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Summary 

 

In this study, a new and simple technique, namely Steady State Shifting 

Technique, has been developed to overcome the difficulty in measuring thermodynamic 

activity for supersaturated electrolyte-containing solutions to provide an in-depth insight 

into crystallization.  The successful application of the proposed technique to 

thermodynamic studies of a few ternary electrolyte+nonelectrolyte+H2O systems has 

been demonstrated, in a wide range of solution concentrations from dilute up to the onset 

of nucleation.  New thermodynamic data in the supersaturated region were obtained and 

interesting phenomena were found.  The supersaturated activity data enabled the good 

thermodynamic consistency between activity and solubility to be confirmed.  With the 

activity data for the ternary systems and solubility data of the nonelectrolytes, activity 

data for binary supersaturated nonelectrolyte aqueous solutions were derived.  It is 

expected that the new technique can be applicable to many other systems, based on the 

experimental framework established in this study.   

 

The obtained activity data, particularly those for NaCl+glycine+H2O, were well 

analyzed and interpreted by the proposed molecular interaction and the formation of 

different ion-glycine complexes.  More importantly, the analysis implied that the 

introduction of univalent ions (e.g. Na+ and Cl−) from a 1:1 electrolyte would 

significantly disrupt the formation of glycine cyclic dimers which are building units of α-

glycine polymorph, while it would generate building units (singly-charged ion-glycine 

complexes) of γ-glycine polymorph.  Therefore, it would be a general phenomenon that 
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univalent ions inhibit α-glycine and promote γ-glycine.  This naturally led to the 

systematic exploration of the impacts of different electrolytes on glycine polymorphs.   

 

The experimental investigation of glycine polymorphs formed from different 

electrolyte solutions revealed an interesting pattern: 1:1 (e.g. KCl) and 1:2 (e.g. 

(NH4)2SO4) electrolytes substantially inhibit α-glycine and promote γ-glycine, while 2:1 

(e.g. CaCl2) and 2:2 (e.g. MgSO4) electrolytes have a higher tendency to induce α-

glycine.  The mechanisms have been proposed based on molecular interaction, ion-

glycine complex formation and chemistries of glycine polymorphs.  They suggested that 

the valence(s), rather than other properties of the ions from an electrolyte primarily 

determine the outcome of glycine polymorphs formed from electrolyte solutions, as the 

valences of electrolyte ions affect the formation of ion-glycine complexes and they 

eventually exert substantial impacts on the anisotropic growth rates from the facets of 

polymorphic glycine nuclei.  It was then logical to quantify glycine crystal growth rates 

from electrolyte solutions.   

 

The kinetic study of γ-glycine crystals from different electrolyte solutions has 

been done using a batch isothermal crystallizer.  As it can be expected, 1:1 and 1:2 

electrolytes tremendously enhance the growth rates of γ-glycine crystals, while 2:1 and 

2:2 electrolytes have a much weaker influence on the enhancement of γ-glycine growth.  

Though different ions affect the growing faces of γ-glycine crystals differently, the 

obtained kinetic data lend additional support to the mechanisms proposed for glycine 

polymorphs from electrolyte solutions.   
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Chapter 1 Introduction 

 

In many industries, one of the most important methods for separation and 

purification of valuable crystalline chemicals is crystallization from solution (Mohan and 

Myerson, 2002).  Crystallization phenomena, such as nucleation, polymorphism and 

crystal growth are vital to industries, especially to pharmaceutical industry, as the failure 

to control polymorphism of a drug can lead to a disastrous consequence (Davey et al., 

1997; Desiraju, 1997; Ferrari and Davey, 2004; Knapman, 2000; Mohan and Myerson, 

2002; Qiu and Rasmuson, 1990; Roelands et al., 2007).  This is because the behavior of a 

drug can be drastically affected by its polymorphs, causing the rate of uptake in the body 

to change considerably and making the biological activity out of the desired range.  In 

extreme cases (e.g. chloramphenicol-3-palmitate), the danger of fatal dosages can be 

created if a wrong polymorph is administrated (Knapman, 2000).  Therefore it is required 

to gain a full understanding of these crystallization phenomena.   

 

As solution crystallization which can only take place in supersaturated solutions is 

a molecular recognition process, it is understandable that molecular interaction and 

complex formation in a solution can influence the crystallization phenomena 

tremendously.  Therefore, it is of practical importance to probe how molecules to interact 

and what complexes to form in supersaturated solutions, especially when an impurity, 

either desired or undesired, is introduced.   
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It has been recognized that thermodynamics of supersaturated solutions can play a 

significant role in the fundamental exploration of these crystallization phenomena, since 

the thermodynamic activity coefficients of a solute are related to molecular interaction, 

complex and cluster formation etc.  In fact, study on thermodynamics of supersaturated 

solutions in modeling and fundamental understanding of the crystallization phenomena 

has been an active research area of both experimental and theoretical interests (Izmailov 

and Myerson, 1999; Koop et al., 2000; Mohan and Myerson, 2002; Mullin and Sohnel, 

1977; Na et al., 1994; Öncül et al., 2005).   

 

For thorough kinetic studies on nucleation and crystal growth from supersaturated 

solution, the thermodynamic driving force (i.e. chemical potential difference, ∆µ) should 

be used, and therefore solute activity coefficients in the supersaturated region are 

required (Garside et al., 2002; Granberg et al., 2001; Grant, 2000; Koop et al., 2000; 

Mohan and Myerson, 2002; Mullin and Sohnel, 1977; Öncül et al., 2005).  Unfortunately, 

thermodynamic activity data of supersaturated solutions are generally not readily 

available (Mohan and Myerson, 2002), mainly due to the lack of proper experimental 

methods (Han and Tan, 2006).  As a result, the thermodynamic driving force for 

nucleation or crystal growth is often approximated by the solute concentration difference.  

For special cases (e.g. ideal solutions), such an approximation may be adequate.  

However, as pointed out by Mohan et al. (2000) and Mohan and Myerson (2002), 

expressing the driving force for nucleation and crystal growth in terms of solute 

concentration difference is inadequate for many real systems, and it can lead to large 
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discrepancies which in turn may incorrectly bias the analysis of the crystal growth rate 

and the interpretation of the kinetic mechanisms.   

 

Due to the general unavailability of the thermodynamic activity data for 

supersaturated solutions, the actual applications of thermodynamics to the exploration of 

the crystallization phenomena are very limited.  Nevertheless, studies on a few special 

cases have shown how powerful the thermodynamics of supersaturated solutions can be.   

 

Koop et al. (2000) studied the homogeneous ice nucleation rates from a broad 

spectrum of binary inorganic and organic aqueous solutions.  When the authors used the 

thermodynamic driving force derived from freezing-point depression, they obtained a 

universal expression for homogeneous ice nucleation rates.  They found, surprisingly, 

that the nucleation rate coefficient for homogeneous ice nucleation depends on the water 

activity alone and is independent of the nature of the solute in the binary aqueous 

solutions.   

 

Izmailov and Myerson (1999) investigated the effects of Cr+3 ions (as an impurity, 

a few ppm) on crystallization of ammonium sulfate [(NH4)2SO4] from its highly 

supersaturated aqueous solutions.  In their investigation, the water (solvent) activity was 

directly measured using the electrodynamic balance (EDB) method (Cohen et al., 1987; 

Knezic et al., 2004) while the solute (NH4)2SO4 activity was calculated by Gibbs-Duhem 

relationship, with the assumption that the activity coefficient of the impurity Cr+3 is unity.  

The result they presented was provoking.  From point of view of thermodynamics, Cr+3 
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ions seem to promote the nucleation of (NH4)2SO4, which is opposite to the observations 

made by another research group (Kobota and Mullin, 1995).  It should be pointed out that 

the activity coefficient of the impurity Cr+3 may not be unity and therefore a rigorous 

method needs to be developed for accurately calculating the impurity activity (Mohan 

and Myerson, 1999).   

 

Veverka et al. (1991) analyzed the thermodynamics of continua and they showed 

that a concentration gradient always develops in a vertical column of a stagnant 

supersaturated solution under the influence of a gravitational field when the difference in 

the partial specific volumes of solute and solvent is not zero.  Interestingly, though they 

did not assume any cluster formation, their thermodynamic analysis is consistent with the 

concept of cluster formation in supersaturated solutions.   

 

Na et al. (1994) experimentally measured the activities for two binary 

supersaturated aqueous solution systems glycine+H2O and NaCl+H2O, using the 

electrodynamic balance (EDB) method.  The activity data were then used to determine 

the size of the critical clusters at a given concentration, which provided a more 

quantitative analysis of nucleation.   

 

Although the importance of thermodynamics in polymorph control was 

highlighted (Davey et al., 1997; Desiraju, 1997), the advanced applications of 

thermodynamics to reliably predict and control the outcome of polymorphs were hardly 

reported.  In general, many more applications of thermodynamics of supersaturated 
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solutions to exploration of crystallization phenomena need to be fulfilled.  In fact, in 

order to provide an in-depth insight into the nucleation, polymorphism and kinetics, 

reliable and accurate thermodynamic activity data of supersaturated solutions are required 

while they are difficult to be obtained.  Therefore, the obstacle in obtaining the 

thermodynamic activities for supersaturated solutions has to be overcome.   

 

Experimentally, there are several traditional methods available for measuring 

activity coefficients (Rard and Platford, 1991).  These methods include the diffusivity-

based method, the freezing-point depression measurement, the boiling-point elevation 

measurement, the isopiestic method and the potentiometric method.  As it was noted, the 

isopiestic method and the potentiometric method (i.e. electrochemical method) are the 

major conventional techniques commonly used for measuring activity coefficients of 

under-saturated solutions (Khoshkbarchi and Vera, 1996b; Rard and Platford, 1991).  In 

general, all these traditional methods mentioned above are unlikely to be suitable for 

supersaturated solutions, due to their features.  Consequently the experimental activity 

data can normally be obtained only up to the saturation limits (Cohen et al., 1987).  More 

detailed explanation of why these methods fail to work in the supersaturated region will 

be elaborated in Chapter 2.   

 

In order to overcome this experimental difficulty which arises when a solution is 

supersaturated, the electrodynamic balance (EDB) method was developed and used to 

measure the activity coefficient for a supersaturated aqueous solution droplet (Chan et al., 

2005; Cohen et al., 1987; Knezic et al., 2004; Na et al., 1994; Peng et al., 2001).  The 
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electrodynamic balance was usually made by individual researchers to measure the 

solution droplet concentration at a given vapor pressure, normally with an assumption 

that the solute was not volatile.  The solute activities were then calculated using the 

Gibbs-Duhem equation.   

 

The EDB method allowed a very high level of supersaturation to be reached 

without resulting in nucleation.  However, for under-saturated solutions or solutions with 

a low level of supersaturation, the required time for reaching the equilibrium could be 

prohibitively long (Cohen et al., 1987) and experimental measurements failed (Chan et al., 

2005; Na et al., 1995).  Further more, the uncertainties in controlling or determining the 

quantities (e.g. relative humidity RH, solution concentration) were quite large (Chan et al., 

2005; Na et al., 1995).  Especially when the solutes were volatile, the uncertainty in 

determining mass fraction of a solution droplet became even larger (Chan et al., 2005; Na 

et al., 1995).  Though efforts were made to reduce this uncertainty, the accuracy in 

determining concentration was still questionable as the evaporation loss of a solute could 

be up to 5% (Chan et al., 2005).   

 

Using thermodynamic models is one alternative for obtaining activity coefficients.  

Although currently available thermodynamic models (e.g. NRTL, UNIQUAC, UNIFAC) 

and quantum mechanics (Sum and Sandler, 1999; Sandler, 2003) for predicting activity 

coefficients in solute-solvent systems may be generally useful for under-saturated 

solutions, their applicability to supersaturated solutions has yet to be confirmed by 

validation with experimental activity data.  Without accurate experimental activity data, 
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the applicability of these standard thermodynamic models to supersaturated solutions 

remains questionable.  In fact, the behavior of under-saturated solutions and 

supersaturated solutions may be vastly different.  Bui et al. (2003) showed that the water 

activities in CaCl2 solutions change significantly around the solubility point.  Ginde and 

Myerson (1991) experimentally demonstrated that, for solution systems glycine+H2O and 

KCl+H2O, the viscosity and diffusivity vary substantially with solute concentration 

around the solubility point.  Such a behavior has been attributed to significant cluster 

formation (Larson and Garside, 1986; Mohan et al., 2000; Ohgaki et al., 1991, 1992).  

Cluster formation may also partly explain the unsatisfactory performance of the UNIFAC 

equation for activity prediction in the supersaturated domain (Peng et al., 2001).   

 

It can be seen that the unavailability of accurate and reliable experimental 

activities for supersaturated solutions is mainly due to the lack of suitable experimental 

methods.  Even if the EDB method can be applied to highly supersaturated solutions, 

without other suitable methods, it is difficult to verify the activity data obtained by EDB.  

Moreover, when the solute is volatile, the accuracy of concentration determination is a 

big concern due to the evaporation loss of solute, which would lead to erroneous activity 

and hence undermine the EDB method.  Furthermore, systematic and rigorous studies on 

solute activities for multi-component supersaturated solutions are hardly found, though 

biochemicals are often crystallized from multi-component supersaturated solutions (e.g. 

aqueous electrolyte-containing solutions.  Khoshkbarchi and Vera, 1996b).   

 

 7



In this work, a new technique, Steady State Shifting Technique, for the 

conventional potentiometric method was developed for measuring the thermodynamic 

activities of supersaturated solutions.  As this new technique only requires the change of 

the operation procedure for the conventional potentiometric method and additional 

hardware is not necessary, practically it is as simple as the conventional potentiometric 

method.   

 

The new technique was applied to measure thermodynamic activities for three 

ternary NaCl+amino acid+H2O systems (namely NaCl+glycine+H2O, NaCl+DL-

serine+H2O and NaCl+DL-alanine+H2O).  These obtained activity data in the 

supersaturated region enabled the complexes which are formed by electrolyte ions (Na+ 

and Cl–) and amino acid dipolar ions (i.e. zwitterions) to be analyzed more thoroughly.  

The outcome of this analysis naturally guided the research to further explore the 

phenomena of glycine polymorphs and its crystal growth from solutions with presence of 

different electrolytes.   

 

In the presentation of this research work, literature review is given in Chapter 2, 

covering three major aspects of crystallization: 1) the traditional experimental methods 

for measuring activities for solutions and their difficulties when the solutions are 

supersaturated; 2) crystal polymorphs; 3) crystal growth kinetics.  In Chapter 3, the 

fundamental of the transport phenomena occurring in an electrochemical cell used for the 

poteniometric method is analyzed.  The development of the new technique (namely 

Steady State Shifting Technique) for activities of supersaturated solutions is presented.  
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The experimental verification of the new technique is elaborated.  Using the new 

technique, thermodynamic activity data for the three ternary systems 

(NaCl+glycine+H2O, NaCl+DL-serine+H2O and NaCl+DL-alanine+H2O) are obtained in 

both under-saturated and supersaturated regions.  The new technique is further extended 

to nonelectrolyte binary aqueous solutions (i.e. nonelectrolyte+H2O).   

 

In Chapter 4, it is showed how the obtained activity data for the 

glycine+NaCl+H2O solutions in the glycine supersaturated region lead to the implications 

that any 1:1 electrolytes (the same type as NaCl) would induce γ-glycine polymorph and 

would enhance γ-glycine growth.  Naturally, the impacts of many electrolytes including 

NaCl on glycine polymorphs and crystal growth rate are systematically investigated and 

the very interesting results are presented in Chapters 5 (for glycine polymorphs) and 

Chapter 6 (crystal growth) respectively.   

 

In Chapter 7, conclusions are drawn and recommendations are made for the 

future work.   
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Chapter 2 Literature Review 

 

This review covers three important aspects of solution crystallization, namely 

solution thermodynamics, crystal polymorphism and crystal growth kinetics.   

 

As was pointed out in the Introduction (Chapter 1), on the one hand, solution 

thermodynamics can play a significant role in exploring crystal polymorphism and crystal 

growth kinetics; on the other hand, accurate thermodynamic activity data for 

supersaturated solutions are not readily available (Mohan and Myerson, 2002), mainly 

due to the lack of suitable experimental methods.  Therefore, how to experimentally 

obtain the activity data in the supersaturated region will be reviewed first.   

 

2.1 Experimental Methods for Thermodynamic Activity  

Experimentally, there are several methods which may be used for measuring 

thermodynamic activity coefficients of solutions (Rard and Platford, 1991).  These 

methods include diffusivity-based method, freezing-point depression, boiling-point 

elevation, vapor pressure measurement, isopiestic method and potentiometric method (i.e. 

electrochemical method), with the isopiestic method and the potentiometric method being 

much more commonly used (Rard and Platford, 1991).  These methods have their own 

advantages and disadvantages in measuring either solvent or solute activity coefficient 

for under-saturated solutions.  However, they are generally not suitable for supersaturated 

solutions.   
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The diffusivity-based method is to employ the obtained diffusion coefficients to 

derive the activity coefficient of a solute (Annunziata et al., 2000).  An application of this 

method to a particular supersaturated solution was reported (Annunziata et al., 2000).  

But it should be noted that, the required precise diffusion coefficients may be available 

only for a few systems and usually only at 298.15 °C (Rard and Platford, 1991).  

Especially for supersaturated solutions, the data of precise diffusion coefficients are far 

fewer.  Moreover, it seems that to obtain precise diffusion coefficients for general 

supersaturated solutions is challenging too (Annunziata et al., 2000; Chang and Myerson, 

1986; Mohan et al., 2000).   

 

The freezing-point depression measurements may be used to determine the 

solvent activity coefficient only for special temperatures at which solid-liquid equilibrium 

between the solution and the solvent solid (e.g. ice) can be held at a given solute 

concentration (Rard and Platford, 1991).  This method gives the solvent activity as a 

function of solute concentration but at different temperatures.  It is necessary to convert 

the solvent activity data to a common temperature, using enthalpy and heat capacity data.  

The solute activity coefficient data can be obtained via the Gibbs-Duhem equation once 

the solvent activity data are available.  It is obvious that, for a solution supersaturated 

with a solute at a given temperature of interest, the solute may significantly nucleate 

already far before the freezing-point is reached.  Thus this method is generally not 

applicable to solutions supersaturated with a solute.   

 

The boiling-point elevation method generally would not create a supersaturation 
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with respect to the solute due to the increase of the solution temperature from the given 

one to its boiling point.  Therefore, the boiling-point elevation method is not suitable for 

supersaturated solutions either.   

 

 The general methods for solvent activity coefficients involve a vapor-liquid 

equilibrium.  When the solvent is the only volatile component while all other components 

are not volatile in a solution, the measurement of the solvent activity becomes simpler.  

In this particular case, for a vapor-liquid equilibrium system, the vapor pressure of the 

volatile solvent may be directly measured (Kuramochi et al., 1997) at a given temperature 

of interest, either by static or by dynamic technique.  The vapor pressure is then used to 

calculate the solvent activity of the vapor phase.  Especially when the vapor phase is an 

ideal gas, the calculation for solvent activity is much easier.  As the vapor phase and the 

liquid phase (solution) is at the equilibrium, the solvent activity in the vapor phase should 

be equal to the solvent activity in the solution phase.  When the solvent is water while the 

water vapor is an ideal gas, the relative humidity (RH) of the gas phase is the water 

activity of the solution.  With the solvent activity data, the solute activity can be derived 

from Gibbs-Duhem equation, as was briefed in the freezing-point depression 

measurements.   

 

It should be noted that, either by static or by dynamic technique, direct 

measurement of vapor pressure for solvent activity requires careful temperature control 

as vapor pressure can significantly change with temperature.  According to Rard and 

Platford (1991), solvent activity obtained by direct measurement of vapor pressure 
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becomes much less accurate when the solution concentration is lower than 1 m (mole/kg 

solvent).  Furthermore, due to the involvement of heat and mass transfer in achieving the 

vapor-liquid equilibrium, a means of agitation of the vapor-liquid system is needed.  

However, any type of agitation is very likely to trigger the solute nucleation when the 

solution is supersaturated with the solute, causing the failure of the measurement.  

Consequently, direct measurement of vapor pressure of a vapor-liquid system at 

equilibrium is unsuitable for a supersaturated solution.   

 

 The isopiestic method, probably the most commonly used technique for 

measuring solvent activity coefficients, is also based on vapor-liquid equilibrium.  In this 

method, a reference standard, a well defined and characterized solution, is required.  The 

solvent activities of the reference standard are known at different given concentrations.  

The reference standard solution and a test solution (or many test solutions) are put in 

separate open cups (or containers).  Then these cups are placed in a sealed and 

temperature-controlled chamber so that the two solutions share the same vapor phase to 

allow the solvent to transport from one solution to the other solution.  In other words, the 

solvent evaporates from one solution cup and condensates in the other solution cup.  

Eventually the thermodynamic equilibrium between the vapor phase and the solution 

phases should be reached, with the solvent activities in the vapor phase and in the two (or 

more) solution phases being the same.  After the concentrations of both the reference 

standard and the test solution are analyzed using proper instruments, the known 

concentration of the standard at equilibrium yields the solvent activity of the reference 
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standard hence the solvent activity of the test solution, corresponding to the determined 

concentration of the test solution.   

 

If the solvent is the only volatile component, analyzing the concentrations of both 

the reference standard and the test solution can be done simply by weighing the reference 

standard and the test solution after the equilibrium is reached.  Since the initial amount of 

each component in both the standard and the test solution can be known when they are 

prepared, any change of the mass of the standard or the test solution is due to the volatile 

solvent, either by evaporation or by condensation.  By mass balance, the concentrations 

of the equilibrated reference standard and the test solution can be determined.  The solute 

activity data can be derived via Gibbs-Duhem equation using the obtained solvent 

activities and the determined concentrations of the test solutions.   

 

Though the isopiestic method and direct measurement of vapor pressure utilize 

the same principle of vapor-liquid equilibrium, different quantities are measured, with the 

former analyzing the solution concentration while the latter directly measuring the 

solvent vapor pressure.  Due to this, the isopiestic method is generally more accurate 

especially when the solution is dilute (Rard and Platford, 1991).  For the isopiestic 

method, the lower limit of the concentration of a solution may be allowed to be as low as 

0.1m (vs 1m for direct measurement of vapor pressure).   

 

It should be noted that normally the isopiestic chamber is rocked back and forth to 

facilitate the heat and mass transfer so that the uniform temperature can be maintained 
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and the vapor-liquid phase equilibrium can be reached faster.  However, even if the heat 

and mass transfer is enhanced, a single run of isopiestic experiments usually takes several 

days or even longer (Rard and Platford, 1991).  As a result, a particular difficulty arises 

when the test solution is supersaturated.  On the one hand, shaking the sample solution is 

required to achieve the equilibrium but it is very likely to induce an immediate nucleation 

and cause the measurement to fail, although a few exceptions were reported (Rard and 

Platford, 1991; Bui et al., 2003) when the solutes have a particularly low tendency to 

nucleate from their supersaturated solutions.  On the other hand, without shaking, the 

time required to reach the equilibrium can be much longer than the induction time for 

spontaneous homogeneous nucleation, again rendering the measurement attempt futile.   

 

The potentiometric method is another technique which is commonly used for the 

mean ionic activity coefficients of an electrolyte in solutions (Butler and Roy, 1991).  As 

its working principle is based on the electrochemistry, this method is also termed as 

electrochemical method.  In briefing, an electrochemical cell is filled with an electrolyte 

solution at a given molality ms.  Two electrodes, one reference electrode and one 

indicator electrode, are put in the electrolyte solution to measure the electrochemical cell 

potential EΔ  (i.e. cell electromotive force, emf) at the given temperature.  As the cell 

potential EΔ  is related to the electrolyte molality m  and the mean ionic activity 

coefficient  of the electrolyte as described by the Nernst equation, the mean ionic 

activity coefficient  may be calculated from the Nernst equation.   

S

±γ

±γ
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Traditionally, a AgCl/Ag electrode was often used as the reference electrode for 

cell potential measurement.  This type of reference electrode needs filling solution which 

can develop liquid junction potentials and create an uncertainty in measuring cell 

potential.  When ion selective electrodes (ISEs) for both cation and anion of a given 

electrolyte are available, a number of studies (Breil et al., 2001; Haghtalab and Vera, 

1991; Han and Pan, 1993; Ji et al., 2001) have suggested that the liquid junctions can be 

eliminated by using the cation selective electrode as the indicator electrode and the anion 

selective electrode as the reference electrode, since both cation and anion selective 

electrodes do not need filling solutions.   

 

An electrochemical cell at a given electrolyte molality ( ) with two ion 

selective electrodes (ISEs) may be expressed as  

Sm

cation ISE|electrolyte ( ), H2O|anion ISE Sm

The Nernst equation for this cell may be generally expressed as (Bulter and Roy, 1991; 

Khoshkbarchi and Vera, 1996a, 1996b):  

)ln(0 aSEE +Δ=Δ        (2-1-1) 

where 0EΔ  is the difference between the electrode standard potentials, S the slope of the 

Nernst equation and  the mean ionic activity of the electrolyte.  For a 1:1 electrolyte 

(e.g. NaCl), at a given molality , the Nernst equation may be given (Khoshkbarchi and 

Vera, 1996b):  

a

Sm
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        (2-1-2)  )ln(0
±+Δ=Δ γSmSEE

Theoretically, the slope S of the Nernst equation may be evaluated.  For a 1:1 electrolyte 

(e.g. NaCl), we nay have:  

  F
RTS 2=         (2-1-3)  

where R is the universal gas constant (8.314 J/mol), T the absolute temperature (Kelvin) 

and F the Faraday constant (96497 C/mol).  However, for a real cell, the actual values of 

the slope S and the standard potential 0EΔ  for a given pair of electrodes at a specified 

temperature is usually obtained from a linear graphical plot of known experimental data 

of EΔ  vs  (Bates et al., 1983; Ji et al., 2001; Khoshkbarchi and Vera, 1996b), or 

from extrapolation of cell potentials of dilute electrolyte solutions (Bulter and Roy, 

1991).  With the values of the slope S and the standard potential 

)ln( ±γSm

0EΔ , measuring the cell 

potential EΔ  at any other given electrolyte molality  yields the mean ionic activity 

coefficient  of the electrolyte.  As it can be seen, the potentiometric method directly 

measures the solute activities and therefore integrating the Gibbs-Duhem equation for the 

solute activity is not needed.   

Sm

±γ

 

The correct and accurate cell potential can be obtained only when the cell reaches 

its steady state, i.e. when both the temperature and the concentration profiles in the cell 

remain unchanged.  How fast the steady state of the cell can be reached depends on the 

rates of mass and heat transfer in the media in the cell, including the cell bulk solution, 

solution films on external electrode surfaces, electrode membranes and the electrode 

housings.  To facilitate achieving a steady state of an electrochemical cell, stirring the cell 

solution is essential to enhance the heat and mass transfer.  However, when the solution is 
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supersaturated at the temperature of interest, the same problem as that encountered in the 

isopiestic method arises: stirring the solution could cause an immediate nucleation which 

results in the failure of the cell potential measurement.  That would explain why the 

potentiometric method was not used for supersaturated solution over the past decades 

(Roberts and Kirkwood, 1941).   

 

In order to overcome this experimental difficulty commonly encountered in those 

methods just mentioned above, the electrodynamic balance (EDB) method was developed 

and used to measure the solvent activities for supersaturated aqueous solutions (Chan et 

al., 2005; Cohen et al., 1987; Knezic et al., 2004; Na et al., 1994; Peng et al., 2001).   

 

In the EDB method, a single tiny charged aqueous solution droplet (typically 20 

μm in diameter) is suspended at the centre of a direct current (dc) electric field created in 

the electrodynamic balance while a stream of humidity-controlled air passes over the 

solution droplet.  The total mass of the solution droplet changes with the solvent transfer 

between the solution droplet and its surrounding vapor phase.  The dc voltage is adjusted 

to maintain the suspension of the solution droplet till a steady state (i.e. an equilibrium 

between an under-saturated solution droplet and its surrounding vapor phase, or a quasi-

equilibrium between a supersaturated solution droplet and its surrounding vapor phase) is 

established.  At the steady state, the water activity in the solution droplet is equal to the 

relative humidity of the vapor phase.   
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The solution droplet is continuously weighed by using the dc field force to 

determine the steady state at a given temperature and solvent vapor pressure.  In the same 

way, the dry mass of the solution droplet can be determined too when the humidity is 

zero.  If water is the only volatile component in the solution droplet, the droplet 

concentration (mass fraction or molality) can be determined simply by the ratio wet
DC

dry
DC

V

V of the 

measured dc voltages when the droplet is dry ( ) and wet ( ) respectively at its 

corresponding steady states (Mohan and Myerson, 1999), assuming that the charges of 

the solution droplet are kept unchanged.   

dry

DCV
wet

DCV

 

With the water activities at different droplet concentrations, the thermodynamic 

activities of the non-volatile solute in a binary solution at different concentrations can be 

derived by integrating the Gibbs-Duhem equation from one reference concentration to the 

concentration of interest (Cohen et al., 1987; Mohan and Myerson, 2002).   

 

The EDB method allows a very high level of supersaturation to be reached 

without resulting in nucleation due to the absence of nucleation sites in the suspended 

droplet.  However, at high humidity corresponding to under-saturated solutions or 

solutions with a low level of supersaturation, the required time for reaching equilibrium 

could be prohibitively long (Cohen et al., 1987), and the droplet may become unstable 

(Na et al., 1995), leading to failure of experiment.   

 

In addition, the uncertainties in controlling or determining the quantities are quite 

large (Chan et al., 2005; Na et al., 1995).  For instance, the uncertainty of the controlled 
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relative humidity is up to 1% while the uncertainty of the solute mass fraction is even up 

to 0.03 (Chan et al., 2005).  Especially when the solutes are volatile, the uncertainty in 

determining mass fraction may become much bigger, as the evaporation loss may be very 

significant (Chan et al., 2005; Na et al., 1995).  Even if efforts were made, the 

evaporation loss of a solute was still up to 5 wt% (Chan et al., 2005), which raised the 

concern on the accuracy and reliability of the determined solution concentration hence 

the resulting solvent and solute activities.  In fact, the discrepancies in the activity data 

obtained by different investigators using the EDB method could be significant (Chan et 

al., 2005; Na et al., 1995), due to the evaporation loss of the organic solutes (e.g. glyicne 

and alanine).  It appears that it would be a hard task to address the concern of the 

reliability and accuracy of the data obtained by the EDB method when the solute is 

volatile.   

