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Abstract

The cG(1)cG(1)-method is a finite element method for solving the incompressible
Navier-Stokes equations, using a splitting scheme and fixed-point iteration to resolve
the nonlinear term u · ∇u.

In this thesis, Newton’s method has been implemented on a formulation of the
cG(1)cG(1)-method without splitting, resulting in equal results for the velocity and
pressure computation, but higher computation times and slower convergence.



Sammanfattning

cG(1)cG(1)-metoden är en finita elementmetod för att lösa de inkompressibla Navier-
Stokes ekvationerna genom att använda splittning och fixpunktiteration för att hantera
den ickelinjära termen u · ∇u.

I detta examensarbete har Newtons metod implementerats på en formulering av
cG(1)cG(1) utan splittning, vilket resulterar i lika resultat för hastighets- och tryckbe-
räkningen, men högre beräkningstid och långsammare konvergens.
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Chapter 1

Introduction

1.1 General Introduction
The field of Fluid Dynamics within physics deals with the flow of gases and liquids. The
Navier-Stokes equations can be used to describe their motion, given boundary conditions,
external forces and parameters such as viscosity of the fluid.

Examples of interesting use cases in science and engineering include flow of water
around a ship hull, or flow of air around a car or airplane wing. Here, the Navier-Stokes
equations capture the flow regime of turbulence, a seemingly chaotic flow pattern e.g.
seen by smoke in the air, and also leading to phenomena such as eddies and vortices.
Its effects are important in real-world cases such as wind-resistance of a vehicle or flight
properties of an airplane (see figure 1.1 for an example).

(a) Landing agricultural airplane’s wake
vortex, visualized by colored smoke rising
from the ground.

Source: [21]. Public Domain.

(b) Visualization of FEM-based computer
simulation of turbulent flow, showing ve-
locity streamlines.

Figure 1.1: Turbulence in real-world example and simulation.

This thesis will focus on the incompressible Navier-Stokes equations (introduced in
more detail in section 2.1), which describe the motion of incompressible flows, such as
of incompressible fluids such as water.

In most cases, the incompressible Navier-Stokes equations cannot be solved ana-
lytically. Instead, within the branch of Computational Fluid Dynamics, the problem
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2 Chapter 1. Introduction

is discretized in both space and time, and then solved numerically using computers.
Computer simulation allows also for testing of virtual prototypes of machines and vehi-
cles. Depending on the size of the problem and the desired accuracy, computations can
involve many processors and take long time to complete.

One way to discretize the problem is to reformulate it in a weak formulation by using
the Finite Element Method. Here, a non-linear term within the incompressible Navier-
Stokes equations poses a challenge. One can approach the non-linearity using splitting
schemes (see [27] for an example), or use techniques for solving non-linear equations,
such as fixed-point iteration (also called Picard iteration) or Newton’s Method. Also,
stabilization methods are applied in order to make the discretized problem numerically
stable.

One method involving stabilization is the cG(1)cG(1)-method introduced by Eriksson
([12, chapter 86.5]). This thesis will analyze an existing fixed-point iteration scheme for
resolving the non-linear terms, and try to improve on it by introducing an application
of Newton’s method.

The goal is to be able to obtain higher accuracy in the solution, and to reduce
computation time.

1.2 Summary of Main Results
Newton’s method for cG(1)cG(1) has been derived and implemented as a modification
to an existing C++ code for fixed-point iteration for cG(1)cG(1) with splitting, and
experiments have been run on both variants of the code.

The experiments show that the results for velocity and pressure agree well in both
methods.

However, for Newton’s Method, quadratical convergence was not achieved, and it
lead to a large increase in computation time compared to fixed-point iteration with
splitting.

1.3 Previous Work
For an overview of the field of fluid dynamics, see [3]. For a derivation of the Navier-
Stokes equations, see p. 147 there.

Larson and Bengzon [20] give an overview of the finite element method, also showing
the use of Newton’s method and treating the Navier-Stokes equations using the finite
element method.

Eriksson et al. [12] provide an introduction of approaches to solve the Navier-Stokes
equations using the finite element method. This thesis will follow their general approach.

