ \sim \lambda^3 & \sim \lambda^2 & 1 \end{pmatrix}$$

■ B-tau unif at GUT scale →

$$M_{\nu} = c(M_d - M_\ell) \approx m_0 \begin{pmatrix} \lambda^4 & \lambda^5 & \lambda^3 \\ \lambda^5 & \lambda^2 & \lambda^2 \\ \lambda^3 & \lambda^2 & \lambda^2 \end{pmatrix}$$

tmospheric solar theta13 all large

Atmospheric, solar, theta13, all large: (Goh, RNM, Ng'03)

Flavor in minimal SO(10): 10+126

•
$$\mathcal{M}_{\nu} = f v_L - M_d \frac{1}{f v_R} M_d$$
; $f = \frac{1}{4\kappa_d} (M_d - M_\ell)$

- Many detailed analysis with type II and type I + type II.
- Fukuyama, Okada'02; Babu, Macesanu'2005; Bertolini, Malinsky, Schwetz'06; Dutta, Mimura, RNM'07, Grimus, Kubock'07; Aulakh, Garg'05; Joshipura, Patel'11; Dueck, Rodejohann'13; Fukuyama, Ichikawa, Mimura'16; Babu,Bajc,Saad'16)

Proton decay in SUSY GUTs

- In Non-SUSY models, $p \rightarrow e^+\pi^0$ dominates does not test seesaw nor neutrino mass physics but is a key test of GUTs
- In SUSY SO(10)models, $p \rightarrow K^+ \bar{\nu}$ connected to neutrino mixings: can test nu mass physics

Model with 10+126

10+126 model has tension with p-decay – specially RRRR operators troublesome: $p \rightarrow K^+ + \bar{\nu}_{\tau}$ rate $\propto (\tan\beta)^2$

Next to minimal SO(10) 10+126+120+CP

Fermion mass formula: \widetilde{g} imaginary; $\widetilde{h}, \widetilde{f}$ real

$$egin{aligned} \mathcal{M}_u &= ilde{h} + r_2 ilde{f} + r_3 ilde{g} \ \mathcal{M}_d &= rac{r_1}{ aneta} (ilde{h} + ilde{f} + ilde{g}) \ \mathcal{M}_e &= rac{r_1}{ aneta} (ilde{h} - 3 ilde{f} + c_e ilde{g}) \ \mathcal{M}_{
u_D} &= ilde{h} - 3r_2 ilde{f} + c_
u ilde{g}, \end{aligned}$$

17 parameters + 3 threshold effect parameters to fit 13+ 5 inputs (Dutta, Mimura, RNM'05)

• Note that
$$M_q = M_q^{\dagger}$$
 (due to antisym of \tilde{g})

• \rightarrow in the effective theory, $\theta = \text{Arg Det } M_q = 0$

Potential to solve the strong CP problem without the axion.

Is this structure natural?

		latura	Iness with (CPxZ ₂
CF			Z ₂	
	Field	CP transform	$\Lambda(126)$	$\rightarrow -\Lambda(126)$
	$\Psi(16)$	$\Psi^{*}(16)$		
	H(10)	H*(10)		
	$\bar{\Delta}(\overline{126})$	$\bar{\Delta}^*(\overline{126})$	$W = \sum M_{\phi} \phi^2$	$\lambda + \lambda_1 X (A^2 - M^2)$
	$\Delta(126)$	$-\Delta^{*}(126)$		
	$\Sigma(120)$	$-\Sigma^{*}(120)$	$\sum A H + \sum$	$\bar{\lambda} \Lambda \Sigma + \lambda_4 \bar{\lambda} \Lambda^2 H$
	A(45)	$-A^{*}(45)$	$\lambda_2 \Delta A \Pi + \lambda_3^2$	$_{3}\Delta A \Delta + \frac{1}{\Lambda} \Delta A \Pi$
	S(54)	$S^{*}(54)$		1
	X(1)	X*(1)	$\lambda_5 S(HH + \Delta\Delta +$	$+\Delta\Delta) + \frac{1}{\Lambda}(\Delta\Delta)^2$
	θ	$\rightarrow \theta^*$		Λ
\rightarrow	\tilde{g} ima	aginary	All other paramet	ers in W real
(Preliminary)		nary)	(RNM, Severson'18)	all vevs real

Fermion mass fits and Pdecay

- In 10+126 models all Yukawas fixed by fermion mass fits and hence p-decay prediction firm:
- On the other hand in models with 120, one can choose textures to suppress proton decay: e.g.

