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A method for carring out quantum-mechanical scattering calculations (J. Chem. Phys. 86 (1987) 62 13) is successfully applied 
to 3-D H + Hz reactive scattering. This new method (essentially the Kohn variational method, but applied directly to the S-matrix 
rather than to the K-matrix) is general, straightforward, variationally stable, and applies equally well to reactive (i.e., rearrange- 
ment) and non-reactive scattering process. Its most important practical feature, compared to other similar basis-set approaches, 
is that it requires matrix elements only of the Hamiltonian operator itself and not those involving the scattering Green’s function 
of some reference problem. Our calculations show that the method is numerically stable within a broad range of energies and 
converges fast with respect to basis set and numerical parameters. The method allows the use of a flexible distortion potential and 
contracted basis functions. Due to its generality and straightforwardness, the method is potentially powerful for studying more 
complex reactive systems beyond atom/diatom reactive scattering. 

1. Introduction 

A new method for carrying out quantum-mechanical scattering calculations was recently presented by Miller 
and Jansen op de Haar [ 11. The purpose of this paper is to report the successful application of this approach 
to reactive scattering of H + H2+H2 + H in three dimensions (for total angular momentum J= 0). 

The method [l] we use relies on a variational expansion of the full scattering Green’s function 
G + (E) = (E+ ie - H) - ’ in a discrete set of basis functions, 

G+(&_ Iu,>((u~lE-HIu,~))-‘(u21, 
. ’ 

where (( ~7 I E-HI u,) ))-’ denotes the (t, t’) elements of the inverse matrix of the matrix (UT I E-HI ut, ). Eq. 
(1) has a similar structure to that of the complex scaling/coordinate rotation method of Nuttall and co-workers 
[ 21, Reinhardt and co-workers [ 31, and McCurdy and Rescigno [ 41, in that the matrix of E-H is complex 
symmetric (not Hermitian). Our use of eq. (1) differs from the complex scaling approach in that the basis 
functions are chosen to impose the correct outgoing wave boundary conditions of G+(E) exactly, rather than 
approximately. 

The important practical feature of the method is that it applies equivalently to non-local (i.e. exchange), as 
well as local interaction potentials. It is thus applicable to electron-atom/molecule and also to Miller’s for- 
mulation [ 51 of chemically reactive scattering, both of which involve exchange interactions. The final “working 
formulae” of the method are similar in structure to the Schwinger variational method, as well as to the L2 
method of Kouri, Truhlar and co-workers [ 6,7 ] (which also utilizes Miller’s formulation [ 51). The primary 
advantage of the present method over these others is that it requires that one computes matrix elements only 
of the Hamiltonian operator between the various basis functions; no matrix elements involving the Green’s 
function Go of a reference Hamiltonian are required. (For example, matrix elements of VG,, V are required in 
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the Schwinger method, and even more complicated ones in the approaches used in refs. [6,7].) 
Section 2 briefly summarizes the methodology, while specializations for the present application to A+BC 

3-D reactive scattering is given in section 3. Results of the calculations are presented and discussed in section 
4. 

2. Review of method 

2.1. Elastic scattering 

To see the essence of the method it is useful first to consider the case of s-wave potential scattering, for which 
the Hamiltonian is 

H= -gg+ V(R). (2) 

The resulting expression is essentially a direct utilization of eq. (1) in the formally exact expression for the 
scattering operator, T= V+ VG+ (E) K Specifically, the S-matrix is given in the present method as 

where the plane wave Cp is normalized as 

0(R) =Jv-’ sin(kR) , (4) 

v=hk/p, and {u,(R)}, t= 1 ,..., N is some (real) square integrable basis set. The function u,,(R) enforces the 
outgoing wave boundary conditions of the problem; it is regular at the origin, and its asymptotic form is 

lim u,(R) z exp(ikR) . W 
R-rm 

Our choice for u,(R) is 

u,(R) = [ 1 -exp( -M)] exp(ikR) , (5b) 

though this is not unique. The reader should see ref. [ 1 ] for the derivation of this variational result and a more 
complete discussion of its characteristics and relation to other approaches. 

