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ABSTRACT 

The adoption of Friction Pendulum Devices (FPD), as a cheaper alternative to the elastomeric 

bearings, has caught the attention of both academic and technical communities, in the last 

decades. Even though different versions of such devices can be found on the market and their 

effectiveness has been extensively proven by means of numerous experimental campaigns 

carried out worldwide, many aspects concerning their mechanical behaviour still need to be 

clarified. These aspects concern, among others: 1) sequence of sliding on the several concave 

surfaces, 2) influence of temperature on the frictional properties of the coupling surfaces, 3) 

possibility of mechanical stick-slip phenomena, 4) possibility of impact-induced failure of 

some components, 5) geometric compatibility, and so on. Those aspects are less clear the 

larger the number of concave surfaces the device is composed of. This paper presents a new 

way of modelling the mechanical behaviour of the FPDs, by fulfilling 1) geometric 

compatibility, 2) kinematical compatibility, 3) dynamical equilibrium, and 4) thermo-

mechanical coupling. 

Keywords: Base isolators, friction pendulum devices, kinematics, dynamic equilibrium. 

 

INTRODUCTION 

In recent years base isolation has become an increasingly applied structural design technique 

for both buildings and bridges located in highly seismic areas. Two basic types of base 

isolation can be identified (Kelly 1997, Taniwangsa and Kelly 1996): 1) by elastomeric 

bearings and 2) by a sliding system. According to the former approach, the building or 

structure is decoupled from the horizontal components of the earthquake ground motion by 

interposing a layer with low horizontal stiffness between the structure and the foundation. The 

latter approach works by limiting the transfer of shear across the isolation interface. Many 

sliding systems have been proposed and some have already been implemented in practice. 

The Friction Pendulum (FP) system, firstly introduced by Zayas et al. (1987), is one of these 

sliding systems that has already been used for several projects (e.g. Mellon and Post 1999), 

both new and retrofit. It combines a sliding system with a restoring force. In fact it is 

composed of an articulated slider, whose surface is coated by a special interfacial material 

with the purpose to provide a suitable friction, sliding on a stainless steel concave surface 

(Fig. 1a). The concave surface geometrically provides the restoring force as the tangential 

projection of the applied gravity load. The FP system for seismic isolation has been recently 

manufactured as devices with multiple independent concave sliding surfaces, in order to 

provide adaptable behavior (e.g. Earthquake Protection Systems, Inc. 2003; Tsai et al. 2010). 

The Double concave Friction Pendulum (DFP) bearing (Constantinou 2004, Fenz and 
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Constantinou 2006) is an adaptation of the traditional, well-proven single concave friction 

pendulum that allows for significantly larger displacements, for identical plan dimensions. 

The DFP bearing consists of two facing stainless steel concave surfaces (Fig. 1b). The upper 

and lower concave surfaces have radii of curvature �� and �� that might not be equal. While 

the coefficients of friction along the two kinematic pairs are �� and ��, respectively. An 
articulated slider separates the two concave surfaces. The articulation is necessary for proper 

even distribution of pressure on the sliding surfaces and to accommodate differential 

movements along the top and bottom sliding surfaces when friction is unequal on these two 

latter. The Triple Friction pendulum bearing (TFP) is an even more advanced version of the 

original FP (Fig. 1c) that is composed of a) two external concave plates, with radius of 

curvature and friction coefficient equal to (��; ��) and (��; ��) respectively, b) two inner 
sliding plates with radius of curvature and friction coefficient equal to (��; ��) and (��; ��) 
respectively, and c) a sliding pad. The external surfaces of both the sliding plates and the 

sliding pad are coated with a lining material that has to provide the suitable friction 

coefficient. More recently even friction pendulum bearings presenting more than four sliding 

surfaces have been proposed (Tsai et al. 2010). The more sophisticated versions of the FP, 

which contemplate the presence of an increasing number of sliding concave surfaces, have the 

advantage to guarantee: 1) a certain adaptability to the given earthquake, despite being a 

passive system, as well as 2) a reduced footprint, with the same deformation capacity. 

 

Fig. 1 - Friction pendulum bearings: a) Single Friction Pendulum (SFP), b) Double Friction 

Pendulum (DFP), c) Triple Friction Pendulum (TFP). 

Friction plays a pivotal role in the functioning of the FP devices. However, it is a very 

complex phenomenon not completely understood yet: it is given by several concomitant 

physical phenomena whose relative importance varies as function of the involved parameters 

and contour conditions (e.g. Bowden and Tabor 1973; American Society for Metals 1992; 

Constantinou et al. 2007). The most frequently used interface in sliding bearings is made of 

PTFE or PTFE-like materials in contact with polished stainless steel. For these kind of 

interfaces, the dynamic coefficient of friction � mainly depends on (Constantinou et al. 1999): 

a) the sliding velocity, b) pressure, c) temperature and d) time of loading. 