Edwards et al. [8] apply Newton’s method for computing the steady state in the
Navier-Stokes equations.

Chapon applies in his PhD-thesis [6] Newton’s method on the Navier-Stokes equa-
tions. Solver implementations, preconditioning and h- and r-refinement of the mesh are
treated. The problem is only solved in 2D-space, though.

Tang et al. [31] solve the Navier-Stokes equations using Newton’s method to linearize
the non-linear terms in order to solve lid-driven cavity flows. For the same application,
Zunic et al. [33] use a combination of the finite element and boundary element method.
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More recently, Elman et. al.[10] summarize the current status of solving Navier-
Stokes equations using finite element method and discuss strategies involving conver-
gence of Newton’s method and Picard iteration.

Several methods of improving run-time, and sometimes convergence, have been con-
sidered. Clift and Forsyth [7] investigate the possibility to avoid a full update of the
Newton matrix when solving the Navier-Stokes equations by freezing coefficients in or-
der to improve diagonal dominance. Orkwis [24] compares performance of Newton’s and
Quasi-Newton’s method. Persson [25] uses line-based discontinuous Galerkin and Quasi-
Newton’s with an implicit stepping method in order to increase sparsity in the matrix
and thus improve run-time performance. Shadid et al. [28] use an inexact Newton’s
method, while using backtracking for global convergence. Sheu and Lin [29] propose a
variation of the Newton-based linearization, increasing both run-time and convergence.
Selim et al. [27] investigate adaptive resolution for a method splitting pressure and
velocity solve.

There has been work on finding good preconditioners for this problem. Kim et al.
[18] show that a solution to Stokes equations can under certain circumstances be used as
a preconditioner to the Navier-Stokes equations. Elman et al. [9] investigate a number
of preconditioning techniques for Newton’s method, developed earlier [11] for the Oseen
solver, for the incompressible Navier-Stokes equations.

Pulliam [26] analyzes the time accuracy when using implicit time-stepping methods
and Newton’s method.

Bengzon introduces in his PhD-thesis [4] a priori and a posteriori error estimates that
can be used for local mesh refinement for the finite element method, and applies this to
several application domains, amongst others fluid dynamics. Parts of these results are
used by Olofsson’s master’s thesis [23] for a parallel implementation of a finite element
solution for a coupled fluid-solid system. Parts of Olofsson’s code and work-flow were
reused in the present thesis.

1.4 Structure
The remaining part of the thesis is structured as follows:

• Chapter 2 introduces theory and background by first defining the incompressible
Navier-Stokes equations and then the general Finite Element Method. These con-
cepts are then used to introduce the cG(1)dG(0)-method and its derivate, the
cG(1)cG(1)-method, which will be used in the thesis. Then, the concepts of fixed-
point iteration (with its application to the cG(1)cG(1)-method) and Newton’s
method will be introduced.

• Chapter 3 elaborates on the algorithms and implementations used, by applying
Newton’s method on the cG(1)cG(1)-method, and giving details on the technical
implementation and hardware.

• Chapter 4 provides results of the implementation, which stem from applying the
implementation on the benchmark test case of the lid-driven cavity. The velocity-
and pressure-solutions resulting from the fixed-point and Newton’s method will be
compared, as well as computation time and convergence, and the results will be
discussed.

• Chapter 5 summarizes achievements and shortcomings, and presents possible fu-
ture work.
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Chapter 2

Theory

2.1 The Incompressible Navier-Stokes Equations
The Navier-Stokes equations describe fluid dynamics due to convection and diffusion.
An important paramters is the kinematic viscosity of the fluid, which describes the
fluid’s resistance to shear stress. Fluids with low viscosity under rapid movement tend
to exhibit turbulence. The dimensionless Reynolds number is a measure for a fluid’s
tendency to develop turbulent flow, and is defined as Re = UL/ν, with ν being the
kinematic viscosity, U a representative velocity, and L a representative length scale.