In most applications it is more satisfactory to use a distorted-wave representation rather than the plane-wave 
representation in eq. (3). If V,(R) is the zeroth-order (distorting) potential and V’ = V- V,, then eq. (3) is 
modified as follows 

S=S(O) _; 
( 

<x’-‘lv’Ix’+‘)+ ,~~otx”Irl~,)((~:(E-Hl~~~~)-l(u:lrlX’t’) 3 
> 

(ha) 
. ’ 

where here x( * ) is the regular scattering solution for the potential T/,(R) with asymptotic form 

x’+’ N 
R-a, 

exp( *iv) JFsin(kR+q) , (6b) 

q being the phase shift for potential Vo; S(O) = exp( 2iq). We note also that since 

V Ix”‘)=(z-z-E) Ix”‘) > (7) 

the matrix element of I” in eq. (6a) may be equivalently expressed also as matrix elements of H-E. In general, 
the better the distorted wave representation, i.e. the closer V, is to V and thus the smaller V’, the smaller is 
the basis set {u,} that is required to obtain converged result. 
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2.2. Inelastic and reactive scattering 

The above expressions are generalized in a straightforward manner to treat inelastic and reactive scattering. 
Since the reactive case was dealt with only cursorily before [ 11, we consider it in more detail here. Specifically, 
we consider a general reactive system with N possible asymptotic arrangements of particles, with y being the 
arrangement channel label; non-reactive scattering is the special case of only one asymptotic arrangement. The 
total Hamiltonian is naturally partitioned in N different ways, 

H=H,+ V, ) (W 

where H, is the Hamiltonian which describes arrangement y asymptotically, and VY is the interaction potential 
in arrangement y. If R, denotes the radial translational coordinate for arrangement y, and qu the internal coor- 
dinates (including the two angles R,), so that 

lim V, =O 
R,-CC 

(8b) 

or 

lim H=H, , (8~) 
Ry-m 

then Hy has the generic form 

H,=_i2 
24, =Ry -$ R, aR; 

+hy(qy)+ V;“(R,) , 
Y 

(9) 

where an elastic distortion potential VY (O) has been included. & is the orbital angular momentum operator, and 
h, is the Hamiltonian for the internal degrees of freedom, with eigenfunctions {&(qr)} and eigenvalues 
{E,.}, n, being the collective quantum number for all the internal degrees of freedom. 

The scattering matrix for a transition from arrangement cx to arrangement 8, i.e. a chemical reaction, is pro- 
portional to matrix elements of the operator V,+ V,G + (E) V,, where in the present method a variational 
expression of the G + (E) has the form of eq. (1). The boundary conditions for the variational approximation 
require that the basis set used to represent G + have outgoing waves in all open channels of all arrangements. 
We thus chose the following basis 

uXi’(R,) @,(q,) 9 (10) 

which is characterized by the composite index ( y, n,, tY) . The translational functions {U z ( Ry )}, t, 2 1, are real, 
square-integrable functions (distributed Gaussians [ 8,9] in our calculations), and z@‘( RY) is the special trans- 
lational function (cf. eq. (5b)) which enforces the correct boundary conditions; we choose it as 

u$(R,) = [ 1 -exp( -AR,)] exp(ik,,R,) RF’ . (11) 

The S-matrix element for a typical transition is then the matrix generalization of eq. (6a), 

where the distorted wavefunctions x$z,) are given by 

x:;,)(Ry, qy) =@n,(qy)fln:)(Ry) ; 

(12) 

(13) 
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the translational function f(,: ) is the (regular) elastic scattering solution satisfying the radial Schrijdinger 
equation 

fi2 

[ ( La2R _ 
-2u, R, azq y R; 

yc+gy -E+ f’$‘)tR,) fk”(R,) =O 1 (14) 

with asymptotic normalization similar to eq. (6b), generalized to include orbital angular momentum. It is use- 

ful to define the real translational functions fn, by 

fi:) =exp( *in,,.)_&, (15) 

and then fn, has the asymptotic boundary condition 

~,R,,7m~R;‘[co~tln,,JI,,(ICY~,YR7)+~in~~iN/y(kylriJyRY)1 , (16) 

where JIT and N,,, are spherical Ricatti-Bessel functions with the asymptotic forms 

JI~~(~,,,,&) = sin(h,,,,Ry - 41,~) (17a) 
R-03 

and 

N/,.(k,,,,.R,) = cos(k,,,& - &n) . 
R-CO 

(17b) 

Note that only open channel distorted wavefunctions are needed. A full elastic potential matrix is used as the 
distortion potential. 