 

In summary, the current methods except for the EDB method for activities are 

applicable to under-saturated solutions only.  Though the EDB method is suitable for 

highly supersaturated solutions, it could be unreliable when the concentrations of 

solutions approach their saturation points or below.  The evaporation loss of volatile 

solutes would further sabotage the applicability of the EDB method, as volatile solutes 

form a great spectrum of solid-liquid systems.  On the other hand, due to the lack of other 

suitable methods, it is difficult to verify the activity data obtained by the EDB method in 

the supersaturated region.   
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One of the objectives of this study is to develop a new technique for the 

poteniometric method for thermodynamic activity of supersaturated solutions.  To fulfill 

this objective, the transport phenomena occurring in an electrochemical cell used for the 

poteniometric method are thoroughly analyzed to reveal the rate controlling step which 

makes the poteniometric method fail to work for supersaturated solutions.  Taking the 

advantages of negligible liquid expansion and relatively fast heat transfer, a unique 

technique termed as Steady State Shifting Technique, is proposed.  The development of 

the new technique is elaborated in Chapter 3.   

 

2.2 Crystal Polymorphism  

A polymorph is generally defined as a solid crystalline phase of a given 

compound which has at least two different arrangements of its molecules in the solid 

state.  Or using a safe criterion of classification, a system is classified as a polymorphic 

one if the crystal structures are different but lead to identical liquid and vapor states 

(Bernstein, 2002).  A similar definition was also given by Doki, et al. (2004), stating that 

polymorphs are crystals with different structures while they are chemically identical.  

Apparently, when different polymorphs of a given crystalline substance are dissolved into 

a solution or become vapor, their molecules in the solution or vapor are the same.  

Therefore the concept of polymorphism is only meaningful to solid crystalline 

substances.   

 

Crystal polymorphism is a widespread phenomenon.  It can be a vital problem in 

solid state chemistry, material science and particularly pharmaceutical science 
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(Boldyreva, et al., 2003; Desiraju, 1997; Ferrari and Davey, 2004).  As pointed out 

(Ferrari and Davey, 2004; Sun et al., 2006; Weissbuch et al., 1994a), polymorphs of a 

compound can have different mechanical, thermal and physical properties including 

solubility, melting point and crystal shape.  These properties can have a great influence 

on the bioavailability of solid drugs in pharmacology, preparation of functional materials, 

filtration and tableting processes of pharmaceutical, food and other specialty materials.   

 

Thermodynamically, polymorphs exhibit different stability.  At a given condition, 

one of the polymorphs is the most stable while others are metastable.  Consequently, 

polymorphs can be transformed from one to another either in a solution or in solid state 

(Black and Davey, 1988).  In fact, polymorphs are a particularly important type of 

problems in pharmaceutical processing.  Firstly, it is necessary to control conditions to 

produce the desired polymorph.  Secondly, if the desired polymorph is 

thermodynamically metastable, it is needed to prevent the polymorphic transition from 

one form to another form, especially when the desired metastable form is the one 

approved by the regulatory agency.   

 

Recently, Knapman (2000) well discussed the impacts of polymorphism of a 

drug.  Failure to control polymorphs of a drug can lead to fatal consequences as the 

behavior of the drug can be drastically affected by its polymorphs.  Alteration of 

polymorphs can increase or decrease the rate of uptake in human bodies, causing the 

biological activity to be out of the desired range.  In extreme cases, a wrong polymorph 

can even be toxic.  For example, chloramphenicol-3-palmitate (CAPP) is a broad- 
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spectrum antibiotic which has at least three polymorphic forms and one amorphous form.  

The marketed form A is the most stable one.  Another form B has an eightfold higher 

bioactivity than form A.  If the form B is unwittingly administered due to whatever 

reason, the danger of fatal dosages is created.   

Any unknown or unexpected polymorphic form produced can have an enormous 

impact on a drug company.  For example, the production of ritonavir (Norvir) which is an 

HIV protease inhibitor developed and marketed by Abbott was halted in 1998 because an 

unexpected polymorph was observed.  Any new polymorph of a drug is not allowed to be 

marketed before the exact characteristics of the new form are well established, according 

to Food and Drug Administration (Knapman, 2000).   

 

Another example, significantly impacting the drug company business, involves 

Glaxo Wellcome who sued Novopharm in 1997 for alleged patent infringement.  Glaxo 

lost its case and Novopharm patented a different polymorphic form of Glaxo’s drug, 

Zantac.  Now Novopharm and other companies sell generic Zantac drugs with the new 

polymorph.  This shows that different polymorphs of a drug are recognized legally as 

different drugs.  Therefore, the ability to produce the correct polymorph and to control 

the polymorphic transition is critical.  It rationalizes the fact that understanding and 

controlling polymorphs hence designing advanced materials has been a subject of broad 

interest and active research (Sun et al., 2006).  Unfortunately, well controlling 

polymorphs remains challenging, though great progresses have been made (Black and 

Davey, 1988; Davey et al., 1997; Desiraju, 1997; Knapman, 2000).   
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 Different polymorphs may be obtained by crystallizing a solute from its solutions 

at different conditions (Davey et al., 1997; Doki, et al., 2004; Towler, et al., 2004; 

Weissbuch et al., 1994a; Weissbuch et al., 1995).  A proposed empirical working 

hypothesis (Weissbuch et al., 1994a) of crystal polymorphism states that, in 

supersaturated solutions, solute molecules may assemble to form coexisting clusters (i.e. 

nuclei) having different structures, with each structure resembling the structure of a 

particular polymorph.  Only clusters exceeding the so-called critical size develop into 

mature crystals.  Depending upon the environments (e.g. solution pH, additive, 

temperature etc.), the growth of those clusters with a particular structure may be favored 

greatly while the growth of other clusters may be inhibited extremely, eventually leading 

to the occurrence of only one specific polymorph from its very origin rather than from the 

conversion between mature polymorphs.  It is also apparent that varying the 

environments may drastically alter the competition among different clusters and therefore 

the thermodynamically most stable polymorph can be directly produced too.  This 

empirical working hypothesis is not consistent with the conventional Ostwald’s Law 

which was once used as a guideline for the occurrence of polymorphs.  According to 

Ostwald’s Law, a metastable form appears first during crystallization from solution then 

it is transformed into the stable form (Davey et al., 1997; Ferrari and Davey, 2004).  As 

pointed out by Davey et al. (1997), Ostwald’s Law has no general proof, rather it is a 

special case of nucleation and growth in a polymorphic system.   

 

According to the working hypothesis of crystal polymorphism, crystallization 

may be controlled to produce the desired polymorph via different strategies.  
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Traditionally, tailor-made additives were used to control polymorphs (Sun et al., 2006; 

Weissbuch et al., 1995).  These additives are structurally similar to the host solute 

molecules and hence referred to as ‘tailor-made’.  Among the tailor-made additives, 

nucleation inhibitors were often designed and selected for polymorphism control, on the 

basis of structural information of the host solute and the corresponding crystalline forms 

(including crystal packing and conformation etc).   

 

With the assistance of stereospecific nucleation inhibitors, a stereochemical 

approach for controlling crystal polymorphs was suggested (Shimon et al., 1986; 

Weissbuch et al., 1987, 1994a, 1994b; 1995).  The stereochemical additives are 

composed of two moieties: one, the ‘binder’, having a similar structure (and 

stereochemistry) to that of the substrate molecule on the crystal surface where it adsorbs.  

The second moiety, referred to as the ‘perturber’ is modified when compared to the 

substrate molecule, and thus hinders the attachment of the oncoming molecular layers of 

the solute molecules to the crystal surface.  It is understandable that, when molecules of a 

selected inhibitor are specifically recognized and bound at the surfaces of the particular 

clusters having the compatible structure, the growth of the involved clusters can be 

inhibited and the formed clusters may be even disintegrated while allowing other clusters 

to develop.  In fact, designed nucleation inhibitors have been successfully applied to 

many polymorphic systems (Davey et al., 1997; Weissbuch et al., 1995).   

 

Many different polymorphic systems have been used for mechanism studies, 

among which glycine (H2NCH2COOH), the simplest amino acid, was often chosen as a 
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model system due to its well-established solution and solid-state chemistries, physical 

properties and its ability to crystallize in various polymorphic forms (He et al., 2006; 

Towler et al. 2004; Sun et al., 2006; Weissbuch et al., 1995).  In this present study, 

glycine was also chosen as the model polymorphic system.  Therefore, glycine 

polymorphs are particularly reviewed as follows.   

 

Glycine has at least three well-known polymorphs: α- , β- and γ-glycine among 

its other polymorphs (Dawson et al., 2005; Doki et al., 2004; Sakai, et al., 1991).  The 

schematic structures of α-glycine and γ-glycine crystals are depicted in Figures 2-2-1 and 

2-2-2, using Mercury 1.4.2.   

 

 

Figure 2-2-1 Schematic structure of a centrosymmetric α-glycine crystal built with 
elementary cyclic dimers (Towler et al., 2004) 
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Figure 2-2-2 Schematic structure of a γ-glycine crystal with polar ends [c-axis 
NH3

+ rich, slow growing end (+c) and the COO− rich, fast growing end (-c).  
Towler et al., 2004] 

 

 

Thermodynamically α-glycine polymorph is metastable and usually crystallizes 

from its aqueous solutions at natural pH, near or at its isoelectric point of 5.97, without 

additives being added in its solutions.  As pointed out by Towler et al. (2004), as α-

glycine polymorph is very often obtained under modest conditions, it was once misled to 

the assumption that α-glycine polymorph is thermodynamically most stable.  It was only 

till recent years that the γ-glycine polymorph was recognized to be thermodynamically 

most stable at around room temperature (Boldyreva, et al., 2003; Doki et al., 2004; 

Towler et al., 2004).  Actually, α-glycine polymorph is kinetically favored under ambient 

conditions (He et al., 2006).  γ-glycine polymorph can be induced using various methods.  

Generally, tailor-made chemical additives were usually used to obtain γ-glycine (Bhat 
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and Dharmaprakash, 2002a and 2002b; Moolya et al., 2005; Towler et al., 2004; 

Weissbuch et al, 1995, 2003), while a few untraditional methods have been reported too 

(Aber et al., 2005; He et al., 2006; Sun et al., 2006; Zaccaro, et al., 2001).  The β-glycine 

polymorph, formed from a mixed solvent of water and alcohol, is the least stable one at 

aqueous solutions at any temperature (Doki et al., 2004).   

 

The mechanism for α-glycine polymorph nucleating from its aqueous solutions 

under mild conditions has been postulated (He et al., 2006; Towler et al., 2004).  It 

suggests that, in an aqueous glycine solution, glycine molecules are transformed into 

dipolar ions (i.e. zwitterions, +H3NCH2COO–); due to the opposing charges on both ends 

of the zwitterionic form (+H3NCH2COO–) of a glycine molecule, the zwitterions tend to 

be attracted to one another via electrostatic forces and hydrogen bonds (O---H) as well.  

They interact particularly at their both ends.  The strong hydrogen bonds make 

centrosymmetric cyclic dimers ( ) NHOOCCH
COONCH

32

3 2Η  (Chew et al., 2007; He et al., 2006; Towler et 

al., 2004; Weissbuch et al., 1995; Weissbuch et al., 2003).  These cyclic dimers are 

suggested to be the elementary building units for α-glycine crystals when α-glycine 

nucleates or grows from neutral solutions, which was supported by atomic force 

microscopy (AFM) and Grazing Incident X-ray Diffraction (GID) studies where it was 

found that the smallest step height in the (010) face of α-glycine growing crystals 

approximately has the thickness of a glycine bilayer (Carter et al., 1994; Gidalevitz et al., 

1997).  Due to the nature of glycine cyclic dimers where the positively charged amino 

group (-NH3
+) and the negatively charged carboxyl group (-COO−) neutralize each other, 
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α-glycine is not polar (Towler et al., 2004).  In contrast, γ-glycine is polar (refer to 

Figures 2-2-1 and 2-2-2).   

 

The mechanisms for crystallization of γ-glycine polymorph from solutions vary 

with the methods used for making γ-glycine.  Sun et al. (2006) and Zaccaro et al. (2001) 

reported a method, termed as nonphotochemical laser-induced nucleation (NPLIN), to 

produce γ-glycine from supersaturated aqueous glycine solution.  It was discovered that, 

when aqueous glycine solutions were exposed to amplified laser impulses for about 30 

minutes, crystals were found to nucleate.  Upon testing, γ-glycine crystals were 

confirmed.  A mixture of α- and γ-glycine were obtained if the solutions were left to age 

for a period of time before being exposed to laser impulses.  As the solutions aged 

further, the amount of α-glycine increased.   

 

These authors explained that glycine solutions are transparent at the wavelength 

of the incident nearinfrared laser pulses thus not absorbing the light, so that a 

photochemical mechanism for the observed laser-induced nucleation is unlikely.  They 

postulated that the actual mechanism involves an interaction of solute molecules with the 

oscillating electric field associated with the laser pulses.  The oscillating electric fields 

might be strong enough to induce the partial alignment of the dipolar glycine molecules 

(zwitterions) in the clusters through the optical Kerr effect in a few nano seconds.  In the 

oscillating electric fields, anisotropically polarizable molecules experience a torque, 

tending to align themselves so that their most polarizable axes are parallel to the direction 

of polarization of the incident light.  Consequently, these aligned glycine molecules help 
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form γ-glycine.  Moreover, different polarizations can cause the induction of different 

types of alignments and therefore different polymorphs.  Two types of polarization were 

used, namely linear and circular.  The results they obtained showed that the type of 

polarization used does have a control of glycine polymorphs.   

 

 Analogous to the oscillating electric fields, static electric fields were also 

successfully applied to induce γ-glycine nucleation (Aber et al., 2005), via the principle 

of molecular polarization and alignment similar to the oscillating electric fields.  It was 

found that when a strong direct current (dc) electric field was applied to aqueous glycine 

solutions, the electric field would induce the re-alignment of glycine molecules in the 

formed glycine clusters and the molecules would become oriented and organized, 

favoring γ-glycine formation.   

 

 Another interesting finding was that γ-glycine can be produced from glycine 

neutral aqueous solutions, by slow evaporation of water from microdroplets of aqueous 

glycine solutions (He et al., 2006), although it has been reported that normally α-glycine 

nucleates spontaneously from neutral aqueous glycine solutions (Towler et al., 2004).  

The evaporation rates of the solutions were varied in order to determine if they had an 

effect on the polymorph obtained.  Results showed that, as long as the rate of evaporation 

was slow enough for a glycine solution to remain close to the thermodynamic equilibrium 

throughout the entire evaporation process, the resultant glycine crystal that nucleates 

from the neutral aqueous solutions would always be γ-glycine, since γ-glycine, the 

thermodynamically most stable polymorph, is favored under such a condition.  On the 
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other hand, if the evaporation rates are not slow enough, the kinetically stable (but 

thermodynamically metastable) polymorph, α-glycine would be produced.  A mixture of 

both α- and γ-glycine polymorphs would be formed if the rate of evaporation was 

intermediate between the low rate and the high rate.   

 

 Using the traditional method where a tailor-made additive is added to the glycine 

solution, γ-glycine could be preferentially crystallized from its aqueous solutions.  

Weissbuch (et al., 1994a, 1995) showed that racemic hexafluorovaline is an effective 

inhibitor of growth of α-glycine since it is bound to the four {011} faces of α-glycine, 

much more efficiently blocking growth of α-glycine, compared with other inhibitors (e.g. 

α-amino acid additives).  Meanwhile, it does not significantly retard the nucleation and 

growth of γ-glycine.  That is because hexafluorovaline is bound primarily at the NH3
+ 

end (the slow growing end) of the polar axis of γ-glycine, thus the crystal growing 

unidirectionally along its polar growing c-axis at the carboxylate COO– end (the fast 

growing end).  The unblocked fast growing carboxylate COO– end makes γ-glycine 

nuclei develop and exceed the critical size faster, thus reinforcing the competitiveness of 

γ-glycine over α-glycine, highlighting that the fast growing carboxylate COO– end can 

play a more important role in controlling polymorphs and enhancing crystal growth.  It 

should be noted that, depending on the solution conditions, carboxylate COO– end of γ-

glycine may grow slower than the NH3
+ end, as demonstrated by Lahav and Leiserowitz 

(2001) and Weissbuch et al. (2005).   
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As γ-glycine polymorph can also nucleate from acidic or alkaline aqueous 

solutions, Towler et al. (2004) systematically investigated the impacts of pH on glycine 

polymorphs and therefore revealed the self-poisoning mechanism at either a low or a high 

pH.  In their study, glycine crystallization was carried out in a glass, agitated, 50ml 

thermostated vessel.  It was then found that in the pH range from 3.8 to 8.9, the crystals 

obtained from glycine supersaturated solutions were always α-glycine, while they were γ-

glycine in pH values below 3.8 or above 8.9, regardless of the initial glycine relative 

supersaturation levels they used.   

 

According to these authors (Towler et al., 2004), when the pH is away from the 

isoelectric point 5.97, the solution chemistry changes and the glycine zwitterions and/or 

its cyclic dimers partly become singly charged ions (i.e. charged glycine species).  Under 

acidic conditions (at a low pH), the amino (NH2) functionality of a glycine molecule can 

be protonated to form a cation (+H3NCH2COOH).  While in alkaline solutions (at a high 

pH), the carboxylate functionality (COOH) can be deprotonated to form an anion 

(H2NCH2COO−).  When the polymorph switched at pH 3.8 or 8.9, the mole fraction of 

these charged glycine ions were estimated to be 0.03 of cations (pH 3.8) or 0.12 of anions 

(pH 8.9), based on total glycine, with the rest being zwitterions and dimers.  It was 

further estimated that a relative minor change in speciation of ca. 7 wt% charged glycine 

species is needed to induce crystallization of γ-glycine.  As the dimer pairs (i.e. growth 

units for α-glycine) was only decreased by a very modest amount (ca. 7 wt%), disruption 

of the nucleation of α-glycine due to the growth units (dimers) destroyed by pH was 

highly unlikely and therefore excluded.   
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 Their further analysis of the interaction between the charged glycine species and 

the structure of α-glycine crystals suggested that the α-glycine inhibition at low or high 

pH was due to self-poisoning.  At either a low or a high pH, the charged cations 

(+H3NCH2COOH) or anions (H2NCH2COO−) would approach the surface of α-glycine 

nuclei and would be firmly bound at the surface owing to the affinity.  However these 

charged species do not fit into α-glycine lattices, as a result these adsorbed charged 

glycine species on α-glycine nuclei prevent α-glycine growth units (cyclic dimers) from 

integration into α-glycine lattices.  Consequently α-glycine nuclei could not eventually 

develop into critical-sized molecular clusters within a reasonable period of time before 

the onset of γ-glycine nucleation.  These singly charged glycine species (+H3NCH2COOH 

and/or H2NCH2COO−) would thus act as selective tailor-made additives to inhibit the 

crystallization of α-glycine.   

 

As for the impact of pH on γ-glycine nucleation, Towler et al. (2004) pointed out 

that, at a low pH, cations (+H3NCH2COOH) would add to the faster growing, carboxylate 

rich, end (COO−) of γ-glycine nuclei, while at a high pH, anions (H2NCH2COO−) would 

approach and integrate at slower growing, amino rich, end (NH3
+) of γ-glycine nuclei.  

Hence, it can be seen that, at either a low or a high pH, γ-glycine can nucleate as there is 

always one available end for γ-glycine to grow (Figure 2-2-2).  This proposed ‘self-

poisoning’ mechanism well explains the inhibition of the growth of α-glycine and relative 

promotion of γ-glycine at a pH away from the isoelectric point 5.97.   
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Bhat and Dharmaprakash (2002a and 2002b) reported another observation that γ-

glycine was produced from glycine solutions when a sodium salt (sodium electrolyte) 

was added.  The used sodium salts included NaCl, NaF, NaNO3 and NH4Ac (sodium 

acetate).  In order to discover the mechanism, Towler et al. (2004) carried out more 

experiments for investigation.  They crystallized glycine polymorphs from salt solutions 

containing one of these salts: NaCl, Na2SO4, Na2CO3, MgSO4, Mg(NO3)2, Ca(NO3)2.  

They found γ-glycine polymorph was induced as long as sodium ions were present in the 

solutions while no γ-glycine was produced when sodium ions were absent.  Since the 

ionic strength was controlled to be 5.17 for each glycine solution, the impact of nucleus 

surface energy change on glycine polymorphs due to adsorption of the charged 

electrolyte ions was not decisive.  Eventually, these observations led to the postulation 

that sodium ions have specific interaction with α-glycine clusters and therefore retard α-

glycine growth.  However, subsequently, Moolya et al. (2005) obtained γ-glycine from a 

NH4NO3 solution, which apparently was not consistent with the assumed specific 

interaction between sodium ions and α-glycine clusters, since NH4NO3 does not contain 

any sodium ions.   

 

It can be seen that a better understanding is required in order to interpret the role 

of electrolyte ions in controlling glycine polymorphs.  In this research, the effects of 

electrolytes on glycine polymorphs are investigated to provide an in-depth insight into the 

mechanisms.  The notable results are presented in Chapter 5.   
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2.3 Kinetics of Crystal Growth  

Crystal growth is a process where tiny crystals (microscopic nuclei or 

macroscopic crystal seeds) grow larger (Myerson and Ginde, 2002).  It may start with 

stable nuclei or macroscopic crystal seeds.  As long as stable nuclei (i.e. particles larger 

than the critical size) are formed in a supersaturated or supercooled solution, they begin 

to grow on their surfaces, leading to mature crystals of visible size (Mullin, 1993).  

Similarly, when macroscopic crystal seeds are put in a supersaturated solution, the 

corresponding solute can deposit on the seed surface, thus crystals grow larger.   

 

BCF theory (Burton, Cabrera and Frank, 1951) is commonly accepted for 

interpretation of crystal growth mechanism (Mohan and Myerson, 2002).  Crystal growth 

proceeds on a molecular level by the sequential addition of growth units (single solute 

molecules, ions, or even clusters of these) to the crystal lattices.  These growth units are 

typically solvated, i.e. a solute molecule or cluster is closely surrounded by a few or 

many solvent molecules.  In general, three major steps are involved in the growth: 

transportation of solute molecules from bulk solution to the diffusion boundary layer at 

the interfacial region on the crystals; adsorption of solute molecules on the surface; and 

the eventual integration of solute molecules into the crystal lattices.  Before solute 

molecules are integrated into the crystal lattices, the diffusion on the interface may be 

two-dimensional.  However, when kinks are present on the crystals surfaces, three-

dimensional diffusion occurs.  During the surface diffusion step, the solvated solute 

molecules are desolvated as bonds between the solute and solvent molecules are broken.  
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The freed solute molecules form the bonds with the surface solute molecules on the 

crystals, thus completing their integration into the crystal lattices.   

 

It should be noted that, due to the complexity of solute molecules, a single crystal 

may have many different faces.  As pointed out (Garside et al., 2002), in general, each 

face will grow at a different rate and the relative growth rates of different faces determine 

the crystal habit or shape.  Faster growing faces tend to grow out of the crystal and those 

faces making up the major part of the crystal surface are the slow growing faces.  Many 

factors (e.g. pH, additives etc) can drastically alter the face growth rates (Lahav and 

Leiserowitz, 2001; Towler et al., 2004; Weissbuch et al., 2005).   

 

The crystal growth rate can be defined in different ways (Hounslow et al., 2005; 

Garside et al., 2002; Mullin, 1993; Myerson and Ginde, 2002; Tavare, 1995).  Mass 

growth rate (RA) and linear growth rate (RG) are commonly used.  For a batch 

crystallizer, mass growth rate is defined as the increase of crystal mass per unit crystal 

surface per unit time, while linear growth rate is determined by the increase of the crystal 

characteristic dimension (e.g. diameter) per unit time.   

t
W

Adt
dW

AAR Δ
Δ≈= 11        (2-3-1) 

t
L

dt
dL

GR Δ
Δ≈=         (2-3-2) 

where A is crystal surface area (m2), W the crystal mass (kg), L the crystal size (meter) 

and t the time (second).  The mass growth rate RA and the linear growth rate RG may be 

related (Hounslow et al., 2005):  

Gsk
k

A RR
a

v ρ3=         (2-3-3) 
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where kv is the volume shape factor, ka is the surface shape factor and ρs is the crystal 

intrinsic density (kg/m3).  For detailed mechanism study, a specific linear growth rate, 

normal to a particular growth face, may be needed.  The crystal growth rate is size-

dependent in general (Mullin, 1993; Martins and Rocha, 2006), though size-independent 

growth may be observed (Hounslow et al., 2005).   

 

 For approximation of the crystal surface area (A) and size (L), the following 

equations may be used when the changes of the volume and surface shape factors kv and 

ka with crystal size are insignificant (Tavare, 1995):  

   0
3
2

0
)( AA W

W=        (2-3-4) 

   0
3
1

0
)( LL W

W=        (2-3-5) 

where ,  and  are the initial crystal surface area, mass and size respectively.  

However, when crystal shape factors (especially the surface factor ka) vary with crystal 

size significantly, they should be taken into account in determining the crystal surface 

area and size.  Cautions should be exerted in measuring volume shape factor and surface 

shape factor.  It should be noted that surface shape factor is more difficult to be 

determined and its uncertainty may lead to a considerable error (Mullin, 1993).   

0A 0W 0L

 

Experimentally, many different techniques have been developed for crystal 

growth measurement (Mullin, 1993).  A batch crystallizer is often used to study crystal 

growth kinetics in a laboratory, since it is simple and suitable for small-scale operation.  

As pointed out by Jones et al. (1986), it would be challenging to achieve highly accurate 
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experimental measurements for crystal growth, and it was not unusual for an 

experimental error to be up to 25%.  Therefore great care should be exerted.   

 

The experimental kinetic data may be correlated empirically by power low 

(Mohan and Myerson, 2002; Tavare, 1995; Ottens, et al., 2004), especially when the 

relative supersaturation level σ is low:   

          (2-3-6) g
gG kR σ=

where kg is growth coefficient and g growth power.  The solute relative supersaturation σ 

is usually defined as Sat

Sat

m
mm−=σ , with m and  being the supersaturated and saturated 

concentration (molality is often the concentration unit) respectively.  It should be noted 

that the relative supersaturation σ is often replaced by solute concentration difference (m 

– ) in the correlation.  However, the thermodynamic driving force for crystal growth 

should be used for better correlation when the relative supersaturation level σ is high.   

Sat
m

Sat
m

 

The thermodynamic driving force for crystal growth is the solute thermodynamic 

activity difference ( )Sata
aln  which is expressed as (Mohan and Myerson, 2002):  

( ) ( )SatSatSat m
m

a
a

γ
γlnln =         (2-3-7) 

When the relative supersaturation σ is quite low (σ << 1), the solute activity coefficient γ 

in its supersaturated solution may be considered to be equal to that (γSat) in its saturated 

solution.  Therefore Eq. 2-3-7 is simplified to  

( ) )1ln()ln(ln σ+== SatSat m
m

a
a         (2-3-8) 

By expansion, we obtain  
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( ) σσ ≈+= )1ln(ln Sata
a   (σ << 1)    (2-3-9) 

This suggests that the relative supersaturation σ may be a good approximation of the 

intrinsic driving force ( )Sata
aln  for crystal growth when the relative supersaturation σ is 

much smaller than 1 (σ << 1).  Note that the average relative supersatuation in a time 

interval ∆t is used for better correlation of kinetic data from a batch crystallizer (Martins 

et al., 2006).   

 

Another important aspect is the impact of impurities on crystal growth.  This is 

because, in the reality, there is no crystallization can take place from a single pure 

solvent.  In fact, beside the crystallized solute, there are other substances commonly 

termed as impurities in a supersaturated solution.  Impurities can have tremendous effects 

on crystallization.  It has been well known that minor quantities (even traces) of certain 

impurities can extremely alter crystal habits, growth rate and polymorphs (Al-Jibbouri 

and Ulrich, 2001; Ottens, et al., 2004; Qu et al., 2006; Sangwal and Mielniczek-Brzoska, 

2001; Scott and Black, 2005; Thompson et al., 2004; Towler et al., 2004; Weissbuch et 

al., 1995).   

 

Some impurities come from the up-stream operation processes (e.g., unreacted 

reactants, by-products, etc.).  They are unwanted impurities which generally have a 

negative impact on the nucleation and growth rate kinetics (Ottens et al., 2004).  On the 

other hand, it is quite often that, selected impurities which may be better termed as 

additives or tailor-made additives (Kuznetsov et al., 1998; Weissbuch et al., 1995), are 

intentionally added into the supersaturated solutions to modify the shapes and to improve 
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the quality of the crystalline products in a desirable manner (Al-Jibbouri and Ulrich, 

2001; Qu et al., 2006).  Usually these impurities or tailor-made additives lead to a 

decrease rather than increase of the growth rates of crystal faces (Al-Jibbouri and Ulrich, 

2001; Kuznetsov et al., 1998; Sangwal, 1999; Sangwal and Mielniczek-Brzoska, 2001).   

 

As crystallization is a molecular recognition process, the influence of impurities 

(and solvents) can be rationalized in terms of molecular interactions.  The molecular 

interactions occur in the liquid phase (solution), at the interface between liquid and the 

solid crystal phases and in solid phase itself.  Therefore the solution chemistry (e.g. 

complex formation) and solid-state chemistry (e.g. crystal structure) are essential for a 

fundamental understanding of the effects of impurities.   

 

Rak et al. (2005) conducted certain theoretical study on the effects of impurities.  

They suggested that impurities are usually considered to exert their effects via an 

interaction with the growing crystal surface, implying that these effects are not likely to 

be exerted during crystal dissolution.  Impurities may thermodynamically decrease the 

edge free energy and may kinetically incorporate into crystal lattices of the host crystals.  

Impurity incorporation usually deforms the lattices in the nearest region of an impurity 

molecule (or ion etc), leading to lattice stress.  In turn, the deformed lattices cause an 

increase in the local chemical potential.  The authors also highlighted the geometrical 

importance in impurity incorporation.  They suggested that, for an ionic impurity, when 

the ionic radii are compatible with the geometrical dimensions of the voids (or vacancies) 

in the host crystals, these impurity ions may be possibly placed in these vacancies.  In 
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fact, solvent molecules as impurities may directly incorporate into the lattices of the 

crystallizing host too (Meena et al., 2002).   