This thesis will only consider the incompressible Navier-Stokes equations with con-
stant temperature, density and kinematic viscosity, as in [12, page 1166]. They can be
formulated in the following matter (see [20, Chapter 12.3]):

Let ν > 0 be the constant kinematic viscosity of a fluid with unit density and constant
temperature which is enclosed in a volume Ω ⊂ R3 with boundary Γ.
The goal is then to determine the velocity u = (u1, u2, u3) : Ω×I → R3 and the pressure
p : Ω× I → R of the fluid for a given driving force f : Ω× I → R3 with

∂u

∂t
+ u · ∇u− ν∆u+∇p = f in Ω× I, (2.1a)

∇ · u = 0 in Ω× I, (2.1b)
u = gD on ΓD × I, (2.1c)

νn · ∇u− pn = 0 on ΓN × I, (2.1d)
u (·, 0) = u0 in Ω, (2.1e)

where u0 is the initial velocity and I = (0, T ) the time interval, and the following
abbreviation is used: u · ∇u = (u · ∇)u. The boundary Γ is divided into the regions ΓD

with no-slip boundary conditions, where gD is a constant velocity, and ΓN with natural
(also called do-nothing) boundary conditions, where n is the boundary normal.

Boundary Conditions

In Partial Differential Equations (PDEs), boundary conditions describe the value of
the functions on the boundary of the domain. Within fluid dynamics, the following types
of boundary conditions are common (see [20, Page 292] for a more thorough treatment):

5



6 Chapter 2. Theory

gD = 0

gD = 0
gD = g0

νn · ∇u− pn = 0

Figure 2.1: Channel with different boundary conditions on inflow, walls and outflow.
Arrows indicate velocity.

• Dirichlet (also called no-slip) boundary conditions are defined as u = gD on ΓD.
They can be used to model interaction with solid geometry such as pipe walls.
Non-zero Dirichlet boundary conditions can be used to model in-flow velocity.

• Natural, or do-nothing boundary conditions are used to model flow out of an
unbounded domain, e.g. to truncate a long channel. When using variational
methods such as the Finite Element Method, the do-nothing boundary condition
is automatically derived if no other boundary conditions are enforced. However,
there can be issues with stability (see [5] for more details).

Together with parameters such as viscosity and external forces, variations in the
geometry and boundary conditions make it possible to use the incompressible Navier-
Stokes equations to model fluid dynamics in various scenarios.

One example would be a channel section with gD = 0 on the walls, gD = g0 for the
given inflow velocity, and ΓN being the outflow region (see picture 2.1). Another one is
the so-called lid-driven cavity, which will be investigated in section 4.1.

Non-Linearity

Note that the term u·∇u introduces a non-linearity. This non-linearity makes it possible
to model effects such as turbulent flow, but it makes it also hard to solve the incom-
pressible Navier-Stokes equations. Analytical solutions are only known for some special
cases. The question if an analytical solution exists for the general case is not answered
yet and is one of the Millennium Prize Problems[13].

For practical purposes, numerical methods are usually applied for solving the incom-
pressible Navier-Stokes equations, using computers.

One such numerical method is the Finite Element Method (FEM).

2.2 The Finite Element Method
Here, the Finite Element Method will be introduced very briefly by following the pre-
sentation by Bengzon [4, chapter 3]. For a more thorough introduction, see [20].

2.2.1 Weak Form
The Finite Element Method is a technique for numerically finding approximative solu-
tions to differential equations. The general approach is to reformulate the differential
equation, or strong form, in a so-called weak form, by choosing a space of test functions
and integrating by parts, thus obtaining a variational equation.

Depending on the choice of the space of test functions, the weak form will be easier
to solve, and if the domain Ω and the coefficients of the partial differential equation are
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sufficiently regular, it can usually be shown that a solution to the weak form is also a
solution to the strong one [4, page 14].

