

New Reliability Standard – NERC TPL-007-1

November 9, 2017

Unrestricted © Siemens Industry, Inc. 2017

usa.siemens.com/digitalgrid

Tutorial Outline

Introduction

•NERC TPL-007-1

- Requirements and Measures
- Benchmark GMD Event
- GIC Analysis
- GMD Vulnerability Assessment
- Transformer Thermal Assessment
- Corrective Action Plans

•Other Types of GMD-related studies

•TPL-007-2 Draft Version

Unrestricted © Siemens Industry, Inc. 2017

SIEMENS

North American Electric Reliability Corporation (NERC)

•Regulatory authority established to assure the reliability and security of the bulk power system in North America

•Develops and enforces reliability standards

Annually assesses seasonal and long-term reliability

•Educates, trains, and certifies industry personnel

Unrestricted © Siemens Industry, Inc. 2017

SIEMENS

NERC Reliability Standards

•Establish reliability requirements for planning and operating the bulk power system

•US regulatory jurisdiction (14 categories, 98 standards)

- (BAL) Resource and Demand Balancing
- (CIP) Critical Infrastructure Protection
- (COM) Communications
- (EOP) Emergency Preparedness and Operations
 - EOP-010-1 Geomagnetic Disturbance Operations
- (FAC) Facilities Design, Connections, and Maintenance
- (INT) Interchange Scheduling and Coordination
- (IRO) Interconnection Reliability Operations and Coordination
- (MOD) Modeling, Data, and Analysis
- (NUC) Nuclear
- (PER) Personnel Performance, Training, and Qualifications
- (PRC) Protection and Control
- (VAR) Voltage and Reactive
- (TOP) Transmission Operations
- (TPL) Transmission Planning
 - TPL-007-1 Transmission System Planned Performance for Geomagnetic Disturbance

Events

Unrestricted © Siemens Industry, Inc. 2017

Geomagnetic Disturbance (GMD)

Unrestricted © Siemens Industry, Inc. 2017

usa.siemens.com/digitalgrid

Geomagnetic Disturbance (GMD)

Source: NERC 2012 Special Reliability Assessment Interim Report: Effects of Geomagnetic Disturbances on the Bulk Power System

Geomagnetic Disturbance (GMD)

- Disturbances to Earth's magnetic field.
- GMD events are natural hazards that can occur during solar events driven by Solar Coronal Holes and Coronal Mass Ejections (CME).
- CMEs are huge explosions of magnetic field and charged particles from the Sun's corona.
- CMEs may take14 to 36 hours to reach Earth.
- A severe GMD can occur due to a large CME that is directed at Earth.

Unrestricted © Siemens Industry, Inc. 2017

SIEMENS

Sunspots/Solar Cycle

Sunspot Number Progression

Source: http://www.swpc.noaa.gov/products/solar-cycle-progression

Unrestricted © Siemens Industry, Inc. 2017

Page 8 02-07-2017

Geomagnetic Disturbance (GMD)

Source: NERC 2012 Special Reliability Assessment Interim Report: Effects of Geomagnetic Disturbances on the Bulk Power System

Geomagnetic Disturbance (GMD)

Source: Introduction to Geomagnetic Disturbance, Iowa State University Spring GMD Webinar Series

Unrestricted © Siemens Industry, Inc. 2017

Page 10 02-07-2017

- Low frequency (0.0001 Hz 1 Hz); quasi-dc
- From power system modeling perspective GIC is considered as dc

Transformer – Normal Operation

The magnetizing current I_m establishes the flux in the core.

 I_m lags system voltage by 90° and so draws reactive power; when $I_m \uparrow$, Q \uparrow .

Source: Introduction to Geomagnetic Disturbance, Iowa State University Spring GMD Webinar Series

Unrestricted © Siemens Industry, Inc. 2017

Page 12 02-07-2017

Transformer – Half-cycle Saturation

The magnetizing current I_m establishes the flux in the core.

I_m lags system voltage by 90° and so draws reactive power; when $I_m \uparrow$, Q \uparrow .

Saturated	Low Lm	$\operatorname{High} \mathcal{R}$	
Unsaturated	High L _m	Low $\mathcal R$	

Source: Introduction to Geomagnetic Disturbance, Iowa State University Spring GMD Webinar Series

Page 13 02-07-2017

Transformer Saturation

In ferromagnetic materials, electron spin and charge result in the formation of ~0.01mm cubes of material, called domains, that behave like magnetic dipoles. Ferromagnetic materials become magnetized when domains align from being exposed to an external magnetic field. The stronger the field, the greater the number of aligned domains. When all domains align, material is saturated - no: additional external magnetization will increase its internal magnetization level.

Source: Introduction to Geomagnetic Disturbance, Iowa State University Spring GMD Webinar Series

Unrestricted © Siemens Industry, Inc. 2017

Transformer Saturation – Core Design

Source: Introduction to Geomagnetic Disturbance, Iowa State University Spring GMD Webinar Series

Reactive Power (Q) vs GIC

Consumption from GIC Saturated Transformers," IEEE Power Engineering Society Winter Meeting, 2001.

Source: Introduction to Geomagnetic Disturbance, Iowa State University Spring GMD Webinar Series

Unrestricted © Siemens Industry, Inc. 2017

Page 16 02-07-2017

Effects of GIC on the Power System

Source: NERC 2012 GMD Report

Historical GMD Events

Unrestricted © Siemens Industry, Inc. 2017

usa.siemens.com/digitalgrid

Historical Events

SIEMENS

•1859 Carrington Event (August 28, September 2)

- Largest recorded geomagnetic disturbance
- Widespread Aurora observations, Telegraph operations were disrupted

•1921 Solar Storm (May 14-15)

•Widespread Aurora observations, Telegraph communications disrupted

•1989 Québec Blackout (March 13-14)

- Voltage collapse and blackout Hydro-Québec system, leaving more than six million people without power for nine hours
- SVCs unintentional tripping, Equipment damage

Historical Events

•2003 Halloween Solar Storms (October 19-November 5)

- Affected spacecraft operations, deep space missions and near-Earth satellites, Caused communication degradation, high levels of neutral current, capacitor tripping
- October 30 GIC flows of 330 A in a large 3-phase transformer in the south of Sweden. A blackout (20-50 min) caused by line trip due to higher sensitivity to the 3rd harmonic associated with transformer saturation

March 1989 Storm – Ground Level Geomagnetic Intensification

SIEMENS

Source: High-Impact, Low-Frequency Event Risk to the North American Bulk Power System Report by NERC and DOE

Unrestricted © Siemens Industry, Inc. 2017

Page 21 02-07-2017

March 13, 1989 GMD Event (Severe - K9)

•Sudden large variation in earth's magnetic field resulted in voltage collapse and blackout of Hydro-Québec system in 92 seconds

- GIC created harmonic voltages and currents of considerable intensity.
- Voltage asymmetry on the 735-kV network reached 15%.
- Seven static var compensators tripped
- Voltage dropped so drastically
- Five lines to Montréal tripped through loss of synchronism (virtual fault), and the entire network separated.
- Loss of 9,450 MW of generation caused a very rapid frequency drop
- Automatic underfrequency load-shedding controls functioned properly, but they are not designed for recovery from a generation loss equivalent to about half system load. The rest of the grid collapsed piece by piece in 25 seconds.

Ground Level Geomagnetic Intensification – March 13, 1989 substorm (17:00 EST)

Source: High-Impact, Low-Frequency Event Risk to the North American Bulk Power System Report by NERC and DOE

Unrestricted © Siemens Industry, Inc. 2017

Page 23 02-07-2017

EM DG PTI

Geomagnetic Disturbance (GMD)

•GMD can have severe, widespread effects on reliable grid operation, including voltage collapse, blackouts and damage to critical or vulnerable equipment.

•Understanding the effects of these high impact, low frequency GMD events on bulk power system and the ability of the industry to mitigate their effects are important to managing system reliability.

TPL-007 Reliability Standard Development

Unrestricted © Siemens Industry, Inc. 2017

usa.siemens.com/digitalgrid

FERC Order 779

143 FERC ¶ 61,147 UNITED STATES OF AMERICA FEDERAL ENERGY REGULATORY COMMISSION

18 CFR Part 40

[Docket No. RM12-22-000; Order No. 779]

Reliability Standards for Geomagnetic Disturbances

(Issued May 16, 2013)

System. The Commission directs NERC to implement the directive in two stages. In the first stage, NERC must submit, within six months of the effective date of this Final Rule,

one or more Reliability Standards that require owners and operators of the Bulk-Power

System to develop and implement operational procedures to mitigate the effects of GMDs

consistent with the reliable operation of the Bulk-Power System. In the second stage,

NERC must submit, within 18 months of the effective date of this Final Rule, one or

more Reliability Standards that require owners and operators of the Bulk-Power System

to conduct initial and on-going assessments of the potential impact of benchmark GMD

FERC Order 779 (continued)

- In May 2013, FERC issued Order 779 which directs NERC to submit Reliability Standards that address the impact of GMD on the reliable operation of the bulk power system
 - Stage 1 Operating Procedures
 - Stage 2 Detailed Assessments (Initial and ongoing Planning Studies)
- Standards project 2013-03 (GMD Mitigation) began in June 2013
- Two standards were developed:
 - EOP-010-1 Geomagnetic Disturbance Operations was approved by FERC in June 2014.
 - TOP-007-1 Transmission System Planned Performance for Geomagnetic Disturbance Events

EOP-010-1 – Geomagnetic Disturbance Operations

GMD Monitoring & Forecasting

Space Weather real-time monitoring and forecasting

- US Space Weather Prediction Center SWPC, Boulder, Colorado; part of NOAA
- Canada Canadian Space Weather Forecast Centre, Ottawa, Ontario

Earth's Geomagnetic field monitoring (Monitors Magnetic observatories and distributes magnetometer data in realtime)

- US US Geological Survey (USGS)
- Geological Survey of Canada (GSC)

Space Weather Monitoring (CME, DSCOVR, ACE)

Geomagnetic Storms

Scale	Description	Effect	Physical measure	Average Frequency (1 cycle = 11 years)
65	Extreme	Power systems: Widespread voltage control problems and protective system problems can occur, some grid systems may experience complete collapse or blackouts. Transformers may experience damage. Spacecraft operations: May experience extensive surface charging, problems with orientation, uplink/downlink and tracking satellites. Other systems: Pipeline currents can reach hundreds of amps, HF (high frequency) radio propagation may be impossible in many areas for one to two days, satellite navigation may be degraded for days, low-frequency radio navigation can be out for hours, and aurora has been seen as low as Florida and southern Texas (typically 40° geomagnetic lat.).	Кр = 9	4 per cycle (4 days per cycle)
G 4	Severe	Power systems: Possible widespread voltage control problems and some protective systems will mistakenly trip out key assets from the grid. Spacecraft operations: May experience surface charging and tracking problems, corrections may be needed for orientation problems. Other systems: Induced pipeline currents affect preventive measures, HF radio propagation sporadic, satellite navigation degraded for hours, low-frequency radio navigation disrupted, and aurora has been seen as low as Alabama and northerm California (typically 45° geomagnetic lat.).	Kp = 8, including a 9-	100 per cycle (60 days per cycle)
63	Strong	Power systems: Voltage corrections may be required, false alarms triggered on some protection devices. Spacecraft operations: Surface charging may occur on satellite components, drag may increase on low-Farth- orbit satellites, and corrections may be needed for orientation problems. Other systems: Intermittent satellite navigation and low-frequency radio navigation problems may occur, IIF radio may be intermittent, and aurora has been seen as low as Illinois and Oregon (typically 50° geomagnetic lat.).	Кр = 7	200 per cycle (130 days per cycle)
G 2	Moderate	Power systems: High-latitude power systems may experience voltage alarms, long-duration storms may cause transformer damage. Spacecraft operations: Corrective actions to orientation may be required by ground control; possible changes in drag affect orbit predictions. Other systems: HF radio propagation can fade at higher latitudes, and aurora has been seen as low as New York and Idaho (typically 55° geomagnetic lat.).	Кр = б	600 per cycle (360 days per cycle)
61	Minor	Power systems: Weak power grid fluctuations can occur. Spacecraft operations: Minor impact on satellite operations possible. Other systems: Migratory animals are affected at this and higher levels; aurora is commonly visible at high latitudes (northern Michigan and Maine).	Кр = 5	1700 per cycle (900 days per cycle)