$$\tilde{h} = \begin{pmatrix} 0 & & \\ & 0 & \\ & & M \end{pmatrix}, \qquad \tilde{f} = \begin{pmatrix} \sim 0 & \sim 0 & f_{13} \\ \sim 0 & f_{22} & f_{23} \\ f_{13} & f_{23} & f_{33} \end{pmatrix}, \quad \tilde{g} = i \begin{pmatrix} 0 & g_{12} & g_{13} \\ -g_{12} & 0 & g_{23} \\ -g_{13} & -g_{23} & 0 \end{pmatrix}$$

(Dutta, Mimura, RNM'05; Severson'15; RNM, Severson'18)

Fermion mass fit

Best fit values for Type I with large CP phase

	best fit	exp value		best fit	exp value
m_u (MeV)	0.7246	$0.72\substack{+0.12 \\ -0.15}$	V_{us}	0.22427	0.2243 ± 0.0016
$m_c \; ({ m MeV})$	208.6	$210.5\substack{+15.1 \\ -21.2}$	V_{ub}	0.0030	0.0032 ± 0.0005
$m_t \; ({ m GeV})$	80.113	$80.45^{+2.9*}_{-2.6}$	V_{cb}	0.03497	0.0351 ± 0.0013
$m_d~({ m MeV})$	1.515	$0.930 \pm 0.38^{*}$	$J \times 10^{-5}$	2.29	2.2 ± 0.6
$m_s \; ({ m MeV})$	24.47	$17.6^{+4.9*}_{-4.7}$	$\Delta m^2_{21}/\Delta m^2_{32}$	0.0308	0.0309 ± 0.0015
$m_b~({ m GeV})$	1.311	$1.24\pm0.06^*$	$ heta_{13}$ (°)	9.397	8.88 ± 0.385
$m_e \; ({ m MeV})$	0.3565	$0.3565\substack{+0.0002\\-0.001}$	$ heta_{12}$ (°)	33.62	33.5 ± 0.8
$m_{\mu} \; ({ m MeV})$	75.297	$75.29\substack{+0.05\\-0.19}$	$ heta_{23}$ (°)	43.79	44.1 ± 3.06
$m_{ au}~({ m GeV})$	1.61	$1.63\substack{+0.04 \\ -0.03}$	$\delta_{\mathbf{CP}}$ (°)	-67	
			$\sum \chi^2$	3.16	

 $m_{\nu} = .074 \text{ eV}$

RNM and Severson'18

New features in Proton decay

- This choice of textures suppresses 10 and 126 contributions except for those that arise from rotations to mass basis.
- There are new contributions (different from SU(5) and SO(10) with 10+126) due to 120:
- →Usual kinds: (3, 1,-1/3) QQQL; (3,1,-4/3) U^cU^cD^cE;
- New kind (3,3,-1/3) from 120 and 120-126 $Q^T \vec{\tau} Q \cdot Q^T \vec{\tau} L$

Chi-square values for CP phase (type I case)

proton life time and δ_{CP} correlation in SO(10)

Nu-Fit 3.2 result for CP phase

Predictions for type II case

Mixing angles and p-decay

Measurement of leptonic Dirac phase can test type II version of the model !!

Beyond the fermion sector:

(i) Issue of coupling running beyond M_U

Due to large reps, α_U blows up just after M_U

 $\hfill\blacksquare$ The condition on Higgs for coupling not blowing up before M_{Pl}

$$b_H \le 18 + \frac{2\pi}{\alpha_U \ell n(\frac{M_{Pl}}{M_U})} = 33$$

For $b_{H(126)} = 35$; $b_{H(120)} = 28$; $b_{H(10)} = 1$

What to do?

Issue of coupling running beyond M_{U:} one resolution

- Break symmetry by {210} and {54} and keep the SU(5) rep {15} at 10¹³ GeV. Unification works but SO(10) breaks at 10¹⁸ GeV
- $SO(10) \rightarrow SU(5) \rightarrow MSSM$ (Goh, Nasri, RNM'05)

Coupling running

Can strong CP work with this?

(ii) Doublet-Triplet splitting: Orbifold embedding of SO(10)

5-D with S₁/Z₂xZ'₂ for SO(10) (Dermisek, Mafi;H. Kim, Raby'03)

- Multiplets fragment and get pushed up reducing threshold effect (Fukuyama, Okada'16)
- Provides a way to solve D-T splitting problem
- Embedding of this model: open problem.

(iii) GUTs with Flavor symmetries:

- Quark lepton fits in GUTs require certain choices for the Yukawa couplings:
- Can we have a deeper understanding of the needed pattern of Yukawas?