Assume the differential equation is given as

Lu = f, in Ω (2.2a)
u = 0, on δΩ (2.2b)

with L a linear differential operator, and f a given function.
From this strong form, the weak form is obtained by multiplying equation (2.2a)

with a test function v which is zero on the boundary δΩ, and then integrating over Ω,
which gives ∫

Ω

Lu · vdx =

∫
Ω

f · vdx (2.3)

This can be written in short-hand as

(Lu, v) = (f, v) (2.4)

with a slight abuse of notation.
The equation holds as long as the involved integrals exist. Let V be the function

space of all test functions v for which this is true. Note that also u ∈ V due to the
boundary conditions.

Introducing further the notation

a(u, v) = (Lu, v) (2.5a)
l(u) = (f, v), (2.5b)

the weak form can be formally stated as follows:
Find u ∈ V such that

a(u, v) = l(v), ∀v ∈ V. (2.6)

The definition of a(u, v and l(u) depends on the original strong problem.
The existence and uniqueness of the solution u of the weak form is given under

conditions such as coercivity, inf-sup stability, continuity of a and l via the Lax-Milgram-
Lemma. See [20, chapter 7.3] for derivation and proof.

2.2.2 Tessellation
From a weak form, a finite element method is obtained by replacing the infinite vec-
tor space V by a finite dimensional subspace Vh ⊂ V , often the space of piecewise
polynomials (up to a certain given degree).

The computational domain is tessellated into a mesh κ = {K} which is defined as a
set of geometrical simplices K such as triangles in 2D (see e.g. figure 2.2) or tetrahedra
in 3D. The resolution of the mesh influences the quality of the approximation.

For measuring the size of a triangle or tetrahedron K, let hK be its longest side. One
way of measuring the quality of K is by defining its chunkiness parameter cK = sK

hK
,

where sK is K’s shortest side. Another way to define the chunkiness parameter is
cK = hK

dK
, where dK is the diameter of the triangle’s inscribed circle/the tetrahedron’s

inscribed sphere [20, page 46]. A tesselation κ is called shape-regular if ∃c0 : cK >
c0∀K. Shape-regularity is a quality measure of a tesselation, and can be used in several
theorems and proofs with regard to error estimations (e.g. [20, chapter 3.3.1]).
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Figure 2.2: Triangulation of circle for FEM using Matlab.

Source: Oleg Alexandrov, via [1]. Public Domain.

Given a tessellation κ, on each K ∈ κ a function space is defined together with a set
of functionals, giving a certain degree of continuity at the borders between two adjacent
Ks.

A finite element is then defined by the triplet of simplex, polynomial space, and
functionals.

The problem is further reduced by letting the approximation uh for the sought-for
function u also lie in the constructed vector space Vh. It is then possible to find basis
functions φi, i = 1, . . . , n for this function space due to its finite nature. As an example,
let Vh be the space of continuous, piecewise linear functions on the 1D-mesh κ. Then, a
basis can be formed by hat-functions which have value 1 on their center-node and 0 on
all others, such as in figure 2.3.

2.2.3 Computing the Approximate Solution
Given the space Vh, and a basis {φi}.

A finite element version of equation (2.6) can be formulated as: Find uh ∈ Vh such
that

a(uh, vh) = l(vh), ∀vh ∈ Vh. (2.7)

Since {φi} is a basis of Vh, this is equivalent to

a(uh, φi) = l(φi), i = 1, . . . , n. (2.8)

Also, the approximate solution uh ∈ Vh can be represented as uh =
∑n

i=1 φiξi, with
n unknowns ξi, i = 1, . . . , n.
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Figure 2.3: Hat functions on 1D domain, with center at -1, -0.3 and 1, respectively,
which together form a basis for the space of continuous piecewise linear functions on the
mesh {-1,-0.3,1}.

Inserting this into equation (2.8), one obtains

n∑
j=1

ξja(φj , φi) = l(φi), i = 1, . . . , n. (2.9)

This can be written in matrix form as

Aξ = L, (2.10)

where Aij = a(φi, φj) and Li = l(φi) are constant and can be computed exactly, or
approximated by means of numerical integration.

Solving this linear system of equations gives the coefficients for constructing uh, since
uh =

∑n
i=1 φiξi.

The matrix A is usually large and sparse, which makes the use of dedicated sparse
linear algebra software libraries advisable.