Source: http://www.swpc.noaa.gov/phenomena/coronal-mass-ejections

Source: http://www.swpc.noaa.gov/news/27-july-2016-it%E2%80%99s-all-systems-go-noaa%E2%80%99s-first-deep-space-space-weather-satellite Unrestricted © Siemens Industry, Inc. 2017

Page 30 02-07-2017

New Geoelectric Field Model for Real-Time Situational Awareness (expected in 2018)

SIEMENS

http://www.swpc.noaa.gov/news/new-space-weather-model-geoelectric-field-model-announced-today

Unrestricted © Siemens Industry, Inc. 2017

Page 31 02-07-2017

FERC Order 830

SIEMENS

156 FERC ¶ 61,215 UNITED STATES OF AMERICA FEDERAL ENERGY REGULATORY COMMISSION

18 CFR Part 40

[Docket No. RM15-11-000; Order No. 830]

Reliability Standard for Transmission System Planned Performance for Geomagnetic Disturbance Events

(Issued September 22, 2016)

AGENCY: Federal Energy Regulatory Commission.

ACTION: Final rule.

SUMMARY: The Federal Energy Regulatory Commission (Commission) approves

Reliability Standard TPL-007-1 (Transmission System Planned Performance for

Geomagnetic Disturbance Events). The North American Electric Reliability Corporation

(NERC), the Commission-certified Electric Reliability Organization, submitted

Reliability Standard TPL-007-1 for Commission approval in response to a Commission

directive in Order No. 779. Reliability Standard TPL-007-1 establishes requirements for

certain registered entities to assess the vulnerability of their transmission systems to

geomagnetic disturbance events (GMDs), which occur when the sun ejects charged

Unrestricted © Siemens Industry, Inc. 2017

Page 32 02-07-2017

FERC Order 830 (continued)

- NERC to develop modifications to Reliability Standard TPL-007-1 (due May 2018):
 - Modify the benchmark GMD event definition so it is not based solely on spatially-averaged data
 - Include data collection requirements for GIC monitoring and magnetometer data
 - Include deadlines for the development and completion of corrective action plans and mitigation actions.

Unrestricted © Siemens Industry, Inc. 2017

Unrestricted © Siemens Industry, Inc. 2017

usa.siemens.com/digitalgrid

NERC TPL-007-1 Components

•Requirements and Measures

Benchmark GMD Event

•GIC Calculation (DC Network Analysis)

GMD Vulnerability Assessment

•Transformer Thermal Assessment

•Corrective Action Plan (CAP)

Unrestricted © Siemens Industry, Inc. 2017

NERC TPL-007-1

- **GMD Vulnerability Assessment** is a documented evaluation to find out if the system can withstand a Benchmark GMD Event without causing a wide area blackout, voltage collapse, islanding or equipment damage.
- Transformer Thermal Assessment is performed to find out if there are any transformers (YG HV winding) connected to 200 kV or higher going to overheat based on Benchmark GMD Event.
NERC TPL-007-1

Purpose

Establish requirements for Transmission system planned performance during geomagnetic disturbance (GMD) events.

Applicable to:

 Planning Coordinator, Transmission Planner, Transmission Owner, Generator Owner with power transformer(s) with a high side, wye-grounded winding with terminal voltage greater than 200 kV.

TOP-007-1 Requirements and Measures - R1 & M1

TOP-007-1 Requirements and Measures – R2 & M2

TOP-007-1 Requirements and Measures – R3 & M3

TOP-007-1 Requirements and Measures – R4 & M4

R4 – Complete GMD Vulnerability Assessment Studies

- •Responsible entities complete a GMD Vulnerability Assessment of the Near-Term Transmission Planning Horizon once every 60 calendar months.
- •R4.1 System On-Peak Load for at least one year, System Off-Peak Load for at least one year within near-term planning horizon
- •R4.2 Conduct studies based on benchmark GMD event
- •R4.3 Provide completed assessment to Reliability Coordinator, adjacent Planning Coordinators and Transmission Planners within 90 calendar days of completion
- •R4.3.1 Respond to comments received within 90 calendar days

M4 – Dated Evidence of actions performed to fulfill R4

- •In either electronic or hard copies of its GMD Vulnerability Assessment meeting all of the requirements in Requirement R4.
- •Provide evidence, such as email records, web postings with an electronic notice of posting, or postal receipts showing recipient and date, that it has
- •distributed its GMD Vulnerability Assessment within 90 calendar days of completion.
- •provided a documented response to comments received on its GMD Vulnerability Assessment within 90 calendar days of receipt of those comments

TOP-007-1 Requirements and Measures – R5 & M5

R5 – Provide GIC flow Information for Thermal Impact Assessment to Transmission Owner and Generator Owner.

- Responsible entities provide GIC flow information to be used for the transformer thermal impact assessment specified in Requirement R6. The GIC flow information shall include
- R5.1 The maximum effective GIC value for the worst case geoelectric field orientation for the benchmark GMD event
- R5.2 The effective GIC time series, GIC(t), calculated using the benchmark GMD event upon request from Transmission Owner or Generator Owner within 90 calendar days and after determination of the maximum effective GIC value

M2 - Evidence of actions performed to fulfill R5

· Email records

- Web postings with an electronic notice of posting, or
- postal receipts showing recipient and date, that it has provided the maximum effective GIC value and GIC(t)

TOP-007-1 Requirements and Measures – R6 & M6

R6 – Perform Thermal Impact Assessment

•Each Transmission Owner and Generator Owner conduct a thermal impact assessment for applicable power transformers where the maximum effective GIC value provided in Requirement R5.1 is **75 A per phase or greater**. The thermal impact assessment shall

- •R6.1 Be based on the effective GIC flow information provided in R5
- •R6.2 Document assumptions used in the analysis
- •R6.3 Describe suggested actions and supporting analysis to mitigate the impact of GICs, if any;
- •R6.4 Be performed and provided to the responsible entities, as determined in Requirement R1, within 24 calendar months of receiving GIC flow information specified in Requirement R5, Part 5.1.

M6 - Evidence of actions performed to fulfill R6

Electronic or hard copies of its thermal impact assessment for all of its solely and jointly owned applicable BES power transformers where the maximum effective GIC value provided in Requirement R5, Part 5.1, is 75 A per phase or greater
Email records, web postings with an electronic notice of posting, or postal receipts showing recipient and date, that it has provided its thermal impact assessment to the responsible entities as specified in Requirement R6

TOP-007-1 Requirements and Measures – R7 & M7

TPL-007-1 Requirements and Measures – R7 and M7

SIEMENS

R7.1 Examples of CAP:

- Installation, modification, retirement or removal of transmission and generation facilities and any associated equipment.
- Installation, modification, or removal of protection systems or special protection systems.
- Use of operating procedures, specifying how long they will be needed as part of corrective action plan.
- Use of demand-side management, new technologies etc.

TPL-007-1 Enforcement Dates

SIEMENS

	TPL-007-1 Requirements	Enforcement Date
R1	Identify roles and responsibilities	July 1, 2017
R2	Maintain System models and GIC System (DC) models	July 1, 2018
R3	Have acceptable voltage criteria	January 1, 2022
R4	GMD Vulnerability Assessment studies	January 1, 2022
R5	 Provide maximum effective GIC flow information for worst case geoelectric field orientation Effective GIC time series, GIC(t) 	January 1, 2019
R6	Conduct a thermal impact assessment if max I_{eff} /phase >= 75 A	January 1, 2021
R7	Develop corrective action plan	January 1, 2022

Meeting TPL-007-1 Requirements

	TPL-007-1 Requirements	How to meet?
R1	Identify roles and responsibilities	Policy document
R2	Maintain System models and GIC System (DC) models	Power flow Models (PSS®E, PSLF) and GIC data files (Text, excel)
R3	Have acceptable voltage criteria	Policy document
R4	GMD Vulnerability Assessment studies	GIC Module (PSS®E, PowerWorld, PSLF) and other standard power flow activities
R5	 Provide GIC flow information for worst case geoelectric field orientation Effective GIC time series, GIC(t) 	GIC module output (PSS®E)
R6	Conduct a thermal impact assessment if max I _{eff} /phase >= 75 Amps	Done using GIC(t) and transformer thermal response capability data
R7	Develop corrective action plan	 a) Company policy: based on grid knowledge develop this b) Implement in PSS®E Case and GIC data files

TPL-007-1 Enforcement Dates

GIC System (DC) Model

Unrestricted © Siemens Industry, Inc. 2017

usa.siemens.com/digitalgrid

GIC System (DC) Model

1. Defines a regional geoelectric field peak amplitude (Epeak) used to compute GIC flows that are needed to conduct assessments required by the standard.

$$E_{peak} = 8 \times \alpha \times \beta \quad (V/km)$$

2. Gives a reference geomagnetic field time series or waveshape to be used to calculate GIC(t) required for transformer thermal impact assessment.

Benchmark GMD Event – Reference Peak 8 V/km

- A reference geoelectric field value of 8 V/km is derived from statistical analysis of historical magnetometer data
- Statistical occurrence of spatially averaged geoelectric field amplitudes:
 - Four curves with dots correspond to different station groups and
 - The gray area shows a visual extrapolation to 1-in-100 year amplitudes (3-8 V/km).
 - The legend shows the data coverage for each station group used in computing the averaged geoelectric field amplitudes.

Benchmark GMD Event – Regional Peak 8 V/km

Calculated regional geoelectric field amplitude from the reference geoelectric field

$$E_{peak} = 8 \times \alpha \times \beta \quad (V/km)$$

•α (alpha) scaling factor to account for local geomagnetic latitude.

•β (beta) scaling factor to account for the local earth conductivity structure.

α (alpha) Scaling Factors

 Based on data from a large number of global geomagnetic field observations of all major geomagnetic storms since the late 1980s, α can be approximated as

 $\alpha = 0.001 \cdot e^{(0.115 \cdot L)}$

where L is the geomagnetic latitude in degrees and $0.1 \le \alpha \le 1.0$.

 Geomagnetic latitude is analogous to geographic latitude, except that bearing is in relation to the magnetic poles, as opposed to the geographic poles.