Since the introduction of the friction pendulum devices for the seismic protection of 

structures, a lot of efforts have been made by the scientific community (e.g. Mokha et al. 

1990, Nagarajaiah et al. 1991, Fenz and Constantinou 2008) in order to single out the most 

suitable analytical model of the horizontal force-displacement hysteretic curve characterizing 

the behavior of such devices. In fact, the hysteretic force-displacement curve needs to be 

implemented in the standard structural analysis softwares in order to assess the efficacy of the 

designed intervention to correctly protect the structure against the expected earthquake and in 

compliance with the code regulations. Even though more refined models of the overall 

hysteretic curve, each substantially based on the early work by Fenz and Constantinou (2008), 
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have been recently proposed (e.g. Becker and Mahin 2008a,b, Ray et al. 2013), they present 

common drawbacks, among which: 1) equilibrium conditions are fulfilled only in the 

horizontal direction, completely neglecting the rotational equilibrium, and 2) the influence of 

thermal effects are completely ignored. In fact, as to this latter aspect, it is well known that, 

when friction is involved in highly dynamic applications, heat is generated on the contact 

surfaces as a result of the transformation of mechanical energy into energy of thermal 

oscillations of molecules during friction. During an earthquake, with peak sliding velocity of 

the order of ≥ 400mm sec⁄ , temperature could reach very high values and significantly 

affect the frictional properties of the PTFE-stainless steel sliding interface. 

Moreover, such complex tribological systems are known to be susceptible to 1) the stick-slip 

and 2) the sprag-slip phenomena (e.g. Popov 2010). Where: the former consists of the likely 

alternation of time intervals of sliding to time intervals of no sliding, with consequent re-

coupling of the ground shaking and superstructure movement, while the latter consists of 

vibrations that could be activated in the direction orthogonal to the sliding one. 

In this scenario, many questions arise about the actual functioning of these devices. Do they 

always re-center? Otherwise, under which specific contour conditions, either kinematic 

(displacements, velocities and accelerations) or tribological (friction) do they re-center?  

Similarly as what happens with a rolling wheel, must friction have an optimum value, for 

rolling to take place? In this view, a limit value of asymptotically null friction would allow 

those devices to work, or would it rather inhibit the triggering of the functioning of the 

devices? Is it only friction, at each phase of the device deformation, that dictates the 

triggering, rather than the inhibition, of sliding along the various concave surfaces? How does 

rotational equilibrium affect this aspect? Does the over-structure actually horizontally 

translates only, without any rotation, during an earthquake lacking the vertical component? 

Otherwise, under which specific conditions the over-structure does not undergo any rotation? 

Would it be necessary to outfit the isolation system with supplemental devices meant to 

suppress any possibility of rotation? Does the building actually move upward, as a response 

of the horizontal two dimensional earthquake? Or rather, as function of the soil deformability, 

it may move downwards, in order to accommodate vertical deformations? Does a complex 

soil-structure interaction take place during an earthquake? 

It is evident that the topic is complex and needs to be faced from a multidisciplinary 

standpoint, involving also both mechanical and tribological engineering expertize (e.g. Scotto 

Lavina 1990, Belfiore et al. 2000).  

With the aim to contribute to a better understanding of the mechanical behavior of the 

multiple FPs, thus attempting to answer the questions above, this work presents a new 

approach to model the thermo-mechanical behavior of such devices. It assumes, as a first 

approximation, that all the components the device is made of can be modelled as rigid bodies, 

thus neglecting, for the time being, any deformation. This modelling approach is aimed at 

fulfilling: 1) geometrical compatibility, 2) kinematic compatibility, 3) dynamic equilibrium, 

both translational and rotational, and 4) thermo-mechanical coupling.  

