

New Generation

of

Solid State Mass Memories

Mass Memories New Generation

Introduction

𝔊 MdM NG −SEMM512

Test bench

State of development

Introduction

- R&T CNES
- Take over from the Myriade Mass Memories
- Scientific Missions
- Needs:
 - Higher data rate (link with TMTHD)
 - Higher capacity
 - New interfaces (SpaceWire, TMTHD)
 - Drive by a remote computer
 - ITAR Free

Numbers:

- Capacity
 - 512Gbits (Flash EEPROM technology), organized by blocks
- Performances
 - 158Mbits/s Input and Output
- Consumption
 - Lower than 4W
- Dimensions
 - 220 x 115.5 x 22mm = Myriade
- Radiation tolerance
 - 20Krad (TBC)

• MM NG Vs MM Myriade

	MM Myriade	MM NG (SEMM512)
Capacity	8 Gbits (1 UPM) or 16 Gbits (2 UPM)	512 Gbits
Organisation mémoire	By blocks (1 block \approx 32Ko)	By blocks (1 block ≈ 2.1 Mo)
Input data rate	10Mbits/s	158 Mbits/s
Output data rate	16.8Mbits/s	158 Mbits/s
Consumption		4W max
Module size (mm)	220 x 115.5 x 22	220 x 115.5 x 22
Number of module	2 (UCM + 1 UPM) or 3 (UCM + 2 UPM)	1
Deficient blocks detection	Manually	Automatic

Interfaces

- TM/TC
 - I2C, Oslink FdP, Oslink CU or UART (E2/S2/TMTC), SpaceWire
- Input
 - High rate (E1 nominal and redundant), Oslink CU (E2), Oslink FdP, PacketWire FdP, SpaceWire
- Output
 - TMTHD (nominal and redundant), TMHD, Oslink CU (S2), Oslink FdP, SpaceWire

♥ Interfaces and performances

- I2C : 400KHz max
- Oslink FdP: 5, 10 or 20Mbits/s
- SpaceWire: (TBD)
- E1/E1P: Input High Rate: 158Mbits/s max
- E2/S2/TMTC: Oslink payload: 5, 10 or 20Mbits/s ou UART (TBD)
- PacketWire Motherboard: 40Mbits/s max
- TMTHD (nominal and redundant): 158Mbits/s
- TMHD: 89.6Mbits/s (max rate TMHD)

Deficient blocks management

- The autotest is managed by TC from the computer
 - Autotest Reset
 - Autotest by profil 0xAA55
 - Autotest by profil 0x55AA
 - Autotest by profil shuffle

Write (or delete) following by a new read of the memory zone

Data reading compare to the Date writing

- If at least 1 reading octet est different of 1 writing octet, the block is identified like deficient in a table inside the SRAM.
- Then several TC sent by the computer, allowed to the Mass Memory to take into account deficient blocks in the physical adressing.

Working Modes – Stand alone mode

- Power supply by converter through the motherboard
- Driving by a remote computer (through E2/S2/TMTC or SpaceWire)

Working Modes– Integrated mode

• Driving by computer through the motherboard (lien I2C or Oslink FdP)

• Possibility to coupling 2 SEMM512

- By the motherboard
- Purpose:
 - Increase the storage capacity
 - Plug 2 payload equipements
 - Plug 2 TMHD or TMTHD

Possibility to coupling 2 MM NG

• Exemple of 2 MM NG integrated in 1 OBC

State of developpement

© Evaluation MM NG model

- Size higher to the flight board
- Ground components
- FPGA used: Actel ProASIC3E (A3PE1500)
- Links SpaceWire and UART not integrated in FPGA

State of developpement

• Placement of the flight board

<u>Components side</u>: Fonction control/command

Soldering side: Memory

Test support presentation

• TM/TC Simulation:

- To several rates
- Sends TC, processing and storage of received TM
- Ability to process scripts (validation in progress)

Input Simulation

- To several rates
- Disponibility of several patterns (fix profil, incremented, file)

Output Simulation

- To several rates
- Store reading data in files
- Controlling the flow of data read (channels TMHD and TMTHD)
- Others utilities
 - Binary files compare...

Test Bench

• Hardware Architecture

Secteur 220V

-3 electronics boards to generate voltage and signal adaptation

Test Bench

Software Architecture

- Labview and Labview FPGA
 - To simulate high rates interfaces and manage the USB-I2C module
- LabWindows CVI
 - To drive Etherlink
 - HMI
 - Files managing
 - ...

Test Bench

Software Architecture : HMI

What's next ?

Product Space Industrialisation

- Design
 - Choice of Flight FPGA
 - Modification (SpaceWire, UART) and FPGA « Portage »
 - Grad 3 Components Upgrading
 - Mechanical design
 - Analysis (thermal, mechanical, reliability, FMECA)
 - Test Bench futher design (SpaceWire, UART)
- EM Manufacturing (Myriade format)
- Test bench modification
 - Interfaces software modification (SpaceWire and UART)