 

As discussed by a few researchers (Sangwal, 1996; Kuznetsov et al., 1998), both 

thermodynamic and kinetic effects of an impurity may simultaneously play a role in 

affecting the growth kinetics.  But usually kinetic effect is dominant over thermodynamic 

one, leading to an overall inhibiting effect of an impurity on crystal growth.  That may 

explain the fact that most of the impurities suppress (even completely stop) crystal 

growth while only a few impurities enhance crystal growth by exerting a catalytic effect 

(Kubota, 2001; Kuznetsov et al., 1998; Sangwal and Mielniczek-Brzoska, 2001).   

 

It can be seen that impurity incorporation is an important phenomenon.  

Unfortunately it is often difficult to generally characterize the effects of impurities (Scott 

and Black, 2005).  As pointed out by Mullin (1993), it would be unwise to attempt a 

general explanation of the phenomenon of nucleation and growth suppression by added 

impurities with so little quantitative evidence available, due to its diversification.  

Nevertheless certain patters of the effects are beginning to emerge: for example, the 

higher the charge on the cation the more powerful inhibiting effect.  Furthermore, there 

often appear to be a threshold concentration of impurity above which the effect may 

actually diminish (Mullin, 1993).  Though the effects of impurities may also be caused by 

changing solution structure due to complex formation, little has been done to reveal the 

influence of complex formation (Kuznetsov et al., 1998; Lu et al., 2001; Mullin, 1993).   
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A great effort has been made to characterize and model the inhibiting effects of 

impurities on crystal growth (Al-Jibbouri and Ulrich, 2001; Black and Davey, 1986; 

Kubota, 2001; Kubota and Mullin, 1995; Martins et al., 2006; Sangwal, 1999).  Surface 

adsorption was often used for correlation and modeling.  The adsorption of an impurity 

on the active sites on the host crystals would block or impede the growth units from 

integrating into the lattices, thus reducing the growth rate.  The surface adsorption model 

may well interpret the inhibiting effect, but it is difficult to be used to characterize and 

model an enhancing effect of a particular impurity (additive) on crystal growth.   

 

Kuznetsov et al. (1998) reported one of a few interesting enhancing effects.  They 

added EDTA (0.0005 mol %) into KDP (KH2PH4) solution and they observed that the 

growth rate of KDP face {1 0 0} increased eight times.  Their analysis showed that this 

increase of growth rate was not connected to the thermodynamic effect (i.e. decrease of 

edge free energy), instead they attributed this promotion effect to the formation of 

favorable complexes which increase the concentration of growth units.  Lu et al. (2001) 

further studied this system using Raman spectroscopy.  Their results revealed that EDTA 

enhanced the formation of phosphate anion dimerization which in turn favors the 

formation of KDP growth units, supporting the observation made by Kuznetsov et al. 

(1998).  Unfortunately, neither Kuznetsov et al. (1998) nor Lu et al. (2001) discussed the 

quantitative characterization and modeling of this enhancing effect.   

 

Different from unwanted impurities, tailor-made additives function uniquely.  

They selectively interact only with certain particular faces of crystalline materials.  
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Usually, the molecules of a tailor-made additive have chemical functional groups or 

moieties that mimic the solute molecules and are thus readily adsorbed at the growth sites 

on the crystal surfaces.  Meanwhile their reverse sides which chemically or structurally 

differ from the solute (host) molecules are exposed outwards, thereby disrupting the 

subsequent growth processes at the affected faces.  As a result, the growth rate is reduced 

and the shape of the crystals is altered (Meenan et al., 2002; Weissbuch et al., 1995).  The 

roles of a tailor-made-additive in polymorph control and in crystal kinetics are quite 

similar.   

 

It can be seen that tailor-made additives are usually designed to retard the growth 

from particular crystal faces.  It would be very interesting to design tailor-made additives 

to promote the crystal growth.  In this work, an effort has been made to enhance γ-glycine 

growth by using selected electrolytes.  The details are reported in Chapter 6.   
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Chapter 3  A New Technique for Activity of Supersaturated Solutions 

 

As was discussed in Chapters 1 and 2, thermodynamics of supersaturated 

solutions would be a very powerful tool to explore many phenomena, including 

molecular interaction, nucleation, crystal polymorphism and crystal growth kinetics, as 

long as the reliable and accurate thermodynamic activities of supersaturated solutions are 

available.  Unfortunately, such activity data are not readily available.  Consequently, the 

applications of the thermodynamics of supersaturated solutions are limited.  The major 

obstacle in obtaining these activity data is the lack of suitable experimental methods for 

supersaturated solutions.  In this chapter, the development of a new technique for reliable 

and accurate thermodynamic activity of supersaturated solutions is presented.   

 

3.1 Development of A New Technique  

Over past decades, potentiometric method (i.e. the electrochemical method) has 

been used for measuring thermodynamic activity of dilute electrolyte-containing 

solutions (Breil et al., 2001; Khoshkbarchi and Vera; 1996a, 1996b; Phang, et al., 1974; 

Roberts and Kirkwood, 1941; Rodriguez-Raposo et al., 1994).  Its successful application 

to supersaturated solutions has not been reported.  It can be shown that its failure is 

because the molecular-level transports (mass and/or heat transfer) in quiescent 

supersaturated solutions are too slow.  Consequently the equilibration time for the 

experimental measurement is much longer than the induction time for homogeneous 

nucleation, resulting in nucleation of the supersaturated solution.  On the other hand, 

mixing the supersaturated solutions to shorten the equilibration time can trigger an 

 44



immediate nucleation and cause the experimental measurement to fail too.  The following 

analysis and experimental verification will show that the potentiometric method can be 

modified, leading to a new technique, Steady State Shifting Technique for measuring the 

mean ionic activity coefficient of electrolyte solutions supersaturated with a 

nonelectrolyte.  Three ternary NaCl+nonelectrolyte+H2O systems will be used to 

demonstrate the application of the Steady State Shifting Technique for a systematic study 

on thermodynamics of supersaturated solutions.   

 

3.1.1  Theory of the Potentiometric Method  

The theoretical basis of the potentiometric method can be found elsewhere (Breil 

et al., 2001; Khoshkbarchi and Vera, 1996a, 1996b).  Generally, the electrochemical cell 

potential EΔ  (i.e. cell electromotive force, emf) is measured and the Nernst equation is 

applied to obtain the mean ionic activity coefficient of an electrolyte in a solution at a 

given temperature.  A number of studies (Breil et al., 2001; Haghtalab and Vera, 1991; 

Han and Pan, 1993; Ji et al., 2001) have suggested that good results can be obtained by 

using two ion selective electrodes (ISEs), with the cation ISE being the indicator 

electrode and the anion ISE the reference electrode.  For a cell where only a single 

electrolyte is present, the cell with two ISEs may be expressed as  

cation ISE|electrolyte ( ), H2O|anion ISE Sm

where  is the electrolyte molality.  The cell potential Sm IEΔ  is related to the electrolyte 

molality  and the mean ionic activity coefficient  of the electrolyte as described by 

the Nernst equation.  For a 1:1 electrolyte, we would have  

Sm I
±γ
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        (3-1-1) )ln(0 I
S

I mSEE ±+Δ=Δ γ

For an actual cell, the value of the slope S at a given temperature is usually derived from 

a linear graphical plot of experimental data of IEΔ vs  (Bates et al., 1983; Ji et 

al., 2001; Khoshkbarchi and Vera, 1996b).   

)ln( I
Sm ±γ

 

If another solute, e.g. a nonelectrolyte, is introduced into the cell solution with the 

electrolyte concentration m , the cell may be expressed as  S

 cation ISE| electrolyte( ) + nonelectrolyte( ), H2O |anion ISE Sm Am

The introduction of the nonelectrolyte ( ) can cause the mean ionic activity coefficient 

of the electrolyte to change from  to , even at the same electrolyte concentration 

, due to the interactions between the electrolyte, the nonelectrolyte and water 

molecules.  Accordingly, the cell potential changes from 

Am

I II

I

±γ ±γ

Sm

EΔ  to IIEΔ .  It should be 

noted that IIEΔ  is related to the mean ionic activity coefficient  of the electrolyte by 

the same Nernst equation,  

II
±γ

)ln(0 II
S

II mSEE ±+Δ=Δ γ        (3-1-2) 

By subtracting Eq. 3-1-1 from Eq. 3-1-2 at the same electrolyte molality , a useful 

relation between  and  is obtained, 
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⎝

⎛

±

±

γ
γln        (3-1-3) 

It should be kept in mind that each term in Eq. 3-1-3 is temperature-dependent.  With the 
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measurements of cell potentials ΔEI and ΔEII, the electrolyte mean ionic activity 

coefficient ratio I

II

±

±

γ
γ  can be calculated using Eq.3-1-3.   

 

Similarly, we can consider how an electrolyte affects the thermodynamic behavior 

of a nonelectrolyte, for example in the study of nonelectrolytes (e.g. biochemicals) 

crystallizing from aqueous electrolyte-containing solutions (Khoshkbarchi and Vera, 

1996b).  Introducing an electrolyte (molality ) into a binary nonelectrolyte+H2O 

solution at a given nonelectrolyte molality  can cause the nonelectrolyte activity 

coefficient to change from  to .  In terms of activity coefficient ratios 

Sm

Am

I
Aγ

II
Aγ I

A

II
A

γ
γ  for the 

nonelectrolyte and I

II

±

±

γ
γ  for the electrolyte, they are thermodynamically related through 

the cross-differential relation (Breil et al., 2001; Kelly et al., 1961; Khoshkbarchi and 

Vera, 1996b; Roberts and Kirkwood, 1941; Robinson and Stokes, 1961):  
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with ν being the stoichiometric number per mole of electrolyte.  For a 1:1 electrolyte (e.g. 

NaCl), ν = 2.   

 

Integrating both sides of Eq.3-1-4 with respect to  in the domain [0, ] 

yields  

Sm Sm
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             (3-1-5) 

Eq. 3-1-5, expressed in terms of the nonelectrolyte molality and the electrolyte 

molality , shows how activity data 

Am

Sm I
A

II
A

γ
γ  of the nonelectrolyte can be derived from the 

measured activity data I

II

±

±

γ
γ  of the electrolyte in ternary electrolyte+nonelectrolyte+H2O 

solutions.   

 

Eqs. 3-1-3 and 3-1-5 are the governing equations for study of the thermodynamics 

of a broad spectrum of ternary electrolyte-containing solutions which are of great 

importance in biochemical manufacturing (Khoshkbarchi and Vera, 1996b).  Particularly, 

activity data I

II

±

±

γ
γ  and I

A

II
A

γ
γ  directly indicate the salting effect.  If the value of I

II

±

±

γ
γ  is less 

than unity, the nonelectrolyte has a salting-in effect on the electrolyte; if greater than 

unity, it has a salting-out effect.  Similarly, the nonelectrolyte activity data I
A

II
A

γ
γ  can be 

analyzed to study the impact of the electrolyte on the nonelectrolyte.  It should be noted 

that  is the activity coefficient of the nonelectrolyte in its binary nonelectrolyte+H2O 

solution (electrolyte  = 0) while  is the activity coefficient of the nonelectrolyte in 

its ternary electrolyte+nonelectrolyte+H2O solution (electrolyte  > 0), at the same 

nonelectrolyte molality .   

I
Aγ

Sm II
Aγ

Sm
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For dilute solutions, the potentiometric method is particularly preferred.  The 

difficulties arise when the cell solution concentration increases significantly.  It is 

especially true when the solution is supersaturated.  It will be shown in Section 3.1.2 that 

these difficulties are due to slow molecular diffusion in concentrated solutions.   

 

3.1.2  Effects of Transport Phenomena and Temperature on Cell Potential  

According to the electrical double layer theory (Goodisman, 1987), a double layer 

is developed on each electrode-solution interface to establish the cell potential.  The 

cations are distributed in one end of the double layer while the anions are arrayed in the 

other end of the double layer.  The correct and accurate cell potential can be obtained 

only when the cell reaches its steady state, i.e. when both the temperature and the 

concentration profiles in the cell remain unchanged.  How fast the steady state of the cell 

can be reached depends on the rates of mass and/or heat transfer in each of the media and 

between media in the cell.  The media in the cell include the cell bulk solution, solution 

films on external electrode surfaces, electrode membranes and the electrode housings.   

 

In the conventional potentiometric method, the temperature of interest is 

controlled to be constant throughout the experiment.  In order to facilitate achieving the 

steady state, stirring the cell solution is required to enhance heat and mass transfer.  

However, when the solution is supersaturated at the temperature of interest, stirring the 

solution could cause an immediate nucleation which results in the failure of the cell 

potential measurement.  On the other hand, without stirring, the heat and mass transfer 

rates in the supersaturated region can be very low as the molecular diffusivity is 
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diminished significantly (Chang and Myerson, 1985, 1986; Ginder and Myerson, 1991).  

Thus the time required to achieve the steady state can be much longer than the induction 

time for homogeneous nucleation.  As a result, the cell potential measurement would also 

fail.   

 

Experimental data suggests that molecular diffusivity declines much more rapidly 

with increase in the solution concentration once the solution progresses into the 

supersaturated domain (Chang and Myerson, 1985, 1986; Mohan et al., 2000; Myerson 

and Lo, 1991; Myerson and Izmailov, 1997; Sorell and Myerson, 1982).  The rapid drop 

in diffusivity with concentration in the supersaturated region has been attributed to the 

cluster formation (Chang and Myerson, 1985; Mohan et al., 2000), as cluster formation 

can significantly increase the solution viscosity (Ginder and Myerson, 1991, 1992).  In 

contrast, heat transfer is not severely limited in high solute concentrations, as molecular-

level diffusion is not involved in thermal transport processes.  Therefore it is more likely 

that molecular diffusion rather than heat transfer is the rate-controlling step as the steady 

state of the cell is approached when the cell solution is concentrated, suggesting that slow 

molecular diffusion is the root cause of the failure of the potentiometric method for 

supersaturated solutions.  In the following section (Section 3.1.3), it will be shown that 

the problem of slow molecular diffusion can be overcome so that the potentiometric 

method can be applicable to supersaturated solutions.   

 

3.1.3  The Proposed Steady State Shifting Technique  

As discussed above, the conventional technique for the potentiometric method 
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often fails to measure the cell potential when the solution is supersaturated.  This failure 

is mainly caused by the slow molecular diffusion in highly concentrated solutions.  An 

analysis of the proposed technique will be made to show that molecular diffusion can be 

improved drastically by exploiting the advantage of temperature effects on 

supersaturation, molecular diffusion and liquid expansion.   

 

In the proposed steady state shifting technique, solid crystals are dissolved in a 

warm (even hot) solvent to prepare a cell solution.  This cell solution is under-saturated at 

the high temperature when it is prepared, while it is supersaturated at the temperature of 

interest, T.  When the experiment is conducted for the cell potential measurement, the 

cell solution and electrodes are maintained at a reference temperature TR which is higher 

than the saturated temperature TS of the cell solution.  As the cell solution is under-

saturated at the reference temperature TR, there is no concern about the occurrence of 

nucleation, hence the cell solution can be stirred to facilitate the attainment of steady state 

for the cell system.  The steady state is indicated by a stable reading of the cell potential.  

 

When the steady state of the cell at the reference temperature TR is reached, 

stirring is stopped.  The cell solution and electrodes are then cooled to and maintained at 

the temperature of interest, T, until the new steady state of the cell at T is achieved.  As 

long as the steady state of the cell at T is attained without nucleation or crystallization 

occurring, a successful cell potential measurement for the supersaturated solution can be 

made.  This simple shift of steady states between TR and T is a means of overcoming the 

diffusion limitation at high concentrations.  The effects of temperature on the relevant 
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transport phenomena in the cell are discussed in detail here.  

 

Firstly, the temperature affects the ion distribution in the ionic double layer and 

hence the cell potential.  A step-change temperature disturbance, as proposed above, 

would cause a temporary instability in the ion distribution in the double layer.  However, 

the new equilibrium state of ion distribution can be quickly established by ion 

neutralization or separation, as the double layer is very thin (Goodisman, 1987).  

Furthermore, it is reasonable to assume that the re-distribution of the ions in the double 

layer will not affect the concentrations in the diffusion layer (or film) which is located 

outside the ionic double layer, as the amount of ions to be re-distributed could be 

negligible compared with the total amount of the ions in the diffusion film.   

 

Secondly, when the temperature gradient due to the temperature change is 

significant, it may cause local concentration gradients in the cell fluid.  However, the 

concentration gradients are small, since density variations caused by liquid expansion or 

contraction are not significantly large.  As a result, the pre-established stable 

concentration profile will remain practically unchanged when the temperature shift 

occurs.   

 

It can be seen that the proposed steady state shifting technique relies on heat 

transfer processes (principally thermal conduction and natural convection) within the cell 

to obtain stable equilibrium measurements of cell potential for supersaturated and highly 

concentrated solutions.  The critical period is the time required to re-establish a uniform 
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steady state in the cell after shifting the temperature downward from the saturated 

temperature TS to the measurement temperature T.  The required time depends on the 

magnitude of the temperature shift, the thermal conductivities of all the cell materials 

(e.g. electrode materials and cell solution), the volume and the geometry of the cell 

system, and the dynamic response of the temperature control system (e.g. the jacket and 

the water bath).  In general, for activity measurement, the new technique enables the 

concentration of a quiescent supersaturated solution to be up to the nucleation onset.  The 

successful application of the new technique to three ternary 

electrolyte+nonelectrolyte+H2O systems will be demonstrated in Sections 3.3 to 3.4.   

 

3.2 Materials and Instruments  

A schematic diagram of the experimental setup for cell potential measurement is 

shown in Figure 3-2-1.  Two external circulating water baths were maintained at 

temperature TR and T respectively, and connected to a jacketed glass warming beaker for 

the measurement cell.  By operation of valves 1, 2, 3 and 4, the recirculating water 

temperature and hence the cell temperature can be shifted quickly and effectively from 

TR to T.   

 

In this study, an ISE/pH meter Orion 920A+ and two ion selective electrodes, i.e. 

sodium ion selective electrode (glass Na-ISE, Orion 84-11) and chloride ion selective 

electrode (PVC Cl-ISE, Orion 94-17), were used to determine the cell potential.  The 

meter Orion 920A+ has a readability of 0.1mV.  The Orion DataCollect Software was 

 53



used for data collection.  The water baths and the temperature probe (Orion ATC 11765) 

for the cell had a temperature resolution of 0.1 oC.   

 

 

Figure 3-2-1.  Schematic diagram of the experimental setup 

 

 

The total mass of cell solution for each run was approximately 110 grams.  In 

solution preparation, each mass was weighed within an accuracy of ±0.01 wt%.  

Ultrapure water (Millipore, resistivity 18.2 MΩcm and filtered with pore size 0.22μm) 

was used for sample solution preparation.  NaCl (>99.5%) was from Merck. Glycine (> 

99%) was from Sigma-Adrich.  DL-alanine (> 99%) and DL-serine (> 99%) were from 

AVOCADO.  NaCl was dried at 120 oC in an oven for 72 hrs then cooled in a vacuum 

desiccator prior to its use.   
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The ion selective electrodes were prepared according to instructions from their 

manufacturer.  In accordance with previous works by Breil et al. (2001) and Haghtalab 

and Vera (1991), the Cl-ISE was used as the reference electrode.  A stable cell potential 

was considered to be reached if its average value did not change by 0.1mV in 15 minutes.  

The cell was kept sealed throughout the experiment to avoid evaporation.   

 

For these ternary electrolyte+nonelectrolyte+H2O systems, in order to relate 

thermodynamic activity of a nonelectrolyte to its solubility for analysis of 

thermodynamic consistency, solubilities of these nonelectrolytes (namely glycine, DL-

serine and DL-alanine) at different NaCl concnetrations were measured, using the method 

described by Lampreia et al. (2006) where the concentration of saturated solution 

(equilibrated solid-liquid solution) is determined by solution density.  A solution density 

meter Anton-Paar DMA5000 was used here for determining saturated concentration, with 

high resolutions of solution density (±10-6 g/ml) and temperature (±0.001 °C), leading to 

accurate measurement of concentration and solubility.  The uncertainty of a 

nonelectrolyte solubility in NaCl solutions, increasing (nearly linearly) with NaCl 

molality, may be only up to 0.04g/100g in a 5m NaCl solution.  In fact, the excellent 

reproducibility and high accuracy of concentration determination using solution density 

have been reported (Lampreia et al., 2006; Tjahjono et al., 2005).  The details of using 

solution density for solubility measurement via isothermal liquid-solid equilibration can 

be found in Appendix A.   
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It should be pointed out that glycine has several polymorphs and different 

polymorphs have different solubilities (Sakai, et al., 1991), with the thermodynamically 

stable polymorph γ-glycine having lower solubility.  In this study, γ-glycine was used for 

its solubility measurement.  Therefore there is no concern on its polymorph transition 

from metastable α-glycine to stable γ-glycine during the solid-liquid phase equilibration 

for solubility determination.  Nevertheless, XRD (here either Brooker D8 Advance 

Diffractometer or Shimadzu X-Ray Differactometer XRD-6000, whichever was 

available) was performed to check the crystal polymorphs of selected nonelectrolyte 

crystals including glycine crystals collected after the solid-liquid equilibration for 

solubility measurement was completed.   

 

3.3. Experimental Verification of the Proposed Technique  

Several typical binary NaCl+water and ternary glycine+NaCl+water under-

saturated solutions covering a wide range of concentrations at 25 oC were tested using 

both the conventional potentiometric and the new steady state shifting technique.  The 

cell potentials (i.e. emf readings) obtained by the steady state shifting technique were 

then compared with those obtained by the conventional technique to check if the new 

technique could provide correct and reliable results.  The results by the two techniques 

are summarized in Table 3-3-1.   

 

From Table 3-3-1, the maximum potential deviation between the two techniques 

is only 0.1 mV which is actually the instrument resolution (0.1 mV).  In fact, the cell 

potentials obtained by the two techniques are so close that no obvious difference can be 
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observed.  Therefore the proposed steady state shifting technique has been demonstrated 

to work well in the under-saturated region.   

 

Table 3-3-1  Cell potential comparison between the conventional and the proposed 
technique at 25 °C 

 
Solutions Cell potential by 

the conventional 
technique, mV 

Cell potential by the 
proposed technique, 
mV  

Cell potential 
deviation, mV 

0.01 m NaCl 44.5 44.6 0.1 

0.1 m NaCl 154.7 154.7 0.0 

1.0 m NaCl 264.2 264.3 0.1 

1.5 m NaCl 285.3 285.4 0.1 

0.01 m NaCl +3.0 m 
glycine  

28.1 28.2 0.1 
 

0.1 m NaCl + 0.1 m 
glycine 

154.0 153.9 – 0.1 
 

1.0 m NaCl + 2.6 m 
glycine  

258.8 258.7 – 0.1 
 

 

 

The transient profiles of cell potential from the conventional (run #1) and the new 

(run #2) techniques are shown in Figure 3-3-1, for the cell solution consisting of 3.0 m 

glycine + 0.01 m NaCl (under-saturated) at 25 oC.  In run #1, the ISEs were transformed 

from the presoak at 25 oC into the cell solution which was also maintained at 25 oC.  

Even with vigorous stirring, it took about 3 hours to achieve the steady cell potential of 

28.1 mV, as shown in Figure 3-3-1.  Since the temperature of the cell and electrodes 

remained 25 oC throughout, the long equilibration time reflects the relatively slow rate of 

molecular and ionic diffusion.  It is anticipated that the equilibration time could be much 

 57



longer for highly concentrated solutions, thus resulting in spontaneous nucleation if the 

solution is supersaturated.   
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Figure 3-3-1  Cell potentials by the two techniques for the same under-saturated 
solution of (3.0m glycine + 0.01m NaCl) 

 

 

In run #2, the cell was first equilibrated at 35 oC with stirring, then the stirring 

was stopped and the temperature was shifted by cooling to the measurement temperature 

25 oC.  The cessation of stirring is a key requirement when making measurements on 

supersaturated solutions.  Even without stirring, the re-equilibration time at 25 oC took 
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only about 35 minutes, as compared with 3 hours in run #1.  A steady cell potential of 

28.2 mV (vs 28.1 mV in run #1) was obtained.   

 

Comparing the equilibration times at 25 oC for runs #1 and #2, it can be inferred 

that the rate of heat transfer with possible free convection is significantly higher than that 

of molecular diffusion with forced convection (stirring) in the absence of heat transfer.  

These experimental results agree with our previous analysis of the heat and mass transfer 

rates in the cell.   

 

Under typical laboratory conditions and over the range of the experimental 

conditions used, it took an average of 40 minutes to complete the shifting of the steady 

state of the cell for a temperature change 10 to 15 oC, without stirring.  For other cells 

with different solutions (e.g. KCl+glycine+water, NaCl+DL-alanine+water and 

NaCl+DL-serine+water, supersaturated with the corresponding amino acid) and a 

different ion selective electrode (PVC K-ISE, Orion 93-19), it was found that the steady 

state of the cell can be shifted equally quickly, regardless of the cell solutions and the 

ISEs used.  A typical cell potential measurement on a supersaturated solution using the 

steady state shifting technique is shown in Figure 3-3-2.  It is expected that the proposed 

potentiometric method with steady state shifting would be applicable to supersaturated 

solutions in general.   
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Figure 3-3-2  A typical cell potential measurement on a supersaturated solution of 
(4.2m glycine + 2.5m NaCl), using the steady state shifting technique 

 

 

3.4 Results and Discussion  

The thermodynamic activities for the three ternary NaCl+noneletrolyte+H2O 

systems (namely NaCl+glycine+H2O, NaCl+DL-serine+H2O and NaCl+DL-

alanine+H2O) are measured in both under-saturated and supersaturated regions, using the 

proposed steady state shifting technique.  Note that these three nonelectrolytes glycine, 

DL-serine and DL-alanine are amino acids.  The thermodynamic consistency between 

activity and solubility is analyzed.  Furthermore, binary supersaturated activities of a 

nonelectrolyte in its aqueous solutions (without electrolyte) are derived.   
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3.4.1 Activities for Ternary Solutions  

Before carrying out the tests on the ternary solutions, the Na-ISE and Cl-ISE were 

calibrated using binary NaCl+water solutions in the NaCl molality range of 0.01 m – 5 m 

at the specified temperature 25 oC.  The mean ionic activity coefficients of NaCl used for 

the calibration are given by Zemaitis et al. (1986).  As shown in Figure 3-4-1, the 

calibration curve of cell potential IEΔ vs  is highly linear with a correlation 

coefficient R2 = 0.99995 and a typical slope S = 51.35 (vs its theoretical value 51.38.  

Khoshbarchi and Vera, 1996b).  Hence the performance of the Na-ISE and Cl-ISE 

closely followed the Nernst equation Eq.3-1-1.   
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Figure 3-4-1 Calibration of Na-ISE vs Cl-ISE at 25 °C  

 

Based on the cell potentials IEΔ  and IIEΔ  measured respectively for binary 

NaCl+H2O and ternary NaCl+nonelectrolyte+H2O solutions at a given NaCl 
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concentration, the mean ionic activity coefficient ratios I

II

±

±

γ
γ  for NaCl were calculated for 

the three ternary systems, using Eq. 3-1-3 with S = 51.35.  These activity data, together 

with the saturation curves which will be discussed later, are shown in Figures 3-4-2 to 3-

4-4.  As the data of activity coefficient  for NaCl in its binary aqueous solutions (i.e. 

without nonelectrolyte) are available (e.g. Zemaitis et al., 1986), the data of NaCl activity 

coefficient  in the ternary aqueous solutions can be calculated readily.   
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Figure 3-4-2  Effects of glycine and NaCl concentrations on NaCl mean ionic activity 
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Figure 3-4-4 Effects of DL-alanine and NaCl concentrations on NaCl mean ionic 
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For each ternary system in its under-saturated region, NaCl mean activity 

coefficient ratios I

II

±

±

γ
γ  from this study were compared with previously published data 

(Khoshbarchi and Vera, 1996b; Khoshkbarchi et al., 1997; Phang, et al., 1974; 

Rodriguez-Raposo et al., 1994; Scherier and Robison 1971).  It is found that our data 

agree reasonably well (mean deviation < 1%) with those from earlier studies over a wide 

range of solution concentrations.  In fact, these deviations, except the one from 

Khoshkbarchi and Vera (1996b) for NaCl+glycine+H2O system are very close to the 

experimental uncertainty of about 0.5% in this study.  The error analysis for the technique 

used in this study can be found in the work of Ong (2007).   

 

For a given ternary system, NaCl mean activity coefficient ratios I

II

±

±

γ
γ  at different 

molalities of NaCl ( ) and the nonelectrolyte ( ) may be correlated based on the 

experimental data using the following equation,  
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where ν = 2 for NaCl.  These 20 parameters (A to T in Eq. 3-4-1) are obtained by the 

least square method and they are tabulated in Table 3-4-1.  The absolute mean relative 

difference (amrd) between experimental data and the data obtained from the correlation 
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was found to be 0.25% for NaCl+glycine+H2O, 0.15% for NaCl+DL-serine+H2O and 

0.13% for NaCl+DL-alanine+H2O, with amrd being defined by  
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The small values of amrd indicate that the correlation used is satisfactory.   

 

Table 3-4-1 Values of correlation parameters (A toT in Eq. 3-4-1) for NaCl activity 

coefficient ratios I

II

±

±

γ
γ  in NaCl+nonelectrolyte+H2O solutions at 25 °C 

Value of Parameter Parameter 
NaCl+Glycine+H2O DL-serine+NaCl+H2O NaCl+DL-alanine+H2O 

A -0.580919386093 -0.657203624594 -0.714173950667 

B 0.274735020235 0.358736855661 0.826442900517 

C -0.075390670155 0.019207370378 -0.495390182910 

D 0.015517377910 -0.102853739633 0.118616013834 

E 1.397856841851 0.983831995792 3.444351859360 

F -1.610655725684 -0.534638075259 -6.672281788450 

G 0.834019373579 0.384988678058 5.408789819456 

H -0.156655610766 -0.164451089265 -1.507081414902 

I -1.350337551286 2.018785098763 -5.907654522845 

J 1.834906085162 -4.999381250045 13.066436439971 

K -0.906959055403 2.330195819652 -11.120410606385 

L 0.141052417019 -0.111821292041 3.174621436461 

M 0.771884722221 -5.686711576541 4.092741264214 

N -1.185692533023 11.161419131738 -9.334691515145 

O 0.610102363910 -5.727285957828 8.052021043201 

P -0.096294446598 0.675162774024 -2.318828140344 

Q -0.187707173061 3.458136722673 -0.982076294139 

R 0.305476731449 -6.490580358764 2.240012038750 

S -0.166275141163 3.494886911919 -1.938881975544 

T 0.028369281976 -0.502421013822 0.560824925186 
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It should be pointed out that, more terms are required for accurate correlation (Eq. 