To evaluate the reactive S-matrix elements via eq. (12) there are basically three matrices one needs to cal- 
culate; these are defined as 

A nj?.rb = <L&la I VcY - Go) I 9n,_L, > , (19a) 

B rpnp.n, = <Q&8 I vex - JGO’ I hJ2, > (19b) 

and 

C wn,~.t<rnc, = Wf&, IE-Hlh,m~:,“) . 

We partition the Ctpnp.rana matrix into four matrix blocks as follows: 

c 
C” 

r~n19.r,n, = 
r8nl?.t,na C &9,1un~ 

> C&Ll& C&J& ’ 

U9c) 

(20) 

where the superscript o denotes the one translational basis function uo, which is energy dependent, and c denotes 
the translational basis functions u,( t> 0), which are energy independent. The zeroth-order S-matrix is 

SBOnL.olna =&In+, exp(2iV,,) . (21) 

In terms of these partitioned matrices A, B and C, therefore, the final “working formula” for the S-matrix is 

S=exp(in) S’ exp(iq) , (22a) 

where 

S’=Z-(4iIfi)[A+BTC-‘B] , (22b) 
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and matrix notation is assumed. 
Finally, we note again the identity 

v, Ix:;) > = (H-E) 1x6:) > (23) 

for y = (11 or /I, and this shows the obvious way that one can generalize eq. (12) to use a multichannel (non- 
reactive) distorted-wave representation to lessen further the demands put on the translational basis {u,}. 

3. Specifics for atom/diatom reactive scattering 

We consider now a specific system composed of three atoms, A, B, C, with possible reaction channels 
A+BC(y =a), B+ CA( y =b), C+AB( y =c), where y is the arrangement label. The Jacobi coordinates for 
arrangement y are denoted (r,, R,), where rr is the interatomic vector of the diatom directed from B to C, C 
to A, or A to B depending on the channel y, and R, is the vector from the diatom mass center to the remaining 
atom in the arrangement channel y. It is convenient to use mass-scaled vectors defined by 

R,=A,R; , (24a) 

ry4;'r; , (24b) 

where R; and r; are the unscaled coordinate vectors. Using a’, /I, and y as distinct, cyclic channel indices and 
denoting the mass of the projector atom in channel y by m,, the scale factors A,, are defined as 

A,=[m,(m,+mp)2/mamma(m,+m~+m,)]"4. (25) 

The transformation among the scaled Jacobi coordinates (rY, RY) for the various channels is an orthogonal 
transformation, 

-sin /isol R, 

>( > cos ABa r, ’ 
(26) 

where 

cos Apa = - [mam,l(M-m~)(A4-m,)]L'Z (27a) 

and 

sinA~ol=(1-~~~2Afl~)“2, (27b) 

where M is the total mass of the system (M= m, + m, + m,). In terms of the scaled Jacobi coordinates the 
kinetic energy operator Ty contains only one reduced mass, 

p=(mm,m~m,lM)"*~. (28) 

The following discussion will specifically refer to a case of elastic distortion potential. 
The distorted wavefunction of eq. (13) then takes the specific form 

x”‘=h,.(ry,~~)~~)(Ry) (29) 

where &,,. is a channel basis function, which is a product of vibrational- and rotational-orbital functions in 
space-fixed coordinates, 

9,;. =Xy*,,*(~y) Y;Z(fY, 4) . (30) 

The vibrational functions, x+,~, satisfy the usual vibrational eigenvalue equation, 
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( fi2 i a2 fi2j,tiy+l) 
---25+& r; 2~ r, ar, + Gib(r,)--Eyvylv 

> hJr,)=O y (31) 

where cYYti is a diatomic eigenvalue, and the rotational-orbital functions, yiy, are defined in terms of spherical 
harmonics by [ lo] 