Table 2– Geomagnetic Field Scaling Factors					
Geomagnetic Latitude	Scaling Factor1				
(Degrees)	(α)				
≤ 40	0.10				
45	0.2				
50	0.3				
54	0.5				
56	0.6				
57	0.7				
58	0.8				
59	0.9				
≥ 60	1.0				

β (beta) Scaling Factors - The Earth Model

- Given the range of frequencies relevant to GIC (1 mHz to 1 Hz) and the conductivity values within the earth, magnetic field variations can penetrate hundreds of kilometers below the surface.
- Thus, the conductivity down through the earth's crust and into the mantle must be taken into account when determining the electric field at the surface.
- Layered earth models with depths of up to 1000 km are considered.

The Earth Model

Laterally uniform earth models are used.

• Earth is assumed to consist of horizontal uniform layers.

Source: NERC GMD Task Force Documents

Unrestricted © Siemens Industry, Inc. 2017

Page 56 02-07-2017

SIEMENS

1-D Earth Conductivity Models of United States

 Developed by United States Geological Survey (<u>USGS</u>) <u>http://geomag.usgs.gov/conductivity</u>

1-D Earth Conductivity Models of Canada

Unrestricted © Siemens Industry, Inc. 2017

SIEMENS

β (beta) Scaling Factors

Table 3 — Geoelectri	c Field Scaling Factors
USGS	Scaling Factor
Earth model	(β)
AK1A	0.56
AK1B	0.56
AP1	0.33
AP2	0.82
BR1	0.22
CL1	0.76
CO1	0.27
CP1	0.81
CP2	0.95
FL1	0.74
CS1	0.41
IP1	0.94
IP2	0.28
IP3	0.93
IP4	0.41
NE1	0.81
PB1	0.62
PB2	0.46
PT1	1.17
SL1	0.53
SU1	0.93
BOU	0.28
FBK	0.56
PRU	0.21
BC	0.67
PRAIRIES	0.96
SHIELD	1.0
ATLANTIC	0.79

Source: https://geomag.usgs.gov/conductivity/IP-1/

β (beta) Scaling FactorsU.S. Geographical Regions

SIEMENS

AK-1 - Adirondack Mountains

AP-1 - Appalachan Plateaus

AP-2 - Northern Appalachan Plateaus

BR-1 - Northwest Basin and Range

CL-1 - Colorado Plateau

CO-1 - Columbia Plateau

<u>CP-1 - Coastal Plain (South Carolina)</u>

<u>CP-2 - Coastal Plain (Georgia)</u>

CS-1 - Cascade-Sierra Mountains

FL-1 - Florida Peninsula

IP-1 - Interior Plains (North Dakota)

IP-2 - Interior Plains

IP-3 - Interior Plains (Michigan)

IP-4 - Interior Plains (Great Plains)

NE-1 - New England

PB-1 - Pacific Border (Willamette Valley)

PB-2 - Pacific Border (Puget Lowlands)

PT-1 - Piedmont

SL-1 - St. Lawrence Lowlands

SU-1 - Superior Upland

Benchmark Geomagnetic Field Waveshape

- The geomagnetic field measurement record of the March 13-14 1989 GMD event, measured at NR Canada's Ottawa geomagnetic observatory is the basis for the reference geomagnetic field wave shape because it provides generally conservative results when performing thermal analysis of power transformers.
- The geomagnetic latitude of the Ottawa geomagnetic observatory is 55 therefore, the amplitude of the geomagnetic field measurement data were scaled up to the 60 deg reference geomagnetic latitude such that the resulting peak geoelectric field amplitude computed using the reference Quebec earth model was 8 V/km.
- Sampling rate for the geomagnetic field wave shape is 10 seconds.

Benchmark Geomagnetic Field Waveshape

Eastward Magnetic Flux Density, B_{EW} (Blue)

Benchmark Geoelectric Field Waveshape

$$E_E = -(z(t)/\mu_o) * B_N(t)$$

$$E_N = (z(t)/\mu_o) * B_E(t)$$

Eastward Geoelectric Field, E_E

Northward Geoelectric Field, E_N

GIC System (DC) Model

GIC Data File

Unrestricted © Siemens Industry, Inc. 2017

usa.siemens.com/digitalgrid

Development of DC system model

As GIC is very low frequency (0.0001 Hz-1Hz), power flow network data reduced to just resistance network with these modifications:

- Transmission lines modeled as resistor in series with induced voltage
- Grounded two- and three-winding transformers modeled with their winding resistance to ground
- Grounded auto-transformers are modeled with their common and series winding resistance
- Grounded Bus shunts are modeled
- Transformer GIC blocking devices are modeled
- Generators, capacitors excluded

GIC Data File

- Substation
 - Location (Latitude, Longitude)
 - Equivalent station grounding resistance
 - Earth Model
- Transformers
 - Winding resistance
 - Core
 - K-factor
 - Vector group
- Add comments on the data source Assumed, Measured etc
- If study cases (System On-Peak, System Off-peak) are from different years with different topology, then additional GIC data may be needed.

GIC Data File - Substation data

) 🖬 🔊 -	€) ÷		gic_data_template	e.xlsx - Microsoft I	Excel		
	Home	Insert Page La	iyout Formulas	Data Review Vi	ew Acrobat	PDF-XChange 2012	? Team	🙆 – 📼 🗙
Past	Arial	- 10 <i>I</i> <u>⊎</u> - [General → \$ → % →	 Gonditional Form Format as Table Cell Styles * 	natting * 📴 Insert + * 🔐 Delete + ∰ Format *	Σ · · · · · · · · · ·
Clipbo	pard 🖻	Font	6	Alignment 🕞	Number 🧧	Styles	Cells	Editing
	A1	- (•	f_{x}					¥
	А	В	С	D	E	F	G	H 두
1		Substation D	Data and Bus G	roups				
2	Notes	(1) Edit/Chang	e data items Name	, Latitude, Longitud	e, Rg and Comn	nent.		=
3		(2) Edit/Specify	y only known data	item values.				
4		(3) RG FLAG is	s just a information	note on how RG va	alue is obtained.	Possible Flag c	ould be: Assumed, N	leasured, Calculated
5		(4) For data ite	ems with allowed de	fault value, blank (r	ot specified) val	ue will be asign	ed as default value ir	PSSE GIC module
6		(5) Do NOT ch	ange format of the	worksheet.				
7			No default	No default	No default	0.1	Activity Optn	Assumed
8	Substation	List of Buses	Name	Latitude (deg)	Longitude(deg)	RG(ohm)	Earth Model	RG FLAG 🔍
Ready	▶ भ 🚶 Sub /	station / Trans	former / FixedShur	t Branch / Earth	Model 🖌 Switche	dShunt /2TDC	<u> </u>	ACTS / Load / 🞾 🗍

GIC Data File Transformer data

1	A	В	С	D	E	F	G	Н		J
1		Transform	er Data							
2	Notes	(1) Edit/Cha	nge data iten	s WRI, WRJ	WRK, CKT, GI	CBDI, GICBDJ, O	GICBDK, VECGRP	CORE, KI	FACTOR, GR	DRI, GRDR.
3		(2) Edit/Spe	cify only know	wn data item	values.					
4		(3) When wr	i, wrj and wrk	are not spec	ified, they are ca	lculated from tra	ansformer AC resis	tance value	s in power flor	w data.
-		(4) For data items with allowed default value, blank (not specified) value will be asigned as default value in PSSE GIC module								
5		(4) I UI Uala	items with a	lowed delault	Turue, biunity (not	opooniou, reneo				ic mouule.
5		(5) Do NOT	change forma	t of the work	sheet.	opeenied) idiee				ic module.
5 6 7		(5) Do NOT	change forma	t of the work	sheet. from Rac	from Rac	from Rac	0	0	0
5 6 7 8	BUSI	(5) Do NOT BUSJ	change forma BUSK	t of the work: CKT	sheet. from Rac WRI (ohm/ph)	from Rac WRJ (ohm/ph)	from Rac WRK (ohm/ph)	0 GICBDI	0 GICBDJ	0 GICBDK

VECGRP	CORE	KFACTOR	GRDRI (ohm)	GRDRJ (ohm)	GRDRK (ohm)	TMODEL	Comment	
No default	0	0	0	0	0	0	< Default	Values
GRDRK, TM	ODEL and (Comment.						
K	L	M	Ν	0	Р	Q	R	S

GIC Data File User Earth model data

SIEMENS

	gic_data_template.xlsx									
	A	В	С	D	E	F	G	Н	1	J
1		User Ea	th Model	Data						
2	Notes	(1) Provide	(1) Provide each Earth Model Data columnwise and from column B.							
3		(2) The thi	ckness of t	he last laye	r is infinity.	Specify this	s as any nu	imber less	than 0.	
4		(3) The nu	3) The numbers of layers allowed for each earth model are 25 or less.							
5		(4) Model	Model name should be unique and upto 12 characters.							
6		(5) Model	(5) Model name should be different than standard model names defined in PSSE GIC Module.						dule.	
7		(6) Do NO	6) Do NOT change format of the worksheet.					11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1		
8	NAME	Weiter 1								
9	BETA FACTOR									
10	DESCRIPTION									
11	Resistivity (ohm-m) Layer 1									
12	Thickness (km) Layer 1									
13	Resistivity (ohm-m) Layer 2									
14	Thickness (km) Layer 2									
15	Resistivity (ohm-m) Layer 3									
16	Thickness (km) Layer 3	Li D.L			r. lel		10.1		10.1	- /
	GicFileVersion Subst	ationData 📿	Transform	herData	FixedShuntl	Jata / Bra	anchData	EarthMod	elData 🏑 👻	2

58	Resistivity (ohm-m) Layer 24			
59	Thickness (km) Layer 24			
60	Resistivity (ohm-m) Layer 25			
61	Thickness (km) Layer 25			
62				
14 4	GicFileVersion / SubstationData	/ TransformerData /	FixedShuntData / BranchData	EarthModelData

GIC Data File User Earth model notes

- TPL-007-1 defined Earth Conductivity Models for US and Canada are modeled as standard earth models (just use its name in GIC data file).
- If any other Earth Model is required, use this data record to define such an earth model.
- A total of up to 50 user earth models are allowed.
- Each earth model may have up to 25 layers.
- Use as many records needed to specify the data.
- The thickness of the last layer is infinity.
 - This is specified as any value less than 0.0 (= -999.0 for example).
 - The thickness value less than 0.0 is also used as end of earth model data.

Date Courses and

NERC – Application Guide – Guidance on Data

Network Component	Most Appropriate Data	Best Alternative	Data Sources and
	For Accurate Modeling	Estimate - When	Comments
		Desired Model Data Is	
		Not Available	
Grounded wye winding of	Measured dc resistance	50% of the total per-	dc resistance and copper
conventional transformer	of the winding at	unit copper loss	loss resistance are
	nominal tap and adjusted	resistance converted to	obtained from transformer
	to 75 °C and divided by 3	actual ohms at winding	test records.
	(see note)	base values and divided	Transformer copper loss
		by 3	resistance from power
			flow model data base.
Autotransformer series	Measured dc resistance	50% of the total per-	dc resistance and copper
windings	of each winding at	unit copper loss	loss resistance are
	nominal tap and adjusted	resistance converted to	obtained from transformer
	to 75 °C and divided by 3	actual ohms at full	test records.
	(see note)	winding base values	Transformer copper loss
		and divided by 3	resistance from power
			flow model data base.
Autotransformer	Measured dc resistance	50% of the total per-	dc resistance and copper
common winding	of each winding at	unit copper loss	loss resistance are
_	nominal tap and adjusted	resistance converted to	obtained from transformer
	to 75 °C and divided by 3	actual ohms at V _H	test records.
	(see note)	winding base values	Transformer copper loss
		and divided by (V _H /V _x -	resistance from power
		1) ² and divided by 3	flow model data base.
Shunt reactor	Measured dc resistance	Measured ac copper	dc resistance and copper
	of winding adjusted to 75	loss resistance of	loss resistance are
	°C and divided by 3 (see	winding at factory test	obtained from test
	note)	temperature and	records.
		divided by 3	
Ground grid to remote	Measured value from	Calculated value from	Commissioning or routine
earth including the	ground grid test	design modeling	grounding integrity test
effects of overhead			data, or ground grid design
shield wires			software.
Neutral blocking device	Nameplate ohms for a	Not applicable	Depends on capability of
	resistor;		network modeling
	100 $\mu\Omega$ for solid ground		software, but the study
	modeled as a resistor;		tool must be able to
	1 MΩ for capacitor		handle this branch as
	(modeled as a resistance)		closed, open, or fixed
			value of resistance.