2.2.4 Further Notes
For numerical stability, it might be necessary to add stabilization terms to the weak
form, such as least square-stabilization. However, these extra terms have to be chosen
carefully in order not to compromise the correctness of the approximate solution.

The latter can also be influenced by the resolution of the tessellation, as well as the
choice of the finite element.
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2.3 The cG(1)dG(0) Method
One way of formulating a weak form of the incompressible Navier-Stokes equations using
the Finite Element Method is the cG(1)dG(0)-method (see [12, Page 1168]), which will
be derived below. Unless otherwise stated, the presentation will follow [12].

Consider the Navier-Stokes equations as defined in equations (2.1). Assume homo-
geneous Dirichlet boundary conditions (the case of Neumann boundary conditions is
treated in [12, Page 1170]). Let the space Ω be discretized by a triangulation Th = {K}
of Ω, with a mesh function h(x). Let Wh be a finite element space of continuous piecewise
linear functions on {K}. The continuous piecewise linearity of the space-approximation
gives the method the first part of its name: cG(1).

2.3.1 Time-discretization
The time-dependence in the term ∂u

∂t in equations (2.1) makes it necessary to also dis-
cretize time. Let 0 = t0 < t1 < · · · < tN = T be a sequence of discrete time levels, with
time steps kn = tn − tn−1, 1 ≤ n ≤ N . Let the approximations U(x, t) of velocity u and
P (x, t) of pressure p be piecewise constant and discrete in t, which gives the method the
second part of its name: dG(0). Thus, for each n = 1, . . . , N one seeks Un ∈ V 0

h , with
V 0
h = W 0

h ×W 0
h ×W 0

h , and Pn ∈ Wh. Define

U(x, t)n(x), x ∈ Ω, t ∈ (tn−1, tn],

and P (x, t)Pn(x), x ∈ Ω, t ∈ (tn−1, tn].

The term ∂u
∂t can be discretized as Un−Un−1

kn
. By choosing all other occurring u-

terms to be Un, the p-terms to be Pn, and modifying the equations (2.1a) and (2.1b)
accordingly, multiplying with a test function v ∈ V 0

h and q ∈ Wh respectively, taking
the integral over the domain Ω, and integrating the diffusion-term by parts, one obtains

(
Un − Un−1

kn
, v

)
+ (Un · ∇Un +∇Pn, v) + ν(∇Un,∇v) = (fn, v) ∀v ∈ V 0

h ,

(2.11a)
(∇ · Un, q) = 0 ∀q ∈ Wh,

(2.11b)

where U0 = u0 and fn = f(x, tn).
The cG(1)dG(0)-method without stabilization is defined thus: For each n = 1, . . . N ,

find (Un, Pn) ∈ V 0
h ×Wh which fulfill the system of equations (2.11a) and (2.11b).

2.3.2 Relation to Backward Euler
Note that the time discretization scheme used above corresponds to backward Euler (also
called implicit Euler), an implicit numerical method for solving ordinary differential
equations.

For a given ordinary differential equation

dy

dt
= f(t, y), (2.12)
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backward Euler gives the following scheme

yn − yn−1

h
= f(tn, yn). (2.13)

Using the values of the new time step in the right-hand side gives better numerical
stability than the obvious alternative of using the old ones (as in forward Euler), but
introduces the necessity to solve for the unknown yn, and introduces artificial damping.
The truncation error is O(h2), which can be seen by deriving backward Euler from a
Taylor-expansion and truncating at the second order term.

2.3.3 Stabilization
From the equations (2.11a) and (2.11b), the stabilized version of the cG(1)dG(0)-method
is obtained by adding the two equations, and introducing stabilization by replacing v
with v + δ(Un · ∇v +∇q) in the terms (Un · ∇Un +∇Pn, v) and (fn, v):(
Un − Un−1

kn
, v

)
+ (Un · ∇Un +∇Pn, v + δ(Un · ∇v +∇q)) + (∇ · Un, q) + ν(∇Un,∇v)

= (fn, v + δ(Un · ∇v +∇q)) ∀(v, q) ∈ V 0
h ×Wh,

(2.14)

where δ is defined as

• δ(x) = h2(x) if ν ≥ Uh (diffusion-dominated flow), or

• δ = ( 1k + U
h )

−1 otherwise (convection-dominated flow).