3-4-1) because the trends of I

II

±

±

γ
γ  data are complicated (Figures 3-4-2 to 3-4-3) due to the 

very wide range of solution concentrations involved.  Nevertheless, the increase of the 

number of parameters for correlation does not significantly increase the difficulty in 

determining these parameters, since the used correlation relationship is linear with respect 

to these parameters.   

 

With the correlation equation Eq. 3-4-1 and solubility data in Table 3-4-2, NaCl 

activity data I

II

±

±

γ
γ  at a given NaCl solution saturated with γ-glycine, DL-serine and DL-

alanine respectively were calculated and also shown in Figures 3-4-2 to 3-4-4.  These 

particular NaCl activity data form the saturation curves and they are presented separately 

for the two NaCl concentration ranges 0.01m ≤ NaCl ≤ 2.5m and 2.5m ≤ NaCl ≤ 5.0m, 

due to the complexity.  They define the under-saturated and supersaturated regions.  For 

example, in Figure 3-4-2, for each of the two NaCl concentration ranges 0.01m ≤ NaCl ≤ 

2.5m and 2.5m ≤ NaCl ≤ 5.0m, the region on the right of the corresponding saturation 

curve is the supersaturated region with respect to γ-glycine.   

 

Activity data I
A

II
A

γ
γ  for a nonelectrolyte (e.g. glycine) in its ternary 

NaCl+nonelectrolyte+H2O solutions may be evaluated using the following equation 

which is derived from Eqs.3-1-5 and 3-4-1:  
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where  is the nonelectrolyte activity coefficient at its molality  in water in absence 

of NaCl while  is nonelectrolyte activity coefficient at the same molality  in a 

NaCl aqueous solution with NaCl molality .  The selected activity data 

I
Aγ Am

II
Aγ Am

Sm I
A

II
A

γ
γ  of 

glycine, DL-serine and DL-alanine are shown in Figures 3-4-5 to 3-4-7 respectively.  The 

saturation curves shown in Figures 3-4-5 to 3-4-7 are obtained using the correlation 

formula Eq. 3-4-3 and solubility data in Table 3-4-2.  They define the under-saturated and 

supersaturated regions.  For example, the area above γ-glycine saturation curve in Figure 

3-4-5 is the supersaturated region.   

 

For NaCl+glycine+H2O, the activity data show that glycine decreases NaCl 

activity ( I

II

±

±

γ
γ  < 1, Figure 3-4-2) and NaCl reduces glycine activity ( I

A

II
A

γ
γ  < 1, Figure 3-4-

5) in both under-saturated and supersaturated regions (with respect to γ-glycine), aptly 

demonstrating that NaCl and glycine have salting-in effects on each other.  Similar 

observations can be made for NaCl+DL-serine+H2O (Figures 3-4-3 and 3-4-6).  System 

NaCl+DL-alanine+H2O behaves differently.  Its thermodynamic activity data (Figures 3-

4-4 and 3-4-7) indicate that the salting effects are complicated.  With increase of solution 

concentrations, salting effects change from the salting-in to salting-out.  All these 
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observations together with many other interesting phenomena (e.g. inflection points and 

the trends of activity curves) will be discussed in Chapter 4.  

 

For an analysis of thermodynamic consistency, solubilities of γ-glycine, DL-

serine and DL-alanine in NaCl aqueous solutions at 25 °C were measured by using 

solution density (Appendix A).  The solubility data obtained in this work are tabulated in 

Table 3-4-2.  These solubility data and those obtained by Khoshkbarchi and Vera (1997) 

through solution desupersaturation, together with the related activity data are presented in 

Figures 3-4-8 to 3-4-10 for a better comparison and analysis.   
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Figure 3-4-5 Effect of glycine and NaCl concentrations on glycine activity coefficient 

ratio I
A

II
A

γ
γ  at 25 °C 
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Figure 3-4-7 Effect of DL-alanine and NaCl concentrations on DL-alanine activity 

coefficient ratio I
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II
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γ  of at 25 °C 
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Table 3-4-2 Solubilities of γ-glycine, DL-serine and DL-alanine in different 

NaCl solutions at 25 °C 

 

NaCl molality γ-glycine solubility, 
molality 

DL-serine solubility, 
molality 

DL-alanine 
solubility, molality 

0.000 3.129 0.475 1.851 

0.100 3.153 0.490 1.851 

0.300 3.204 0.511 1.860 

0.400 − − 1.860 

0.500 3.246 0.527 1.861 

0.700 3.283 0.542 1.859 

1.000 3.338 0.562 1.850 

1.500 3.420 0.590 1.833 

2.000 3.492 0.615 1.810 

2.500 3.561 0.638 1.783 

3.000 3.631 0.657 − 

3.500 3.705 0.678 − 

4.000 3.782 0.700 − 

4.500 3.874 0.718 − 

5.000 3.968 0.744 − 
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Figure 3-4-9 Solubility, activity and thermodynamic consistency for NaCl+DL-

serine+H2O at 25 °C 

 71



1.78

1.80

1.82

1.84

1.86

1.88

D
L-

a 
l a

   
s 

o 
l u

 b
 i 

l i
 t 

y,
  m

 o
 l 

a 
l i

 t 
y 

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

NaCl molality

0.98

0.99

1.00

1.01

1.02

1.03

1.04

D
L-

a 
l a

   
a 

c 
t i

 v
 i 

t y
  r

 a
 t 

i o
, 

maximal 
solubility

minimal actiivty 
coefficient ratio

DL-ala solubility, this study DL-ala solubility, Khoshkbarchi and Vera, 1997 

activity for 1.861m DL-ala, this study

 
Figure 3-4-10 Solubility, activity and thermodynamic consistency for NaCl+DL-

alanine+H2O at 25 °C 
 

 

Our DL-serine solubility data (Figure 3-4-9) are very close to the data reported by 

Khoshkbarchi and Vera (1997).  But, the solubility data and data trends of γ-glycine and 

DL-alanine from this study are quite different from those obtained by Khoshkbarchi and 

Vera (1997), as shown in Figures 3-4-8 and 3-4-10.  This discrepancy may be attributed 

to different methods for solution concentration determination.  The dry-weighing method 

was used in the work of Khoshkbarchi and Vera (1997) while solution density was used 

in this study to determine solution concentrations.  Compared with the commonly used 

dry-weighing method (Khoshkbarchi and Vera, 1997; Ferreira, et al., 2005), using 

solution density to determine solution concentration has obvious advantages: no concern 

about thermal degradation of the sample; overcoming the uncertainty due to insufficient 

removal of the trapped solvent among the crystals.  In fact, excellent reproducibility and 

high accuracy of concentration measurement using solution density have been reported 
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(Lampreia et al., 2006; Tjahjono et al., 2005).  Due to the insignificant salting effect of 

NaCl on DL-alanine, more precise and reliable methods for DL-alanine solubility should 

be used for higher accuracy.   

 

Another possible reason for the significant discrepancy in γ-glycine solubility 

could partly be due to different polymorphs of the initial glycine crystals and occurrence 

of polymorph transition from α-glycine to γ-glycine (Sakai, et al., 1991; Doki et al., 

2004).  Furthermore, Khoshkbarchi and Vera (1997) employed solution desupersaturation 

technique for solubility test while it has been observed that γ-glycine is formed in sodium 

salt solutions during solution desupersaturation (Bhat and Dharmaprakash, 2002a; Towler 

et al., 2004).  Unfortunately Khoshkbarchi and Vera did not use instruments to examine 

the polymorphs of the glycine crystals involved in their solubility test.  It can be expected 

that, only if glycine polymorph is well controlled during solid-liquid equilibration, can 

glycine solubility data in aqueous NaCl solutions are consistent and reliable.   

 

From the solubility curves (Figures 3-4-8 to 3-4-10), a few observations can be 

made.  DL-alanine has a maximum solubility of 1.861m at about 0.5m NaCl (Figure 3-4-

10).  Thermodynamically, it can be expected that, for this particular DL-alanine molality 

of 1.861m, DL-alanine activity ratio I
A

II
A

γ
γ  should initially decrease and then increase with 

increase of NaCl, reaching its minimal value at 0.5m NaCl.  Figure 3-4-10 exactly shows 

what is expected, with the minimal value of DL-alanine activity ratio I
A

II
A

γ
γ  being 
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corresponding to the maximal value of DL-alanine solubility at the same NaCl 

concentration of 0.5m.   

 

γ-glycine solubility curve has an inflection point at about 2.25m NaCl, with γ-

glycine having a solubility of 3.528m (Figure 3-4-8).  Before and after the inflection 

point, NaCl exerts the salting-in effect on glycine differently.  When NaCl concentration 

is lower than 2.25m, γ-glycine solubility increases slowly with increase of NaCl.  

However, when NaCl concentration is higher than 2.25m, the increase of γ-glycine 

solubility becomes increasingly more effective with increase of NaCl.  

Thermodynamically, a corresponding inflection point can be expected on the curve of 

glycine activity ratio I
A

II
A

γ
γ  at the particular γ-glycine molality of 3.528m to reflect the 

effectiveness of NaCl salting-in effect on glycine, via the decrease of glycine activity 

ratio I
A

II
A

γ
γ  with increase of NaCl.  As it is precisely shown in Figure 3-4-8, both inflection 

points occur indeed at the same NaCl concentration of 2.25m.  Similarly, DL-serine 

solubility curve shows an inflection point at about 3m NaCl, with a solubility of 0.675m 

(Figure 3-4-9).  The two corresponding inflection points on DL-serine activity curve and 

solubility curve are nicely matched, as shown in Figure 3-4-9.   

 

It can be seen that activity and solubility data for each of the three ternary systems 

are thermodynamically consistent.  In turn, the good thermodynamic consistency supports 

the reliability and accuracy of both activity and solubility data obtained in this study.  It 

 74



should be highlighted that only when the supersaturated activity data are available, can 

the thermodynamic consistency between activity and solubility be analyzed.   

 

3.4.2 Derivation of Activities for Binary Supersaturated Nonelectrolyte Solutions  

Since the steady state shifting technique relies on measurement of electrochemical 

cell potential, it can not be used directly for nonelectrolyte solutions, while the binary 

activity data  of a nonelectrolyte in its supersaturated region are needed for 

crystallization studies, due to the importance of crystallization of a nonelectrolyte from 

its binary aqueous solutions.   

I
Aγ

 

A rigorous thermodynamic approach is proposed to derive the binary activity data 

 of a nonelectrolyte, using cell potential data of an electrolyte added into the 

corresponding nonelectrolyte+H2O solutions.  In other words, an electrolyte is used as a 

tracer to create a measurable quantity (i.e. cell potential) for the electrochemical method.  

In addition, the proposed approach requires accurate solubility data of the nonelectrolyte 

in the electrolyte+H2O solutions.  Depending on the salting effects of the electrolyte on 

the nonelectrolyte, the binary activity coefficient  for nonelectrolyte+H2O solutions in 

the under-saturated and/or supersaturated regions can be derived.   

I
Aγ

I
Aγ

 

The obtained activity data I
A

II
A

γ
γ  and the solubility data for the three ternary 

systems are used to extract the binary activity coefficients of the three nonelectrolytes, 

namely glycine, DL-serine and DL-alanine, in their own binary aqueous solutions (i.e. 
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glycine+H2O, DL-serine+H2O and DL-alanine+H2O), especially in the supersaturated 

region.   

 

3.4.2.1 Fundamental Analysis 

The chemical potential Aμ  of a nonelectrolyte in a solution may be generally 

expressed by its activity coefficient Aγ and molality  (Prausnitz et al., 1999): Am

)ln(0
AAAA mRT γμμ +=         (3-4-4) 

When a solution (liquid phase) is at equilibrium with the nonelectrolyte crystal (solid 

phase), the solution is saturated with the nonelectrolyte and the nonelectrolyte 

concentration of the saturated solution is its solubility ( ).  At the solid-liquid 

equilibrium, the chemical potential  of the nonelectrolyte in the liquid phase should 

be equal to the chemical potential of the nonelectrolyte crystal.  For a binary 

saturated nonelectrolyte+H2O solution, the following expression applies:  

Sat
Am

Sat
Aμ

Crys
Aμ

      (3-4-5) Crys
Am

SatI
A

SatI
A

o
A

SatI
A S

mRT μγμμ =+= =0
,,, )ln(

where  is the chemical potential,  and  are the solubility and the 

corresponding activity coefficient of the nonelectrolyte at the saturation point.  Similarly, 

for a ternary electrolyte+nonelectrolyte+H2O solution saturated with the nonelectrolute 

( ) at a given electrolyte molality , the chemical potential  of the 

nonelectrolyte is determined by 

SatI
A

,μ SatI
Am , SatI

A
,γ

SatII
Am ,

Sm SatII
A

,μ

      (3-4-6) Crys
Am

SatII
A

SatII
A

o
A

SatII
A S

mRT μγμμ =+= >0
,,, )ln(

At the same temperature, Eq.3-4-5 and Eq. 3-4-6 are equal and it gives:  

Crys
A

SatII
A

SatI
A μμμ == ,,         (3-4-7) 
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It should be noted that only if the chemical potentials of the nonelectrolyte 

crystals in the binary nonelectrolyte+H2O solution and in the ternary 

electrolyte+nonelectrolyte+H2O solution are the same, can Eq.3-4-7 be valid.  In other 

words, to have the same chemical potentials of the nonelectrolyte crystals, the 

polymorphs of the nonelectrolyte crystals at equilibrium with a binary 

nonelectrolyte+H2O solution and those with a ternary electrolyte+nonelectrolyte+H2O 

solution should be identical and the electrolyte (as an impurity) is not incorporated into 

the nonelectrolyte crystal lattices.  For derivation, here it is assumed that the chemical 

potentials of the nonelectrolyte crystals are identical.  The concern of the chemical 

potential change of nonelectrolyte crystals due to different polymorphs and impurity 

incorporation will be addressed in Section 3.4.2.2.   

 

Equating Eq. 3-4-5 and Eq. 3-4-6 yields:  

SPm
SatII

A
SatII

Am
SatI

A
SatI

A Kmm
SS

== >= 0
,,

0
,, )()(   γγ       (3-4-8) 

where KSP, a constant at a given temperature, is the solubility product of the 

nonelectrolyte.  Mathematical manipulation of Eq. 3-4-8 yields the following working 

equation to obtain the binary activity data  of the nonelectrolyte in its binary 

nonelectrolyte+H2O solution at molality :  

I
Aγ

SatII
AA mm ,=

( )
(
( )

)
I
A

SatII
A

SatII
ASP

I
A

SatII
A

SatII
A
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γγ
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γγ

/
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       (3-4-9) 
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It is evident that the nonelectrolyte solubility  in an electrolyte+H2O 

solution at a given electrolyte molality  can be measured experimentally.  Given that 

 and  are known, the value of activity coefficient ratio 

SatII
Am ,

Sm

Sm SatII
Am ,

I
A

SatII
A

γ
γ ,

 of the 

nonelectrolyte can be evaluated using Eq. 3-1-5 (or Eq. 3-4-3 for the three ternary 

systems studied here).  Then applying Eq. 3-4-9, the binary activity data  of the 

nonelectrolyte in its binary nonelectrolyte+H2O solution at molality  is readily 

obtained, since the solubility product KSP can be available from reference resources.   

I
Aγ

SatII
AA mm ,=

 

Varying electrolyte molality  can produce a series of solubility data  and 

accordingly activity coefficient ratios 

Sm SatII
Am ,

I
A

SatII
A

γ
γ ,

, which results in extraction of many sets of 

binary activity data  for the nonelectrolyte+H2O solutions.  It should be pointed out 

that, if the electrolyte has a salting-out effect on the nonelectrolyte (hence  <  

and 

I
Aγ

SatII
Am , SatI

Am ,

I
A

SatII
A

γ
γ ,

 > 1), then the binary activity data  for binary under-saturated 

nonelectrolyte+H2O solutions are obtained; if the electrolyte has a salting-in effect on the 

nonelectrolyte (hence  >  and 

I
Aγ

SatII
Am , SatI

Am ,
I
A

SatII
A

γ
γ ,

 < 1), the binary activity data  for 

binary supersaturated nonelectrolyte+H2O solutions are obtained.  The latter would be 

useful for the study of the nonelectrolyte crystallization from H2O.   

I
Aγ
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3.4.2.2 Activities of Binary Nonelectrolyte+H2O Solutions  

For γ-glycine, DL-serine and DL-alanine, their solubilities  in different 

NaCl solutions have been obtained at 25 °C as shown in Table 3-4-2.  The value of 

activity coefficient ratio 

SatII
Am ,

I
A

SatII
A

γ
γ ,

 of the nonelectrolyte at  and  can be 

calculated using Eq. 3-4-3, with the parameters tabulated in Table 3-4-1.  As the binary 

activity coefficients  of each of these three amino acids in H2O at 25 °C are available 

(up to saturation point) from literatures, their solubility products (KSP) can be obtained by 

calculation.  Therefore, binary activity data  in the under-saturated and/or 

supersaturated region can be calculated using Eq. 3-4-9.  

Sm SatII
AA mm ,=

I
Aγ

I
Aγ

 

Ellerton et al. (1964) and Smith and Smith (1937a) used the isopeistic method to 

measure the activity coefficient of glycine in H2O at 25 °C.  The concentration of glycine 

was up to 3.114m in the experiments by Ellerton et al. (1964) and up to 3.30m in the 

experiments by Smith and Smith (1937a).  The activity data of glycine from these two 

research groups are very comparable.  Smith and Smith (1937b and 1940) also 

experimentally investigated the activity coefficients of DL-alanine (up to 1.90m) and DL-

serine (up to 0.4958m) in H2O at 25 °C, using the same isopeistic method.  With the 

activity coefficients of glycine (Ellerton et al., 1964), DL-alanine (Smith and Smith, 

1937b) and DL-serine (Smith and Smith, 1940) in H2O at 25 °C, the solubility products 

KSP (= ) were found to be 2.3087 for γ-glycine, 1.9311 for DL-alanine and 

0.4332 for DL-serine.  Note that  is solubility in pure H2O (Table 3-4-2).   

SatI
A

SatI
A m ,,γ

SatI
Am ,
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Substitution of solubility , solubility product KSP, the calculated activity 

coefficient ratio 

SatII
Am ,

I
A

SatII
A

γ
γ ,

 into Eq. 3-4-9 yields the binary activity  of each of the three 

amino acids in its binary aqueous solutions.  These derived binary activity data  for 

glycine, DL-serine and DL-alanine, together with the data obtained by other workers, are 

plotted in Figures 3-4-11 to 3-4-13 respectively.   

I
Aγ

I
Aγ

 

Due to salting-in effect of NaCl on glycine and DL-serine, the binary activity data 

 of glycine and DL-serine in their own binary supersaturated aqueous solutions are 

derived, as shown in Figures 3-4-11 and 3-4-12, with a relative supersaturation σ up to 

0.27 for γ-glycine and 0.57 for DL-serine.   

I
Aγ
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Figure 3-4-11 Binary activity data  of glycine in its binary aqueous solutions at 25 °C I
Aγ
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Figure 3-4-12 Binary activity data  of DL-serine in its binary aqueous solutions at 25 °C I
Aγ
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Figure 3-4-13 Binary activity data  of DL-alanine in its binary aqueous solutions at 25 °C I
Aγ
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For glycine, it can be seen that our binary activity data  are well comparable 

with those reported by Ellerton et al. (1964) in the range of glycine 3.13 – 3.30m, as 

shown in Figure 3-4-11.  Mohan and Myerson (2002) reported water activity data in 

glycine supersaturated solutions at 25 °C, using EBD method.  These water activity data 

were used to derive glycine activity coefficients in its supersaturated solutions, via Gibbs 

Duhem equation.  The obtained glycine activity coefficients according to the work of 

Mohan and Myerson are also presented in Figure 3-4-11.  Our data and the data by 

Mohan and Myerson (2002) are not that well comparable, but both generally show a 

similar trend when glycine concentration is high.   

I
Aγ

 

For DL-serine, Figure 3-4-12 shows a good agreement between our data and the 

literature data in a narrow range of DL-serine concentration (around solubility).  

Unfortunately, there are no other reported experimental data for DL-serine in its binary 

highly supersaturated aqueous solutions and therefore comparison in a wide range of 

concentration could not be made.   

 

Figures 3-4-11 and 3-4-12 indicate that, above certain level of supersaturation, the 

activity coefficients of glycine and DL-serine increase with increase of their 

concentrations, implying that the solute association becomes more and more significant, 

though salvation is still relatively dominant.  This is expected, since, in the supersaturated 

solutions, the solute molecules should associate significantly to make microscopic 

clusters which eventually lead to nucleation.   
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For DL-alanine, NaCl has both salting-in and salting-out effects on DL-alanine 

(Figures 3-4-7 and 3-4-10), depending on solution concentration.  The salting-in effect of 

NaCl (0.1 – 1.0m NaCl) leads to extracting the binary activity  of DL-alanine in its 

binary very slightly supersaturated solutions in the range 1.851 – 1.859m (vs DL-alanine 

solubility 1.851m).  In this small range, the binary activity coefficients  are practically 

the same (Figure 3-4-13).  In the range 1.0 – 2.5m NaCl, the salting-out effect of NaCl on 

DL-alanine causes DL-alanine solubility to slightly decrease from 1.850m in 1m NaCl to 

1.783m in 2.5m NaCl.  As a result, binary activity data  of DL-alanine in its under-

saturated aqueous solutions (from 1.783 up to solubility 1.850m) are derived, with  

slightly increasing from 1.047 at 1.783m DL-alanine to 1.053 at 1.850m DL-alanine.  

Comparing our data with literature data (Smith and Smith, 1937b), the deviation is very 

small as shown in Figure 3-4-13.  As discussed earlier, NaCl+DL-alanine+H2O system is 

a difficult one in activity and solubility measurements.  Even for such a difficult system, 

very comparable binary activity data  for DL-alanine can be obtained too, using the 

solubility data and activity coefficient ratio 

I
Aγ

I
Aγ

I
Aγ

I
Aγ

I
Aγ

I
A

SatII
A

γ
γ ,

 of DL-alanine.   

 

We have demonstrated that the salting-in effect of an electrolyte on a 

nonelectrolyte leads to the determination of binary activity coefficients of the 

nonelectrolyte in its binary supersaturated aqueous solutions, while the salting-out effect 

of an electrolyte results in obtaining binary activity coefficients of the nonelectrolyte in 

its binary under-saturated aqueous solutions.  The former is potentially more important as 
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these binary activity coefficient data would be very useful for studying nucleation and 

crystal growth of a nonelectrolyte from H2O.   

 

It should be pointed out that selecting an electrolyte which has a sating-in effect 

on a nonelectrolyte can be done readily by screening the nonelectrolyte solubility in the 

aqueous electrolyte solutions.  Therefore the approach developed in this study provides a 

general and viable method for obtaining the activity coefficients of a noneletrolyte in its 

binary supersaturated solutions.   

 

The above derivation for binary activity coefficient  is based on the assumption 

that the chemical potentials of the crystals of a given nonelectrolyte (e.g. γ-glycine) are 

identical.  This assumption actually requires that the same polymorph (if the crystals are 

polymorphic) of crystals should be maintained during solid-liquid equilibration for 

solubility test, and that impurity (here NaCl) incorporation into crystal lattices is absent 

or insignificant.  This is understandable because different polymorphs would have 

different chemical potentials hence different solubilities and different solubility product 

Ksp.  Impurity (here NaCl) incorporation which would occur more likely during crystal 

growth (Rak et al., 2005) would cause the chemical potential of the crystals to change.   

I
Aγ

 

Powder-XRD analysis has shown that there was no polymorph change in γ-

glycine, DL-serine and DL-alanine before and after solubility tests.  After completion of 

the solubility tests particularly in concentrated (4m or 5m) NaCl solutions, via both 

crystal dissolution and solution desupersaturation, crystals of γ-glycine, DL-serine and 
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DL-alanine were collected.  These crystals were re-dissolved in pure H2O to determine 

their NaCl contents using Ion Chromatography (Waters IC 2690, Waters 432 

Conductivity Detector, IC Pak Anion HB column, injection 25μl and buffer NaHCO3-

Na2CO3 flowrate 1.0ml/min).  As the impurity contents in the crystals were very low, 

approximately 0.0001 more fraction, it can be assumed that the effect of impurity 

incorporation (if any) on the chemical potential of the crystals is negligible.  Therefore 

the validity of the assumption made for the derivation of binary activity coefficient  is 

confirmed.   

I
Aγ

 

3.5 Summary  

A new technique, namely steady state shifting technique, has been proposed for 

the potentiometric (electrochemical) method, so that the potentiometric method has been 

extended from under-saturated to supersaturated solutions.  The new technique relies on 

relatively fast thermal phenomena to achieve a steady-state measurement, instead of slow 

molecular diffusion in the conventional potentiometric method.  As this new technique 

only involves the change of the operation procedure for the cell potential measurements 

and additional hardware is not necessary, it is as simple and easy as the conventional 

potentiometric method.   

 

The proposed technique has been experimentally verified.  Its successful 

application to the systematic thermodynamic study of the three ternary 

NaCl+nonelectrolyte+H2O systems NaCl+glycine+H2O has been demonstrated 

(especially in the supersaturated region).  As this new technique enables the activity 
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measurements to be made in a wide range of the solution concentrations, from dilute up 

to the onset of nucleation, new and interesting phenomena have been observed.   

 

With the activity data of supersaturated solutions, thermodynamic consistency 

between activity and solubility has been analyzed.  The very good thermodynamic 

consistency supports the claim that experimental measurements on both activity and 

solubility are accurate.  It is expected that the new technique can be used to determine the 

activity coefficients for many other ternary systems, based on the experimental 

framework established in this study.   

 

The obtained thermodynamic activities for three ternary systems of 

NaCl+nonelectrolyte+H2O have been used to extract the binary activity coefficients of 

these nonelectrolytes in their own binary aqueous solutions in the supersaturated regions.  

Thus the proposed technique offers a convenient alternative to experimental 

thermodynamic studies for binary nonelectrolyte supersaturated solutions.   

 

Furthermore, the obtained activity data confirm that the solute activity 

coefficients may significantly vary with solution concentration in the supersaturated 

regions, depending on the nature of the systems.  Therefore their contributions to the 

driving force for crystallization may not be negligible.  Particularly for binary DL-

serine+H2O system (Figure 3-4-12), using )ln( ,SatI
A

I
A

m

m
 to approximate the intrinsic 

thermodynamic driving force )ln( ,, SatI
A

SatI
A

I
A

I
A

m

m

γ

γ
 can lead to a large error, up to 27%.   
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Chapter 4  Analysis of Solution Chemistry, Thermodynamics and Molecular 

Interaction for NaCl+Amino Acid+H2O Solutions 

 

It is commonly accepted that solution chemistry is one of the fundamentals for 

understanding polymorphism (Towler et al., 2004).  That is because solution chemistry 

would reveal the impacts of solution change (e.g., due to pH and additives etc) on 

molecular interactions which are the origin of crystal polymorphism.  Generally, different 

molecular interactions would result in formation of different structured nuclei (or clusters) 

which eventually develop into the corresponding macroscopic polymorphic crystals 

(Davey et al., 1997; Weissbuch et al., 1994a, Towler et al., 2004).  In addition, molecular 

interactions also play an important role in crystal or nucleus growth kinetics, either 

inhibiting or enhancing nucleus growth, thus exerting the influence on the nucleation 

onset of a particular polymorph.   

 

As nucleation, polymorphs and crystal growth can only happen in supersaturated 

solutions, it is of great importance to explore the solution chemistry (e.g. molecular 

interaction and complex formation) in the supersaturated regions of solutions so as to 

gain a better understanding of crystal polymorphism and kinetics.  Since thermodynamic 

activity is related to the molecular interactions, it can be used to explore how molecules 

to interact especially when the solution concentration changes and/or when an additive is 

put in the solution.  It should be emphasized that the thermodynamic activity data of 

supersaturated solutions are required to confidently study the impacts of molecular 

interaction on crystal polymorphs and kinetics.   
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In the previous chapter (Chapter 3), the thermodynamic activities for three 

NaCl+amino acid+H2O systems in both under-saturated and supersaturated regions were 

measured and reported.  In this chapter (Chapter 4), based on these measured 

thermodynamic activity data, the molecular interactions (especially ion-dipole interaction) 

and complex formation which change with solution concentration will be thoroughly 

analyzed, with the emphasis given to NaCl+glycine+H2O to attempt the effects of a 

general 1:1 electrolyte on glycine polymorphs.   

 

More importantly, the analysis would imply that a 1:1 electrolyte, whether it is a 

sodium salt or a non-sodium salt (e.g. NH4Ac), would inhibit α-glycine and enhance γ-

glycine.  This implication indicates that it is necessary to re-look into the mechanism of 

γ-glycine formation from an electrolyte solution, as γ-glycine formation was once 

attributed to the specific interaction between sodium ions (Na+) and α-glycine nuclei 

(Towler et al., 2004).   

 

4.1 Detailed Experimental Observations  

Based on the measured activity data and solubility data for the three ternary 

solution systems (namely NaCl+glycine+H2O, NaCl+DL-serine+H2O and NaCl+DL-

alanine+H2O), detailed observations may be made to facilitate revealing the general 

molecular interactions among the amino acid dipolar ions (e.g. glycine zwitterions) and 

the electrolyte ions (Na+ and Cl−).   
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Overall, as was briefed in Chapter 3, in both under-saturated and supersaturated 

regions within the experimental concentration ranges, not only NaCl and glycine but also 

NaCl and DL-serine have salting-in effects on each other ( I

II

±

±

γ
γ <1 and I

A

II
A

γ
γ  <1.  Figures 

3-4-2 to 3-4-3, 3-4-5 to 3-4-6).  NaCl and DL-alanine have weak but complicated salting 

effects (Figures 3-4-4 and 3-4-7), exerting salting-in and salting-out effects on each other 

at low and high solution concentrations respectively.   

 

In general, the salting-in effects of glycine, DL-serine and DL-alanine on NaCl 

are more pronounced at their low concentrations (Figures 3-4-2 to 3-4-4).  However, the 

trends of these salting-in effects are different.  For NaCl+glycine+H2O, with increase of 

glycine concentration up to a moderate value, its salting-in effect on NaCl becomes less 

effective.  When glycine concentration is very high, especially when it penetrates into its 

supersaturated region, its salting-in effect on NaCl tends to be more pronounced if NaCl 

concentration is relatively low (≤ 2.5m), suggesting an inflection point on each of these 

NaCl activity curves (NaCl ≤ 2.5m, Figure 3-4-2).  In contrast, for NaCl+DL-serine+H2O, 

no obvious inflection points are observed on NaCl activity curves (Figure 3-4-3).  