Table 2: Summary of network component and associated resistive data for a one-phase GIC network model

NERC | Application Guide | December 2013

- 1	Network component	Most Appropriate Data	Dest Alternative	Data Sources and
		For Accurate Modeling	Estimate - When	Comments
			Desired Model Data Is	
			Not Available	
Ś	Transmission line	One third of the	One third of the	Conductor manufacturer
		individual phase dc	individual phase ac	tables, system electrical
		resistance adjusted to 50	resistance adjusted to	design data, network
		°C	50 °C or 75 °C	model data for power flow
				and fault studies.
	Series line capacitor	100 $\mu\Omega$ for bypassed	Not applicable	Depends on capability of
		state modeled as a		network modeling
		resistor;		software, but the study
	1 MΩ for inserted s			tool must be able to
		modeled as a resistor		handle this branch in
				either its short circuit
				(bypassed) or capacitive
				(inserted) state.

Network Common and Adapt Ammon wists Data Data

To assure best accuracy and the data consistency needed for sharing model data with other study engineers, estimated values should only be used when the desired resistive data is not obtainable

GIC Calculation

GIC Calculation

Unrestricted © Siemens Industry, Inc. 2017

usa.siemens.com/digitalgrid

Analysis Tools

- Commercially-available GIC modules available in power system analysis software:
 - PSS/E
 - PowerWorld
 - PSLF
- These tools solve the dc network for a set of steady-state geoelectric field assumptions, and determine transformer var losses to be included into the power flow model (typically connected to a transformer as a constant current source).

Analysis Tools

- PSS/E GIC Module
 - Integrated into Power flow application
 - Geoelectric field (Uniform, Non-uniform, Benchmark, Local Hot-Spot)
 - Options to run automatic orientation scan
 - Transformer losses embedded into powerflow case at the end of GIC calculation
 - GIC output results maps/plots
 - Generates GIC(t) waveforms for thermal impact assessment (Benchmark waveform or user defined electric field waveform)
 - Electric field magnitude scanning up to 20 V/km, solves powerflow model to find system limitation

GIC Flow in a Simplified Power System

Source: NERC GMD Task Force Material - GIC Application Guide

Unrestricted © Siemens Industry, Inc. 2017

Page 77 02-07-2017

SIEMENS

GIC Calculation

1. V1, V2, V3, V4 (induced voltages from geoelectric field (E))

SIEMENS

$$V_{dc} = E_x L_x + E_y L_y$$

Lx, Ly calculated using WGS84 Earth model used in GPS:

 $L_N = (111.133 - 0.56 \cos(2\phi)) \cdot \Delta lat$

$$L_E = (111.5065 - 0.1872 \cos 2\phi) \cdot \cos \phi \cdot \Delta \log \phi$$

$$\phi = \frac{LatA + LatB}{2}$$

2. Convert V1, V2, V3, V4 into equivalent current sources (11, 12, 13, 14);

I1=V1/Rline1, ...

Page 78 02-07-2017

GIC Calculations

- 3. Apply Kirchhoff's current law at each node
- 4. Construct Y matrix (1/R or G)
- 5. Calculate node voltages
- 6. Calculate Current flowing in the network, branches, transformers

$$\begin{bmatrix} J \end{bmatrix} = \begin{bmatrix} Y \end{bmatrix} \begin{bmatrix} V \end{bmatrix}$$
$$Y_{ii} = y_i + \sum_{k=1}^{N} y_{ki} \qquad k \neq i$$
$$Y_{ki} = -y_{ki}$$
$$\begin{bmatrix} V \end{bmatrix} = \begin{bmatrix} Y \end{bmatrix}^{-l} \begin{bmatrix} J \end{bmatrix}$$

GIC Calculations

7. Calculate Effective GIC through each transformer

Effective GIC

The effective GIC (I_{eff}) flow in a transformer due to GICs flowing in one or more of its winding is dependent upon transformer type.

GIC Flow in Various Transformer Configurations

Refer PSS®E Program Application Guide, Volume 1

Unrestricted © Siemens Industry, Inc. 2017

Page 81 02-07-2017

Effective GIC Two-winding transformer

SIEMENS

 $I_1 N_1 + I_2 N_2 = I_{eff} N_1$ $=\frac{N_1}{N_2}=\frac{V_1}{V_2}$ N $\left|\frac{NI_1 + I_2}{N}\right|$ I_{eff}

Effective GIC Two-winding auto transformer

SIEMENS

 $I_S N_S + I_C N_C = I_{eff}(N_S + N_C)$ $N = \frac{N_S + N_C}{N_C} = \frac{V_1}{V_2}$ $I_{eff} = \left| \frac{(N-1)I_S + I_C}{N} \right|$

GIC Calculations

8. Calculate Qlosses using K-factors

Mvar/Ampere Scaling Factor (K_{factor})

- One of the effects of the GICs flowing in transformer windings is that the transformer is subjected to half-cycle saturation resulting in increased reactive power (Mvar) losses in these equipment.
- Using GIC to Mvar scaling factors transformer reactive power losses are calculated.
- When a specific K_{factor} value is provided for a transformer:

$$Q = I_{eff} \times K_{factor}$$

Using generic scaling factor value based on the transformer type:

$$Q = I_{eff} \times K_{factor} \times \frac{V_{H}}{500}$$

where V_H is Transformer Windings highest voltage in kV.

Generic Scaling Factors

(a) K _{factor} determined based on transformer cores									
Core Design	Cores	K _{factor}							
Three-phase, shell form	-1	0.33							
Single-phase (three separate cores)	1	1.18							
Three-phase, 3-legged, core form	3	0.29							
Three-phase, 5-legged, core form	5	0.66							
Three-phase, 7-legged, core form	7	0.66							
(b) K _{factor} determined based on base kV of	transformer	windings							
Windings Highest Voltage		K _{factor}							
Unknown core, <= 200 kV		0.6							
Unknown core, > 200 kV and <= 400 kV 0.6									
Unknown core, > 400 kV 1.1									

Source: X. Dong, Y. Liu, J. G. Kappenman, "Comparative Analysis of Exciting Current Harmonics and Reactive Power Consumption from GIC Saturated Transformers", Proceedings IEEE, 2001, pages 318-322

Unrestricted © Siemens Industry, Inc. 2017

Page 86 02-07-2017

GIC Calculations

SIEMENS

- Repeat all the above steps for each electric field orientation
- Report Maximum Effective GIC for each transformer (Requirement R5)
- Computes GIC(t) for thermal impact assessment

GIC Calculations Using PSS[®]E

Unrestricted © Siemens Industry, Inc. 2017

usa.siemens.com/digitalgrid

How to run GIC analysis in PSS®E?

PSS®E 33 - C:\Program Files	(x86)\PTI\PSSE33\I	EXAMPLE\ieee_gi	c_test_case.s	av	-				
File Edit View Diagram Po	wer Flow Fault O	PF Trans Access	Dynamics	Disturba	ance S	Subsystem	Misc I/0	O Control	Tools Win
🗋 💕 🛃 🐰 🗈 🕰	Solution			•	2	+90 -90 3		1 - •	
100% - 💽 🔾 💟 🗐	Changing			▶]			s 🖌 🤘		
	Reports			- F 🚽	• Ø 731	hm			
Network Tree View	Convert Loads and	d Generators				Ţ,			
NetworkData	Equivalence Netwo	orks				Area	Area	Zone	Zone
	Linear Network			► ⁵⁸	21.0	Num	Name	Num	Nam
I I Machine Machine Load	Contingency, Relia	bility, PV/QV analy	/sis	▶	345.0	1			1
Fixed Shunt	List Data		Ctrl+Sh	ift+L	345.0 500.0	1			1
Induction Machine	Check Data			▶	500.0	1			1
Branch	Renumbering Area	s / Owners / Zone	·S		500.0 500.0	1			1
⊕ 2 Winding	Renumber Buses	-,,		▶	500.0	1			1
General Swinding			<u></u>		500.0	1			1
2-Term DC	GIC (Geomagnetic	Induced Currents)		GIC	. Analysis			
	DVRM (Data Visua	lization and Repor	ting Module)		Cre	ate Excel te	emplate for	GIC data file	e
		15 E	3US15		Cre	ate GIC da	ata file fron	n Excel temp	late
• Owner		16 E	00516		Cre	ate GIC re	sult maps		
🗉 🖳 Zone		18 6	3US18					(CIC/II)	
GNE		10 E	3US19		Spe	ecity Effeld v	wavesnape	TOP GIC(T)	
		20 E	3US20		GIO	C Transform	ner thermal	l analysis	
		*	()				. 1		
Networ OPF Tre Dynami N	Nodel T Plot Tre		Bus / Plant /	Machin	e 👌 Loa	ad ∧ Fixed	Shunt 👌	Switched Sh	unt / Ind

PSS[®]E GIC analysis GUI

SIEMENS

GMD events modeled in PSS[®]E

Uniform Geoelectric Field E(t)

• Ignores effects of local earth conductivity and local geomagnetic latitude

Benchmark GMD Event E(t)

- E = 8 V/km
- Considers α, the scaling factor to account for local geomagnetic latitude, and β, the scaling factor to account for the local earth conductivity structure

Non-uniform Geoelectric Field E(t)

- Considers 1-D local earth conductivity models
- Calculates E(t) using Complex Image Method

Run GIC Analysis from Python[™] Script

(A) Run GIC activity (gic_3) using psspy module

This runs GIC activity and produces GIC analysis results in PSS[®]E Text reports.

(B) Run GIC analysis and retrieve results in Python[™] objects using arrbox.gic OR pssarrays modules

This runs GIC activity and returns GIC analysis results in Python[™] objects.