 

INSPIRING PHYSICAL OBSERVATION 

Suppose to have a kind of flat double friction bearing (Fig. 2), composed of a) two rigid 

horizontal steel plates, and b) a rigid steel cylinder placed in between. Imagine that this device 

is loaded by a vertical force � and that friction at the two interfaces is governed by the 
Coulomb constitutive law (Fig. 2b), with a rigid-perfectly-plastic dependence of the friction 
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force on the relative displacement ����, and threshold value � � � ∙ �. Imagine also that the 

friction coefficient � at those interfaces, has the same value. If we impose a displacement on 

the lower plate, due to the rigid-plastic constitutive law of interfacial friction, we would 

immediately have, even for infinitesimally small values of imposed displacement, the 

mobilization of the friction threshold �  at each interface. Those two horizontal forces, equal 
in magnitude and opposite in direction, do generate a couple, to which corresponds a moment 

�" � � ∙ # that, in the initial configuration, is not balanced by any other couple. That 
moment would tend to overturn the pad by making it rotate around one of the corners. In such 

tentative rotation, the points of application of the vertical force � would migrate to the pad 

corners still in contact with the relevant horizontal plates. In this way, even the vertical force 

would give rise to a couple �$ � � ∙ �, opposed to the overturning one and larger in absolute 
value, that would make the pad undergo both a rigid body rotation around its centroid % and a 
simultaneous vertical translation. During such movement of the pad, the diagonally opposed 

corners, loaded by �, would also undergo sliding, up to the new, restored equilibrium 

configuration (Fig. 2e). It is the vertical weight force � that restores the geometric 

compatibility at each time step. 

 

Fig. 2 - Case of a flat double friction bearing: a) undeformed initial configuration, b) 

friction’s Coulomb constitutive law, c) pad free body diagram, d) intermediate deformed 

configuration, and e) final configuration of the whole device. 

 

GEOMETRIC COMPATIBILITY 

When it comes to multiple friction pendulum bearings, namely with concave spherical 

surfaces, the most advanced device currently available on the market is the Triple Friction 

Pendulum (TFP). It is composed of (Fig. 3): a) two external concave-surface-topped plates, 

both with radius � � �� � ��, b) two internal sliding plates, which are two straight cylinders 
whose bases, one convex and another concave, are two spherical caps belonging to two 

spherical surfaces with different radii, �� ≠ �� and �� ≠ �� respectively, and c) an internal 
sliding pad, which is a straight cylinder with both bases composed of convex spherical caps 

belonging to surfaces with the same radius �� � ��. The two external faces of the two larger 
plates are horizontal. The four sliding interfaces are composed by the superimposition, in 

pairs, of eight spherical caps, one constituted of plain stainless steel and the other coated by a 

particular liner, that is generally PTFE or the like. 

The considerations herein presented are based on the following assumptions: the various parts 

constituting the friction pendula are considered as rigid bodies, thus neglecting, at least for the 

time being, any possible deformation. In this way, geometrical compatibility is fulfilled each 
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time the two spherical caps constituting the two mating surfaces of a given interface are 

perfectly superimposed to each other.  

 

Fig. 3 - Triple Friction Pendulum device: a) axonometric section, b) plan section, and 

c) exploded plan section. 

The first and most important constraint is represented by the fact that the two outermost 

horizontal surfaces, lower and higher, can undergo a rigid body motion remaining horizontal, 

which means that they can only translate remaining parallel to themselves. This is due to the 

fact that, at the extrados of the so called isolation plane, the various isolators are connected by 

a rigid diaphragm (e.g. Italian Technical Regulations 2008) while, at the intrados, to the 

presence of the ground. In order for that condition to be fulfilled, it is necessary that either the 

two internal surfaces ('� and '�) or the two external ones ('� and '�) undergo sliding 
simultaneously while it is not preferable to allow mixed sliding, e.g. '� and either '� or '�, 
since controlling the evolution of displacements along each concave surface would become 

extremely difficult. For this reason, the friction coefficient should be the same along the two 

surfaces of each of those two sliding pairs, i.e.  �� � �� and �� � ��. 
It is preferable to start by analyzing the behavior of a double friction pendulum, composed of 

the internal pad and only two external plates, in a radial plane, which means in case of uni-

directional imposed horizontal displacement (Fig. 4). At a generic time step (), the internal 
deformation undergone, as function of the imposed displacement ∆�+�()�, by the several 
members constituting the device, can be decomposed into two subsequent phases. When 

starting from the equilibrium condition (Fig. 4a-d), in the first phase, which means during the 

first part ∆(� of the time increment ∆(, the pad, due to the imposed displacement ∆�+�(��, 
rigidly rotates around one of the lowermost corners (�) and such rotation also yields a certain 
vertical displacement of the upper plate. During the second phase ∆(� of the current time 
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increment ∆(, the pad undergoes a rigid rotation around its centroid (/) with this latter 
simultaneously rigidly translating along the straight line connecting the centers of the two 

spherical surfaces .�.�.  This latter direction, resulting from the end of the previous sub-

interval ∆(�, is inclined, with respect to the vertical direction, of an angle ��(�� that is the 
geometrical variable accounting for the final configuration assumed by the entire device 

(Fig. 4d). The same two-step deformation can be recognized if, at a generic time step (), the 
ground imposes a reversed displacement, and starting from a generic deformed configuration 

(Fig. 4e-h). The only difference, in case of reversal, is that initial rigid rotation (∆(�) involves 
the other diagonal of the pad (i.e. 01 instead of �.). During the second phase, sliding occurs 
along the corners of the involved diagonal of the pad, and friction is mobilized therein. 