Nevertheless, the salting-in effects on NaCl increase monotonically with increase of 

glycine or DL-serine.  For NaCl+DL-alanine+H2O, with increase of DL-alanine, the 

transition from salting-in to salting-out effect on NaCl is observed (Figure 3-4-4).   

 

Surprisingly, for NaCl+glycine+H2O and NaCl+DL-serine+H2O, it is found that 

the NaCl activity curve shifts, going upwards with increase of NaCl concentration (up to 
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approximately 2.5m NaCl) and then going downwards with further increase of NaCl 

(NaCl > 2.5m), as shown in Figures 3-4-2 and 3-4-3.   

 

With respect to the activity coefficient ratios I
A

II
A

γ
γ  of glycine and DL-serine 

(Figures 3-4-5 and 3-4-6), it can be seen that, for a given glycine or DL-serine 

concentration, the salting-in effect of NaCl on either glycine or DL-serine increases 

monotonically with increase of NaCl.  But the salting-in effect of NaCl becomes less 

effective with increase of NaCl up to a moderate concentration of NaCl.  However, with 

further increase of NaCl, the effect of NaCl on glycine or DL-serine starts to be more 

effective, creating an inflection point on each of glycine or DL-serine activity curves.  A 

typical inflection point and the thermodynamic consistency have been well depicted in 

Figures 3-4-8 and 3-4-9 for glycine and DL-serine respectively.  NaCl has a different 

effect on DL-alanine.  For a given DL-alanine, the salting-in effect of NaCl on DL-

alanine is favored then deteriorated by increase of NaCl, generating a transition from 

salting-in to salting-out effect (Figure 3-4-7).   

 

Glycine, DL-serine and DL-alanine activity curves shift upwards with increase of 

their concentrations (Figures 3-4-5 to 3-4-7), though there are a few exceptions where 

DL-serine activity curves intersect when DL-serine concentrations are very low (under-

saturated).  Particularly, some of DL-alanine activity curves shift up into the salting-out 

region ( I
A

II
A

γ
γ  >1), as shown in Figure 3-4-7.   

 

 90



 All these phenomena observed for the three systems NaCl+glycine+H2O, 

NaCl+DL-serine+H2O and NaCl+DL-alanine+H2O may be interpreted based molecular 

interaction and complex formation (Sections 4.2 and 4.3).   

 

4.2 Solution Chemistry, Molecular Interaction and Complex Formation  

Glycine, DL-serine and DL-alanine are amino acids and their molecules are 

dipolar ions (i.e. zwitterions).  In a ternary NaCl+amino acid+H2O solution, the important 

molecular interactions include dipole-dipole, ion-dipole and ion-hydrocarbon chain 

interactions.  The resultant outcome of these interactions eventually determines the 

salting effect (either salting-in or salting-out) of NaCl and an amino acid on each other.   

 

 A dipolar molecule of an amino acid may be schematically expressed as 

H2NRCOOH (here R for a hydrocarbon chain).  It has an amino group (NH2) and a 

carboxyl group (COOH).  In an aqueous amino acid solution, due to intra-molecular 

proton transfer from carboxyl group to amino group (Cohn and Edsall, 1943; Towler et 

al., 2004), generally an amino acid molecule is of zwitterionic form (dipolar ion, 

+H3NRCOO−):  

H2NRCOOH ⇔ +H3NRCOO−      (4-2-1) 

 

Due to the attraction between the highly polar amino group and carboxyl group, 

the inter-molecular dipole-dipole interaction and the hydrogen bonding can be very 

substantial, leading to the significant formation of cyclic dimers (Towler et al., 2004) via 

the following reversible reaction:   

 91



2 +H3NRCOO− ⇔ ( ) OOCRNH
COONH

3

3 R        (4-2-2) 

Especially for glycine zwitterions (+H3NCH2COO−), glycine cyclic dimers may be 

formed much more readily, as glycine has much smaller steric hindrance to the formation 

of cyclic dimers, compared with DL-serine [+H3NCH(CH2OH)COO−] and DL-alanine 

[+H3NCH(CH3)COO−] each of which has a bigger side hydrocarbon chain.  Therefore, in 

a glycine aqueous solution, glycine cyclic dimers ( ) OOCCH2NH
H2COONH

3

3 C  may be quite dominant 

over its zwitterions (+H3NCH2COO−).   

 

 When an electrolyte is dissolved and dissociated (e.g. NaCl ⇒ Na+ + Cl−) in an 

amino acid aqueous solution, the ion-dipole interaction between an electrolyte ion and a 

zwitterion +H3NRCOO− can be very significant to form different ion-zwitterion 

complexes, depending on solution concentration and the nature of the electrolyte.  Since 

NaCl has been used in the thermodynamic investigation (Chapter 3), the discussion will 

focus on how NaCl to interact with an amino acid.  However, the analysis of molecular 

interactions and complex formation should be applicable to many other 

electrolyte+amino acid+H2O systems.   

 

When NaCl molality is much lower than an amino acid molality, one ion (either 

Na+ or Cl−) can physically bind one zwitterion to form two types of singly-charged ion-

zwitterion complexes:   

 +H3NRCOO− + Na+ ⇔ +H3NRCOONa      (4-2-3)  

Cl− + +H3NRCOO− ⇔ ClH3NRCOO−      (4-2-4)  
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With consumption of zwitterions (+H3NRCOO−) (Eqs. 4-2-3 and 4-2-4), cyclic dimers 

would be destroyed or disintegrated (via Eq. 4-2-2).  In fact, electrolyte ions may directly 

interact with a cyclic dimer ( ) OOCRNH
COONH

3

3 R  too:  

( ) OOCRNH
COONH

3

3 R  + Na+ + Cl− ⇔ +H3NRCOONa + ClH3NRCOO−   (4-2-5) 

 

With increase of NaCl concentration, the number of free Na+ and Cl− ions 

increases.  Due to electrostatic force, one free ion (either Na+ or Cl−) can be bound onto 

the charged end of a singly-charged ion-zwitterion complex to form a neutral ion-

zwitterion complex (ClH3NRCOONa):   

 Cl− + +H3NRCOONa ⇔ ClH3NRCOONa     (4-2-6)  

ClH3NRCOO− + Na+ ⇔ ClH3NRCOONa      (4-2-7)  

 

It should be noted that the probability of forming singly-charged ion-zwitterion 

complexes (+H3NRCOONa and ClH3NRCOO−) may be higher than that of forming 

neutral ion-zwitterion complexes (ClH3NRCOONa).   

 

4.3 Interpretation of the Observed Thermodynamic Activities  

These singly-charged (+H3NRCOONa and ClH3NRCOO−) and neutral 

(ClH3NRCOONa) ion-zwitterion complexes formed due to the attractive ion-dipole 

interaction (binding) would lower the energy of the solution hence prevent both NaCl and 

an amino acid from self-association (potential precipitation).  Therefore these ion-

zwitterion complexes would contribute to the salting-in effect on each other.  On the 

other hand, there are repulsions including the major one between an electrolyte ion (either 

 93



Na+ or Cl−) and the hydrophobic hydrocarbon chain of an amino acid molecule, 

increasing the system energy, tending to dampen the salting-in effect and even resulting 

in salting-out effect.   

 

It should be noted that, with increase of solution concentration, the distance 

between an ion and a hydrocarbon chain becomes shorter and the probability of their 

exposure to each other increases.  Therefore, the repulsions between electrolyte ions and 

the hydrophobic hydrocarbon chains would become more pronounced in a concentrated 

solution.   

 

4.3.1 Salting Effect of an Amino Acid on NaCl  

As glycine has a smaller hydrocarbon chain (+H3NCH2COO−), its hydrophobicity 

is low and therefore glycine is quite hydrophilic due to its two hydrophilic polar groups 

(amino and carboxyl groups).  For DL-serine, on the one hand, it has a side hydrophobic 

hydrocarbon chain (CH2) which increases its hydrophobicity.  On the other hand, the 

introduction of the polar group OH to the side hydrocarbon chain would overcome the 

hydrophobicity created by the side chain CH2.  As a result, the hydrophilicity of polar 

amino and carboxyl groups of a DL-serine molecule would substantially suppress the 

hydrophobicity.  Consequently, the attractive ion-dipole interactions (bindings) between 

ions (Na+ or Cl−) and glycine and those between ions and DL-serine would override the 

repulsions, leading to salting-in effect on each other, as it was shown by the activity data 

(Figures 3-4-2, 3-4-3, 3-4-5 and 3-4-6) and the solubility data (Figures 3-4-8 and 3-4-9).   
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A DL-alanine molecule has a larger side hydrophobic chain (CH3) than glycine.  

A bigger repulsion between an ion (Na+ or Cl−) and DL-alanine hydrophobic chain can be 

expected.  The repulsion contributes to the salting-out effects at concentrated solutions 

(Figures 3-4-4 and 3-4-7).   

 

For a given NaCl molality, at a relatively low amino acid concentration, binding 

one molecule of NaCl needs only one molecule of amino acid due to the formation of 

neutral complexes (Eqs. 4-2-6 and 4-2-7); while at a relatively high amino acid 

concentration, binding one molecule of NaCl requires two molecules of amino acid, due 

to the formation of singly-charged complexes (Eqs. 4-2-3 to 4-2-5); with further increase 

of an amino acid, the available free Na+ and Cl− ions to be bound would get fewer with 

ion-zwitterion complex formation (Eqs. 4-2-3 to 4-2-7); meanwhile, the repulsion would 

increase and thus retard the salting-in effect.  Consequently, addition of more amino acid 

would make less contribution to binding Na+ and Cl− ions, resulting in a slower decrease 

of NaCl mean ionic activity coefficient ratio I

II

±

±

γ
γ  and thus weakening the salting-in effect 

on NaCl.  Therefore the salting-in effect of an amino acid on NaCl is more pronounced in 

a range of low amino acid concentrations (up to the inflection points, if applicable), as it 

is indicated by the curve slopes in Figures 3-4-2 to 3-4-4 (especially in Figure 3-4-2).   

 

The inflection points on NaCl activity curves for system NaCl+glycine+H2O 

(Figure 3-4-2) may be interpreted based on the concept of cluster formation.  Since 

glycine concentration can be very high due to its high solubility (about 3.1 m in pure H2O 
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at 25 °C, vs DL-serine solubility about 0.5m), large glycine clusters may be formed more 

favorably at concentrated especially supersaturated glycine solutions.  These large 

clusters could play a significant role in affecting the mobility of Na+ and Cl– ions, and 

hence the mean ionic activity coefficients of NaCl.  As glycine clusters increase in size at 

high supersaturation, it is conceivable that Na+ and Cl– ions may be trapped within the 

glycine clusters thus get more stable, leading to a more effective increase in the salting-in 

effect of glycine on NaCl at low NaCl concentrations (≤ 2.5m).  This observation was 

also discussed by Han and Tan (2006).  While at high NaCl concentrations, the amount of 

these trapped Na+ and Cl– ions may be relatively inappreciable at the same level of 

glycine supersaturation, the inflection gets less significant.   

 

No obvious inflection points were found along NaCl activity curves for 

NaCl+DL-serine+H2O (Figure 3-4-3).  That would be because DL-serine has a very low 

solubility (about 0.5 m in pure H2O at 25 °C, vs γ-glycine solubility 3.1m), thus 

formation of large DL-serine clusters (in terms of cluster size and number) may not be 

that favorable even in its supersaturated solutions.  Therefore DL-serine clusters may 

only trap an insignificant amount of Na+ and Cl– ions and they would not substantially 

bring down NaCl activity I

II

±

±

γ
γ .  DL-alanine would form large clusters especially in its 

supersaturated region due to high concentration (solubility 1.851m in pure H2O at 25 °C) 

but the clusters would only trap an inappreciable amount of Na+ and Cl– ions due to 

significant repulsion between ions and DL-alanine hydrocarbon chains.  As a result, 
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inflection points do not exist on curves of NaCl activities ( I

II

±

±

γ
γ ) in DL-alanine solutions 

(Figure 3-4-4).   

 

For a given amino acid molality, the amino acid can bind a relatively bigger 

portion of the total NaCl when NaCl is low, hence the salting-in effect of amino acid on 

NaCl is more effective.  While at a moderate NaCl concentration (≤ 2.5m), the same 

amount of amino acid can only bind a very small portion of the total NaCl, hence the 

salting-in effect of an amino acid is less effective.  Further more, the repulsion between 

an ion and the hydrophobic hydrocarbon chain of an amino acid would increase when 

NaCl is more concentrated, retarding the salting-in effect.  All these would be responsible 

for the trend of NaCl activity curves: at a given amino acid molality, NaCl activity curve 

shifts upwards with increase of NaCl in a range of low to moderate NaCl concentrations, 

as shown in Figures 3-4-2 to 3-4-4.   

 

 However, at a given amino acid molality, when NaCl is extremely high (≥ 2.5m), 

the experimental activity data for NaCl+glycine+H2O (Figure 3-4-2) and NaCl+DL-

serine+H2O (Figure 3-4-3) show that NaCl activity curve goes downwards with increase 

of NaCl.  This phenomenon seems unusual but it is not abnormal.  In fact, when NaCl > 

1.5m in pure H2O (without amino acid), its binary activity coefficient  starts to 

increase with increase of NaCl concentration, indicating an increasingly greater NaCl 

association (clustering) in pure H2O, as shown in Figure 4-3-1.  These associated NaCl 

molecules in solution, tending to precipitate, can be dispersed significantly by addition of 

a small amount of an amino acid due to the attractive ion-dipole interaction and complex 

I
±γ
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formation, leading to a faster decrease in NaCl mean ionic activity coefficient  hence 

its mean ionic activity coefficient ratio 

II
±γ

I

II

±

±

γ
γ .  It suggests that, when NaCl is very high (≥ 

2.5m), the higher the NaCl concentration, the more pronounced the decrease of NaCl 

activity coefficient ratio I

II

±

±

γ
γ  by addition of the same amount of an amino acid (either 

glycine or DL-serine), resulting in a downward trend of NaCl activity curves with 

increase of NaCl at a fixed glycine or DL-serine concentration.  As the experimental 

range for NaCl+DL-alanine+H2O is only up to 2.5m NaCl, no observations can be made 

on the trend of NaCl activity coefficient ratios I

II

±

±

γ
γ  above 2.5m NaCl.   
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Figure 4-3-1 Activity coefficient of NaCl, glycine, DL-serine and DL-alanine in their 
own binary aqueous solutions at 25 °C  

 98



 

4.3.2 Salting Effect of NaCl on Amino Acids  

 A similar analysis can be applied to activities of an amino acid in NaCl solutions 

(Figures 3-4-5 to 3-4-7), in both under-saturated and supersaturated regions.   

 

For a given amino acid solution, in a range of low NaCl concentrations, one mole 

of NaCl tends to bind two moles of amino acids via formation of singly-charged ion-

zwitterion complexes (+H3NRCOONa and ClH3NRCOO−, Eqs. 4-2-3 to 4-2-5).  However, 

with increase of NaCl, one mole of NaCl may only bind one mole of amino acids due to 

formation of neutral ion-zwitterion complexes (ClH3NRCOONa, Eqs. 4-2-6 to 4-2-7), 

accompanying the gradual depletion of amino acid molecules (either zwitterions or cyclic 

dimers) and the generation of more free ions (Na+ and Cl−).  Therefore, the repulsion 

between the free ions and the hydrocarbon chains of an amino acid would become 

increasingly significant with increase of NaCl.  It can be seen that both the change of 

complex types (from singly-charged to neutral complexes) and the repulsion contribute to 

a slow decrease (even to an increase) of amino acid activity coefficient ratio I
A

II
A

γ
γ  with 

increase of NaCl (Figures 3-4-5 and 3-4-7).   

 

It should be noted that, the addition of NaCl can cause a quicker switch from 

singly-charged complexes to neutral complexes in a low amino acid solution than in a 

high amino acid solution.  In an extremely low amino acid solution where NaCl >> 

amino acid, this switch may not be observed as the neutral complexes may be always 

dominant.   
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The repulsion between free ions (Na+ and Cl−) and DL-serine hydrocarbon chains 

would be stronger than that between ions and glycine hydrocarbon chains, since DL-

serine is less hydrophilic than glycine.  Especially in a very low DL-serine solution (e.g., 

0.1m), more free ions are available after the formation of ion-zwitterion complexes with 

increase of NaCl.  As a result, one DL-serine hydrocarbon chain would be exposed to 

more electrolyte ions, with the repulsion getting more significant.  Therefore, at low DL-

serine concentrations, it may be expected that DL-serine activity I
A

II
A

γ
γ  curves may have 

different curvatures at the same NaCl concentration, leading to the intersection of the DL-

serine activity curves, as shown in Figure 3-4-6.   

 

However, when NaCl concentrations are very high (approximately NaCl > 2.5m), 

association among free ions (Na+ and Cl−) becomes significant and NaCl clusters can be 

formed too.  These NaCl clusters could trap the hydrophilic amino acid molecules (e.g. 

glycine and DL-serine), making them more thermodynamically stable in solutions.  But 

they may not significantly trap the less hydrophilic molecules (e.g. DL-alanine).  

Therefore, for glycien and DL-serine, their activity coefficient ratios ( I
A

II
A

γ
γ ) decrease 

more markedly with increase of NaCl (NaCl > 2.5m).  In addition, for a solution where 

an amino acid is concentrated especially supersaturated, the formed amino acid clusters 

would be disintegrated due to being attacked by the free Na+ and Cl− ions, which is 

another factor for a faster decrease of amino acid activity I
A

II
A

γ
γ  with increase of NaCl, 
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leading to the occurrence of an inflection point on glycine and DL-serine activity I
A

II
A

γ
γ  

curves respectively, as shown in Figures 3-4-5 and 3-4-6.  No inflection points are 

observed on DL-alanine activity curves in NaCl solutions (Figure 3-4-7), likely due to the 

strong repulsion between ions (Na+ and Cl−) and DL-alanine molecules.   

 

At a given NaCl concentration, with more amino acid added, the same amount of 

NaCl can only bind a relatively small portion of an amino acid to form ion-zwitterion 

complexes.  In addition, the repulsion between ions and amino acid hydrocarbon chains 

would increase too.  These two factors make the salting-in effect of NaCl on an amino 

acid less pronounced and they may explain the fact that the amino acid activity curves 

generally moves upwards with increase of the amino acid at a fixed NaCl concentration 

(Figures 3-4-5 to 3-4-7).  It can be seen that the trends of the amino acid activity curves 

with increase of the amino acids are different from those of NaCl activity curves (Figures 

3-4-2 and 3-4-3) with increase of NaCl, as both upward and downward shifts of NaCl 

activity curves are observed.  That is because, compared with NaCl, the self-association 

of either glycine or DL-serine or DL-alanine in pure water (without NaCl) does not 

increase significantly with increase of its concentration, as can be seen in Figure 4-3-1.   

 

Based on above analysis, it can be seen that the significant ion-dipole interaction, 

destruction of amino acid cyclic dimers, formation of different ion-zwitterion complexes 

and clusters are general phenomena for the hydrophilic glycine and DL-serine molecules, 

leading to the very similar salting-in effect of NaCl on glycine and DL-serine, especially 

in glycine and DL-serine supersatuared regions.  The attractive ion-dipole interactions 
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between ions and DL-alanine molecules are less substantial and therefore destruction of 

DL-alanine cyclic dimers and formation of different ion-DL-alanine complexes are less 

significant.  No obvious evidences are found to support particular or specific interaction 

between Na+ ions and amino acid nuclei in the corresponding amino acid supersaturated 

solutions.  The potential impact of these observed phenomena on glycine polymorphs and 

growth kinetics will be further elaborated in Section 4.4.   

 

4.4 A Preliminary Insight into Glycine Polymorphs and Growth Kinetics  

The commonly accepted working hypothesis of crystal polymorph control 

(Weissbuch et al., 1994a) suggests that in supersaturated solutions, solute molecules 

assemble to form coexisting nuclei (embryos) of different polymorphs, meaning that the 

structured nuclei are polymorphic too.  Particular inhibitors would be recognized and 

bound on the surface of the selective polymorphic microscopic embryos, consequently 

preventing the particular polymorphic embryos from growth (and even disintegrating the 

particular polymorphic embryos).  Eventually these selectively inhibited polymorphic 

embryos could not develop into macro crystals.   

 

For glycine polymorphs, the metastable α-glycine nucleates from pure water.  It 

was suggested that the glycine cyclic dimers in pure water are the assembling units for α-

glycine (Carter et al., 1994; Towler et al., 2004).  The thermodynamically stable γ-

glycine can be obtained from sodium salt solutions (Bhat and Dharmaprakash, 2002a and 

2002b; Towler et al., 2004).  Based on the observation, it was once postulated that the 

specific interaction between sodium ions (Na+) and α-glycine microscopic embryos 
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poisons α-glycine nuclei, which relatively increases the probability for γ-glycine to 

nucleate and subsequently grow from sodium salt solutions (Towler et al., 2004).   

 

Though this proposed mechanism of γ-glycine nucleation from sodium salt 

solutions sounds agreeable with the working hypothesis of polymorphism, our activity 

data of glycine in NaCl solutions shows that, due to significant ion-dipole interaction, 

glycine cyclic dimers in glycine supersaturated solutions could be substantially destroyed 

by the introduction of NaCl, via Eqs. 4-2-2 to 4-2-7, at a reasonably high NaCl 

concentration (approximately NaCl > 1m), as illustrated in Figure 4-4-1.  The lack of 

glycine cyclic dimers which are the elementary units assembling α-glycine cells implies 

that the formation of α-glycine microscopic embryos (clusters) is unlikely, leading to at 

least a relative promotion of γ-glycine.  Therefore, it may be inferred that α-glycine is 

inhibited by NaCl due to the destruction of glycine cyclic dimers and not due to the 

specific interaction between Na+ ions and α-glycine nuclei.   

 

The importance of this new hypothesis is obvious.  Since many other electrolytes 

(e.g. KCl, NH4NO3) similar to NaCl can play the same role in destroying the glycine 

cyclic dimers via ion-dipole interaction, they may induce γ-glycine too at a reasonably 

high electrolyte concentration.  Therefore, without any other additional data or 

information, it could be reasonably concluded that γ-glycine nucleation from an 

electrolyte solution containing univalent ions would be a general phenomenon.  This 

suggests that it is necessary to re-look into the mechanism of γ-glycine formation from an 

electrolyte solution.  
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Destroying glycine cyclic dimers hence inhibiting α-glycine does not directly 

means an absolute increase of γ-glycine growth.  However, perusal of glycine activity 

data (Figure 4-4-1) and the formation of ion-glycine complexes (Eqs. 4-2-3 to 4-2-7) in 

glycine supersaturated region, it is found that the formation of γ-glycine in a 2.5m NaCl 

solution (ionic strength about 5.17, Towler et al., 2004) corresponds to the transition from 

glycine cyclic dimers to singly-charged and neutral ion-glycine complexes.  This may 

suggest that these ion-glycine complexes play a significant role in promoting γ-glycine 

growth.  Therefore, another hypothesis may be made, that is, γ-glycine growth kinetics 

could be generally promoted by an electrolyte containing univalent ions.  It should be 

pointed out that, only if the thermodynamic data in the supersaturated region are available, 

can these two hypotheses (polymorphs and growth kinetics) be made with more 

confidence.   

 

As for DL-serine, a similar change in ion-DL-serine complexes with NaCl 

concentration in DL-serine supersaturated solutions can be suggested, as illustrated in 

Figure 4-4-2.  But, no DL-serine polymorphs were reported according to Cambridge 

Structural Database (Version 5.26).  It may be due to the big side chain (CH2OH) which 

would particularly determine how DL-serine molecules to pack.  Since DL-alanine also 

has a large side chain (CH2CH3), DL-alanine molecules are perhaps packed uniquely 

therefore its polymorphs may be limited too.  More investigations are required to verify 

this claim.   
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Figure 4-4-1 Solution chemistry change with NaCl concentration in glycine 

supersaturated region at 25 °C  
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4.5 Summary  

Solution chemistry, molecular interactions and formation of different complexes 

were analyzed for NaCl+amino acid+H2O system.  The obtained thermodynamic 

activities data in Chapter 3 have been well interpreted by the proposed molecular 

interactions and formation of different complexes.   

 

More importantly, the analysis made here suggests that the introduction of 

univalent ions from a 1:1 electrolyte would significantly disrupt the formation of glycine 

cyclic dimers, thus retarding the formation of α-glycine and at least relatively promoting 

γ-glycine.  The results also imply that the singly-charged or neutral ion-glycine 

complexes due to the introduction of univalent ions may be the favorable building units 

for γ-glycine cells, thus enhancing γ-glycine nucleation, as long as the ion-dipole 

interaction is significant enough, regardless of the nature of these univalent ions.  In order 

to verify these postulations, experimental investigations of the impacts of different 

electrolytes on glycine polymorphs and crystal growth kinetics have been done.  The 

interesting results are presented in Chapters 5 and 6 respectively.   

 

 106



Chapter 5  Impact of an Electrolyte on Glycine Polymorphs 

 

In Chapter 4, the analysis of ternary NaCl+glycine+H2O solutions supersaturated 

with glycine suggested that γ-glycine nucleating from an electrolyte solution containing 

univalent ions would be a general phenomenon, as long as the ion-dipole interaction is 

strong enough to destroy glycine cyclic dimers.  In this chapter, the effects of different 

types of electrolytes on glycine polymorphs are experimentally investigated, which 

confirms the general phenomenon predicted in Chapter 4.  The results of glycine 

polymorphs obtained from different electrolyte solutions are presented and their 

interpretations are given based on suggested mechanisms, with highlight of ion valences 

and the roles of both cations and anions.   

 
5.1 Background of Glycine Polymorphs from Electrolyte Solutions  

Bhat and Dharmaprakash (2002a and 2002b) first reported their observation that 

γ-glycine can nucleate from sodium salt solutions (e.g., NaCl, NaF, NaNO3, NaAc).  But 

they did not explain why γ-glycine rather than α-glycine was produced from these 

sodium salt (i.e. electrolyte) solutions.   

 

Towler et al. (2004) investigated the effect of several strong electrolytes on 

glycine polymorphs.  The electrolytes they used belong to two kinds, one being sodium 

salts (e.g. NaCl, Na2CO3, Na2SO4) and the other being nonsodium salts (e.g. Ca(NO3)2, 

Mg(NO3)2, MgSO4), with an ionic strength of 5.17 for each individual electrolyte 

solution (approximately 2.5m for NaCl solution).  They obtained glycine crystals by 

cooling the agitated glycine supersaturated solutions containing an electrolyte to 20 °C at 
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which the solutions had an initial relative supersaturation of 0.70, calculated as (c-cs)/cs) 

(or 0.53, calculated as ln(c/cs)) with respect to α-glycine solubility cs (g/L).  They found 

that the solutions not containing sodium ions (Na+) gave pure α-glycine while those 

solutions containing sodium ions produced either all γ-glycine or mixtures of α-glycine 

and γ-glycine.   

 

As the same ionic strength (5.17) was given for each glycine solution, it was 

suggested that surface energy change due to the introduction of an electrolyte and 

consequent double layer formation on the nuclei surface are not sufficient (likely less 

significant) to induce γ-glycine.  Based on these findings, Towler et al. postulated that γ-

glycine formation was attributed to the specific interaction between sodium ions (Na+) 

and α-glycine nuclei (i.e. microscopic embryos or clusters).  This specific interaction 

poisons (even disintegrates) α-glycine nuclei.  It was also highlighted that Na+ ions can 

only block the carboxylate (COO−) rich, fast growing –c ends of γ-glycine nuclei (or 

crystals) while amino (NH3
+) rich +c ends are available for the γ-glycine nuclei to grow.  

Eventually, γ-glycine nucleates and develops into mature crystals.   

 

This postulation made by Towler et al. (2004) actually implies that sodium ions 

retard the growth rates of both α- and γ-glycine nuclei (or crystals), but α-glycine nuclei 

are inhibited more than γ-glycine nuclei and therefore the probability of γ-glycine 

nucleation is relatively increased.  The role of anions (e.g. Cl−) was neglected.  

Subsequently, this postulation was questioned by the result of Moolya et al. (2005), 
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because γ-glycine was also produced from an ammonium nitrate (NH4NO3) solution 

where no sodium ions are present.   

 

It can be seen that the mechanism behind γ-glycine nucleation from sodium salt 

solutions (or from a general electrolyte solution) is still an open question.  Since 

polymorph control is a general important problem, it is of great interest to discover the 

true mechanism involved in the polymorphic phenomenon.  In this study, a systematic 

experimental investigation of the impacts of different electrolytes on glycine polymorphs 

has been carried out and the important results are presented.   

 

5.2 Experimental Section  

A number of electrolytes (total 15) were chosen for study of their impacts on 

glycine polymorphs.  Based on the ratio of the valences of a cation to the valences of an 

anion from an electrolyte, these electrolytes fall into four types: 1:1 (e.g. NaCl, KNO3), 

1:2 (e.g. (NH4)2SO4), 2:1 (e.g. Ca(NO3)2) and 2:2 (e.g. MgSO4).   

 

In order to have a better view of other factors which may affect glycine 

polymorphs, effects of different cooling modes (forced cooling and natural cooling) and 

solution pHs were also examined.   

 

5.2.1 Experimental Materials  

The total mass of solution for each glycine polymorph test was approximately 140 

grams.  In preparation of a glycine+electrolyte solution, each mass was weighed within 
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an accuracy of ±0.01g and ultrapure water (Millipore, resistivity 18.2 MΩcm and filtered 

with pore size 0.22um) was used.  Glycine (>99%) and NH4Ac (ammonium acetate, 

>98%) were from Sigma-Aldrich.  NaCl (>99.5%), NaNO3 (>99.5%), Na2SO4 (>99%), 

NaHCO3 (>99%), Na2CO3 (>99.9%), KCl (>99.5%), KNO3 (>99%), K2SO4 (>99%), 

NH4Cl (99.8%), NH4NO3 (>99%), (NH4)2SO4 (99.5%), Ca(NO3)2*4H2O (99%), 

CaCl2*2H2O (99%) and MgSO4 (>98%) were from Merck.  The particular salts NH4Ac, 

Ca(NO3)2*4H2O and CaCl2*2H2O were used as delivered and they were used up for 

solution preparation at one time to prevent moisture adsorption.  All other salts were 

dried at 120 oC in an oven for 72 hrs then cooled in a vacuum desiccator prior to their use.   