Example IEEE GIC Test Case Network

SIEMENS

IEEE GIC Test Case Calculations with Activity GIC

SIEMENS

Refer files in folder ... PTI\PSSExx\EXAMPLE

ieee_gic_test_case.sav
ieee_gic_test_case.gic
ieee_gic_test_case.sld

GIC Calculations Report

and state and										
GMD Even	t: Uniform Ge	ecelectric Fie	ld = 1.	00 V/km, 0.0 GMD Event	0 deg (Nort	th)				
Subsyste	m Inter tie 1	levels: 0								
Power fl GIC data	ow data file: file: D:\Use	: D:\Users00\0 ers00\CourseNo	CourseNo	ces-00\GIC\C	lass\ieee_g ee_gic_test	gic_t t_cas	est_case\ieee_ e\ieee_gic_tes	gic_test_cas t_case.gic	e.sav	
Transfor	mer Winding (GIC flow to My	ar Loss	Scaling Fac	tors (Kfact	tors)	[used if not	provided in	GIC data file	
(a) Kfac	tors are spec	cified at volt	age Lev	rel = 500.00	kV					
(b) Tran	sformer Core	Design								
S	hell Form	- Contraction and Contraction	0.330	000 Singl	e Phase (t)	hree	separate cores	i) = 1.18000)	
Т	hree Phase 3	legged core .	0.290	00 Three	Phase 5 14	egged	core	= 0.66000)	
Т	hree Phase 7	legged core =	0.660	000						
(c) Tran	sformer Unkno	own Core Desig	m, High	est Winding	Voltage Lev	vel				
W	Ainding Voltag	ge<=200 kV =	0.600	000 Windi	ng Voltage	<=400	kV	= 0.60000)	
W	Ainding Voltag	ge>200 kV =	1.100	000		1.1	A CONTRACTOR OF A	and second	11111111111111111111111111111111111111	
				This line leng	gth can give	hint	if geographica	l coordinates	s provided are	correct or no
	anaformer uit	nding hus not	in and	in aubauatan	in identify	and h	as adding a so	ira number		
Note: Tr	ansioimer win	nurny bus not	TU Beno	ly subsyscem	18 Idencii:	rea p	y adding - co	Tra number.		
Note: Tr	ansiormer wir	narny bas not	in scuo	ly subsystem	18 Identif.	Lea b	y adding - co	Induced	1.1	Section 2
Note: Tr Branch I	induced DC Vol	ltages, positi	ve pola	arity at To B	us	rea p	y adding - co	Induced Vdc	Norton	Currents
Note: Tr Branch I Branch N	induced DC Vol	ltages, positi ent Injections	ve pola , flowi	arity at To B ing from From	us Bus to To	Bus	y adding - co	Induced Vdc	Norton	Currents
Note: Tr Branch I Branch N 	Induced DC Vol Jodal DC Curre	ltages, positi ent Injections	ve pola , flowi	arity at To B ng from From To Bus -	us Bus to To	Bus Ckt	Distance (km)	Induced Vdc Voltage (V)	Norton per-Phase (A)	Currents 3-Phase (A
Note: Tr Branch I Branch N 2	Induced DC Vol Iodal DC Curre From Bus [BUS2	ltages, positi ent Injections 	ve pola , flowi 3	arity at To B ing from From To Bus - [BUS3]	Bus to To 345.00]	Bus Ckt 1	Distance (km) 120.82327	Induced Vdc Voltage (V) -7.27579	Norton per-Phase(A) -2.07172	Currents 3-Phase (A) -6.21517
Note: Tr Branch I Branch N 2 2	Induced DC Vol Iodal DC Curre From Bus [BUS2 [BUS2	ltages, positi ent Injections 	ve pola , flowi 3 17	arity at To B ing from From To Bus - [BUS3 [BUS17	us a Bus to To 	Bus Ckt 1	Distance (km) 120.82327 121.05262	Voltage (V) -7.27579 77.30185	Norton per-Phase (A) -2.07172 21.92933	Currents 3-Phase (A -6.21517 65.78799
Note: Tr Branch I Branch N 2 2 4	Induced DC Vo Iodal DC Curre From Bus [BUS2 [BUS2 [BUS4	ltages, positi ent Injections 	ve pola , flowi 3 17 5	arity at To B ng from From To Bus - (BUS3 (BUS17 (BUS5	a Bus to To 	Bus Ckt 1 1	Distance (km) 120.82327 121.05262 161.49371	Voltage (V) -7.27579 77.30185 -93.47285	Norton per-Phase (A) -2.07172 21.92933 -39.86049	Currents 3-Phase (A -6.21517 65.78799 -119.58148
Note: Tr Branch I Branch N 2 2 4 4 4	Induced DC Vol Iodal DC Curre From Bus [BUS2 [BUS2 [BUS4 [BUS4	ltages, positi ent Injections 	ve pola , flowi 3 17 5 5	arity at To B ng from From To Bus - (BUS3 (BUS17 (BUS5 (BUS5	a Bus to To 	Bus Ckt 1 1 2	Distance (km) 120.82327 121.05262 161.49371 161.49371	Voltage (V) -7.27579 77.30185 -93.47285 -93.47285	Norton per-Phase (A) -2.07172 21.92933 -39.86049 -39.86049	Currents 3-Phase (A -6.21517 65.78799 -119.58148 -119.58148
Note: Tr Branch I Branch N 2 2 4 4 4 4	Induced DC Vol Iodal DC Curre EBUS2 [BUS2 [BUS4 [BUS4 [BUS4]	ltages, positi ent Injections 	ve pola , flowi 17 5 5 6	IT SUBSYSTEM arity at To B ng from From To Bus [BUS3 [BUS17 [BUS5 [BUS5 [BUS5 [BUS6	Sus a Bus to To 	Bus Ckt 1 1 2 1	Distance (km) 120.82327 121.05262 161.49371 161.49371 321.81729	Voltage (V) -7.27579 77.30185 -93.47285 -93.47285 -18.92195	Norton per-Phase (A) -2.07172 21.92933 -39.86049 -39.86049 -4.05528	Currents 3-Phase (A -6.21517 65.78799 -119.58148 -119.58148 -12.16585
Note: Ir Branch I Branch N 12 2 4 4 4 4 4	Induced DC Vol Iodal DC Curre From Bus [BUS2 [BUS2 [BUS4 [BUS4 [BUS4 [BUS4] [BUS4]	ltages, positi ent Injections 	ve pola , flowi 3 17 5 6 15	IT SUBSYSCEM Trity at To B Ing from From To Bus - [BUS3 [BUS17 [BUS5 [BUS5 [BUS5 [BUS6 [BUS15]	Sus a Bus to To 345.00] 345.00] 500.00] 500.00] 500.00] 500.00]	Bus Ckt 1 1 2 1	Distance (km) 120.82327 121.05262 161.49371 161.49371 321.81729 136.93306	Induced Vdc Voltage(V) -7.27579 77.30185 -93.47285 -93.47285 -18.92195 45.16609	Norton per-Phase (A) -2.07172 21.92933 -39.86049 -39.86049 -4.05528 22.74224	Currents 3-Phase (A -6.21517 65.78799 -119.58148 -119.58148 -12.16585 68.22672
Note: Ir Branch I Branch N 1 2 4 4 4 4 5	Induced DC Vol Iodal DC Curre From Bus [BUS2 [BUS2 [BUS4 [BUS4 [BUS4 [BUS4 [BUS4 [BUS4 [BUS5]	ltages, positi ent Injections 	ve pola , flowi 3 17 5 6 15 6	ITITY AT TO B ITITY AT TO B ING from From IBUS3 [BUS3 [BUS17 [BUS5 [BUS5 [BUS5 [BUS6 [BUS15 [BUS6	Sus a Bus to To 345.00] 345.00] 500.00] 500.00] 500.00] 500.00]	Bus Ckt 1 1 2 1 1	Distance (km) 120.82327 121.05262 161.49371 161.49371 321.81729 136.93306 205.02074	Induced Vdc Voltage (V) -7.27579 77.30185 -93.47285 -93.47285 -18.92195 45.16609 74.55091	Norton per-Phase (A) -2.07172 21.92933 -39.86049 -39.86049 -4.05528 22.74224 25.05913	Currents 3-Phase (A -6.21517 65.78799 -119.58148 -129.58148 -12.16585 68.22672 75.17739
Note: Ir Branch I Branch N 1 2 2 4 4 4 4 5 5 5	Induced DC Vol Iodal DC Curre IBUS2 [BUS2 [BUS4 [BUS4 [BUS4 [BUS4 [BUS4 [BUS4 [BUS5 [BUS5]]	ltages, positi ent Injections 	ve pola b, flowi 17 5 6 15 6 11	rity at To B ng from From To Bus - [BUS3 [BUS17 [BUS5 [BUS5 [BUS6 [BUS6 [BUS15 [BUS6 [BUS1]	A Bus to To 345.00] 345.00] 500.00] 500.00] 500.00] 500.00] 500.00] 500.00]	Bus Ckt 1 1 2 1 1 1	Distance (km) 120.82327 121.05262 161.49371 161.49371 321.81729 136.93306 205.02074 241.42014	Induced Vdc Voltage (V) -7.27579 77.30185 -93.47285 -93.47285 -18.92195 45.16609 74.55091 171.59476	Norton per-Phase (A) -2.07172 21.92933 -39.86049 -39.86049 -4.05528 22.74224 25.05913 48.90133	Currents 3-Phase (A -6.21517 65.78799 -119.58148 -119.58148 -12.16585 68.22672 75.17739 146.70399
Note: Ir Branch I Branch N 	Induced DC Vol Iodal DC Curre Iodal DC Curre IBUS2 [BUS2 [BUS4 [BUS4 [BUS4 [BUS4 [BUS5 [BUS5 [BUS5] [BUS5]	ltages, positi ent Injections 	ve pola , flowi 3 17 5 5 6 15 6 11 11	rity at To B ng from From BUS3 (BUS17 (BUS5 (BUS5 (BUS5 (BUS5 (BUS15 (BUS15 (BUS11 (BUS11)	A Bus to To 345.00] 345.00] 500.00] 500.00] 500.00] 500.00] 500.00] 500.00] 500.00]	Bus Ckt 1 1 2 1 1 1 1	Distance (km) 120.82327 121.05262 161.49371 161.49371 321.81729 136.93306 205.02074 241.42014 99.11129	Voltage (V) -7.27579 77.30185 -93.47285 -93.47285 -18.92195 45.16609 74.55091 171.59476 97.04388	Norton per-Phase(A) -2.07172 21.92933 -39.86049 -4.05528 22.74224 25.05913 48.90133 67.20491	Currents 3-Phase (A -6.21517 65.78799 -119.58148 -12.16585 68.22672 75.17739 146.70399 201.61473
Note: Ir Branch I Branch N 	Induced DC Vol Iodal DC Curre IBUS2 BUS2 BUS4 BUS4 BUS4 BUS4 BUS5 BUS5 BUS5 BUS5 BUS5 BUS5 BUS5 BUS6 BUS6	ltages, positi ent Injections 	ve pola , flowi 3 17 5 5 6 15 6 11 11 15	rity at To B ng from From BUS3 (BUS17 (BUS5 (BUS5 (BUS5 (BUS6 (BUS15 (BUS6 (BUS11 (BUS11 (BUS11 (BUS15	A Bus to To 345.00] 345.00] 500.00] 500.00] 500.00] 500.00] 500.00] 500.00] 500.00]	Bus Ckt 1 1 2 1 1 1 1 1	Distance (km) 120.82327 121.05262 161.49371 161.49371 321.81729 136.93306 205.02074 241.42014 99.11129 201.56944	Induced Vdc Voltage (V) -7.27579 77.30185 -93.47285 -93.47285 -18.92195 45.16609 74.55091 171.59476 97.04388 64.08804	Norton per-Phase(A) -2.07172 21.92933 -39.86049 -4.05528 22.74224 25.05913 48.90133 67.20491 21.91793	Currents 3-Phase (A -6.21517 65.78799 -119.58148 -119.58148 -12.16585 68.22672 75.17739 146.70399 201.61473 65.75380
Note: Ir Branch I Branch N 	Induced DC Vol Iodal DC Curre Iodal DC Curre IBUS2 [BUS2 [BUS4 [BUS4 [BUS4 [BUS4 [BUS4 [BUS5 [BUS5 [BUS5 [BUS6 [BUS6 [BUS6]]	ltages, positi ent Injections 	ve pola , flowi 3 17 5 6 15 6 11 11 15 15 15	rity at To B ng from From To Bus [BUS3 [BUS17 [BUS5 [BUS5 [BUS5 [BUS6 [BUS11 [BUS11 [BUS11 [BUS15 [BUS15 [BUS15]]	A Bus to To 345.00] 345.00] 500.00] 500.00] 500.00] 500.00] 500.00] 500.00] 500.00] 500.00] 500.00]	Bus Ckt 1 1 1 1 1 1 1 2	Distance (km) 120.82327 121.05262 161.49371 321.81729 136.93306 205.02074 241.42014 99.11129 201.56944 201.56944	Induced Vdc Voltage (V) -7.27579 77.30185 -93.47285 -93.47285 -18.92195 45.16609 74.55091 171.59476 97.04388 64.08804 64.08804	Norton per-Phase(A) -2.07172 21.92933 -39.86049 -39.86049 -4.05528 22.74224 25.05913 48.90133 67.20491 21.91793 21.91793	Currents 3-Phase (A -6.21517 65.78799 -119.58148 -12.16585 68.22672 75.17739 146.70399 201.61473 65.75380 65.75380
Note: Ir Branch I Branch N 1	Induced DC Vol Iodal DC Curre From Bus [BUS2 [BUS2 [BUS4 [BUS4 [BUS4 [BUS4 [BUS4 [BUS5 [BUS5 [BUS5 [BUS6 [BUS6 [BUS6 [BUS6] [BUS1]	ltages, positi ent Injections 	ve pola , flowi 3 17 5 6 15 6 11 11 15 15 12	rity at To B ng from From To Bus [BUS3 [BUS17 [BUS5 [BUS5 [BUS6 [BUS15 [BUS11 [BUS11 [BUS11 [BUS15 [BUS15 [BUS15 [BUS12	Aus A Bus to To 345.00] 345.00] 500.00] 500.00] 500.00] 500.00] 500.00] 500.00] 500.00] 500.00] 500.00] 500.00]	Bus Ckt 1 1 1 1 1 1 1 1 1 2 1	Distance (km) 120.82327 121.05262 161.49371 161.49371 321.81729 136.93306 205.02074 241.42014 99.11129 201.56944 201.56944 160.29356	Induced Vdc Voltage (V) -7.27579 77.30185 -93.47285 -93.47285 -18.92195 45.16609 74.55091 171.59476 97.04388 64.08804 64.08804 -6.27876	Norton per-Phase (A) -2.07172 21.92933 -39.86049 -4.05528 22.74224 25.05913 48.90133 67.20491 21.91793 21.91793 -2.70170	Currents 3-Phase (A -6.21517 65.78799 -119.58148 -12.16585 68.22672 75.17739 146.70399 201.61473 65.75380 65.75380 -8.10511
Note: Ir Branch I Branch N 12 2 4 4 4 4 5 5 6 6 6 11 16	Induced DC Vol Iodal DC Curre From Bus [BUS2 [BUS4 [BUS4 [BUS4 [BUS4 [BUS4 [BUS5 [BUS5 [BUS5 [BUS6 [BUS6 [BUS6 [BUS11 [BUS16]	ltages, positi ent Injections 	xe pola , flowi 3 17 5 6 15 6 11 11 15 15 12 17	rity at To B ng from From BUS3 (BUS17 (BUS5 (BUS5 (BUS6 (BUS15 (BUS15 (BUS11 (BUS11 (BUS15 (BUS15 (BUS15 (BUS15 (BUS15 (BUS12 (BUS17)	A Bus to To 345.00] 345.00] 500.00] 500.00] 500.00] 500.00] 500.00] 500.00] 500.00] 500.00] 500.00] 500.00] 500.00] 500.00] 500.00] 500.00] 500.00]	Bus Ckt 1 1 2 1 1 1 1 1 1 1 1 1 1 1	Distance (km) 120.82327 121.05262 161.49371 161.49371 161.49371 1321.81729 136.93306 205.02074 241.42014 99.11129 201.56944 160.29356 160.47032	Induced Vdc Voltage (V) -7.27579 77.30185 -93.47285 -93.47285 -18.92195 45.16609 74.55091 171.59476 97.04388 64.08804 64.08804 64.08804 64.08804	Norton per-Phase (A) -2.07172 21.92933 -39.86049 -4.05528 22.74224 25.05913 48.90133 67.20491 21.91793 21.91793 21.91793 22.70170 8.44845	Currents 3-Phase (A -6.21517 65.78799 -119.58148 -121.6585 68.22672 75.17739 146.70399 201.61473 65.75380 65.75380 -8.10511 25.34534
Note: Ir Branch I Branch N I 2 4 4 4 4 5 5 5 6 6 6 11 16 16	Induced DC Vol Iodal DC Curre IBUS2 BUS2 BUS4 BUS4 BUS4 BUS4 BUS5 BUS5 BUS5 BUS5 BUS5 BUS6 BUS6 BUS11 BUS16 BUS16 BUS16	ltages, positi ent Injections 	ve pola , flowi 3 17 5 6 15 6 11 11 15 15 12 17 20	rity at To B ng from From To Bus - (BUS3 (BUS17 (BUS5 (BUS6 (BUS15 (BUS6 (BUS15 (BUS11 (BUS11 (BUS11 (BUS15 (BUS15 (BUS15 (BUS12 (BUS17 (BUS20)	A Bus to To 345.00] 345.00] 500.00]	Bus Ckt 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	Distance (km) 120.82327 121.05262 161.49371 161.49371 132.81729 136.93306 205.02074 241.42014 99.11129 201.56944 201.56944 160.29356 160.47032 138.64694	Induced Vdc Voltage (V) -7.27579 77.30185 -93.47285 -93.47285 -18.92195 45.16609 74.55091 171.59476 97.04388 64.08804 -6.27876 39.41155 -138.63893	Norton per-Phase (A) -2.07172 21.92933 -39.86049 -4.05528 22.74224 25.05913 48.90133 67.20491 21.91793 21.91793 -2.70170 8.44845 -34.24036	Currents 3-Phase (A -6.21517 65.78799 -119.58148 -12.16585 68.22672 75.17739 146.70399 201.61473 65.75380 -8.10511 25.34534 -102.72107