 

Fig. 4 - Case of a Double Friction Pendulum device subjected to an horizontal ground displacement 

contained in a radial plane: a-d) rightward ground movement starting from a rest position, and e-h) 

leftward movement starting from a maximum deformation. 

The same two-step deformation at a generic instant () can be singled out when a more general 

situation is considered, in which we assume that 1) the pad is already dislocated 

(��()�, 3�()�) from the equilibrium configuration, and 2) the ground-imposed displacement 

∆�+�()� is generically oriented with respect to an external and fixed reference system 4567 
(Fig. 5). Even though already dislocated at the start (()) of the current incremental time step, 

the pad must have restored, according to the two-step deformation above, a geometrically 

compatible configuration (Fig. 5a). Such displaced configuration, uniquely identified by the 

two spherical coordinates ��()� and 3�()�, that are the polar and azimuthal angle respectively 
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(Fig. 5), is thus characterized by the fact that the pad axis ,-�,-��()� is superimposed on the 

segment .�.��()� connecting the two centers of the external spherical surfaces.  

 

Fig. 5 - Case of a Double Friction Pendulum device subjected to an horizontal ground 

displacement generically oriented with the pad already dislocated from the initial equilibrium 

configuration: a-c) 3D axonometric representation of the two-step deformation, d-f) corresponding 

planar views, and g-i) planar cross-sections. 

a) b) c)

d) e) f)

g) h) i)

= = =

� ()

∆�+ ();�
5 5 5666

6 6 6

5 5 5

> >>

> > >

3 ()

ξ

η

ζ

Ω

3 ();�
ξ

η

Ω

= =
=

ξ ξ ξη η η
ζ ζ

Ω Ω Ω

�

��

C

C

C

� ();�
D ();� � 1

.0 /

EFGHIJK	M

EFGHIJK	N

EFGHIJK	N

() 9 ∆(�() () 9 ∆(� 9 ∆(�

() 9 ∆(�() () 9 ∆(� 9 ∆(�

() 9 ∆(�
() () 9 ∆(� 9 ∆(�

EFGHIJK	N

EFGHIJK	O



Symposium_13: Assessment and Strengthening of Existing Structures Subjected to Seismic Demands 

 

 

-1056- 

Whatever the orientation of the imposed displacement ∆�+�()� in 4567, it is always possible 
to single out a plane = passing through that displacement orientation and the two centers of 

the spherical surfaces (one is sufficient indeed, provided that the geometrical compatibility 

was fulfilled). The geometrically compatible two-step deformation takes place in the plane = 
that, since passing through the spheres’ centers, sections these latter along two circles with 

maximum radius, i.e. �P � �� � ��. The two-step deformation is again composed of 1) a 

rigid body rotation along one of the corners of the pad (which means a point, in 3D), 

contained in the plane =, and 2) a subsequent simultaneous rigid rotation and translation of 

the pad, always contained in =, that restores compatibility, as can be gathered from the planar 

cross sections plotted in Fig. 5. During the second phase (∆(�), sliding occurs, simultaneously 

to the rigid roto-translation, along the corners of the pad. When geometrical compatibility is 

restored, spherical coordinates assume updated values ��();��, 3�();�� (Fig. 5f and i). 

 

Fig. 6 - Case of a Triple Friction Pendulum device subjected to a uni-directional ground displacement 

with the pad already dislocated from the initial equilibrium configuration: (a-d) case of sliding 

occurring only along the pad external surfaces, (e-h) case of sliding occurring only along the external 

surfaces of the internal plates, with the pad frozen in its maximum deformation, and (i-n) case of 

reversal with the pad frozen in its maximum deformation. 

When a complete triple friction pendulum device is taken into consideration, the same 

principles, though further complicated by the larger number of geometrical variables 

involved, apply (Figs. 6 and 7). It is convenient, for the time being, to analyze just the planar 

behavior of the TFP. If sliding is expected to occur only along the pad external surfaces 
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(Fig. 6a-d), the situation is substantially identical to what has already been discussed about the 

case of the DFP.  

 

Fig. 7 - Case of a Triple Friction Pendulum device subjected to a uni-directional horizontal 

ground displacement during reversal: (a,b) first, (c,d) second, and (e,f) third phase, 

necessary to restore geometric compatibility. 