Y;$=,~:,,, <i,&m,,m,,. lj,&JW 5,,,.(fy) Fym,,.(ff,) T (32) 

where (j, 1, m,,. mh 1 j, 1, JM) is a Clebsch-Gordan coefficient. To evaluate these matrix elements it is useful to 
note that the coupled total angular momentum eigenfunctions in space-fixed coordinates can be written as [ 51 

(33) 

where yr is the angle between vectors R, and ry, @,, 8,, 8, are three rotational Euler angles, and O&M is the 
Wigner rotation matrix [ 1 I]. For translational basis set we used floating Gaussians [ 8,9], defined as 

u~,~(R)=R-’ exp[ -a,(R-R,)2] , (34) 

where R, is the center of the t basis function; (Y, is chosen for simplicity to be constant for all basis functions, 
i.e. the Gaussians are equally spaced. 

The B,,,,,,,,,,, matrix defined in eq. (19b) is explicitly integrated as 

x Y,,,Q,~~(~~, 0) Xa~w,,(ra)fal’~,,J,(Ru) y (35) 

where Sz, and Q,_ are projection quantum numbers of total angular momentum on body-fixed coordinate Z 
axes around direction fi, and l?,. Apa is the angle between & and R,, and dJn,,,n,s is the reduced rotation matrix. 
We use the standard Jacobi coordinates ri dr, Ri dR, d cos ya to evaluate Btgnp,na to avoid interpolation because 
the distorted wavefunction is generated numerically on an evenly spaced grid. For the same reason, we use 
coordinates [ 51 sine3Ap, R,j dR, Ri dR, d&, to evaluate the integrals in eq. (19a), where ABa is the angle 
between vectors R, and R,. The expression for this integral is similar to that for Btana,n, matrix except that the 
distorted wavefunction replaces the translational basis function. In evaluating the Cta,,p,Qna matrix of eq. (1 SC), 
we used a new set of integration coordinates, rp;ra, coga, where wga is the angle between two diatomic vectors 
rfl and r,. It is not difficult to show that the Jacobian for these coordinates is 

sin3A,, y’a dr, ri dr, d cos wBcv = ri dr, Ri dR, d cos yol . (36) 

The reason we use these coordinates rather than the standard Jacobi coordinates is because the integrand of 
the exchange integrals is weighted by two vibrational eigenfunctions, one of each arrangement, which are much 
more limited in space than the translational functions. For example, the range in r for H2 vibration eigen- 
function v= 5 is between 0.6 and 3.2 bohr; as a result, many fewer integral points are needed. 

4. Results of calculation 

We carried out numerical calculations for 3-D H +H2 reaction for a broad range of energies on both 
Porter-Karplus potential surface and LSTH potential surface. The results are very stable with respect to numer- 
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Table 1 
Convergence of 3-D H + H2 reactive probability PR (OO+ all) on LSTH potential surface for J= 0 with respect to basis functions 

Number of translational basis functions a) 

22 25 28 

0.50 1.9( -4) 1.8( -4) 1.8( -4) 
0.90 0.46 0.47 0.47 
1.30 0.60 0.61 0.61 

number of vibration-rotation basis functions b, 

30” 36 d’ 45 e’ 

0.50 1.8( -4) 1.8( -4) 1.8( -4) 
0.90 0.47 0.47 0.48 
1.30 0.60 0.61 0.60 

aJ Thirty-six vibration-rotation basis functions (12, 10, 8, 6). (This notation means rotational states j=O, 1, . . . . 11 for vibrational state 
v=O, rotational states j=O, . . . . 9 for vr 1, and so forth.) 

‘) Twenty-five translational basis functions. 
“(12,10,8). d’(12,10,8,6). “(13,11,9,7,5). 

ical parameters and basis functions. Table 1 shows the cumulative reaction probability from the ground state 
of Hz for three typical energies, 0.5, 0.9, and 1.3 eV, representing low, medium, and high energy. The results 
are given for different sizes of the two types of basis functions, vibration-rotation functions and translational 
functions, to show the stability and degree of convergence. One sees that a total of 36 vibration-rotation func- 
tions and 25 primitive Gaussians are sufficient to converge the calculation for a broad range of energies with 
up to three vibration states open. It is suggested that the variational character of the method is largely respon- 
sible for the numerical stability and fast convergence achieved in the calculation. 