Alerts/Warnings A GIC_3(u_1.00,0.00) / Report label: activity name(Efield type, mag and degrees)

GIC Calculations Report (continued)

Bus and Substation ground bus DC Voltages

	Bus				Substation		Voltage (V)
1	[BUS1	21.000]	1	SUBSTATION1			0.00000
2	[BUS2	345.00]	1	SUBSTATION1			-12.39072
3	[BUS3	345.00]	4	SUBSTATION4	ł		20.04367
2	1 SUBGRD	1	1	SUBSTATION1			0.00000
2:	2 SUBGRD2	2	2	SUBSTATION2	2		23.12571
23	3 SUBGRD3	3	3	SUBSTATION3	3		27.97210

GIC flow in Non-Transformer Branches, flowing from From Bus to To Bus

	From	Bus			To Bus		Ckt	Distance(km)	per-Phase (A)	3-Phase (A)
2	[BUS2		345.00]	3	[BUS3	345.00]	1	120.82327	-11.30715	-33.92146
2	[BUS2		345.00]	17	[BUS17	345.00]	1	121.05262	11.30717	33.92152
4	[BUS4		500.00]	5	[BUS5	500.00]	1	161.49371	-18.81678	-56.45035
4	[BUS4		500.00]	5	[BUS5	500.00]	2	161.49371	-18.81678	-56.45035
4	[BUS4		500.00]	6	[BUS6	500.00]	1	321.81729	1.83764	5.51293
4	[BUS4		500.00]	15	[BUS15	500.00]	1	136.93306	17.82731	53.48193
5	[BUS5		500.00]	6	[BUS6	500.00]	1	205.02074	17.71422	53.14265
5	[BUS5		500.00]	11	[BUS11	500.00]	1	241.42014	0.00000	0.00000
6	[BUS6		500.00]	11	[BUS11	500.00]	1	99.11129	20.30160	60.90479
6	[BUS6		500.00]	15	[BUS15	500.00]	1	201.56944	9.17599	27.52797
6	[BUS6		500.00]	15	[BUS15	500.00]	2	201.56944	9.17599	27.52797
11	[BUS11		500.00]	12	[BUS12	500.00]	1	160.29356	20.30160	60.90479
16	[BUS16	5	345.00]	17	[BUS17	345.00]	1	160.47032	9.37404	28.12212
16	[BUS16	5	345.00]	20	[BUS20	345.00]	1	138.64694	-19.81496	-59.44488
17	[BUS17	7	345.00]	20	[BUS20	345.00]	1	238.16400	-17.86169	-53.58508

GIC flow in Bus Shunts, flowing from Bus to Substation ground bus

None

GIC Calculations Report (continued)

		-			-	_								
											Winding	I bus	Winding	J bus
	Winding	I bus			Winding	J bus		Ckt	1	Name -	per-Phase(A)	3-Phase (A)	per-Phase (A)	3-Phase (A)
2	[BUS2	345.	00]	1	[BUS1		21.000]	1	т1					
4	[BUS4	500.	00]	3	[BUS3		345.00]	1	т2		1.74513	5.23539	0.59460	1.78379
4	[BUS4	500.	00]	3	[BUS3		345.00]	3	т13		1.74513	5.23539	0.59460	1.78379
5	[BUS5	500.	00]	20	[BUS20		345.00]	1	т8		-27.67382	-83.02145	-18.83831	-56.51493
5	[BUS5	500.	00]	20	[BUS20		345.00]	2	т9		-27.67382	-83.02145	-18.83831	-56.51493
6	[BUS6	500.	00]	7	[BUS7		500.00]	1	т6		-9.55087	-28.65260		
6	[BUS6	500.	00]	8	[BUS8		500.00]	1	т7		-9.55087	-28.65260		
12	[BUS12	500.	00]	13	[BUS13		21.000]	1	т10		10.15080	30.45240		
12	[BUS12	500.	00]	14	[BUS14		21.000]	1	T11		10.15080	30.45240		
17	[BUS17	345.	00]	18	[BUS18		21.000]	1	тЗ		19.27143	57.81429		
17	[BUS17	345.	00]	19	[BUS19		21.000]	1	т4		19.27143	57.81429		

GIC flow in Two Winding Transformer Windings, flowing from Bus to Neutral

GIC flow in Two Winding Auto Transformer Windings,

flowing from Common to Series Winding Bus and from Common Winding Bus to Neutral

										- Common	Winding	Series	Winding
	Common Winding			Series Winding		Ckt	1	Name ·	- per-H	Phase (A)	3-Phase (A)	per-Phase(A)	3-Phase (A)
3	[BUS3	345.00]	4	[BUS4	500.00]	2	T12			0.99099	2.97298	-7.23915	-21.71745
3	[BUS3	345.00]	4	[BUS4	500.00]	4	т14			0.99099	2.97298	-7.23915	-21.71745
16	[BUS16	345.00]	15	[BUS15	500.00]	1	т5		2	23.31012	69.93036	-18.08968	-54.26903
16	[BUS16	345.00]	15	[BUS15	500.00]	2	т15		2	23.31012	69.93036	-18.08968	-54.26903

