

Hydrovolts

Burt Hamner, CEO

www.hydrovolts.com

New HydrokineticTechnology for Renewable Energy

Agenda

- Hydrokinetic Energy
- Types of Turbines
- Canal Installations
- Energy Generation
- Economics
- Permits
- DemonstrationProject

Hydrokinetic Energy

- Velocity REALLY Matters
- $kWh / m^2 = 0.5 \times V^3 \times \%E$
 - (m²) Swept Area in m²;
 - (V) Velocity in m/s; 1 m/s = 2 knots = 3 ft/sec
 - Efficiency: Increases with Blockage

Speed = Power

Types of Turbines

- Paddlewheel
 - Lots of superstructure and cost; flotsam fouling
- Axial: Propellers, screws
 - Hard to install and fit in canals
- Cross-Axis: Darius, Savonius, Gorlov, Flipwing
 - Vertical position is hard to install in canals

Paddlewheels

Axial Turbines

Cross-Axis Turbines

- Unique underwater paddlewheel
- Simple construction, easy installation
- Level or spillway installation
- Can actually be a check structure

Hydrovolts Turbine

Replaces this:

With this:

Canal Installations

- Level Flow
 - Like river installation easier
 - Lower velocity and energy
 - Can block flow if slope is too small
- Check Structures and Spillways
 - More complex installation
 - Head / height = high velocity and energy
 - Turbines cannot block flow

Energy Generation

- Level Flow Example
 - 5 kW / turbine x 10 / mile = 50 kW / mile
 - Over 800 irrigation districts supplied just by BuRec
 - About 50% appear to have about 20 miles of suitable canal
 - 400 districts x 20 miles/district x 50 kW/mile = 40 MW
- Spillway Example
 - 20 kW / turbine x 20 check structures/canal = 440 kW/canal
- So: Real Energy, But Depends on Geography

Economics

- Key Factors: Velocity, Cap Factor, Energy Cost
- Huge Variability Between Regions
- Best Value in High-Cost, Off-Grid and Peak Pricing Regions

Value to Customer

- Standard 10 kW turbine in good site with electricity cost of 11 cents / kW hr earns about \$7000 / yr
- Turbine cost \$20,000, 15 year product life
- Maintenance ~ \$1000 / yr
- Payback is 4 years; then earn \$6000 / yr for 11 years
- Plus: It's renewable sell carbon credits, get grants, incentives, financing

Compare Electricity Costs

- Cal. & New England > 16 cents
- -UK renewables > 25 cents
- -global average: 15 cents
- -Remote sites > 80 cents

Permits

- Canal Installations Need Few if Any Permits
- Natural Streams/Rivers Need LOTS of Permits
- Connected to Interstate Grid?
 - FERC Conduit Exemption < 5 MW applies in canals
 - Simple application, no fee
- Interconnection
 - Individual turbines < 10 to 20 kW = net metering
 - Depends on local utility
 - Like small solar or wind no big deal (maybe)

Environmental Issues

- Canals have few issues – it depends
- Turbine designs have different fish impacts
- Drag designs have least impact

Flipwing Turbine Rotor Can't Hurt Fish

Markets

- Canals are found around the world
- Most regions pay much more for power than NW
- Demand for local renewable power is strong and growing

- Big subsidies for renewables and econ development
- Many int'l orgs ready to promote and fund

Expansion Markets

- Regional Systems
 - New England water mills
 - Canals in Europe, India, SE Asia
- Sector-Specific Water Channels
 - Drinking Water Supply
 - Wastewater Discharges
 - Thermal Power Cooling Water
 - Mining

Jobs

- Small turbines can be mass produced
- Volume reduces price increases sales
- Since most of machine is sheet metal, build most of it locally near customers
- Global market and potentially huge sales

Flipwing Turbine Canal Demonstration, Roza Irrigation District, Sunnyside, WA 7/05/10

Objectives

- Prove that the Flipwing turbine can be installed in a canal in one hour
- Prove that the prototype can operate for 24 hours unattended
- Learn how to improve the turbine and prepare for next demo

Flipwing Turbine

Prototypes

- The Roza Irrigation District operates many miles of canals in the Yakima River Valley
- They like idea of renewable energy from their canals
- They allow Hydrovolts to use their canal as a test site

Demonstration July 2010

Installation Overview

Deploy with Crane

Safety First

Installed in One Hour

Removed Next Day

Power Generation?

- Flipwing turbine will have fully submersed waterproof generator
- Trade-off analysis
 - Rotor shaft has low RPM
 - Low RPM generators are big, heavy, costly
 - Fast RPM generators are small but need a reliable and waterproof speed increaser
- Hydrovolts has found unique solution (proprietary!) to be released in 2011

What About Florida?

- Tidal channels should be ignored
 - Not enough useful power
 - Extreme permitting and stakeholder challenges
- Artificial water channels
 - Canal structures and concrete-lined channels
 - Large cooling water or wastewater discharges
- Offshore buoys and sensors
 - Use small turbines to power valuable sensors
 - Small turbines can have very high value
 - Good R&D and design application

Hydropower To Go

Hydrovolts

Burt Hamner, CEO 210 S. Hudson St, #330 Seattle, WA 98134 206-658-4380

www.hydrovolts.com burt@hydrovolts.com C. Hampton McRae PO Box 12901 Gainesville, FL 32604 352-497-9581

www.hydrovolts.com hampton@hydrovolts.com