If it is assumed, as it would be preferable in order to more easily control the possible 

deformation undergone by the whole device during an earthquake, that sliding occurs on the 

external surfaces only, after the inner ones have reached their capacity, again, the situation is 
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substantially identical to what has already been discussed for the DFP, except that the pad 

now has a dissymmetric shape (Fig. 6e-h) and the first phase rigid rotation concerns either the 

shorter or the longer diagonal, depending on if the motion is forward oriented (Fig. 6e-h) or 

under reversal (Fig. 6 i-n). 

In case it is admitted and allowed that, on reversal, both pairs of sliding surfaces (S�, S� and 
S�, S�) can simultaneous slide, even if, as stated above, this would mean that, when the device 

passes again from the position of null displacement �+�()� � 0, geometrical compatibility 

might not be fulfilled, the phases the whole system needs to undergo in order to settle in the 

new compatible configuration for the current value of the imposed displacement, are three. A 

first phase (∆(�) in which, given the new value of imposed displacement increment 

∆�+�();��, the pad rigidly rotates around one of its corners (e.g. 1 in Fig. 7b) and the pair of 
internal plates rigidly rotates around one of their corners (e.g. % in Fig. 7b). Then a second 
phase (∆(�) in which the pad undergoes a rigid roto-translation, with its instantaneous 
rotational center (/ in Fig. 7c,d) moving along the line passing through the two mating 

concave surfaces’ centers .�.� up to full restoration of geometric compatibility with segment 

,-�,-� perfectly superimposed to .�.��() 9 ∆(�� (Fig. 7d). During this phase some work is 

done by friction for the sliding along contact vertices 0 and 1. Then a third phase (∆(�) in 
which the two internal plates also restore a geometrically compatible configuration by 

undergoing a rigid roto-translation with the instantaneous rotational center / moving along 

the straight line passing through the segment .�.��() 9 ∆(��, up to the instant (();� � () 9
∑ ∆(U�UV� ) in which segment ,-�,-� has fully superimposed to .�.�. Also during this last phase 
sliding simultaneously occurs along the vertices R and % and some work is done there by 

friction. If such simultaneous sliding of surfaces is contemplated, the study of the kinematic 

compatibility in a three dimensional representation would be much more complex, so that 

further research would be necessary. 

 

MECHANICAL MODEL 

The analysis of the geometric compatibility of the friction pendulum devices described in the 

previous section suggests, in a consequential manner, the way in which it is possible to model 

the mechanical behavior of such devices in the three dimensional space. For the reasons 

already explained in the previous section, in the present work attention is focused on the 

dynamical behavior of a DFP subjected to a ground shaking, leaving the study of complete 

TFP to further future developments. Moreover, the study is herein limited to the case of 

unidirectional seismic attack. The dynamical behavior of a DFP at the instant () can therefore 
be limited to what happens in the generic plane =, singled out by 1) current position of the 
pad (��()�, 3�()�), and 2) direction, in the reference system 4567, of the current horizontal 
displacement ∆�+�();�� imposed by the ground shaking, excluding any vertical earthquake, 

for the time being. Both phases at the current time step can be modelled by an articulated 

system of rigid bodies, different for each phase (Fig. 8). Even though the rigid bodies are 

expected to actually undergo some deformations, for the time being they are herein assumed 

to behave as perfectly rigid bodies. These latter form an open kinematic chain for both phases 

of motion.  

During the first phase (∆(�), the lower plate (Rigid Body 1) is assumed to move horizontally 

along a prismatic guide, without friction, and the motion is the one imposed by the earthquake 

and characterized by given displacement 5+�();��, velocity 5W+�();��, and acceleration 
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5X+�();��. The pad (Rigid Body 2) is kinematically constrained to both lower and upper plate 

(RB 3,4) by two revolute joints in which the constraint force tangent to the concave surface is 

blocked to the maximum allowable Coulomb friction force. The upper sliding plate (RB 3) 

carries the weight of the over-structure that is herein assumed as a mass, rigidly connected to 

the plate by a massless rigid rod, and concentrated in rigid body 4. Substantially, rigid bodies 

3 and 4 are assumed to form a single rigid body assemblage. Due to the motion imposed on 

rigid body 1, rigid body 2 undergoes a rigid rotation Y� around one of its corners (point � in 
Fig. 8a) characterized by angular velocity and acceleration Y�W , 	YX�. As a consequence of that 
(unknown) rotation, the assemblage of rigid bodies 3 and 4 undergoes a rigid planar 

translation, along axes 5 and 7 of the inertial reference system 4567, maintaining contact with 

the pad in the pin-joint in point . of the pad. Note that the position assumed by the plates at 

the end of this first phase already singles out the final updated value of the inclination of the 

pad with respect to both the sliding plates ��();��. 