GIC Calculations Report (continued)

GIC	flow	in	Substation	Ground,	flowing	from	Bus	to	Substation	Ground	
-----	------	----	------------	---------	---------	------	-----	----	------------	--------	--

Substation	Bus	Amps	
1 SUBSTATION1	21 SUBGRD1	0.00000	
2 SUBSTATION2	22 SUBGRD2	115.62852	
3 SUBSTATION3	23 SUBGRD3	139.86047	
4 SUBSTATION4	24 SUBGRD4	19.98421	
5 SUBSTATION5	25 SUBGRD5	-279.07312	
6 SUBSTATION6	26 SUBGRD6	-57.30520	
7 SUBSTATION7	27 SUBGRD7	0.00000	TPL-007-1
8 SUBSTATION8	28 SUBGRD8	60.90479	R5.1

Two Winding Transformer Reactive Power Loss (represented as constant current load on a bus in power flow)

										Effective		KFactor	Winding I	Winding J
	Winding	I bus			Winding J	bus	Ckt	Nan	ne -	GIC (A)	KFactor	Type	Mvar	Mvar
2	[BUS2		345.00]	1	[BUS1	21.000]	1	т1						
4	[BUS4		500.00]	3	[BUS3	345.00]	1	т2		2.15540	1.0000	User	2.15540	
4	[BUS4		500.00]	3	[BUS3	345.00]	3	T13		2.15540	1.0000	User	2.15540	
5	[BUS5		500.00]	20	[BUS20	345.00]	1	т8		40.67225	1.0000	User	40.67225	
5	[BUS5		500.00]	20	[BUS20	345.00]	2	т9		40.67225	1.0000	User	40.67225	
6	[BUS6		500.00]	7	[BUS7	500.00]	1	т6		9.55087	1.0000	User	9.55087	
6	[BUS6		500.00]	8	[BUS8	500.00]	1	т7		9.55087	1.0000	User	9.55087	
12	[BUS12		500.00]	13	[BUS13	21.000]	1	т10		10.15080	1.0000	User	10.15080	
12	[BUS12		500.00]	14	[BUS14	21.000]	1	T11		10.15080	1.0000	User	10.15080	
17	[BUS17		345.00]	18	[BUS18	21.000]	1	тЗ		19.27143	1.0000	User	19.27143	
17	[BUS17		345.00]	19	[BUS19	21.000]	1	т4		19.27143	1.0000	User	19.27143	

Two Winding Auto Transformer Reactive Power Loss (represented as constant current load on a bus in power flow)

									Effective		KFactor	Common Wndg	Series Wndg
	Common Winding	r I		Series Winding		Ckt		Name -	GIC (A)	KFactor	Туре	Mvar	Mvar
3	[BUS3	345.00]	4	[BUS4	500.00]	2	т12		2.92792	1.0000	User		2.92792
3	[BUS3	345.00]	4	[BUS4	500.00]	4	т14		2.92792	1.0000	User		2.92792
16	[BUS16	345.00]	15	[BUS15	500.00]	1	т5		21.69178	1.0000	User		21.69178
16	[BUS16	345.00]	15	[BUS15	500.00]	2	т15		21.69178	1.0000	User		21.69178

GIC Calculations Report (continued)

Transformer Reactive Power Loss Summary Two Winding Transformers = 163.60150 Mvar Two Winding Auto Transformers = 49.23941 Mvar Three Winding Transformers = None Three Winding Auto Transformers = None Total = 212.84091 Mvar TPL-007-1 R5

Power Flow Solution: Solution not attempted

Run power flow and other studies to meet TPL-007-1 R4.

GIC Results on Network Maps

Page 100 02-07-2017

GIC Results on Network Maps (continued)

Unrestricted © Siemens Industry, Inc. 2017

Page 101 02-07-2017

GIC Results on Network Maps (continued)

Page 102 02-07-2017

Scan degrees & magnitude Option - Results

Storm Orienta	ation Scan: Tran	sformer Reactive	Power Loss Summar	ry	
Orientation	Two Winding	Transformers	Three Winding	Transformers	Total
Degrees	Normal (MVAR)	Auto (MVAR)	Normal (MVAR)	Auto (MVAR)	MVAR
78.00	274.79181	134.25296	23.15940	0.00000	432.20416
77.00	275.47162	133.79228	22.91978	0.00000	432.18369
79.00	274.02826	134.67261	23.39180	0.00000	432.09265
80.00	273.18146	135.05110	23.61709	0.00000	431.84964
81.00	272.25122	135.38860	23.83527	0.00000	431.47510
110.00	274.87213	127.21463	26.80542	0.00000	428.89218
70.00	277.87207	129.43704	21.05217	0.00000	428.36130
90.00	264.80460	136.56155	25.46447	0.00000	426.83063
100.00	263.01254	133.92282	26.53812	0.00000	423.47348
120.00	278.37900	116.64122	26.25818	0.00000	421.27838
60.00	274.11969	119.89027	17.84757	0.00000	411.85751
130.00	273.42868	102.52393	24.91314	0.00000	400.86575
50.00	262.03842	106.70061	14.10072	0.00000	382.83975
140.00	260.16922	85.29132	22.81110	0.00000	368.27164
40.00	241.99524	90.26896	9.92537	0.00000	342.18954
150.00	239.00528	65.46713	20.01598	0.00000	324.48840
30.00	214.60127	71.09447	5.44847	0.00000	291.14420
160.00	210.57869	43.65374	16.61271	0.00000	270.84512
20.00	181.49910	49.75985	4.92676	0.00000	236.18571
170.00	178.11548	20.51401	12.79723	0.00000	211.42671
10.00	149.76497	31.69946	5.23178	0.00000	186.69621
0.00	147.47141	21.82503	8.60280	0.00000	177.89923
180.00	147.47141	21.82503	8.60280	0.00000	177.89923

Efield Magnitude Scan: Transformer Reactive Power Loss Summary

Efield	Two Winding Transformers		Three Winding Transformers		Total	Power Flow Solution State
V/km	Normal (MVAR)	Auto (MVAR)	Normal (MVAR)	Auto (MVAR)	MVAR	
8.00	274.79181	134.25296	23.15940	0.00000	432.20416	Met convergence tolerances
12.00	412.18784	201.37962	34.73895	0.00000	648.30640	Met convergence tolerances
16.00	549.58362	268.50592	46.31879	0.00000	864.40833	Iteration limit exceeded
15.00	515.23456	251.72391	43.42374	0.00000	810.38220	Met convergence tolerances

GIC(t) Waveform for Thermal Impact Assessment

 $GIC(t) = E_E(t) \times GIC_E + E_N(t) \times GIC_N(A/Phase)$

Review GIC Calculation Results

- Run GIC Module for Benchmark GMD event
- After running GIC, review results to identify any length related errors in the data. Rerun GIC module with corrected data.
- If transformers are identified as meeting the criteria of maximum effective GIC
 >= 75 A for thermal impact analysis, then review the GIC input data file if any assumed data was used at that transformer and nearby buses based on GIC flows. If data is assumed but not measured or actual data then, try to get actual data, rerun GIC module with measured/actual data.
- The calculated GICs depend on the topology of the system. If the topology changes, the GIC values need to be recalculated.

GIC Calculation – Possible Sensitivity Studies

- Consider the following sensitivity studies just to understand impacts on GIC and the worst orientation of electric field on your system:
 - Including lower kV facilities (100 kV and above)
 - Include neighboring system (1-4 levels) pay attention to the substation numbering
 - Bypassing any series capacitors

GMD Vulnerability Assessment

Unrestricted © Siemens Industry, Inc. 2017

usa.siemens.com/digitalgrid

NERC TPL-007-1 GMD Vulnerability Assessment Process

SIEMENS

Source: NERC GMD Task Force Documents

Unrestricted © Siemens Industry, Inc. 2017

Page 108 02-07-2017

PSS®E GIC Calculations

GMD Vulnerability Assessment (R4)

- Assess the behavior of the system in terms of voltage limits, potential voltage collapse, and cascading outages due to Benchmark GMD event by taking into account transformer var absorption caused by half-cycle saturation.
- The system must perform within applicable limits under various contingencies such as forced outage of a shunt capacitor bank or static var compensator (SVC)
- System performance is evaluated based on.
 - Steady state voltage performance criteria established by the planning entity.
 - Table 1 of TPL-007-1

GMD Vulnerability Assessment (R4) – Performance Criteria

The vulnerability Assessment Studies shall meet following performance criteria. (Table 1 of TPL-007-1)

- Voltage collapse, cascading and uncontrolled islanding shall not occur.
- Generation loss is acceptable as a consequence of the planning event.
- Planned System adjustments such as Transmission configuration changes and re-dispatch of generation are allowed if such adjustments are executable within the time duration applicable to the Facility Ratings.

SIEMENS

TPL-007-1 R4 – Performance Criteria

The vulnerability Assessment Studies shall meet following performance criteria.

(Table 1 of TPL-007-1)

- Initial Condition:
 - The System condition for GMD planning may include adjustments to posture the System that are executable in response to space weather information.
 - The GMD conditions for the planning event (Benchmark GMD event) are described Attachment 1.
- Event:
- Reactive Power Compensation Devices and other Transmission Facilities removed as a result of Protection System operation or mis-operation due to harmonics during the GMD event
 - Load loss and/or curtailment of firm transmission service may be used to meet BES performance requirements but the likelihood and magnitude should be minimized.

Unrestricted © Siemens Industry, Inc. 2017

GMD Vulnerability Assessment (R4)

- Based on your system knowledge, include new contingencies for loss of reactor power devices and transmission facilities.
- Better approach for identify those contingencies by performing Harmonic analysis and reviewing the performance of protection and control (P&C) systems
- Include additional contingencies that were agreed upon by Planning Coordinator and Transmission Planner

Unrestricted © Siemens Industry, Inc. 2017

Thermal Impact Assessments (Requirement R6)

- Transmission Owners and Generator Owners conduct thermal impact assessment of power transformers (Wye grounded on high side at 230 kV or higher) if the maximum effective GIC value provided in Requirement R5.1 is 75
 A per phase or greater.
- Hot spot heating of transformers due to GIC during a GMD event is a primary concern since automatic protection systems are not likely to operate on this basis.
- A thermal assessment, which uses the most conservative thermal models known to date indicates that a GIC of 75A will not result in peak metallic hot spot temperatures above 172°C.

Thermal Impact Assessments- IEEE C57.163-2015

 Lists procedures for calculating the thermal response of windings and structural parts to a GIC profile.

Figure 24—Recommended simplified GIC signature

Table 3—Recommended hot-spot temperature limits for GIC

	GIC type		
Component	Base GIC	Short duration GIC events	
	IEEE/IEC	IEEE	IEC
Cellulose insulation	140 °C	180 °C	160 °C
Structural parts	160 °C	200 °C	180 °C

NERC – Transformer Thermal Impact White Paper

- Outlines the process for performing Transformer Thermal Impact Assessment using GIC flow time series, GIC(t) and Transformer Thermal Capability Curves to determine if the transformer will be able to withstand the thermal transient effects associated with the Benchmark GMD event
- A transformer GMD impact assessment must consider GIC amplitude, duration, and transformer physical characteristics such as design and condition (e.g., age, gas content, and moisture in the oil)
- Winding and metallic part hot spot heating have different thermal time constants, and their temperature rise will be different if the GIC currents are sustained for 2, 10, or 30 minutes for a given GIC peak amplitude

 A simplified thermal assessment may be performed based on Table 1, which provides the peak metallic hot spot temperatures that can be reached using conservative thermal models.