Perhaps symmetries can help! The vacuum of flavor GUTs may explain Yukawas! S₄, A₄,

Summary and conclusion

- With no susy and no proton decay, neutrino mass provides only compelling theory motivation for GUTs.
- An example of predictive model:Renormalizable SO(10); natural DM;
- 10+126 most minimal model
- θ_{13} prediction confirmed!

P-decay requires high susy Breaking scale.

Summary contd.

- <u>10+120+126 model</u>
- Better for proton decay, if susy is discovered in the few-TeV range;

- Correlation between Dirac phase- p-decay rate, makes the model testable soon.
- Potential to provide a solution to strong CP problem without the axion.

Input parameters

	Init #1	Init #2	Init #3
$M \; ({ m GeV})$	80.2	76.1	79.0
$ ilde{f}_{11} ~({ m GeV})$	0.0055	0.01013	0.0145
$ ilde{f}_{12}~({ m GeV})$	0.0965	-0.089	0.064
$ ilde{f}_{13}~({ m GeV})$	0.608	0.9397	1.55
$\tilde{f}_{22}~({ m GeV})$	1.094	0.866	1.32
$\tilde{f}_{23}~({ m GeV})$	1.21	1.4884	-0.75
$ ilde{f}_{33}~({ m GeV})$	1.51	3.55	-3.95
${ ilde g}_{12}~({ m GeV})$	0.26	0.20	0.359
$ ilde{g}_{13}~({ m GeV})$	0.08	0.0535	0.013
$ ilde{g}_{23}~({ m GeV})$	0.178	0.35	-0.01
$r_1/ aneta$	0.0215	0.0247	0.0175
r_2	0.191	0.24414	0.159
r_3	0.0108	0.006	0.0213
c_e	0.355	-3.328	-3.05
$c_{ u}$	153.87	45.218	127.0
$\delta m_b \; ({ m GeV})$	-24.5	-28.0	-10.25
$\delta V_{cb} \; ({ m GeV})$	0.88	0.515	1.07
$\delta V_{ub} \; ({ m GeV})$	-0.195	-0.844	-1.0

Embed strong CP solution: Example II

Add singlets X with $X \rightarrow -X^*$ and $X \rightarrow -X$ under CPxZ₂ and Y with $Y \rightarrow Y^*$; $Y \rightarrow Y$

$$W = M_X X^2 + \lambda X \Delta \bar{\Delta} + \bar{\Delta} \Sigma A + \Sigma A H$$
$$+ \frac{\bar{\Delta} A^2 H}{M_P} + SAA + M_S S^2 + S^3 + M_A A^2 + \frac{(\Delta \bar{\Delta})^2}{M_P}$$
$$+ Y (X^2 - M'^2) + M_Y Y^2 + Y^3 + Y S^2 + Y A^2$$
$$+ \frac{i\kappa}{M_P} X \Delta A \bar{\Delta}$$

S₄ symmetry based model

- S₄ triplets \$\phi_{1,2,3}\$ and write superpotential for each: matter spinors in S₂
 Minima for 3 \$\phi_2\$ W \$\frac{1}{2}m\frac{2}{2}m\frac{2}{2}m\frac{1}{2}m\frac{2}{2}m\frac{2}{2}m\frac{1}{2}m\frac{2}{2}m
- Minima for $\mathbf{3}_1 \ \phi_3 \quad W = \frac{1}{2}m\phi^2 \lambda\phi^3 = \frac{1}{2}m(x^2 + y^2 + z^2) \lambda xyz.$

$$\oint = \frac{m}{\lambda} \{ (1,1,1) \text{ or } (1,-1,-1) \text{ or } (-1,1,-1) \text{ or } (-1,-1,1) \}.$$

- For 3₂: $\phi_1 = (0, 0, \pm 1)$ $\phi_2 = (0, \pm 1, \pm 1)$ (King,Ross,..)
 Choose W $W = (\phi_1 \psi)(\phi_1 \psi)H + (\phi_2 \psi)(\phi_2 \psi)\overline{\Delta} + (\phi_3 \psi \psi)\overline{\Delta}$
- Leads to desired pattern → TBM (DMM'10)

Proton decay in SO(10)

- 3 kinds: (3, 1,-1/3) mediated QQQL;
 - (3,1,-4/3) U^cU^cD^cE; (3,3,-1/3) $Q^T \vec{\tau} Q \cdot Q^T \vec{\tau} L$
- Only the first two in minimal SU(5)
- Two kinds of operators: LLLL, RRRR
- In minimal SU(5), RRRR enhanced by $(\tan\beta)^4$
- Enhanced but not so much in SO(10)
- In SUSY SO(10), neutrino masses related to pdecay