 

5.2.2 Experimental Procedure  

Forced cooling and natural cooling were used to generate supersaturation.  For 

both cooling modes, the initial supersaturation of glycine was controlled to be about 0.50 

(with respect to γ-glycine, calculated as [( - )/ ] at 25 °C.  Each 

supersaturated solution of approximately 140g was prepared by mixing an appropriate 

amount of each of an electrolyte solution and glyicne crystals in a 250ml conical flask.  

The conical flask was then put in warm water for the solution to be heated up gradually 

till the glycine crystals were fully dissolved to make a homogeneous solution.  To prevent 

water from evaporation during preparation, the conical flask was sealed with a parafilm.   

Am SatII
Am , SatII

Am ,

 

For forced cooling, the prepared glycine+electrolyte solution was gently 

transferred into a 250ml jacketed warming beaker.  Through the jacketed beaker, the 

temperature of glycine solution was cooled down to and maintained at 25 °C using a 
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refrigerating water circulator, for glycine to nucleate and grow from its stagnant solution 

(without mixing).  The warming beaker was sealed with a parafilm, throughout glycine 

nucleation.   

 

For natural cooling, the prepared glycine+electrolyte solution was gently 

transferred into a 250ml ordinary beaker which was also sealed using a parafilm.  The 

homogeneous glycine solution was then left at ambient temperature (about 22 °C) for 

glycine to nucleate from the quiescent glycine+electrolyte solution.   

 

For either forced cooling or natural cooling, once sufficient amount 

(approximately 5g) of glycine crystals was observed, the crystals were carefully collected 

using a spatula and/or tweezer.  Clean filter papers were used to immediately absorb the 

solution on the surface of the collected glycine crystals before these crystals were put in a 

container and dried in an oven at 60 °C.  This pre-absorption of solution was to assist 

with a quicker drying of the wet glycine crystals to prevent glycine polymorphic 

transformation, since metastable α-glycine (if formed) can be transformed into stable γ-

glycine in a wet condition, though the transformation may take a long time to reach a 

significant level (Sakai et al., 1991).  The dried collected glycine crystals were weighed 

to evaluate the supersatuartion range within which glycine nucleated and grew.  A 

powder-XRD instrument was used to determine the polymorphs of the collected glycine 

crystals.   
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5.3 Results and Discussion  

As it has been noted, the metastable α-glycine has a higher solubility than the 

thermodynamically stable γ-glycine, therefore α-glycine can be transformed into γ-

glycine due to solution mediation when glycine concentration is lower than α-glycine 

solubility but higher than γ-glycine solubility (Sakai et al., 1991).  The transformation 

from α-glycine to γ-glycine in a solution is a process where α-glycine dissolves while γ-

glycine nucleates and grows.  Such a polymorphic transformation creates an uncertainty 

when γ-glycine was obtained, because γ-glycine may not be originally formed from 

primary nucleation.  In fact, α-glycine may be originally formed first and then it is 

transformed into γ-glycine via solution mediation.  In order to prevent this uncertainty, it 

is important to ensure that the glycine concentration is higher than the solubility of the 

metastable α-glycine during the nucleation and growth of glycine polymorphs, so that α-

glycine (if formed) is not transformed into γ-glycine.  It can be seen that solubilities of 

both γ-glycine and α-glycine are needed for a proper study on glycine polymorph 

formation.  Therefore, solubilities of both γ-glycine and α-glycine in an electrolyte 

solution were measured first.   

 

5.3.1 Solubility  

With exception of γ-glycine solubilities in different NaCl solutions which have 

been tested and presented in Section 3-4, solubilities of both α- and γ-glycine in other 

electrolyte solutions at 25 °C were tested using the method described in Appendix A.  

The obtained solubility data are summarized in Tables 5-3-1 to 5-3-4 and typical selected 

data are also presented in Figure 5-3-1.   
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The solubility data in Tables 5-3-1 to 5-3-4 show that the metastable α-glycine 

has a higher solubility than the thermodynamically stable γ-glycine, as it is expected.  For 

any given electrolyte, the solubility difference between α- and γ-glycine at the same 

electrolyte concentration is approximately 1.5g/100g H2O.  These data also show that, 

except NH4Ac, all other electrolytes have salting-in effects on glycine, and glycine 

solubility monotonically increases with increase of an electrolyte.  The salting-out effect 

of NH4Ac on glycine may be due to the hydrophobic chain of an acetate ion (Ac−) which 

may significantly repulse the hydrophilic amino group NH3
+ of a glycine molecule.   

 

Table 5-3-1  α- and γ-glycine solubilities (g/100g H2O) in NaCl, NaNO3, KCl and 
KNO3 solutions at 25 °C  

 
NaCl NaNO3 KCl KNO3 Electrolyte 

molality α-gly γ-gly α-gly γ-gly α-gly γ-gly α-gly γ-gly 

0.0000 25.03 23.49 25.03 23.49 25.03 23.49 25.03 23.49 

0.1000  23.67       

0.3000  24.05  24.76  23.91   

0.5000 25.98 24.37 27.17 25.53 25.76 24.15 26.76 25.35 

0.7000  24.64    24.33   

1.0000 26.64 25.06 28.97 27.29  24.55 28.13 26.47 

1.5000  25.68  28.83 26.38 24.81 29.00 27.48 

2.0000  26.21  30.24     

2.5000 28.46 26.73 33.34 31.59 26.76 25.17 30.83 29.02 

3.0000  27.26       

3.5000  27.81     31.78 30.02 

4.0000 30.12 28.39  35.15 27.02 25.42   

4.5000 30.79 29.08       

5.0000  29.79       

 

 113



 

 
Table 5-3-2  α- and γ-glycine solubilities (g/100g H2O) in NH4Cl, NH4NO3, NH4Ac 

and NaHCO3 solutions at 25 °C 
 

NH4Cl  NH4NO3  NH4Ac  NaHCO3  Electrolyte 

molality α-gly γ-gly α-gly γ-gly α-gly γ-gly α-gly γ-gly 

0.0000 25.03 23.49 25.03 23.49 25.03 23.49 25.03 23.49 

0.5000   27.20 25.58 24.50 22.96   

1.0000       29.14 26.86 

1.5000 27.13 25.81 30.65 28.89 23.34 21.90   

2.5000 28.91 27.51 33.57 31.70 22.19 20.83   

 

 
 
 
 
 
 

Table 5-3-3  α- and γ-glycine solubilities (g/100g H2O) in Na2SO4, K2SO4 and 
(NH4)2SO4 solutions at 25 °C 

 
Na2SO4  K2SO4 (NH4)2SO4 Electrolyte 

molality α-gly γ-gly α-gly γ-gly α-gly γ-gly 

0.0000 25.03 23.49 25.03 23.49 25.03 23.49 

0.1000 25.76 24.20 25.60 24.08   

0.5000 27.55 25.99 26.78 25.32   

1.0000 28.34 26.87   28.63 27.09 

1.5000 28.81 27.29     

2.5000     29.49 27.89 
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Table 5-3-4  α- and γ-glycine solubilities (g/100g) in Na2CO3, CaCl2, MgSO4 and 
Ca(NO3)2 solutions at 25 °C 

 
Na2CO3 CaCl2 MgSO4 Ca(NO3)2 Electrolyte 

molality α-gly γ-gly α-gly γ-gly α-gly γ-gly α-gly γ-gly 

0.0000 25.03 23.49 25.03 23.49 25.03 23.49 25.03 23.49 

0.5000   31.06 29.33 29.41 27.82 29.90 28.59 

1.0000 34.50 33.06 36.88 34.92 32.26 30.59 35.22 33.85 

1.5000   42.85 40.94 34.42 32.71 39.96 38.61 

2.5000 45.91 44.40       
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Figure 5-3-1 Solubilities of α- and γ-glycine in NaCl and NH4Ac solutions at 25 °C 

 

 

It can also be observed that these electrolytes containing ions CO3
2−, Ca2+ and 

Mg2+ have much greater salting-in effects on glycine than other electrolytes.  
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Monoatomic dications (e.g. Ca2+ and Mg2+) may be more readily to form co-valences (via 

coordination chemistry) with a few other polar molecules and ions (e.g. glycine, H2O and 

Cl−) to produce sophisticated complexes and to prevent glycine molecules from 

precipitation, thus exerting bigger sating-in effects on glycine.  In fact, at a quite high 

concentration of Ca2+, the sophisticated complexes would precipitate to form new crystals 

which consist of glycine and electrolyte ions (Natarajan and Rao, 1980; Rao and 

Natarajan, 1980; Natarajan, 1983).  Monoatomic dications may be quite prone to form 

co-valences with other molecules because they may position and orientate themselves 

with less difficulty, due to their symmetry and strong electrostatic fields.   

 

As for polyatomic dianions (e.g., SO4
2− and CO3

2−), atomic polarization would be 

significant (Piquemal et al., 2006), localizing the distribution of electrons or charges.  As 

a result, it is difficult to form co-valence with a few other molecules, as one polyatomic 

dianion (as well as the involved polyatomic monoanions, e.g. NO3
−, NH4

+ etc) needs to 

take a particular position and orientation.  Therefore co-valence may make less 

contribution to the salting-in effect.  However, depending on the nature and chemistry of 

a polyatomic dianion, the atomic polarization may significantly reinforce the ion-dipole 

interaction between the dianion and a glycine zwitterion, leading to a more pronounced 

salting-in effect on glycine.  Perhaps, atomic polarization of CO3
2− would be more 

significant than that of SO4
2−, owing to the bigger difference between carbon and oxygen 

atom.  That would partly explain the reason why Na2CO3 has a bigger salting-in effect on 

glycine than Na2SO4 does, among other factors (e.g. ion salvation and size etc).   
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5.3.2 Glycine Polymorphs  

Fifteen electrolytes were selected for study of their effects on glycine polymorphs.  

Based on ion valence ratio, these selected electrolytes fall into four types: 1:1 (e.g. NaCl, 

KNO3), 2:2 (MgSO4), 2:1 (e.g. Ca(NO3)2) and 1:2 (e.g. (NH4)2SO4).  The ions from these 

electrolytes include monoatomic univalent (e.g. Cl−, K+), monoatomic divalent ions (e.g. 

Ca2+ and Mg2+), polyatomic univalent ions (e.g. NO3
−, NH4

+, even organic acetate ion 

Ac−) and polyatomic divalent ions (e.g. SO4
2− and CO3

2−).  Glycine polymorphs from 

various electrolyte solutions were investigated using the experimental procedure 

described in Section 5-2-2, with both forced cooling and natural cooling for 

supersaturation generation.   

 

It was noted that forced cooling took about 30 minutes for the solution in the 

warming beaker to be cooled down to 25 °C using a refrigerating water circulator, while 

natural cooling took more than 60 minutes to cool the solution in an ordinary beaker to 

the room temperature (approximately 22 °C).  In general, when the very first visible 

crystal appeared, it was estimated that the solution had been cooled to 25 °C (forced 

cooling) or room temperature (natural cooling).   

 

For all the experiments, the supersatuartion level of γ-glycine in the period of 

nucleation and crystal growth was changed from initial 0.50 to 0.30.  In other words, with 

respect to α-glycine, the supersatuartion level was changed from approximately 0.45 to 

0.25.  The low end of the supersaturation level at which the formed crystals were 

harvested was evaluated by weighing the collected crystals after they were dried.  Since 
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the glycine concentration was higher than the solubility of metastable α-glycine, any 

originally formed metastable α-glycine would not be transformed into stable γ-glycine 

via solution-mediation.  Therefore, metastable α-glycine, if formed, can be detected 

without any uncertainty.  For different types of electrolytes, the obtained glycine 

polymorphs are reported and discussed below.   

 

5.3.2.1 Glycine Polymorphs from 1:1 Electrolyte Solutions  

Experiments for glycine polymorphs from 1:1 electrolyte solutions were carried 

out using procedure described in Section 5-2-2.  A typical powder XRD result of glycine 

crystals formed from a 1:1 electrolyte solution is presented in Figure 5-3-2.  By 

comparing the XRD peaks with the ones of the reference glycine polymorphs, the 

polymorph of the sample glycine crystals can be readily determined.  Figure 5-3-2 shows 

that the glycine obtained from 2.5m NH4NO3 solution is γ-glycine.   
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Figure 5-3-2 XRD result of glycine crystals from 2.5m NH4NO3 solution  
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The glycine polymorphs from different electrolyte solutions are summarized in 

Tables 5-3-5.  From this table, it can be seen that the glycine crystals from various 1:1 

electrolyte solutions by forced cooling are typically pure γ-glycine in a very wide range 

of electrolyte concentrations from dilute (e.g. 0.1m) to concentrated, despite two 

exceptions from low NH4Ac solutions.  These observations may be interpreted based on 

the molecular interactions.  It will be shown that, univalent ions from a 1:1 electrolyte 

inhibit α-glycine nuclei (via poisoning and disintegration of glycine cyclic dimers, i.e. 

elementary building units for α-glycine), while they readily initiate γ-glycine nucleation 

and tremendously enhance the growth rate of γ-glycine nuclei, eventually leading to the 

formation of γ-glycine.   

 
Table 5-3-5  Glycine polymorphs from 1:1 electrolyte solutions, by forced cooling 

 
Electrolyte molality 1:1 

Electrolyte 0.1m 0.5m 1.0m 1.5m 2.5m 3.5m 4.0m 

NaCl  γ   γ γ   

NaCl*     γ   

KCl  γ γ  γ γ  γ 

KNO3  γ γ  γ γ γ  

NaNO3 γ γ γ γ γ  γ 

NH4Cl γ   γ γ   

NH4NO3 γ γ   γ   

NH4Ac  γ+α γ+α  γ γ   

NaHCO3  γ γ γ     

*by Towler et al. (2004) at ionic strength of 5.17  
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As it was discussed in Chapter 4, due to significant ion-dipole interaction and 

consumption of glycine zwitterions (+H3NCH2COO−), adding a 1:1 electrolyte, for 

example, NaCl, would substantially destroy glycine cyclic dimers (via Eqs. 5-3-1 to 5-3-

3).  Glycine cyclic dimers may be directly destroyed too (Eq. 5-3-4).  Meanwhile two 

types of singly-charged ion-glycine complexes (+H3NCH2COONa and ClH3NCH2COO−) 

are formed.    

 +H3NCH2COO− + Na+ ⇔ +H3NCH2COONa      (5-3-1)  

Cl− + +H3NCH2COO− ⇔ ClH3NCH2COO−      (5-3-2)  

( ) NHOOCCH
COONCHH

32

23
 ⇔ 2 +H3NCH2COO−      (5-3-3) 

 ( ) NHOOCCH
COONCH

32

3 2Η  + Na+ + Cl− ⇔ +H3NCH2COONa + ClH3NCH2COO−   (5-3-4)  

 

Apparently, destroying glycine cyclic dimers (which are favorable for α-glycine 

nucleation and growth) inhibits α-glycine nucleation.  Meanwhile, due to the electrostatic 

force, one positively charged ion-glycine complex (+H3NCH2COONa) and one negatively 

charged ion-glycine complex (ClH3NCH2COO−) can bind each other readily in a 

particular orientation and alignment (via hydrogen bonding) to create the initial head-to-

tail open dimers in ion-glycine complex form (ClH3NCH2COOHNH2CH2COONa):   

+H3NCH2COONa + ClH3NCH2COO− ⇔ ClH3NCH2COOHNH2CH2COONa  (5-3-5) 

 

Based on the structure (Figure 5-3-3) of a γ-glycine nucleus (or a γ-glycine 

crystal), these initial glycine head-to-tail open dimers are very favorable for initiating γ-

glycine nucleation.  Actually they are served as the origins of γ-glycine nucleation.  
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Though Na+ and Cl− ions may be bound onto the ends of the open dimers due to 

electrostatic force, some of them may be removed due to molecule vibration, collision or 

thermal motion etc (Eq. 5-3-6), generating active sites for further addition of the growing 

units (+H3NCH2COONa and ClH3NCH2COO−) as shown in Eqs. 5-3-7 to 5-3-8.  

Therefore larger γ-glycine nuclei can be developed when glycine concentration is high 

enough.   

ClH3NCH2COOHNH2CH2COONa ⇔ +H3NCH2COOHNH2CH2COO− + Na+ + Cl−        (5-3-6) 

+H3NCH2COOHNH2CH2COO− + +H3NCH2COONa ⇔ +H3NCH2COOHNH2CH2COOHNH2CH2COONa  

(5-3-7) 

+H3NCH2COOHNH2CH2COO− + ClH3NCH2COO− ⇔ ClH3NCH2COOHNH2CH2COOHNH2CH2COO−  

            (5-3-8) 

 

 

ClH3NCH2COO− 

+H3NCH2COONa 

+H3NCH2COONa 

+H3NCH2COONa 
ClH3NCH2COO− 

ClH3NCH2COO− 

ClH3NCH2COO− 

+H3NCH2COONa 

 +c −c 
 

Figure 5-3-3  Effect of a 1:1 electrolyte, NaCl:  The singly-charged ion-glycine 
complexes as the building units for a γ-glycine nucleus to grow from both polar 
ends [polar c-axis NH3

+ rich, pointed, slow growing end (+c) and COO− rich fast 
growing end (-c)]  
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After a γ-glycine nucleus is formed, its growth would be fast because the two 

types of singly-charged ion-glycine complexes (+H3NCH2COONa and ClH3NCH2COO−), 

building units of γ-glycine, can favorably approach the corresponding growing end of a γ-

glycine nucleus in the required head-to-tail orientation owing to the electrostatic force, as 

depicted in Figure 5-3-3.  Once a positively charged ion-glycine complex 

(+H3NCH2COONa) gets contacted with the COO− rich –c end of a γ-glycine nucleus, the 

hydrogen bonding between amino group NH3
+ and carboxyl group COO− would facilitate 

integrating the glycine molecules into γ-glycine lattices, thus completing the step of 

molecule addition.  The same analysis is applicable to a negatively charged ion-glycine 

complex (ClH3NCH2COO−) and the NH3
+ rich +c end.  However, due to different natures 

and structures of –c end and +c end, NH3
+ rich end (+c) would be the slow growing end 

while COO− rich end (-c) the fast growing end, as was discussed in Section 2-2.   

 

After the fulfillment of the integration of the charged ion-glycine complexes into 

the lattices, Na+ ions would remain and be exposed on the outmost layer at the polar –c 

end of the γ-glycine nucleus while Cl− ions would remain and be exposed on the outmost 

layer at the polar +c end.  Again, these exposed Na+ and Cl− ions, bound onto the surface 

lattices, can be removed due to ion vibration, collision or thermal motion etc, thus 

making the surface lattices (active sites) available for the oncoming singly-charged ion-

glycine complexes to add into the nucleus for further growth (Figure 5-3-3).  It should be 

noted that the ion-glycine complexes could be solvated (here hydrated), thus, as usual, 

desolvation is involved in the fitting process of glycine molecules into γ-glycine lattices.  
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As long as the γ-glycine nucleus grows bigger than the critical size, a mature γ-glycine 

crystal is obtained.   

 

It should be pointed out that it is much less likely for the same type of charged 

ion-glycine complexes (e.g., either +H3NCH2COONa or ClH3NCH2COO−) to form the 

head-to-tail open dimers, due to the electrostatic repulsion between the same charges.  

Therefore, only if both types of ions (e.g. Na+ and Cl−) are powerful enough to open the 

cyclic dimers hence create the equal numbers of positively charged complexes 

(+H3NCH2COONa) and negatively charged complexes (ClH3NCH2COO−), can the initial 

head-to-tail open dimers (ClH3NCH2COOHNH2CH2COONa) be formed most 

effectively and efficiently, thus most helping initiate γ-glycine nucleation.  Otherwise, if 

only one type of ions (e.g. Na+) can readily destroy glycine cyclic dimers while the other 

type of ions (e.g., acetate ion, Ac−) can not, the consequence is that these complexes (e.g. 

+H3NCH2COONa and AcH2NCH2COO−) are not proportional and would not effectively 

produce the initial glycine head-to-tail open dimers (AcH2NCH2COOHNH2CH2COONa), 

thus dampening the onset of γ-glycine nucleation.   

 

It can be expected that, with the increase of NaCl in a glycine aqueous solution, 

more and more glycine cyclic dimers diminish while more and more charged ion-glycine 

complexes hence head-to-tail open dimers occur, thus inhibiting α-glycine nucleation 

meanwhile promoting γ-glycine nucleation.  When the concentration of NaCl is 

sufficiently concentrated, the cyclic dimers could deplete, then α-glycine may have no 

chance to form at all.  This analysis is not limited to NaCl.  Therefore, a 1:1 electrolyte 
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would generally retard α-glycine meanwhile promote γ-glycine.  Consequently, 

regardless of the nature of a 1:1 electrolyte, as long as the ion-dipole interaction is 

significant enough to open glycine cyclic dimers and create singly-charged ion-glycine 

complexes, only γ-glycine nucleates.   

 

It should be noted that γ-glycine can even be formed from a dilute electrolyte 

solution (e.g. 0.1m).  This could partly be due to “self-poisoning” as suggested by Towler 

et al. (2004).  In a dilute electrolyte solution, only a small part of glycine cyclic dimers (a 

few percents) are opened by the univalent ions of a 1:1 electrolyte.  The remained cyclic 

dimers may be sufficient to form tiny α-glycine nuclei, smaller than the critical size.  

However, the subsequent growth of these tiny α-glycine nuclei may be significantly 

retarded.  That is because the singly-charged ion-glycine complexes (e.g. 

+H3NCH2COONa and ClH3NCH2COO−) are very similar to the glycine cations 

(+H3NCH2COOH at a low pH) and glycine anions (H2NCH2COO− at a high pH) 

respectively.  Then they can be adsorbed onto α-glyicne surface due to affinity.  But the 

adsorbed charged ion-glycine complexes, very different from the glycine cyclic dimers 

which are building units of α-glyicne, can not fit into α-glyicne lattices.  Therefore these 

adsorbed charged ion-glycine complexes would block the way of the oncoming glycine 

cyclic dimers and inhibit the growth of α-glyicne nuclei substantially.   

 

As for the two exceptions in low NH4Ac (0.1m and 0.5m) solutions, the obtained 

glycine crystals are mixtures of α and γ glycine, with both α and γ-glycine being present 

significantly.  This may be attributed to the fact that the repulsion between the 
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hydrophobic hydrocarbon chain of an acetate ion (Ac−) and a hydrophilic glycine 

zwitterion (+H3NCH2COO−) is quite strong, which is supported by the salting-out effect 

of NH4Ac on glycine (Figure 5-3-1).  As a result, acetate ions may not effectively destroy 

glycine cyclic dimers which are suitable for α-glycine nucleation and it may be more 

difficult to form negatively charged ion-glycine complexes (AcH3NCH2COO−) to poison 

α-glycine nucleation.  Especially, the lack of negatively charged complexes 

(AcH3NCH2COO−) makes it much less efficient to initiate γ-glycine nucleation via the 

formation of glycine open dimers (AcH3NCH2COOHNH2CH2COONa), even if sodium 

ions (Na+) can substantially attack glycine cyclic dimers to create a plenty of positively 

charged ion-glycine complexes (+H3NCH2COONa).  That is because the positively 

charged ion-glycine complexes (+H3NCH2COONa) themselves alone would not readily 

form glycine open dimers for γ-glycine nucleation.  Consequently, the competition of γ-

glycine nucleation against α-glycine is weakened, eventually leading to a mixture of α- 

and γ-glycine polymorphs.   

 

Glycine polymorphs would also be affected by the rate of supersaturation 

generation.  As was analyzed, close to equilibrium conditions, only those nuclei 

resembling the thermodynamically stable polymorph grow and exceed the critical size, 

developing into mature thermodynamically stable polymorph (Weissbuch et al., 1991).  

In other words, a low rate of supersaturation generation favors the stable polymorph 

while a quick rate favors the metastable (He et al., 2006).  In this study, in order to 

evaluate the sensitivity of glycine polymorph to the rate of supersaturation generation, 

natural cooling was used to produce a low rate of supersaturation generation, compared 
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with the forced cooling which creates quick rate of supersaturation generation.  The 

results of glycine polymorphs obtained from selected 1:1 electrolyte solutions by natural 

cooling, together with those by forced cooling, are tabulated in Table 5-3-6.   

 

From Table 5-3-6, it can be seen that neither forced nor natural cooling affects 

glycine polymorphs.  All the polymorphs formed are pure γ-glycine, with exception of 

the ones from a dilute NH4Ac solution (0.1m).  Even for this exception, a mixture of both 

α- and γ-glycine polymorphs was obtained from both forced and natural cooling.  This 

also suggests that the modes of cooling hence the rates of supersaturation generation 

under the experimental conditions do not exert a significant influence on glycine 

polymorphs from 1:1 electrolyte solutions.   

 

Table 5-3-6 Glycine polymorphs from 1:1 electrolyte solutions, by both modes of 
cooling 

 
Electrolyte molality 

0.1m 1.0m 2.5m 

 

1:1 

Electrolyte Natural 
Cooling 

Forced 
Cooling 

Natural 
Cooling 

Forced 
Cooling 

Natural 
Cooling 

Forced 
Cooling 

NaCl γ γ   γ γ 

KCl γ γ   γ γ 

KNO3 γ γ   γ γ 

NaNO3 γ γ γ γ  γ 

NH4Cl γ γ   γ γ 

NH4NO3 γ γ   γ γ 

NH4Ac γ+α γ+α   γ γ 

NaHCO3 γ γ γ γ   
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Overall, these results by both natural cooling and forced cooling reinforce the 

postulation that univalent ions from a 1:1 electrolyte exert a dominant effect on glycine 

polymorphs.  Specifically, with the increase of a 1:1 electrolyte, regardless of its nature, 

the growth rate of α-glycine nuclei would become too slow for them to eventually 

develop into mature crystals, while the growth rate of γ-glycine nuclei (or crystals) would 

be substantially (even tremendously) promoted.  Indeed, the growth rate of γ-glycine 

crystals is enhanced tremendously by introduction of a 1:1 electrolyte into a glycine 

supersaturated solution, which will be further elaborated in Chapter 6.   

 

Addition of an electrolyte into a glycine solution may alter the solution pH which 

affects glycine polymorphs.  Towler et al. (2004) showed that for glycine+H2O solutions 

with absence of any electrolytes in a pH domain [4, 8], glycine zwitterions 

(+H3NCH2COO−) dominate the charged species (either +H3NCH2COOH or 

H2NCH2COO−), greatly favoring α-glycine.  Indeed, their results confirmed that glycine 

crystals produced from H2O in a pH domain [3.8, 8.9] were always α-glycine.  Beyond 

this pH range, either a low pH or a high pH promoted γ-glycine nucleation from H2O.   

 

In order to exclude the pH impact on glycine polymorphs from 1:1 electrolyte 

solutions in this study, the pHs of these 1:1 electrolyte solutions saturated with glycine at 

25 °C were measured.  Though the solution pHs varied with the concentration of an 

electrolyte, they were well within the range [6.2 to 8.5] which actually favors α-glycine 

according to Towler et al. (2004).  Thus the pH impact on γ-glycine formation from these 
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1:1 electrolyte solutions can be ruled out.  Therefore, it is re-ascertained that it is these 

univalent ions from a 1:1 electrolyte that inhibit α-glycine and promote γ-glycine.   

 

5.3.2.2 Glycine Polymorph from 1:2 Electrolyte Solutions  

Four 1:2 electrolytes, namely Na2SO4, K2SO4, (NH4)2SO4 and Na2CO3, were 

chosen for exploring their impacts on glycine polymorphs.  Using both forced cooling 

and natural cooling techniques, glycine polymorphs were produced from different 1:2 

electrolyte solutions.  The results are presented in Table 5-3-7.   

 

Table 5-3-7  Glycine polymorphs from 1:2 electrolyte solutions, by cooling  
 

Electrolyte molality 

0.1m 0.5m 1.5m 2.5m 
Electrolyte 

Forced 

Cooling 

Natural 

Cooling 

Forced 

Cooling 

Natural 

Cooling 

Forced 

Cooling 

Natural 

Cooling 

Forced 

Cooling 

Natural 

Cooling 

(NH4)2SO4 γ γ γ γ γ γ γ γ 

Na2CO3 γ γ γ γ   γ γ 

Na2CO3*     γ    

Na2SO4 γ γ γ γ γ+α γ+α   

Na2SO4 *     γ+α    

K2SO4 γ γ γ γ     

*by Towler et al. (2004) at ionic strength of 5.17  
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From Table 5-3-7, γ-glycine formation generally highly dominates α-glycine 

formation from a 1:2 electrolyte solution, even though the solution pHs [from 6.2 to 8.6] 

favors α-glycine.  Even in the mixtures of glycine polymorphs, γ-glycine is the majority.   

 

These obtained results of glycine polymorphs from 1:2 electrolyte solutions may 

be well rationalized, though the solution chemistries become less straightforward.  Here 

Na2SO4 is taken as a typical 1:2 electrolyte for the analysis of its impact on glycine 

polymorphs.  Generally, the interactions between ions (Na+ and SO4
2−) and glycine 

zwitterions (+H3NCH2COO–) as well as glycine cyclic dimers ( ) NHOOCCH
COONCH

32

3 2Η  would produce a 

plenty of positive singly-charged ion-glycine complexes (+H3NCH2COONa) and negative 

doubly-charged ion-glycine complexes (−SO4H3NCH2COO−):  

 +H3NCH2COO− + Na+ ⇔ +H3NCH2COONa      (5-3-1)  

SO4
2−  + +H3NCH2COO– ⇔ −SO4H3NCH2COO–     (5-3-9)  

( ) NHOOCCH
COONCHH

32

23
 ⇔ 2 +H3NCH2COO−      (5-3-3) 

3 ( ) NHOOCCH
COONCH

32

3 2Η  + 4Na+ + 2SO4
2−  ⇔ 4+H3NCH2COONa + 2−SO4H3NCH2COO−           (5-3-10)  

 

In a way similar to that of the impact of a 1:1 electrolyte on glycine polymorphs, a 

1:2 electrolyte would destroy glycine cyclic dimers and create charged ion-glycine 

complexes.  Both destroying glycine cyclic dimers and poisoning α-glycine nuclei due to 

the charged ion-glycine complexes inhibit α-glycine.  Meanwhile, the created charged 

ion-glycine complexes would have a good chance to produce glycine head-to-tail open 
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dimers (−SO4H3NCH2COOHH2NCH2COONa) to initiate the formation of γ-glycine 

nuclei:   

−SO4H3NCH2COO– + +H3NCH2COONa ⇔ −SO4H3NCH2COOHH2NCH2COONa          (5-3-11)  

 

Note that glycine head-to-tail open dimers (−SO4H3NCH2COOHH2NCH2COONa) 

may be adversely affected by possible formation of the incorrect open dimers 

(NaOOCCH2NH3SO4H3NCH2COO−), compared with those glycine head-to-tail open 

dimers formed in a 1:1 electrolyte solution.  Nevertheless, once the tiny γ-glycine nuclei 

are formed, fast growth rates of these γ-glycine nuclei may be expected (Figure 5-3-4).  