Table 2: Upper Bound of Peak Metallic Hot Spot Temperatures Calculated Using the Supplemental GMD Event					
Effective GIC	Metallic hot spot	Effective GIC	Metallic hot spot		
0	80	120	188		
10	107	130	191		
20	124	140	194		
30	137	150	198		
40	147	160	203		
50	156	170	209		
60	161	180	214		
70	162	190	229		
75	165	200	237		
80	169	220	248		
85	172	230	253		
90	177	250	276		
100	181	275	298		
110	185	300	316		

NERC – Transformer Thermal Impact White Paper

- If the effective GIC results in higher than threshold temperatures, then use a detailed thermal assessment using two different ways given below:
 - Transformer manufacturer GIC capability curves
 - Thermal response simulation

NERC – Transformer Thermal Impact White Paper

- Transformer manufacturer GIC capability curves
 - These curves relate permissible peak GIC (obtained by the user from a steady-state GIC calculation and loading, for a specific transformer).

Sample GIC Manufacturer Capability Curve of a Large Single-Phase Transformer Design using the Flitch Plate Temperature Criteria

Unrestricted © Siemens Industry, Inc. 2017

Page 119 02-07-2017

- Thermal response simulation
 - The input to this type of simulation is the time series or waveshape of effective GIC flowing through a transformer and the result of the simulation is the hot spot temperature (winding or metallic part) time sequence for a given transformer.

Sample Tie Plate Temperature Calculation Blue trace is incremental temperature and red trace is the magnitude of the GIC/phase

Unrestricted © Siemens Industry, Inc. 2017

Page 120 02-07-2017

 In the absence of manufacturer specific information, use the temperature limits for safe transformer operation such as those suggested in the IEEE Std C57.91-2011 standard (Establishing Power Transformer Capability while under Geomagnetic Disturbances) for hot spot heating during short-term emergency operation.

Unrestricted © Siemens Industry, Inc. 2017

usa.siemens.com/digitalgrid

Corrective Action Plan (CAP)

•TPL-007 requires a CAP when system performance requirements are not met in the Benchmark GMD Vulnerability Assessment.

•Requirement R7 lists examples of such actions:

- Operating procedures
- Hardening the system
- Installing monitors
- Protection system review and special protection systems
- New technologies or other initiatives

Corrective Action Plan (CAP)

- Operating procedures (Non-hardware mitigation)
 - Specify how long they will be needed as part of CAP
 - Identify Reactive Reserve Zones based on studies and monitor those
 - Turn on additional units more Reactive Power (Q) margin on online units
 - Postpone outages, bring facilities back in service so the in service facilities are not operated in stressed conditions
 - Reconfiguration of the transmission system
 - Load rejection

Unrestricted © Siemens Industry, Inc. 2017

Corrective Action Plan (CAP)

- Other options (Hardware mitigation)
 - Series Compensating Lines
 - GIC Blocking Devices Capacitor blocking
 - GIC Reduction Devices Resistive blocking
 - GIC Monitoring devices on transformers Hall-effect CTs

Corrective Action Plan (CAP)

New or Improved technologies

- GIC-safe Transformers
 - Siemens manufactures GIC-safe transformers for up to 200 A extra DC capability, use non-magnetic steel inserts to reduce high saturation levels at extreme DC levels, lowers eddy current losses and prevents overheating due to lower losses.

New Tools for Operators

 Real-time on-line/offline GMD assessment tool that take EMS case with scheduled outages on the system, takes Space weather forecast and runs GIC study, evaluates system performance and identifies mitigation options based on those results.

Corrective Action Plan (CAP) - Hydro-Québec

- Following the March 1989 storm, Hydro-Québec took a number of measures, including
 - Reviewed protective relaying and concluded that the replacement of electromechanical relays with IEDs has practically eliminated the impact of GIC on reliability and security of the protection schemes used in Hydro One.
 - Desensitization of the protection of SVCs to amplification of the voltage wave asymmetry and harmonics
 - Addition of series compensation on the entire 735 kV network (North -South)
 - Addition of blocking capacitors in the neutral of the most vulnerable high power transformers

Corrective Action Plan (CAP) - Hydro-Québec

- In southern Québec, installed an automatic load shedding scheme to counter slow voltage collapse in 2004
- Installed real-time asymmetry monitoring at several substations to complement K-index forecast.
- These following were in their proposed plan for solar cycle 24:
 - Estimate in real time the GIC flowing through the transformer from
 - SCADA measurements of reactive power loss
 - Harmonic currents measured with modern relays (IEDs)
 - Measure in real time the rate of change of dissolved gasses in selected transformers to establish correlations with the estimated hot spot heating.

Other GMD-related Studies

- PV Analysis
- Transient Stability
- Harmonic Analysis
- QV Analysis

Unrestricted © Siemens Industry, Inc. 2017

PV Analysis

- If the study system has known voltage stability constrained interfaces, perform voltage stability with the power flow model that has the GIC impact superimposed (i.e. Qlosses added as load) to identify if the existing limits can be maintained.
- Along with significant line outages, consider contingencies involving loss of reactive power resources in the study area.

Transient Stability Analysis

- Using the powerflow model with GIC impacts (transformer reactive power losses) added, perform transient stability analysis to identify the impact of additional reactive power losses due to the GIC
- Consider new faults involving loss of reactive devices

Harmonic Analysis

- Half-cycle saturation of transformer increases magnetizing current and creates harmonics.
- Impacts of harmonics:
 - Heating effects
 - Voltage asymmetry
 - Noise
 - Protection system mis-operation
- Magnetizing current wave is not symmetric and is non-sinusoidal, contains significant amount of even and odd harmonic components. Fourier analysis is used to find these components.

Harmonic Analysis

- Harmonics Integer multiples of fundamental
 - Even 120 Hz (2nd order), 240 Hz (4th order)..
 - Odd 180 Hz (3rd order), 300 Hz (5th order)..
- Fourier Analysis
 - Process of decomposition for any distorted pe waveshape into a fundamental wave and a se harmonics.
- Harmonic impact on transformer:
 - EMTP modeling and simulation (PSCAD...)
 - Detailed Transformer magnetic models are available
- Harmonic component analysis: MATLAB numerical

analysis to identify harmonic components

Unrestricted © Siemens Industry, Inc. 2017

Page 133 02-07-2017

Source: Webinar on Power and Harmonic Analysis on Distorted Waveforms – Yokogawa Test & Measurement

Harmonic Analysis

- Existing tools have limitations
 - Don't have ability to combine impact from multiple harmonic sources for system-wide assessment
 - Need detailed transformer magnetic models
- Harmonics analysis capabilities are part of NERC and EPRI's GMD research work plan, which is a multi-year effort that is getting underway this year. One aspect of the research is to develop guidance and tools to aid in system-wide assessment of GMD-related harmonics.
- EPRI has started work on a harmonic analysis tool this year. This work will be concluded under the GMD research work plan with a beta delivery at the end of 2018.

Meeting TPL-007-1 Requirements

TPL-007-1 Requirements		How to meet?	
R1	Identify individual or entity	Policy document	
R2	Maintain System models and GIC System (DC) models	Power flow Case (PSS®E, PLSF) and GIC data files (Text, excel)	
R3	Have acceptable voltage criteria	Policy document	
R4	GMD Vulnerability Assessment studies	GIC Module (PSS®E, Powerworld, PSLF) and other Power flow activities	
R5	 Provide GIC flow information for worst case Geoelectric field orientation Effective GIC time series, GIC(t) 	GIC Module output (PSS®E)	
R6	Conduct a thermal impact assessment with I _{eff} /phase > 75 Amps	Using GIC(t) and transformer thermal response capability data	
R7	Develop corrective action plan	 a) Company policy: based on grid knowledge develop this b) implement in Power flow Case and GIC data files 	

TPL-007-2 – Draft -Additional Requirements

Unrestricted © Siemens Industry, Inc. 2017

usa.siemens.com/digitalgrid

Per FERC 830 Directives – TPL-007-2 – Draft Version

- The revised standard will be submitted to the Board of Trustees for adoption and then filed with the FERC
- Supplemental GMD event added to address local enhancements
- Phenomenon
 - Electric field amplitudes are fairly well understood
 - Geographical extent is not well known
- Initial review of data from several significant events
- Observations
 - Waveform similarities local intense peak (2-5 minutes in duration)
 - Longitudinal extent: ~300-500 km; Latitudinal extent; ~100 km
 - Amplitude increase: ~ factor of two

SIEMENS

R8 - R10 – Supplemental GMD Vulnerability Assessment

- Geoelectric field of **12 V/km** and updated Geoelectric field scaling factors
- GIC(t) waveform scaled up for 12 V/km
- Transformer thermal impact analysis criteria: 85 A

R11 – GIC Monitors

R11. Each responsible entity, as determined in Requirement R1, shall implement a process to obtain GIC monitor data from at least one GIC monitor located in the Planning Coordinator's planning area or other part of the system included in the Planning Coordinator's GIC System model.

R12 – Magnetometers

R12. Each responsible entity, as determined in Requirement R1, shall implement a process to obtain geomagnetic field data for its Planning Coordinator's planning area.

Unrestricted © Siemens Industry, Inc. 2017

Revisions To Requirements R1 - R7

- Requirements R1, R2, R3 revised to include reference to supplemental and to obtain GIC measurement data
- Requirement R7 revised
 - Develop CAP within one year from completion of GMD vulnerability assessment
 - CAP implementation deadlines
 - Two years non-hardware mitigation
 - Four years hardware mitigation
- Requirements R4, R5 and R6 related to Benchmark GMD Assessment No changes

Unrestricted © Siemens Industry, Inc. 2017

Resources

Unrestricted © Siemens Industry, Inc. 2017

usa.siemens.com/digitalgrid

Resources

- NERC Standard TPL-007-1: Transmission System Planned Performance for Geomagnetic Disturbance Events
- NERC Geomagnetic Disturbance Planning Guide, Dec 2013
- NERC Application Guide for Computing GIC in the Bulk Power System, Dec 2013
- NERC 2012 Special Reliability Assessment Interim Report: Effects of Geomagnetic Disturbances on the Bulk Power System, Feb 2012
- NERC Transformer Thermal Impact Assessment White Paper
- Project 2013-03 Geomagnetic Disturbance Mitigation
- IEEE Publications

Unrestricted © Siemens Industry, Inc. 2017

Conclusion

Unrestricted © Siemens Industry, Inc. 2017

usa.siemens.com/digitalgrid

Summary

- GMD and its impact on Power System
- NERC TPL-007-1 requirements and how to meet those requirements
- TPL-007-2 Revised standard with additional requirements
- Get involved in the future NERC GMD efforts

Unrestricted © Siemens Industry, Inc. 2017

usa.siemens.com/digitalgrid
Contact

Jyothirmai Chittyreddy Staff Consultant Siemens PTI Phone: +1 972 621 5699 E-mail: jyothi.chittyreddy@siemens.com

usa.siemens.com/digitalgrid

Unrestricted © Siemens Industry, Inc. 2017 Page 145 02-07-2017