For more background on the reasoning for the introduction of the stabilization terms,
see [12, page 1169].

2.4 The cG(1)cG(1) Method
In the cG(1)cG(1)-method, a higher-order approximation of the time-component is used.
Replacing all U but the ones in the first term by Û where Û = 1

2 (U
n+Un−1), one obtains(

Un − Un−1

kn
, v

)
+ (Ûn · ∇Ûn +∇Pn, v + δ(Ûn · ∇v +∇q)) + (∇ · Ûn, q) + ν(∇Ûn,∇v)

= (fn, v + δ(Ûn · ∇v +∇q)) ∀(v, q) ∈ V 0
h ×Wh.

(2.15)

2.4.1 Relation to Implicit Midpoint
This time, the time discretization scheme does not correspond to backward Euler, but
instead to the implicit Midpoint method, another implicit numerical method for solving
ordinary differential equations.

For a given ordinary differential equation

dy

dt
= f(t, y), (2.16)
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the implicit Midpoint Method gives the following scheme

yn − yn−1

h
= f(tn−1 +

h

2
,
1

2
(yn + yn−1)). (2.17)

Implicit Midpoint makes it necessary to do slightly more computations than backward
Euler. However, the symmetry lets even-ordered error terms cancel, leading to a trun-
cation error of O(h3) and thus higher accuracy (similar derivation to backward Euler).

This method will be used for simulating the incompressible Navier-Stokes equations
in this thesis. However, the difficulty of resolving the non-linear term remains.

2.4.2 Modified cG(1)cG(1) with Least Squares Stabilization
As a derivation of the cG(1)cG(1) method, a least squares stabilization term will be
added to equation (2.15) for increased numerical stability:(
Un − Un−1

kn
, v

)
+ (Ûn · ∇Ûn +∇Pn, v + δ1(Û

n · ∇v +∇q)) + (∇ · Ûn, q) + ν(∇Ûn,∇v)

+δ2(∇ · Ûn,∇ · v) = (fn, v + δ1(Û
n · ∇v +∇q)) ∀(v, q) ∈ V 0

h ×Wh.

(2.18)

Note that the original stabilization factor δ is now called δ1, and the new term has
a factor δ2.

2.5 Fixed-Point Iteration
2.5.1 General Introduction
One simple technique for solving non-linear equations is Fixed-Point Iteration (also
called Picard Iteration). The presentation in this section follows [20, chapter 9.1].

Let
g : X → X, y = g(x) (2.19)

be a non-linear function of the single variable x ∈ X.
One tries to find a fixed-point of g, i.e. a x̄ for which g(x̄) = x̄ by starting with an

initial guess x0, and creating a sequence by letting

xi+1 = g(xi). (2.20)

The sequence is then hoped to converge to a fixed-point x̄ = g(x̄).
This gives rise to the algorithm

Algorithm 1: Fixed-point iteration for a non-linear function
Choose initial starting guess x0, and maximum desired increment size ϵ;
for k = 0, 1, 2, . . . do

xk+1 = g(xk);
if |xk+1 − xk| < ϵ then

Stop.
end

end
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Here, the size of the increment was chosen as a termination criteria; other ones might
be considered, such as the residual size.

The Banach fixed-point theorem states that this approach converges if X is a metric
space (with metric d) and g is a contraction mapping, i.e.