 
Fig. 8 - Mechanical models, constituted of Articulated System of Rigid Bodies (ASRB), to 

simulate the two-phases behavior of the DFP at a given time step: a) first phase ASRB and 

b) second phase ASRB. 

The second phase is modelled by the same assemblage of rigid bodies above, kinematically 

constrained between one another in a different way (Fig. 8b). Rigid body 1 is blocked in its 

final position corresponding to the current time step ();�. Rigid body 2 undergoes a rigid 
roto-translation with its centroid %� translating along the straight line connecting the two 
centers of curvature of the two plates, along a linear prismatic guide without friction and 

contemporarily counter-rotates around its centroid with angular velocity and acceleration 

� 1

.
0 %� 5�

7�

5�

7�

%�

5�

7�

%�

%� 5�

7� � ()

� ()

5+ ()

5

7

4 5

7

4

5+ ();�
5W+ ();�

5X+ ();�

5�%�

7�
%�

5�
7�

� 1

.

0

5�

7�

D ()

%�

5�%�

Y�W , YX�

5W+ ();�

5W+ ();�
YW� ∙ �.

YW� ∙ �%� 5�
7�

%�

YX� ∙ �.

YX� ∙ �%�

5X+ ();�

5X+ ();�

Z- .

Z- %�

Z- . � YW�� ∙ �.

Z-

Z-

. .

� �

Z- %� � YW�� ∙ �%�

5

7

4

5+ ();�
5W+ ();�

5X+ ();�

5�
7�

5�

7�

%�

5�

7�

%�

%� 5�

7�

%�

();� 9 ∆(�∗

();� 9 ∆(� ();� 9 ∆(� 9 ∆(�∗

()

();�9 ∆(� 9 ∆(�
∆(�[∗ ∆(�∗[ ∆(�9 ∆(�

� ();�

5

7

4

5+ ();�
5W+ ();�

5X+ ();�

5�
7�

5�

7�
%�

5�
7�

%�

%� 5�

7�

%�

� ();�

YW�

YW�, YX�

YX�

0 [ ∆(�∗ [ ∆(�
();�9 ∆(�∗

� �X %��W

� �X %��W

�

1

.

0

�

1

.

0

�

1

.

0

�W

�W
YW� ∙ %�.

YW� ∙ %��
5�

7�
%�

Z-

Z-

Z- � � YW�� ∙ %��
Z- . � YW�� ∙ %�.

Z- .

Z- �

YX� ∙ %�.

YX� ∙ %��

5�
7�
%�

�X %��W %�

Linear guide 

without friction

.�Point constrained to 

move along linear 

guide without friction

Slipping zones 

with friction



Symposium_13: Assessment and Strengthening of Existing Structures Subjected to Seismic Demands 

 

 

-1060- 

Y�W , 	YX�. Along the vertices of the diagonal involved (�. in Fig. 8), the pad is now constrained 
to the two plates (rigid bodies 1 and 3) by two circular guides with Coulomb friction so that, 

during this phase, slipping takes place with consequent yielding of heat (Fig. 8b). While 

kinematic quantities �X\]�%�� and YW�, which are the linear and angular accelerations 
characterizing the pad rigid roto-translation, are unknown since depend on the dynamical 

characteristics of the system, the values of displacement �\]�%�� and rotation Y� are known 
since they are the quantities necessary to restore the geometrical compatibility by closing both 

kinematic couples implying that the pad axis superimposes to the straight line connecting the 

concave plates centers (compare previous sections). The assemblage of rigid bodies 3 and 4 

translate with point .� moving (Fig. 8b), without friction, along the straight line connecting 

the concave surfaces’ centers .�.��() 9 ∆(��. 
 

KINEMATIC COMPATIBILITY 

A kinematic analysis, meant to study motion without considering the forces that produce it, is 

necessary. During the first phase, the velocity of point C, in which a revolute joint is placed, 

is given by (e.g. Scotto Lavina 1990, Belfiore et al. 2000): 

^_\\\\] � ^`\\\\] � YW� ∙ a�\\\] × �.\\\\\] � 5W+ ∙ a�\\\] � YW� ∙ a�\\\] × �.\\\\\] (1) 

where a�\\\] is the unit vector of axis 6 of the Inertial system 4567 whose positive direction is 
towards the paper. While the acceleration is given by:  