Finally, tables 2 and 3 compare our results with those obtained by several other groups on both 
Porter-Karplus and LSTH potential surfaces. In table 2, for the LSTH potential surface, we note excellent 
agreement of our results with those of the L* method of ref. [ 71, and table 3, for the Porter-Karplus potential, 
shows good agreement with results obtained using the hyperspherical coordinate method [ 16,17 1. 

5. Concluding remarks 

This work demonstrates that the S-matrix Kohn method, developed in ref. [ 11, provides a stable and efficient 
way for carrying out chemical reactive scattering calculations in 3-D. Furthermore, the methodology is suf- 
ficiently general that it is directly applicable to reactions other than “standard” atom-diatom systems. 

Our approach is similar in many aspects to other basis set methods, in that the scattering calculation reduces 
essentially to linear algebra. Its principle advantage compared to others is that it requires calculation only of 
matrix elements of the Hamiltonian operator itself, there being no appearance of a Green’s function for some 
reference problem. (We note in passing that it is Miller’s formulation [ 51 of reactive scattering, i.e. a coupled 
channel expansion simultaneously in all arrangements, that necessitates the use of a basis set method, for that 
formulation produces non-local exchange interactions which couple the various arrangements. Use of hyper- 
spherical coordinates [ 16,171 or matching methods [ 151 are alternate formulations that do not lead to non- 
local interactions and thus can be treated with local propagation algorithms.) 

At this stage in the methodological development it would be useful to incorporate various technologies devel- 
oped in quantum chemistry for handing the large linear algebra part of the calculations. In particular, one needs 
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Table 2 
Distinguishable H + H2 reactive probability (P ~o_o), summed over final rotational states for total angular momentum J=O, and on 
LSTH potential surface 

E,,, (W WL”’ WSL b’ CS” L2d’ Present 

0.50 

0.55 
0.60 
0.65 
0.70 
0.80 
0.85 
0.90 
0.95 
1 .oo 
1.05 
1.10 
1.15 
1.20 
1.25 
1.30 
1.35 
1.40 
1.45 
1.50 

0.050 
0.247 
0.358 
0.364 
0.432 
0.506 
0.433 
0.347 
0.395 
0.469 

0.287 0.45 

0.036 
0.195 
0.333 
0.349 
0.397 
0.464 
0.450 
0.386 
0.417 

2.4( -4) 

0.025 

0.27 
0.30 
0.37 
0.38 
0.32 
0.36 

1.8( -4) 
3.0( -3) 
0.036 
0.20 
0.34 
0.36 
0.41 
0.47 
0.47 
0.39 
0.44 
0.50 

0.50 

0.49 

0.51 

1.8(-4) 
3.06( -3) 
0.036 
0.20 
0.34 
0.36 
0.41 
0.47 
0.47 
0.39 
0.47 
0.50 
0.48 
0.45 
0.48 
0.51 
0.51 
0.49 
0.49 
0.52 

a) Ref. [12]. b)Ref. [13]. “Ref. [14]. d’Ref. [7]. 

Table 3 
Distinguisable H+H2 reactive probability from initial ground state to several final states for total angular momentum J=O on 
Porter-Karplus potential surface 

Et,, (ev) P(O, O+O,i) SK”’ PP b’ Present 

0.65 0 0.085 0.087 
1 0.160 0.162 
2 0.097 0.098 

0.70 0 0.095 0.086 0.087 
1 0.180 0.173 0.176 
2 0.120 0.122 0.122 

0.75 0 0.072 0.076 
1 0.157 0.162 
2 0.127 0.132 

0.80 0 0.07 1 
1 0.161 
2 0.135 

0.152 
0.136 

0.071 
0.154 
0.136 

1.00 0 
1 

0.130 0.128 0.127 
0.230 0.200 0.205 
0.068 0.082 0.083 

a1 Ref. [ 151. s) Ref. [ 161. 

336 



Volume 140, number 4 CHEMICAL PHYSICS LETTERS 9 October 1987 

to explore the possibility of basis set contractions to reduce the number of basis functions. It would also be 
useful to see if the use of a multi-channel distorted-wave representation [ 181 would significantly reduce the 
size of the basis set required. 
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