That is because the number of Na+ ions is twice the number of SO4
2− ions, based on the 

stoichiometry of Na2SO4.  Therefore the positive singly-charged ion-glycine complexes 

(+H3NCH2COONa) would significantly outnumber the negative doubly-charged ion-

glycine complexes (−SO4H3NCH2COO–).  It should be highlighted that these positive 

singly-charged ion-glycine complexes (+H3NCH2COONa), adding to the fast growing –c 

end (Figure 5-3-4), would primarily determine the earlier onset of γ-glycine nucleation, 

even if the negative doubly-charged complexes (−SO4H3NCH2COO–) would adversely 

affect γ-glycine growth at the slow growing +c end (Figure 5-3-4) due to the incorrect 

orientation.  As a result, γ-glycine is highly dominant, as observed.   

 

It should be pointed out that, as concentrated Na2CO3 solutions have quite high 

pHs (8.97 for 1.5m and 9.19 for 2.5m Na2CO3), the high pHs may play a significant role 

in facilitating γ-glycine nucleation.  However, the particular solution chemistry (charge 

separation) of CO3
2− ions in aqueous solutions would promote γ-glycine nucleation 
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substantially, as more univalent ions are created via charge separation, thus Na2CO3 is 

quite close to an 1:1 electrolyte:   

CO3
2− + H2O ⇔ HCO3

− + OH−     (5-3-12)  

Charge separation of an SO4
2− ion is also possible (Gao and Lui, 2005), but it may be less 

likely compared with CO3
2−:  

  SO4
2− + H2O ⇔ HSO4

− + OH−    (5-3-13)  

 

 

 
+H3NCH2COONa 

+H3NCH2COONa 

+H3NCH2COONa 

+H3NCH2COONa 

−SO4H3NCH2COO− 

correct orientation 

−OOCCH2NH3SO4
−  

incorrect orientation 

 Fast growing end -c  Slow growing end +c  
 

Figure 5-3-4  Effect of a 1:2 electrolyte, Na2SO4:  The charged ion-glycine complexes 
as the building units for a γ-glycine nucleus to grow from both polar ends [polar c-

axis NH3
+ rich, pointed, end (+c) and COO- rich end (-c)] 

 

 

As for Na2SO4, at low concentrations of Na2SO4, pure γ-glycine nucleated.  With 

Na2SO4 concentration increased up to 1.5m, mixtures of α- and γ-glycine polymorphs 
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were observed, with traces of α-glycine.  Among other reasons, the appearance of α-

glycine may be attributed to the formation of sophisticated complexes via coordination 

chemistry.  It is reasonably assumed that, with significant increase of Na2SO4, more extra 

free Na+ and SO4
2− ions would be available to form sophisticated complexes in which 

Na+, SO4
2−, +H3NCH2COO− and H2O may be involved.  Due to the lack of atomic 

polarization of Na+ ions (vs polyatomic NH4
+ ions in which atomic polarization seems 

much more likely) and its symmetry, there may be a relatively higher tendency for the 

sophisticated complexes to be formed, as Na+ ions can position and orientate themselves 

relatively more readily for the coordination.  Unfortunately, these sophisticated 

complexes are not the building units for γ-glycine.  Consequently, the relative probability 

of γ-glycine formation is reduced while that of α-glycine increased with significant 

increase of Na2SO4.   

 

5.3.2.3 Glycine Polymorph from 2:1 Electrolyte Solutions  

Two 2:1 electrolytes (i.e. Ca(NO3)2, CaCl2) were selected for investigation of 

their effects on glycine polymorphs.  Using both forced cooling and natural cooling 

techniques, glycine polymorphs were formed from these 2:1 electrolyte solutions, in a 

natural pH.  The results of glycine polymorphs from these 2:1 electrolyte solutions are 

tabulated in Table 5-3-8.  The solution pHs range from 5.5 to 6.34.   

 

Surprisingly, it can be seen (Table 5-3-8) that, with exception of γ-glycine from 

0.1m CaCl2 by natural cooling, either pure α-glycine or mixtures of α- and γ-glycine 

polymorphs was generally obtained from 1:2 electrolyte solutions, by either forced 
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cooling or natural cooling.  It was also observed that, in the mixtures of the obtained 

glycine polymorphs, α-glycine was quite dominant though generally the amount of γ-

glycine was not negligible.  Therefore it was shown that, different from the observation 

of glycine polymorphs from a 1:2 electrolyte solution, α-glycine is generally more 

competitive than γ-glycine in a 2:1 electrolyte solution.  In a similar analysis used for 

glycine polymorphs from a 1:2 electrolyte solution, the obtained results of glycine 

polymorphs from 2:1 electrolyte solutions may be interpreted.   

 

Table 5-3-8  Glycine polymorphs from 2:1 electrolyte solutions, by cooling  

Electrolyte molality 

0.1m 0.5m 1.0m 1.5m 
2:1 

Electrolyte 
Forced 
Cooling 

Natural 
Cooling 

Forced 
Cooling 

Natural 
Cooling 

Forced 
Cooling 

Natural 
Cooling 

Forced 
Cooling 

Natural 
Cooling 

CaCl2 γ+α γ γ+α γ+α γ+α γ+α γ+α γ+α 

Ca(NO3)2 α γ+α α γ+α   γ+α γ+α 

Ca(NO3)2*        α   

Mg(NO3)2*        α  

*by Towler et al. (2004) at ionic strength of 5.17  
 

 

The interactions between ions (Ca2+ and Cl−) and glycine zwitterions 

(+H3NCH2COO–) as well as glycine cyclic dimers ( ) NHOOCCH
COONCH

32

3 2Η  would significantly form 

negative singly-charged complexes (ClH3NCH2COO−) and positive doubly-charged 

complexes (+H3NCH2COOCa+):  

Cl− + +H3NCH2COO− ⇔ ClH3NCH2COO−      (5-3-2) 
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+H3NCH2COO− + Ca2+ ⇔ +H3NCH2COOCa+              (5-3-14) 

( ) NHOOCCH
COONCHH

32

23
 ⇔ 2 +H3NCH2COO−      (5-3-3) 

3 ( ) NHOOCCH
COONCH

32

3 2Η  + 4 Cl− + 2 Ca2+ ⇔ 2 +H3NCH2COOCa+ + 4 ClH3NCH2COO−            (5-3-15) 

 

It can be seen that a 2:1 electrolyte may destroy glycine cyclic dimers and create 

charged ion-glycine complexes.  As a result, α-glycine is inhibited not only by destroying 

glycine cyclic dimers but also by poisoning α-glycine nuclei due to the charged ion-

glycine complexes adsorbed onto the surfaces of α-glycine nuclei.  Meanwhile, the 

created charged ion-glycine complexes would produce glycine head-to-tail open dimers 

(ClH3NCH2COOHNH2CH2COOCa+ ) to initiate the formation of γ-glycine nuclei:   

ClH3NCH2COO− + +H3NCH2COOCa+  ⇔ ClH3NCH2COOHNH2CH2COOCa+  (head-to-tail) (5-3-16)  

 

After tiny γ-glycine nuclei are formed, they may grow further.  However, the 

growth rates of γ-glycine nuclei in 2:1 electrolyte solutions may be quite slow.  That is 

because, though the negative singly-charged complexes (ClH3NCH2COO−) are very 

likely more than the positive doubly-charged complexes (+H3NCH2COOCa+) due to the 

fact that Cl− ions are more than Ca2+ ions, the former (ClH3NCH2COO−) can only add to 

the slow growing +c end (Figure 5-3-5).  Furthermore, a significant portion (maybe 

approximately 50%) of the positive doubly-charged complexes (+H3NCH2COOCa+) have 

an adverse interference with the fast growing –c end, due to incorrect orientation (Figure 

5-3-5).  Both the slow growth at the +c end and the adversely affected fast growing –c 

end make γ-glycine nuclei grow slow, thus γ-glycine is relatively less competitive than α-

glycine.   
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However, it should be highlighted that, at a high concentration of Ca2+ ions, a 

dication Ca2+ can coordinate more readily with a few glycine molecules via co-valence to 

form sophisticated complexes (Natarajan and Rao,1980; Rao and Natarajan, 1980; 

Natarajan, 1983), as was discussed in Section 5-3-1.  These sophisticated complexes 

probably deteriorate γ-glycine formation more than α-glycine formation.   

 

 

 

+H3NCH2COOCa+, 
correct orientation

+CaOOCCH2NH3
+ 

incorrect orientation

ClH3NCH2COO− 

ClH3NCH2COO− 

ClH3NCH2COO− 

ClH3NCH2COO− 

 
 

Fast growing end -c  Slow growing end +c 

Figure 5-3-5  Effect of a 2:1 electrolyte, CaCl2:  The charged ion-glycine complexes 
as the building units for a γ-glycine nucleus to grow from both polar ends [polar c-

axis NH3
+ rich, pointed, slow growing end (+c) and COO− rich fast growing end (-c)]  

 

 

As was observed, a mixture of α- and γ-glycine polymorphs was produced from 

0.1m CaCl2 solution by forced cooling while pure γ-glycine was obtained by natural 
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cooling.  Forced cooling and natural cooling also made difference in producing glycine 

polymorphs from 0.1m and 0.5m Ca(NO3)2 solutions, with forced cooling leading to pure 

α-glycine while natural cooling resulting in a mixture of α- and γ-glycine.  It can be seen 

that natural cooling favors the thermodynamically stable γ-glycine, which can be 

expected as natural cooling is closer to equilibrium (He et al., 2006).   

 

5.3.2.4 Glycine Polymorph from 2:2 Electrolyte Solutions  

As a typical 2:2 electrolyte, MgSO4 was selected for the study of its effect on 

glycine polymorphs.  Four different concentrations of MgSO4 ranging from 0.1m to 1.5m 

were used, with a pH range from 5.55 to 6.25.  Results of the glycine polymorphs from 

these MgSO4 solutions are shown in Table 5-3-9.   

 

Table 5-3-9  Glycine polymorphs from 2:2 electrolyte solutions, by cooling  
 
Electrolyte molality 

Type of Cooling 
0.1m 0.5m 1.0m 1.5m 

Forced cooling α α α α 

Forced cooling*     α 

Natural cooling α+γ α α α 

*by Towler et al. (2004) at ionic strength of 5.17  
 

 

From Table 5-3-9, it can be seen that MgSO4 solutions always produced α-glycine 

(either pure α-glycine or a mixture of α-glycine and γ-glycine), no matter the type of 
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cooling.  Again, this observed phenomenon may be interpreted based on molecular 

interaction and complex formation.   

 

Similar to the discussions on the effects of 1:2 and 2:1 electrolytes, the 

interactions between ions (Mg2+ and SO4
2−) and glycine zwitterions (+H3NCH2COO–) as 

well as glycine cyclic dimers ( ) NHOOCCH
COONCH

32

3 2Η  would significantly form negative doubly-

charged complexes (−SO4H3NCH2COO−) and positive doubly-charged complexes 

(+H3NCH2COOMg+):   

SO4
2− + +H3NCH2COO− ⇔ −SO4ClH3NCH2COO−               (5-3-17) 

+H3NCH2COO− + Mg2+ ⇔ +H3NCH2COOMg+                          (5-3-18) 

( ) NHOOCCH
COONCH

32

3 2Η  + Mg2+ + SO4
2− ⇔ +H3NCH2COOMg+ + −SO4H3NCH2COO−            (5-3-19) 

 

The complexes with the same charges would not approach each other for any 

association.  Instead, due to electrostatic force, two types (type A and type B) of pseudo 

glycine cyclic dimers can be further formed readily:  

+H3NCH2COOMg+ + −SO4H3NCH2COO− ⇔ ( ) COOMgNCHH
COONCHHSO

23

234
  type A   (5-3-20) 

+H3NCH2COOMg+ + −SO4H3NCH2COO− ⇔ ( ) NHMgOOCCH
COONCHSO

32

34 2Η   type B   (5-3-21) 

 

Complexes of type A have a wrong structure with respect to glycine cyclic dimers 

( ) NHOOCCH
COONCH

32

3 2Η  for α-glycine nuclei and therefore they will not fit into α-glycine lattices.  

Complexes of type B are likely to fit into α-glycine, since thermal vibration or molecular 

collision would cause them to lose ions (Mg2+ and SO4
2−).  Therefore ultimately pseudo 
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cyclic dimers of type B may be converted to the true glycine cyclic dimers ( ) NHOOCCH
COONCH

32

3 2Η , 

favorable for α-glycine formation.  However, neither type A ( ) COOMgNCHH
COONCHHSO

23

234
 nor type B 

( ) NHMgOOCCH
COONCHSO

32

34 2Η  is the building unit for γ-glycine nucleation due to the different structure of 

these pseudo cyclic dimers.  Even if a small portion of negative doubly-charged 

complexes (−SO4H3NCH2COO−) and positive doubly-charged complexes 

(+H3NCH2COOMg+) are available for γ-glycine growth, they are also very likely to 

adversely interfere with both polar ends (-c and +c) of a γ-glycine nucleus, due to 

incorrect orientation as shown in Figure 5-3-6.  Therefore it can be seen that a 2:2 

electrolyte retards γ-glycine much more than α-glycine, eventually resulting in α-glycine.   

 

 

+H3NCH2COOMg+ 
correct orientation 

+MgOOCCH2NH3
+ 

incorrect orientation 
−OOCH2CNH3SO4

− 
incorrect orientation  

−SO4H3NCH2COO− 
correct orientation  

 Fast growing end -c  Slow growing end +c  
Figure 5-3-6 Effect of a 2:2 electrolyte, MgSO4: The charged ion-glycine complexes 
as the building units for a γ-glycine nucleus to grow from both polar ends [polar c-
axis NH3

+ rich, pointed, slow growing end (+c) and the COO− rich fast growing end 
(-c)] 
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α-glycine was produced from a dilute (0.1m) MgSO4 solution when forced 

cooling was exerted, while a mixture of α- and γ-glycine polymorphs was produced when 

natural cooling was used, with γ-glycine being significant.  This shows that the type of 

cooling do have an effect on glycine polymorphs from 2:2 electrolyte solutions at a low 

electrolyte concentration, again reflecting the concept that the condition (here natural 

cooling) closer to equilibrium in the nucleation process favors the thermodynamically 

stable polymorph (He et al., 2006).   

 

5.4 Summary  

The effects of many different electrolytes on glycine polymorphs have been 

experimentally investigated.  The results show that 1:1 (e.g. NaCl) and 1:2 (e.g. Na2SO4) 

electrolytes tremendously inhibit α-glycine and promote γ-glycine, while 2:1 (e.g. CaCl2) 

and 2:2 (e.g. MgSO4) electrolytes have a higher tendency to induce α-glycine.  Wherever 

applicable, the results of glycine polymorphs from this study are in a good agreement 

with the reported ones (Bhat and Dharmaprakash, 2002a and 2002b; Moolya et al., 2005; 

Towler et al., 2004).   

 

The mechanisms have been proposed to interpret the observed glycine 

polymorphs from different electrolyte solutions.  They indicate that, due to significant 

ion-dipole interaction, glycine cyclic dimers can be destroyed to form ion-glycine 

complexes.  As a result, the profile of elementary building units for α-glycine and γ-

glycine can be affected substantially.  Moreover, the formed ion-glycine complexes can 

remarkably promote or inhibit (poison) nucleation initiation and nucleus growth hence 
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nucleation onset and outcome of glycine polymorphs.  Furthermore, it has been suggested 

that the valence(s), rather than other properties of the ions from an electrolyte, primarily 

determine whether a particular glycine polymorph can be preferentially formed from the 

electrolyte solutions.   

 

The roles of univalent cations (e.g. K+, NH4
+) and the COO− rich fast growing –c 

end of γ-glycine have been particularly highlighted, as they have bigger impacts on 

glycine polymorphs via growth rate.  Indeed, as expected, 1:1 (e.g. KCl) and 1:2 (e.g. 

Na2SO4) electrolytes that contain univalent cations tremendously enhance the growth 

rates of γ-glycine crystals, which will be discussed in Chapter 6.   

 

The ideas presented here should be relevant for understanding and controlling 

crystal polymorphs of other systems.  For instance, the mechanisms for γ-glycine 

nucleation from 1:1 and 1:2 electrolyte solutions may generally imply that these 

electrolytes are likely to induce polar polymorphic crystals of many other amino acids 

(dipolar ions).   

 

Other factors, including ion hydration (especially for divalent ions, e.g., Ca2+, 

Mg2+, Zn2+ and SO4
2−, as pointed out by Allen et al., 2006 and Bester-Rogac et al., 2007), 

ion size and steric hindrance may exert an influence on glycine polymorphs, to some 

extent.  Quantifying the contribution of each of these factors to the formation of glycine 

polymorphs would form another major subject and it is beyond the scope of this current 

research.   
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Chapter 6  Effects of Electrolytes on Kinetics of γ-glycine Growth 

 

In Chapter 5, the impacts of electrolytes on glycine polymorphs have been 

investigated.  The proposed mechanisms for the observed glycine polymorphs produced 

from different electrolyte solutions suggest that ion-dipole interactions creating ion-

glycine complexes greatly influence the profile of building units for α- and γ-glycine.  A 

1:1 (e.g. NaCl) and a 1:2 (e.g. Na2SO4) electrolyte would tremendously enhance the 

growth rate of γ-glycine and therefore they facilitate γ-glycine formation.  In contrast, a 

2:1 (e.g. CaCl2) or 2:2 (e.g. MgSO4) electrolyte may not sufficiently promote the growth 

rate of γ-glycine, leading to the fact that α-glycine is generally induced more readily than 

γ-glycine.   

 

In this chapter, the growth rate of γ-glycine crystals from different electrolyte 

solutions is experimentally investigated to show that γ-glycine indeed grow much faster 

from 1:1 and 1:2 electrolyte solutions than from 2:1 and 2:2 electrolyte solutions.   

 

6.1 Experimental Materials  

A batch crystallizer was used to explore the growth kinetics of γ-glycine crystal 

seeds from different electrolyte solutions at 25 °C, via desupersaturation (Garside et al., 

2002).  The glass crystallizer was made by SG Scientific Glass Blowing Centre Pte Ltd, 

Singapore.  It was a jacketed 500ml vessel with a round bottom, equipped with a 

temperature control system and an overhead stirrer.  The schematic experimental rig was 

shown in Figure 6-1-1.   
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Figure 6-1-1 Schematic experimental setup for isothermal seeded crystallization  

 

 

 All chemicals used here were described in Chapter 5.  The γ-glycine crystal 

seeds were confirmed by powder-XRD.  As usual, the following assumptions are made in 

the present study for γ-glycine crystal growth from solutions: 

Well-mixed solution in the crystallizer;  

Negligible nucleation, breakage, agglomeration;  

 

 

Temperature 
Controller  

 
 

Water Circulator 

Temperature 
Sensor 

Jacketed 
Crystallizer  

Sampling or 
Charging Port  

Half-moon 
Impeller 
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6.2 Experimental Procedure  

A Teflon-coated half-moon impeller (65x18x3mm) was used for agitating the 

solution in the batch crystallizer.  The temperature of the crystallizer was controlled at 

25°C by a Julabo FP50 water circulator with a temperature resolution of ±0.01°C.  The 

temperature sensor used for the temperature control of the solution in the batch 

crystallizer was Pt 100.  A Heidolph Overhead Stirrer RZR 2041 was used to adjust the 

stirring speed to 260rpm to adequately suspend the γ-glycine crystal seeds and to 

facilitate achieving a uniform distribution of the seeds in the solution while the breakage 

of the seeds was insignificant.  The γ-glycine seeds were prepared by sieving commercial 

γ-glycine for 355 – 425μm (average size of 390μm), using a L3P Sonic Sifter Separator.  

In this size range, the number of seeds was approximately 15400 per gram.   

 

The glycine supersaturated solution was prepared by dissolving an appropriate 

amount of glycine in a given warm (about 45°C) electrolyte solution, with each mass 

weighed within an accuracy of ±0.01 wt%.  A low initial relative supersaturation of σ = 

0.05 with respect to γ-glycine at 25°C was strictly controlled.  At this low 

supersaturation, the glycine concentration was lower than the solubility of α-glycine so 

that no α-glycine would nucleate and grow.  The solubilities of both γ-glycine and α-

glycine in various electrolyte solutions at 25°C have been measured and reported in 

Chapter 5 (Section 5-3-1).  The prepared warm solution was then charged into the 

crystallizer while minimal agitation (about 170rpm) of the solution was kept.  The warm 

solution was then cooled to and maintained at 25°C to generate the supersaturation.  Once 

the solution temperature was well maintained at 25°C, a solution sample was withdrawn 
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from the crystallizer to check if its concentration decreased so as to determine whether 

significant nucleation took place before 5.000±0.001g of γ-glycine crystal seeds were 

charged into the crystallizer.  If insignificant nucleation was confirmed, the rest of the 

solution in the crystallizer was adjusted to contain 250.00±0.01g of H2O and then the γ-

glycine seeds were loaded into the crystallizer for crystal growth.   

 

Using a TERUMO 5ml syringe with a Sterican fine needle (0.4mm in outer diameter 

and 60 mm in length), solution samples (including the sample before charging the seeds) 

were periodically withdrawn from the crystallizer for concentration analysis.  Since the 

total volume of a syringe and a needle was predetermined to be 5.45±0.1ml, each solution 

sample was 5.45±0.1ml.  A pre-test showed that the coarse seeds (355-425μm) were not 

sucked into the Sterican fine needle.  Nevertheless, to prevent any finer crystals to grow 

before sample analysis, a syringe filter (Nylon 0.22µm) was used to filtrate the 

withdrawn sample solutions immediately.   

 

The correlation between solution densities and glycine concentrations for a given 

electrolyte was established using standard solutions.  This correlation, highly linear, was 

then applied to determine the concentration and the mass of each solution sample, by 

measuring the solution density using an Anton Paar density meter DMA5000 to obtain 

the desupersaturation data and curves.  The procedures for correlation and concentration 

determination via solution density can be found in Appendix A.  The seed mass (W) 

which changes with time can be determined by mass balance once the solution 

concentrations are known.   
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 With the obtained desupersaturation data and curves (glycine concentration, 

g/100g H2O, vs time t), the linear growth rate of the crystal seeds, RG, may be evaluated 

over a time interval ∆t, using Eqs. 2-3-2 and 2-3-5, assuming that the change of the seed 

volume shape factor  kv is insignificant (Tavare, 1995).  The power law (Eq. 2-3-6) may 

be applied for data correlation between growth rate RG and relative supersaturation σ.  

Note that the average relative supersaturation over a time interval ∆t should be used for 

better correlation as suggested by Martins et al. (2006).   

 

6.3 Evaluation of the Method for γ-glycine Kinetic Study  

Before systematic investigation, the method for crystal growth study was 

evaluated by carrying out a few typical experiments for γ-glycine crystal growth using 

the experimental setup (Figure 6-1-1) and the procedure described above.  The 

experimental conditions, including the initial seed mass and seed size, solvent (H2O) 

mass, the agitation speed, the initial glycine relative supersaturation and time intervals for 

withdrawing samples etc, were strictly controlled to be the same for each run.   

 

Data for two typical experiments, one for slow γ-glycine crystal growth from pure 

H2O and the other for fast growth from 2.5m NaCl at 25°C, are summarized in Tables 6-

3-1 and 6-3-2.  The data in these tables are the average ones over two replicas.  The 

corresponding average desupersaturation curves are shown in Figures 6-3-1 and 6-3-2.  

For a better view of the reproducibility, individual glycine desupersaturation curves are 

also presented in Figures 6-3-1 and 6-3-2.   
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Table 6-3-1  Experimental data of γ-glycine growth from pure H2O at 25°C  

time, 
minute 

glycine 
concentration, 
c, g/100g H2O 

γ-glycine 
relative 
supersaturation, 
σ = c/c*-1 

average 
σ over 
∆t  

ln(average 
σ) over ∆t 

seed 
mass, 
W, g 

crystal 
size, L, 
μm  

growth 
rate RG 
x108, 
m/s ln(RG) 

0 24.66 0.050 0.049 -3.020 5.000 390.0 0.605 -0.503 

10 24.61 0.048 0.047 -3.054 5.141 393.6 0.220 -1.513 

20 24.59 0.047 0.046 -3.070 5.193 395.0 0.133 -2.019 

30 24.57 0.046 0.046 -3.085 5.224 395.7 0.096 -2.347 

50 24.56 0.045 0.045 -3.099 5.270 396.9 0.058 -2.853 

70 24.54 0.045 0.045 -3.109 5.298 397.6 0.046 -3.089 

90 24.53 0.044 0.044 -3.119 5.319 398.1 0.037 -3.300 

120 24.52 0.044   5.346 398.8   

 

 

 

 

Table 6-3-2  Experimental data of γ-glycine growth from 2.5m NaCl solution at 
25°C  

 

time, 
minute 

glycine 
concentration, 
c, g/100g H2O 

γ-glycine 
relative 
supersaturation, 
σ = c/c*-1 

average 
σ over 
∆t  

ln(average 
σ) over ∆t 

seed 
mass, 
W, g 

crystal 
size, L, 
μm   

growth 
rate RG 
x108, 
m/s ln(RG) 

0 28.06 0.050 0.038 -3.263 5.000 390.0 6.184 1.822 

10 27.44 0.027 0.023 -3.788 6.567 427.1 1.823 0.600 

20 27.23 0.019 0.016 -4.116 7.085 438.0 1.067 0.065 

30 27.10 0.014 0.011 -4.499 7.400 444.4 0.581 -0.544 

50 26.95 0.008 0.007 -5.006 7.754 451.4 0.336 -1.090 

70 26.86 0.005 0.004 -5.496 7.963 455.4 0.184 -1.695 

90 26.81 0.003 0.002 -5.997 8.079 457.6 0.088 -2.434 

120 26.77 0.002   8.163 459.2   
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Figure 6-3-1  γ-glycine desupersaturation curve from pure H2O at 25°C (error bar 0.5%) 
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Figure 6-3-2  γ-glycine desupersaturation curve from 2.5m NaCl solution at 25 °C (error 
bar 0.5%)  
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Figures 6-3-1 and 6-3-2 show a very good reproducibility in the measurements of 

the desupersaturtaion curves.  It can be seen that, for a given NaCl concentration (e.g. 

0.0m and 2.5m), the deviations of the desuapersaturation curves of γ-glycine from 

different experimental runs are very small, approximately ±0.1% only (equivalent to 

about ±0.02g/100g H2O).  In fact, this insignificant deviation reflects the high accuracy of 

glycine concentrations determined by solution density, as discussed in Appendix A.   

 

Using Eqs. 2-3-2 and 2-3-5, linear growth rates (RG) of γ-glycine crystals from the 

two selected solutions (H2O and 2.5m NaCl) are calculated.  They are also tabulated in 

Tables 6-3-1 and 6-3-2 and plotted in Figures 6-3-3 and 6-3-4.  From Figures 6-3-3 and 

6-3-4, it can be seen that the deviations of the growth rates are reasonably small, not 

bigger than 5%.  It is also observed that the deviations of growth rates from 2.5m NaCl 

solution are even much smaller than those from pure H2O.  It may be understandable.  A 

slow growth rate results in an insignificant change of solution concentration with time 

(Figure 6-3-1).  Therefore, even a very small error in solution concentration would lead to 

a relatively big error in the calculations for seed mass thus seed size and eventually the 

growth rate.  Nevertheless, overall, the reasonably good reproducibility and small 

deviations suggest that this experimental method is suitable for study of γ-glycine growth 

kinetics.   
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Figure 6-3-3  γ-glycine linear growth rate RG from pure H2O vs its relative 
supersaturation σ at 25 °C (error bar 10%) 
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Figure 6-3-4  γ-glycine linear growth rate RG from 2.5m NaCl vs its relative 
supersaturation σ at 25 °C (error bar 10%)  
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6.4  Effects of Different Electrolytes on γ-glycine Growth Rate  

Using the experimental setup and procedure described above, the effects of 

different electrolytes on γ-glycine crystal growth were systematically investigated.  Most 

of the measurements of desupersaturation curves were replicated twice.  For proper 

comparison of the effects of these selected electrolytes on γ-glycine growth, a total ion 

molality of 3m was given for each electrolyte solution.  As each experiment was carried 

out under the same conditions (e.g. initial γ-glycine relative supersaturation σ = 0.050, 

initial γ-glycine seed loading 5.000 g in 250.00g of H2O, etc), the obtained experimental 

results would enable us to compare the impacts of electrolytes on γ-glycine growth from 

different aspects.  In fact, the mass increment of the γ-glycine seeds in the very first time 

interval (here 10 minutes) of growth from a given electrolyte solution would naturally be 

a good indication of γ-glycine growth rate.   

 

The mass increment of the γ-glycine seeds and the normalized mass increment are 

tabulated in Table 6-4-1 and plotted in Figure 6-4-1.  The advantage of using seed mass 

increments is that the seed volume shape factor which could cause a big error is not 

involved in the calculations for seed masses, therefore the effects of different electrolytes 

on γ-glycine growth can be compared in a higher level of confidence.   

 

The results from Table 6-4-1 and Figure 6-4-1 clearly show that, at the same total 

ion molality of 3m, these 1:1 and 1:2 electrolytes (NH4Ac, KCl, KNO3, NaCl, NaNO3, 

NH4Cl, NH4NO3, (NH4)2SO4, Na2SO4 and Na2CO3) can tremendously enhance γ-glycine 

growth rate by about 7 to 11 times, compared with its growth rate from pure H2O.  These 
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2:1 and 2:2 electrolytes (Ca(NO3)2, CaCl2 and MgSO4) also have promoting effects on γ-

glycine growth, but their effects are relatively less significant (generally not higher than 5 

times).   