Z_\\\\] � Z`\\\\] 9 Z-\\\\]�.� � YX� ∙ a�\\\] × �.\\\\\] � 5X+ ∙ a�\\\] 9 YW�� ∙ %��\\\\\\\] � YX� ∙ a�\\\] × �.\\\\\] (2) 

During the second phase, the velocity of point ., belonging to rigid body 2 (pad) is given by: 
^_\\\\] � �X\]�%�� 9 YW� ∙ a�\\\] × %�.\\\\\\\] (3) 

while the velocity with which the rigid bodies 3 and 4 translate along the linear prismatic 

guide without friction, along the straight line connecting the position occupied by the two 

curvature centers at the end of step one, is given by the velocity of point .� (Fig. 8b): 
^_e\\\\\\] � �W\]�%�� (4) 

The acceleration of point ., belonging to rigid body 2, is given by (Fig. 8b): 
Z_\\\\] � �X\]�%�� 9 Z-\\\\]�.� 9 YX� ∙ a�\\\] × %�.\\\\\\\] � �X\]�%�� 9 YW�� ∙ %�.\\\\\\\] 9 YX� ∙ a�\\\] × %�.\\\\\\\] (5) 

and the acceleration of point .�, is given by: 
Z_e\\\\\\] � �X\]�%�� (6) 

 

DYNAMICAL EQUILIBRIUM 

Both mechanical models adopted to study the two phases of the planar motion of the DFP 

described in previous section are open kinematic chains (Shabana 2001). And each of them is 

characterized by one degree of freedom. 

In fact, for the first phase, we have 3 rigid bodies, each characterized by 3 kinematic 

unknowns, for a total of f � 3 × 3 � 9. The number of kinematic constraints is equal to 

f- � 7 that are given by: a) vertical translation and rotation (2) of the RB1, b) two internal 
revolute joints (2 × 2 � 4), and c) rotation (1) of the assemblage of RB3 and RB4. The 
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translational horizontal degree of freedom of the lowermost sliding plate (RB1) is 

kinematically controlled by the earthquake, while the rotational degree of freedom of the pad 

is not known a priori so that a force analysis is required and the system equations of motion 

must be formulated to obtain a number of equations equal to the number of unknown 

variables. 

For the second phase, we have f � 3 × 3 � 9 kinematic unknowns. The number of kinematic 

constraints is equal to f- � 8 that are given by: a) 3 for the lowermost plate that is assumed 

fixed, b) 1 for the pad, since its centroid %� cannot move orthogonally to the straight line 

(prismatic frictionless guide) passing through the concave surfaces centers .�.��() 9 ∆(��, c) 
2 for the uppermost sliding plate assembled with the over-structure (Rb3+RB4), since they 

can only translate with the contact point at the end of phase 1 (i.e. point .� in Fig. 8b) moving 

along the straight line above, thus neither rotating nor translating orthogonally to that line, and 

d) 2 are given by the internal constraints constituted by the circular frictional prismatic 

guides, between the kinematic couples RB1-RB2 and RB2-RB3+RB4, since they do not allow 

mutual displacement at the contact point, along the relevant radius of curvature. The 

independent kinematic unknown is YX� while the translational acceleration �X �%�� can be 
expressed as function of YX�. 
The first kinematic chain is both kinematically and dynamically driven (Shabana 2001) since 

one degree of freedom, that is the horizontal translation of the lowermost plate, is imposed by 

the ground movement and another, that is the rotation around one of the pad’s corners, is 

governed by the forces involved, either inertia and external. On the other hand, the second 

kinematic chain is dynamically driven, since for the unknown, a force analysis is required. For 

both models, a relevant minimum number of differential equations can be written, in the 

ambit of the Embedding Technique (Shabana 2001), by making a suitable cut in one of the 

joints among the involved rigid bodies, and formulating the dynamic conditions of the 

resulting subsystem. The number of these obtained equations, which do not contain the joint 

reaction forces, is equal to the number of degrees of freedom of the system. Once the 

minimum number of differential equations are solved, the joint reaction forces can be 

obtained by the equations of motion obtained by a free-body analysis. 

Proceeding in this way, for both phases’ kinematic chain, making the cut in correspondence of 

the revolute joint in point A, the following equilibrium equation, applying the D’Alambert 

principle, is obtained: 

jW\\]̀ � jW\\]kl 9 �%�\\\\\\\] × �
�( m\]� 9 �%�\\\\\\\] × �

�( m\]� 9 �%�\\\\\\\] × �
�( m\]� � �\\]̀ � n�%\\\\\]U × ,\]U

�

UV�
 (7) 

in which: jW\\]̀  is the moment of the inertia forces with respect to point �, jW\\]kl is the moment of 

inertia of RB2 with respect to its centroid, m\]U is the momentum of the i-th RB, �\\]̀  is the 
moment of the external forces with respect to point �, and ,\]U is the self-weight force of the i-
th RB. For each phase, Eq. (7) has to be specialized by substituting, in the expression of the i-

th RB time-derivative of the momentum, the kinematically compatible expressions for the 

accelerations, as obtained in the previous section. 

 

THERMO-MECHANICAL COUPLING 

During the second phase, slipping occurs along the two concave surfaces (Fig. 8b) and heat is 

developed therein. It is possible both 1) to keep track of the temperature change of the plates 
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and 2) to evaluate the change of the frictional threshold as function of the surface temperature. 

Thermo-mechanical coupling is obtained by defining a suitable law of variation of the 

frictional coefficient, as function of the temperature, as follows: 

� U �(� � �UopU�(�q ∙ �U (8) 

where: � U �(�, �U, pU�(�, �U are a) the friction strength, b) the temperature dependent friction 

coefficient, c) the temperature, and d) the internal force orthogonal to the i-th concave surface.  

At each time step, the increment of Temperature, yielded by the friction-induced heat, can be 

evaluated by the following thermal equilibrium equation: 

rU ∙ psW � tU ∙ �sW � msW  (9) 

where: psW  is the rate of change of temperature ((auvawZ(�wa (xua⁄ ), rU is the heat capacity 
(afawy6 (auvawZ(�wa⁄ ) of the x-th surface, given by the product of the steel specific heat rz 
times the mass �U of the concave surface involved in the heat exchange, and msW  is the rate of 
heat exchanged with the surrounding environment (afawy6 (xua⁄ ). For the sake of 

simplicity, �U can be assumed coincident with the whole mass of the relevant steel plate 

(Fig. 1). 

Moreover, the following assumptions may be made: 1) heat is generated by friction at each of 

the sliding interfaces, 2) heat conduction is assumed unidirectional, perpendicular to each 

concave surface, 3) heat loss due to radiation is assumed negligible, 4) bearing material 

(PTFE or the like) is assumed as a perfect thermal insulator so that heat generated at the 

sliding interface just flows towards each concave surface (in fact the thermal diffusivity of 

steel is ~20.0} u ∙ °.⁄  that is much larger than the one of PTFE ~0.24} u ∙ °.⁄  at 20°. 
temperature). 

The rate of heat exchange msW �T, t� by the x-th surface with the surrounding environment can 

be modelled by the Newton’s law of cooling that is usually adopted to describe convective 

heat exchanges, that is: 

msW �p, (� � #U ∙ �pU � p
U�� (10) 

where: #U is the x-th concave surface heat transfer coefficient (aZ(/(auvawZ(�wa ∙ (xua), 
given by the product of the steel convectional heat exchange coefficient z times the area �U 
of the portion of the concave surface effectively exchanging heat with the surrounding air 

whose temperature is p
U�. 
 

CONCLUSION 

The so called Friction Pendulum Devices are seismic bearings that have been recently 

capturing the attention of both Academic and Technical communities as a suitable and 

relatively cheaper alternative to the elastomeric bearings. However, even though their 

effectiveness has been proven by numerous experimental campaigns carried out worldwide, 

they are complex tribological systems, composed of different kinematic couples, whose 

mechanical behavior is far from trivial. Many aspects still need to be clarified and it seems 

necessary to involve also mechanical and tribological expertize. Among those aspects, there’s 

the need to clarify phenomena such as stick-slip and sprag-slip, which have also been 

observed experimentally. 
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Moreover, most of the theoretical works available in the literature, aimed at reproducing the 

force-displacement hysteretic curve, have completely neglected the rotational and vertical 

translation of such devices during an horizontal ground motion. And they also seem to have 

not paid due attention to the geometrical compatibility. 

In the present work, a new approach to model the mechanical behavior of such devices was 

proposed. It started from analyzing the likely geometrical compatibility of such devices 

during their functioning and ended up proposing a two-step deformation that restores 

geometric compatibility at each time step and also accounts for the possibility of stick-slip to 

occur. The main features of such approach, which is based on 1) geometrical compatibility, 2) 

kinematical compatibility, 3) dynamic equilibrium, and 4) thermo-mechanical coupling, were 

delineated. 

For the time being, only the formal aspects of this approach were herein presented, and 

limited to the planar deformation of a DFP. As further developments, such approach will be 

extended to tridimensional behavior of both DFP and TFP. This will be done paying due 

attention to tribological issues of a) wear, b) thermal-induced effects, and c) selection of the 

most suitable liner. Also questions related to the impact between the several components will 

be addressed. 
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