 

Table 6-4-1 Mass increment of γ-glycine seeds in the first time interval of 
seed growth from various electrolyte solutions at 25°C 

 

electrolyte solution  

mass increment (g) of γ-
glycine seeds in the first 10 
minute interval, with an 
initial σ = 0.050  

normalized mass increment 
[=mass increment/(mass 
increment from pure H2O)] 

H2O 0.141 1.000 

1.0m Ca(NO3)2  0.462 3.277 

1.5m MgSO4  0.546 3.870 

1.0m CaCl2  0.732 5.191 

1.5m NH4Ac 0.952 6.751 

1.5m KCl 1.116 7.915 

1.5m KNO3 1.213 8.603 

1.0m Na2SO4  1.427 10.121 

1.5m NaCl 1.450 10.281 

1.0m (NH4)2SO4 1.468 10.411 

1.5m NaNO3 1.504 10.667 

1.5m NH4Cl 1.539 10.915 

1.5m NH4NO3 1.550 10.992 

1.0m Na2CO3  1.589 11.270 
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Figure 6-4-1  Normalized mass increment of γ-glycine seeds in the first 10 minute 

interval of seed growth at 25°C, with initial relative supersaturation σ = 0.050 
 

 

As it was analyzed in Chapter 5, the higher the promoting effect of an electrolyte 

on γ-glycine growth, the more likely γ-glycine can be induced.  According to this analysis 

and based on the obtained kinetic data, γ-glycine is supposed to be formed more readily 

than α-glycine from solutions with presence of a 1:1 or 1:2 electrolyte, while α-glycine 

formation should be more competitive than γ-glycine formation from solutions with 

presence of a 2:1 or 2:2 electrolyte.  Therefore, γ-glycine kinetic data obtained here and 

the reported results of glycine polymorphs from electrolyte solutions (Chapter 5) are 

well consistent.   

 

For gaining a better understanding of kinetics, the values of linear growth rates 

(RG) would be very useful.  They may be calculated, using Eqs. 2-3-2 and 2-3-5, with an 

assumption that crystal seed volume shape factor kv is constant.  To test whether this 
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assumption is valid, two runs of γ-glycine crystal growth from 1m (NH4)2SO4 solutions 

were carried out.  One run started with an initial γ-glycine relative supersaturation of 

0.050 and the other run with 0.092.  If the volume shape factor kv is constant, then it is 

expected that the two curves of linear growth rates of γ-glycine crystals should be 

overlapped, at least very close to each other, over the same range of relative 

supersaturation.  Unfortunately, it was found that deviations between the two kinetic 

curves are big, as shown in Figure 6-4-2.   
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Figure 6-4-2  γ-glycine linear growth rate RG from 1.0m (NH4)2SO4 vs 
relative supersaturation σ at 25°C (error bar 0.8x10-8 m/s) 

 

 

Such big growth rate deviations (up to about 5x10-8 m/s at relative supersaturation 

σ = 0.04) are not likely due to measurement errors, as the estimated error in growth rate 

RG is about 0.8x10-8 m/s while the error in relative supersaturation σ is about 0.002 units 
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only.  Instead, it is more likely due to the significant change in shape factor.  In fact, for a 

polar γ-glycine crystal, it grows mainly along the c-axis, from both carboxyl rich –c and 

amino rich +c end (Figure 5-3-4).  Therefore, due to the anisotropic growth, the shape of 

a γ-glycine crystal hence shape factor may change significantly with the growth of the 

polar crystal.   

 

In order to reduce the adverse influence of the shape factor on the calculations for 

growth rates, the data obtained in the first two time intervals are used for the correlation 

between γ-glycine growth rate RG and the corresponding average relative supersaturation 

σ to obtain the growth coefficient ln(kg) and the power g as expressed in Eq. 2-3-6, by 

plotting ln(RG) against ln(σ).  These obtained growth coefficient ln(kg) and the power g 

are tabulated in Table 6-4-2.  Using the values of ln(kg) and g, the growth rates of γ-

glycine from different electrolyte solutions at the same γ-glycine relative supersaturation 

σ=0.050 are calculated and shown in Table 6-4-3, together with the normalized growth 

rates.  For easier comparison of electrolyte effects at the same γ-glycine relative 

supersaturation σ=0.050, the normalized γ-glycine growth rates are presented in Figure 6-

4-3.  As expected, Figures 6-4-1 and 6-4-3 match each other quite well.   

 

Without presence of any electrolyte in the solution, γ-glycine crystals grows 

extremely slow from pure H2O, as was shown by its very slow desupersaturation (Figure 

6-3-1).  This is not surprised, because in pure H2O, the glycine cyclic dimers are likely 

the dominant species but they do not fit into γ-glycine crystal lattices.  As a result, γ-

glycine can not grow fast.   
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Table 6-4-2  Values of parameters of power law ln(RG) = g*ln(σ) + ln(kg) for 
γ-glycine growth from different electrolyte solutions 

 
electrolyte solution  value of power g  value of ln(kg)  

H2O 29.518 88.645 

1.5m NaCl 2.750 10.650 

1.5m NH4Cl 2.782 10.896 

1.5m KNO3 4.172 14.895 

1.5m KCl 3.911 13.998 

1.5m NaNO3 2.947 11.303 

1.5m NH4NO3 2.945 11.337 

1.5m NH4Ac 3.888 13.750 

1.0m (NH4)2SO$ 3.042 11.622 

1.0m Na2SO4  3.217 12.137 

1.0m Na2CO3  3.267 12.319 

1.0m CaCl2  8.096 26.071 

1.0m Ca(NO3)2  9.762 30.374 

1.5m MgSO4  9.969 31.373 
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Table 6-4-3  γ-glycine growth rate RG from various electrolyte solutions at 
25°C 

 

electrolyte solution  

growth rate RGx108 (m/s) of 
γ-glycine seeds at relative 
supersaturation σ =0.050  

normalized growth rate RG,N 
[=RG/(RG from pure H2O)] 

H2O 1.236 1.000 

1.0m Ca(NO3)2  3.092 2.502 

1.5m MgSO4  4.521 3.658 

1.0m CaCl2  6.152 4.978 

1.5m NH4Ac 8.168 6.609 

1.5m KCl 9.805 7.933 

1.5m KNO3 10.996 8.897 

1.5m NaCl 11.530 9.329 

1.5m NaNO3 11.878 9.611 

1.0m Na2SO4  12.184 9.858 

1.0m (NH4)2SO4 12.261 9.921 

1.5m NH4NO3 12.349 9.992 

1.0m Na2CO3  12.572 10.172 

1.5m NH4Cl 12.958 10.484 

 

 156



0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

H2O

1.0
m C

a(N
O3)2

 

1.5
m M

gS
O4 

1.0
m C

aC
l2 

1.5
m N

H4Ac

1.5
m KCl

1.5
m KNO3

1.5
m N

aC
l

1.5
m N

aN
O3

1.0
m N

a2
SO4 

1.0
m (N

H4)2
SO4

1.5
m N

H4NO3

1.0
m N

a2
CO3 

1.5
m N

H4Cl

no
rm

al
liz

ed
 γ

-g
ly

ci
ne

 g
ro

w
rh

 ra
te

, R
G

,N

 
Figure 6-4-3  Normalized γ-glycine growth rate RG,N from various electrolyte 

solutions at 25°C at relative supersaturation σ = 0.050 
 

 

Addition of an electrolyte into a glycine supersaturated solution makes a 

difference.  As observed, 1:1 and 1:2 electrolytes promote γ-glycine crystal growth much 

more than 2:1 and 2:2 electrolytes do.  Though the suggested mechanisms were presented 

in Chapter 5, the interpretation for the observed kinetic data is briefed below for 

convenience.   

 

As was discussed in Chapter 5, for a 1:1 electrolyte, the ion-dipole interactions 

between the univalent ions and glycine molecules would significantly create positive 

singly-charged (e.g. +H3NCH2COONa) and negative singly-charged (e.g. 

ClH3NCH2COO–) ion-glycine complexes which are favorable growing units for γ-glycine 

crystals, with positive singly-charged ion-glycine complexes adding to the fast growing 
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carboxyl rich –c end while negative singly-charged ion-glycine complexes adding to the 

slow growing amino rich +c end of γ-glycine crystals (Figure 5-3-3).  As it can be 

expected, these 1:1 electrolytes greatly promote the crystal growth of γ-glycine, though 

they do not exert an equal impact on γ-glycine growth.   

 

As for the particular electrolyte NH4Ac, its effect on promoting γ-glycine crystal 

growth is relatively smaller than those of other 1:1 electrolytes.  That is because acetate 

ions (Ac–) have weak interactions with glycine zwitterions or glycine cyclic dimers due 

to relatively high hydrophobicity of acetate ions.  As a result, they do not create many 

negative singly-charged ion-glycine complexes (AcH3NCH2COO–) which add to the slow 

growing amino rich +c end of γ-glycine, slowing down the growth rate.  This particular 

case suggests that the roles of anions and the slow growing amino rich +c end of γ-

glycine may not be negligible, though cations (e.g. Na+) and the fast growing carboxyl 

rich –c end of γ-glycine play more significant roles.   

 

For a 1:2 electrolyte (e.g. Na2SO4) which contains more cations than anions 

would create more positive singly-charged ion-glycine complexes (e.g. 

+H3NCH2COONa) than negative doubly-charged ion-glycine complexes (e.g. 

−SO4H3NCH2COO–).  Fortunately, these positive singly-charged ion-glycine complexes 

add to the fast growing carboxyl rich –c end (Figure 5-3-4).  As a result, these cations 

which form positive singly-charged ion-glycine complexes and the fast growing carboxyl 

rich –c end substantially promote γ-glycine growth, though the negative doubly-charged 
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ion-glycine complexes probably adversely interfere with the slow growing amino rich +c 

end.   

 

In contrast, for a 2:1 electrolyte (e.g. CaCl2), more anions (e.g. Cl–) are created 

and therefore more negative singly-charged ion-glycine complexes (e.g. ClH3NCH2COO–

) are formed.  However, these negative singly-charged ion-glycine complexes can only 

add to the slow growing amino rich +c ends of γ-glycine nuclei.  Furthermore, the fast 

growing carboxyl rich –c ends of γ-glycine nuclei may be partially blocked by positive 

doubly-charged ion-glycine complexes (e.g. +H3NCH2COOCa+), thus retarding γ-glycine 

growth (Figure 5-3-5).  Consequently, the promotion of γ-glycine growth from a 2:1 

electrolyte solution is limited.   

 

For a 2:2 electrolyte (e.g. MgSO4), the ion-dipole interactions would generate 

positive doubly-charged ion-glycine complexes (e.g. +H3NCH2COOMg+) and negative 

doubly-charged ion-glycine complexes (e.g. −SO4H3NCH2COO−).  Unfortunately, a great 

part of these doubly-charged ion-glycine complexes would exert an adverse impact on 

both growing ends of γ-glycine (Figure 5-3-6).  In addition, due to strong electrostatic 

force, these doubly-charged ion-glycine complexes subsequently form pseudo glycine 

cyclic dimers (Eqs. 5-3-20 and 5-3-21) which are not building units for γ-glycine.  All 

these adverse effects impede γ-glycine growth, as it was shown by the kinetic data 

(Figures 6-4-1 and 6-4-3).   
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Mass transfer from bulk solution to the crystal surface may be a concern as it may 

be the growth rate controlling step.  However, an experimental test showed that 

increasing agitation speed from 260rpm to 300rpm did not affect glycine 

desupersaturation curves from a concentrated 2.5m NaCl solution (Figure 6-4-4) while γ-

glycine growth from the solution was fast.  Therefore, the observed slow growth rates of 

γ-glycine crystals from some of the electrolyte solutions could not be attributed to the 

limitation of mass transfer.   
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Figure 6-4-4  Agitation effect on γ-glycine desupersaturation curves from 2.5m NaCl 
solution at 25 °C (error bar 0.5%)  

 

 

6.5 Effects of Electrolyte Concentration  

In order to investigate the influence of the concentration of a 1:1 electrolyte on γ-

glycine crystal growth, systematic experimental measurements were made for γ-glycine 

crystal growth from various NaCl solutions ranging from 0.0m to 5.0m.  In a way similar 

to that used in the previous section, for better comparison, the mass increment of γ-

glycine seeds in the first time interval (10 minutes) of seed growth, values of parameters 
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for power law and the linear growth rate RG at γ-glycine relative supersaturation σ = 

0.050 are calculated.  They are tabulated in Tables 6-5-1 to 6-5-3 and shown in Figure 6-

5-1.   

 

Table 6-5-1  Mass increment of γ-glycine seeds in the first time interval of seed 
growth from various NaCl solutions at 25 °C 

 

NaCl molality  

mass increment (g) of γ-
glycine seeds in the first 10 
minute interval, with an 
initial σ = 0.050  

normalized mass increment 
[=mass increment/(mass 
increment from pure H2O)] 

0.000 0.141 1.000 

0.500 0.855 6.064 

1.500 1.450 10.281 

2.500 1.567 11.113 

3.500 1.603 11.367 

5.000 1.501 10.645 

 

 

 

Table 6-5-2  Values of parameters of power law ln(RG) = g*ln(σ) + ln(kg) for 
γ-glycine growth from various NaCl solutions  

 
NaCl molality value of power g  value of ln(kg) 

0.000 29.518 88.645 

0.500 5.202 17.700 

1.500 2.750 10.650 

2.500 2.327 9.414 

3.500 2.013 8.403 

5.000 2.362 9.392 
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Table 6-5-3  γ-glycine growth rate RG from various NaCl solutions at 25 °C 

 

NaCl molality 

growth rate RG (x108 m/s) of γ-
glycine seeds at relative 
supersaturation σ =0.050 

normalized growth rate RG,N 
[=RG/(RG from pure H2O)] 

0.000 1.236 1.000 

0.500 8.292 6.709 

1.500 11.530 9.329 

2.500 11.513 9.316 

3.500 10.703 8.660 

5.000 10.113 8.183 
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Figure 6-5-1 Normalized mass increment of γ-glycine seeds and normalized growth 
rate RG,N from various NaCl solutions at 25°C  
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The two curves in Figure 6-5-1, represented by normalized mass increment of γ-

glycine seeds and normalized growth rate respectively, are reasonably close (though not 

overlapped), showing very similar trends.  From both curves, it can be seen that γ-glycine 

crystals can grow much faster from NaCl solutions than from pure H2O, in a wide range 

of NaCl concentrations.   

 

More interestingly, γ-glycine growth rate initially increases with increase of NaCl 

concentration up to approximately 1.5m.  With further increase of NaCl (>1.5m), γ-

glycine growth rate reaches a plateau.  When NaCl is very high (>2.5m), the growth rate 

tends to decrease with increase of NaCl concentration.  These observations may be 

explained readily.  On the one hand, with the addition of NaCl, the univalent ions from 

NaCl would create singly-charged ion-glycine complexes (+H3NCH2COONa and 

ClH3NCH2COO–) which are building units for γ-glycine, thus promoting γ-glycine 

growth, as was analyzed in Chapter 5:  

 ( ) NHOOCCH
COONCH

32

3 2Η  + Na+ + Cl− ⇔ +H3NCH2COONa + ClH3NCH2COO−   (5-3-4)  

 

On the other hand, when NaCl concentration is very high, especially when it is 

much higher than that required for depletion of glycine molecules (zwitterions or cyclic 

dimers) in a solution via the formation of singly-charged ion-glycine complexes, some of 

the free ions (Na+ and Cl−) can neutralize the singly-charged ion-glycine complexes to 

generate neutral complexes (ClH3NCH2COONa) which are not building units for γ-

glycine and thus they may retard γ-glycine growth due to the decrease of building units:   

 Cl− + +H3NCH2COONa ⇔ ClH3NCH2COONa     (6-5-1)  
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ClH3NCH2COO− + Na+ ⇔ ClH3NCH2COONa    (6-5-2)  

 

Furthermore, adsorption of the extra free ions (Na+ and Cl−) onto the polar ends of 

γ-glycine crystals may become increasingly significant with Na+ ions onto the carboxyl 

rich –c ends and Cl− ions onto the amino rich +c ends, thus blocking the active growing 

facets of γ-glycine crystals and impeding γ-glycine growth.  As a result, both the 

neutralization of singly-charged ion-glycine complexes (hence the decrease of building 

units for γ-glycine) and the blockage of the active growing facets of γ-glycine crystals 

would decrease the growth rate with increase of NaCl when the level of NaCl is very 

high.   

 

Therefore, the promoting factors and inhibiting factors for γ-glycine growth 

compete with each other.  At low NaCl, the promoting factors which facilitate creating 

building units for γ-glycine growth dominate the inhibiting factors.  With increase of 

NaCl, the inhibiting factors start to be significant and tend to override the promoting 

factor.  As a result, the trend of γ-glycine growth shows an initial increase, a plateau and 

a decrease, with increase of NaCl, as observed from Figure 6-5-1.   

 

It should be pointed out that, with increase of NaCl, the solution viscosity would 

increase and it may play a part in inhibiting γ-glycine growth due to slow mass transfer.  

However, a study under similar conditions showed that the role of mass transfer was 

insignificant, since the effect of the agitating speed on γ-glycine growth from 5.0m NaCl 
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solution was practically negligible when it was increased from 260 rpm to 300 rpm (Tian, 

2006).   

 

6.6 Summary  

The experimental results of γ-glycine crystal growth from different electrolyte 

solutions show that, generally 1:1 and 1:2 electrolytes have a much greater promoting 

effect on γ-glycine growth while 2:1 and 2:2 electrolytes have a much weaker influence 

on the enhancement of γ-glycine growth.  Though different ions affect the growing faces 

of γ-glycine crystals differently, the results from the present study lend additional support 

to the mechanisms proposed in Chapter 5.   

 

It was also revealed that, if an electrolyte in a solution is too high, it would start to 

impede γ-glycine growth.  Therefore an optimization may be needed to determine the 

best dosage of an electrolyte for the fastest γ-glycine growth when the situation comes.   
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Chapter 7  Conclusions and Recommendations 

 

Conclusions are drawn and recommendations are made as follows.   

 

7-1 Conclusions  

1) For measuring solution thermodynamic activity coefficients, a new and simple 

technique, namely steady state shifting technique, was developed to extend the 

application of the potentiometric (electrochemical) method from under-saturated 

solutions to supersaturated solutions.  The new technique has been experimentally 

verified by comparing our results with literature data for under-saturated solutions.  Its 

successful application to supersaturated solutions of three systems (NaCl+glycine+H2O, 

NaCl+DL-serine+H2O and NaCl+DL-analine+H2O) has been demonstrated.  New and 

interesting phenomena observed particularly for supersaturated solutions have been 

reported and discussed.   

 

2) The very good thermodynamic consistency between activity and solubility for 

each of the three systems (NaCl+glycine+H2O, NaCl+DL-serine+H2O and NaCl+DL-

analine+H2O) would suggest that experimental measurements on both activity and 

solubility are accurate.  It should be highlighted that, without supersaturated activity data, 

it is difficult to analyze thermodynamic consistency.   

 

3) Via a rigorous thermodynamic approach, a further extension of the proposed 

steady state shifting technique was made so that it can be applicable to binary 

 166



nonelectrolyte solutions in the supersaturated region.  Though obtaining binary activities 

in supersaturated region is the objective as the supersaturated binary activity data would 

be useful for crystallization study of a nonelctrolyte from H2O, the obtained binary 

activity data for under-saturated solutions (DL-alanine+H2O) reinforced the general 

validity of the proposed thermodynamic approach to extraction of binary nonelecetrolyte 

activity.  Thus the proposed technique offers a convenient alternative to experimental 

thermodynamic studies for binary nonelectrolyte supersaturated solutions.   

 

4) Based on the obtained activity data (especially the supersaturated activity data), 

an analysis of molecular interactions and the formation of different complexes was made, 

suggesting that γ-glycine polymorph produced from its aqueous solution with presence of 

a 1:1 electrolyte would be a general phenomenon.  This analysis naturally guided the 

research to the systematic investigation of the effects of different electrolytes on glycine 

polymorphs.   

 

5) The effects of electrolytes on glycine polymorphs were experimentally 

investigated.  The results showed that 1:1 (e.g. KCl) and 1:2 (e.g. (NH4)2SO4) electrolytes 

substantially induce γ-glycine, while 2:1 (e.g. CaCl2) and 2:2 (e.g. MgSO4) electrolytes 

have a higher tendency to induce α-glycine.  These results of glycine polymorphs are in 

good agreement with the reported ones (Bhat and Dharmaprakash, 2002a and 2002b; 

Moolya et al., 2005; Towler et al., 2004).   
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The mechanisms for these observed phenomena of glycine polymorphs were 

proposed based on molecular interactions (particularly ion-dipole interaction) and the 

chemistries of glycine polymorphs.  As was suggested by the mechanisms, the valence(s) 

rather than other properties of the ions from an electrolyte primarily determine whether a 

particular glycine polymorph (among α- and γ-glyicne) can be preferentially formed from 

the electrolyte solutions, due to the significant effects of the electrolyte ions on building 

units and on the growing facets of glycine polymorphs.  Eventually, the growth kinetics 

controls the nucleation onset of glycine polymorphs, which led to the quantitative 

evaluation of γ-glyicne growth rates from different electrolyte solutions.   

 

6) Many experiments for γ-glycine crystal growth from different electrolyte 

solutions were carried out.  As it is expected, generally, 1:1 and 1:2 electrolytes 

tremendously promote γ-glycine growth while 2:1 and 2:2 electrolytes have a much 

weaker influence on the enhancement of γ-glycine growth.  Though different ions from 

electrolytes affect the growing faces of γ-glycine crystals differently, the kinetic data 

from this study suggest that the valence(s) of the ions from an electrolyte primarily 

determines the growth rate of γ-glycine, thus supporting the mechanisms proposed for 

glycine polymorphs from electrolyte solutions.   

 

The kinetic study also revealed that an electrolyte at very high concentration 

would start to impede γ-glycine growth.  Therefore the best dosage of an electrolyte 

exists for the fastest γ-glycine growth and it may be determined by optimization when it 

is needed.   
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7-2 Recommendations  

1) Further generalization of the new technique 

It is expected that the steady state shifting technique can be used for 

thermodynamic study for many other ternary electrolyte+nonelectrolyte+H2O and binary 

nonelectrolyte+H2O systems in their supersaturated regions, based on the framework 

established in this study.  It is necessary to further generalize the technique, by using 

different ion selective electrodes (e.g. NO3
–, K+ and NH4

+).   

 

2) Effects of solvents  

Solvents (or mixed solvents) can exert a big influence on thermodynamic 

behavior of supersaturated solutions (and polymorphs).  It would be interesting and 

possible to look into the effects of different solvents on supersaturated solutions, using 

the proposed technique.   

 

3) Thermodynamic modeling of supersaturated solutions 

It is of practical importance to thermodynamically model supersaturated solutions.  

Literature data by UNIFAC model (Peng et al., 2001) and our preliminary study using 

NRTL model showed that generally these standard thermodynamic models are difficult to 

be applicable to supersaturated solutions.  It seems necessary to develop new 

thermodynamic models for supersaturated solutions.   

 169



4) Investigation of other crystal systems  

The mechanisms proposed for the effects of electrolytes on glycine polymorphs 

and γ-glycine kinetics should be relevant for understanding and controlling crystal 

polymorphs of other systems, as it may be generally implied that 1:1 electrolytes are 

likely to induce polar polymorphic crystals consisting of dipolar molecules.  Therefore, 

investigation of the effects of 1:1 electrolytes on polymorphs and growth kinetics of other 

crystal systems is worthwhile.   
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Appendix A  Solubility Test 
 

An isothermal method was used to measure the solubility of an amino acid in a 

given electrolyte solution at 25 °C.  There were three major stages involved in the 

method for solubility test: solid-liquid equilibration, determination of solution 

concentration and examination of crystal polymorphs.  Solubilities of three amino acids, 

glycine, DL-serine and DL-alanine in various electrolyte solutions were tested at 25 °C.   

 

A1. Equilibration between crystals and liquid  

The equilibration may be either a dissolution process for crystals to dissolve or a 

solution desupersaturation process for the crystals to grow at the given temperature of 

interest.  Either process eventually reaches the solid-liquid equilibrium at which the 

concentration of the solute of interest is the solubility.    

 

A1-1 Equilibration via crystal dissolution  

Sufficient excess of crystals of an amino acid was put in a given electrolyte 

solution (approximately 130 g) in a jacketed glass container (a 250 ml warming beaker).  

The suspension solution was agitated by a magnetic stirrer to allow the solid-liquid 

equilibrium to be attained fast, while the temperature of the solution was maintained at 25 

°C using a water circulator (temperature readability of 0.1 °C).  The crystals were 

dissolved into the solution till the solid-liquid equilibration was reached.  The jacketed 

glass container was kept sealed throughout the experiment to avoid evaporation.   
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A1-2 Equilibration via solution desupersaturation  

Sufficient excess of crystals of an amino acid was put in a given electrolyte 

solution (approximately 130 g) in a jacketed glass container (a 250 ml warming beaker).  

While the suspension solution agitated by a magnetic stirrer, it was first heated up to 

about 30 °C and maintained for approximately 2 hours to make the solution concentrated 

(higher than solubility at 25 °C); then the suspension solution was cooled down to and 

maintained at 25 °C using a water circulator for the crystals in the solution to keep 

growing till the solid-liquid equilibration was reached.  The jacketed glass container was 

kept sealed throughout the experiment to avoid evaporation.   

 

A2 Determination of solution concentration  

A2-1 Measurement of solution density 

After the solid-liquid equilibrium was reached via either crystal dissolution or 

solution desupersaturation, the agitation was stopped to allow the suspended crystals to 

settle.  The clear supernatant saturated solution, withdrawn using a disposable syringe 

(B.Braun, 2ml), was injected into the Anton-Paar DMA5000 precise density meter to 

measure the solution density, through a disposable nylon syringe filter (FroFill, pore size 

0.22μm).  This density meter has a density accuracy of ±10-6 g/ml.  The temperature in 

the measuring tube of the meter was kept at 25.000±0.001°C, using the built-in 

temperature control system.  The concentration of the saturated solution, i.e. the 

solubility, was then determined using a pre-determined correlation curve of solution 

density vs solution concentration at a given electrolyte molality (refer to Section A2-2 for 

correlation).  Compared with the commonly used solution-drying method for 
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concentration determination (Khoshkbarchi and Vera, 1997; Ferreira, et al., 2005), using 

solution density has obvious advantages: no concern about thermal degradation of the 

sample; overcoming the uncertainty due to insufficient removal of the trapped solvent 

among the crystal particles.  In fact, excellent reproducibility and high accuracy of 

concentration measurement using solution density have been reported (Lampreia et al., 

2006; Tjahjono et al., 2005).   

 

A2-2 Correlation of solution density vs solution concentration  

For a given electrolyte solution (its density d0 at 25 °C can be obtained using the 

density meter), standard solutions (at least 3) of an amino acid were prepared using the 

same electrolyte solution.  The solution density of any of the standard solutions was 

measured, denoted as d.  Data for a typical correlation of solution density deference ∆d 

(∆d = d – d0, g/ml) with glycine concentration c (g/100g H2O) were shown in Table A-1 

and plotted in Figure A-1.  The obtained correlation was nicely straight, ∆d = 

0.0020672385c + 0.0117321440, with correlation coefficient R2 = 0.99996.  In fact, 

excellent straight correlation lines were also obtained for general systems of 

(electrolyte+amino acid+H2O) at 25 °C, with correlation coefficient R2 of about 0.9999.  

These correlation curves were then used to determine the concentrations of an amino acid 

in given electrolyte aqueous solutions.   
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Table A-1 density of solution (glycine+2.5m NaCl) vs glycine concentration at 25 °C 
(Density of 2.5m NaCl, d0 = 1.089194 g/ml at 25 °C) 

 
glycine concentration (c, 
g/100g H2O) of standard 
solutions  

Density of (2.5m 
NaCl+glycine+H2O), g/ml, 
at 25 °C  

Density difference, 
∆d = d – d0, at 25 °C  

24.566 1.151697 0.062503 

25.484 1.153624 0.064430 

25.902 1.154478 0.065284 

26.572 1.155860 0.066666 

27.007 1.156745 0.067551 
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Figure A1  Correlation of solution density difference vs glycine concentration in 

2.5m NaCl solution at 25 °C. 
 

 195



A3 Examination of crystal polymorphs  

It should be pointed out that powder-XRD was performed to check the 

polymorphs of crystals of these amino acids (especially glycine) before and after the 

solid-liquid equilibration, as an amino acid may have different polymorphs which have 

different solubilities (Sakai, et al., 1991).  It is necessary to examine the polymorphs of 

crystals before and after solid-liquid equilibration because the transformation from one 

polymorph to another may occur during solid-liquid equilibration.  The polymorph 

should be controlled for reliable and accurate solubility measurement.  XRD examination 

of the raw γ-glycine, DL-serine and DL-alanine and their crystals collected from the 

saturated solutions confirmed that there were no polymorph changes, which addressed the 

concern on polymorph transition.   

 

A4 Discussion   

It was found that it took about 24 hours for the crystals to dissolve and reach the 

equilibrium in an aqueous electrolyte solution.  In order to ensure the equilibrium was 

reached, the equilibration lasted for at least 48 hours.  As expected, excellent 

reproducibility of the solubility data was achieved, with a very small absolute mean 

deviation (less than 0.02g/100g H2O).  The uncertainty of solubility of an amino acid in 

an electrolyte solution increased (nearly linearly) with electrolyte molality.  Generally, it 

was estimated that the uncertainty of the solubility in a concentrated electrolyte (e.g. 5m 

NaCl) solution was not bigger than 0.04g/100g H2O.   
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 It was also noted that dissolution and desupersaturation paths produced practically 

the same solubility data.  As impurity incorporation could occur during crystal growth 

(here desupersaturation process), the negligible difference between solubility data 

produced by dissolution and desupersaturation would be another evidence suggesting that 

the incorporation (if any) of these electrolytes into amino acid lattices was insignificant.   

 

 It should be pointed out that, α-glycine is thermodynamically metastable and it 

can quickly converted into γ-glycine in many electrolyte solutions.  Therefore, the 

solubility of α-glycine in these electrolyte solutions could only be approximately 

screened by dissolving α-glycine crystals in an electrolyte solution in a short period of 

time (about one hour rather than 24 or 48 hours) before the solution sample was taken for 

concentration determination.  As the rate of α-glycine dissolution was fast, it was 

reasonably assumed that the solution concentration after one hour of dissolution was 

quite close to the solubility.  The solubility of α-glycine obtained in this way was 

generally underestimated.  Nevertheless, these screened solubility data of α-glycine were 

still useful for reliable study on glycine polymorphs from electrolyte solutions (Chapter 

6).   

 

 197


	References for PhD (17Jan 2008, final).pdf
	Knapman, K., (2000).  Polymorphic predictions - Understanding the nature of crystalline compounds can be critical in drug development and manufacture. Modern Drug Discovery, 3, 53-54. 