∃L ∈ [0, 1) : d(g(x), g(y)) ≤ Ld(x, y) ∀x, y ∈ X. (2.21)

Note that L is called a Lipschitz constant of g.
If X is a not only a metric space, but also a normed space, this simplifies to

∃L ∈ [0, 1) : ∥g(x)− g(y)∥ ≤ L∥x− y∥ ∀x, y ∈ X. (2.22)

As a proof for the latter version, note that x̄ = g(x̄). Subtracting that from equation
(2.20) and taking the norm gives

∥xi+1 − x̄∥ = ∥g(xi)− g(x̄)∥ ≤ L∥xi − x̄∥ ≤ Li+1∥x0 − x̄∥. (2.23)

The convergence follows from 0 ≤ L < 1.
This is a sufficient, but not necessary condition - fixed-point iteration can also con-

verge in cases where the Banach fixed-point theorem does not hold.
Fixed-point iteration is easy to implement, but converges slowly - the speed of con-

vergence is linear, with the factor of convergence being the smallest possible Lipschitz-
constant of g.

2.5.2 Linear Convergence
A sequence xk is defined to converge linearly to x̄ if there exists a number µ ∈ (0, 1)
such that

lim
i→∞

|xi+1 − x̄|
|xi − x̄|

= µ. (2.24)

One can see directly that this holds for any Lipschitz-constant of g, thus giving linear
convergence for fixed-point iteration.

2.5.3 Application to the cG(1)cG(1)-method
Eriksson et al. [12, page 1169] propose a splitting scheme for fixed-point iteration for
cG(1)dG(0), which is here adapted to cG(1)cG(1).

In order to apply fixed-point iteration to the equation (2.18), one can split the
equation by letting v vary and setting q = 0, which gives the discrete momentum equation(

Un − Un−1

kn
, v

)
+ (Ûn · ∇Ûn +∇Pn, v + δ1(Û

n · ∇v)) + ν(∇Ûn,∇v)

+δ2(∇ · Ûn,∇ · v) = (fn, v + δ1(Û
n · ∇v)) ∀v ∈ V 0

h .

(2.25)

Similarly, letting q vary and setting v = 0, one obtains the discrete pressure equation

δ1(∇Pn,∇q) = −δ1(Û
n · ∇Ûn,∇q)− (∇ · Ûn, q) + δ1(f

n,∇q) ∀q ∈ Wh, (2.26)

where Ûn = 1
2 (U

n + Un−1) as above.
In what follows, equations (2.25) and (2.26) are simplified without loss of generality

by removing the external force-terms involving f , since the numerical examples tested
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in this thesis do not contain external forces (f = 0). The general arguments made are
still valid, and since the external force-terms depend only linearly on Ûn, the division of
terms for the fixed-point could be followed through on it in the same manner. Removing
the f -terms yields(

Un − Un−1

kn
, v

)
+ (Ûn · ∇Ûn +∇Pn, v + δ1(Û

n · ∇v)) + ν(∇Ûn,∇v)

+δ2(∇ · Ûn,∇ · v) = 0 ∀v ∈ V 0
h ,

(2.27)

and
δ1(∇Pn,∇q) = −δ1(Û

n · ∇Ûn,∇q)− (∇ · Ûn, q) ∀q ∈ Wh. (2.28)

When considering that Ûn = 1
2 (U

n+Un−1), the term (Ûn ·∇Ûn+∇Pn, v+ δ1(Û
n ·

∇v)) in equation (2.27) is depending on Un in a complex manner.
This complexity shows when considering to iterate over the equation by replacing

all Ûn with the k-th iterate Ûn
k , where Ûn

k = 1
2 (U

n
k + Un−1). However, this can be

simplified by replacing Ûn
k ·∇Ûn

k with Ûn
k−1 ·∇Ûn

k and similarly Ûn
k ·∇v with Ûn

k−1 ·∇v,
where Ûn

k = 1
2 (U

n
k + Un−1) is the k-th iteration update.

This way, parts of the system are a little behind in the fixed-point-iteration, but the
non-linear relationship is broken up.

Together with using the previous pressure iterate Pn
k−1 in the momentum equation,

this yields:

(
Un
k − Un−1

kn
, v

)
+ (Ûn

k−1 · ∇Ûn
k +∇Pn

k−1, v + δ1(Û
n
k−1 · ∇v)) + ν(∇Ûn

k ,∇v)

+δ2(∇ · Ûn
k ,∇ · v) = 0 ∀v ∈ V 0

h .

(2.29)

In the pressure equation, one can use the newer velocity iterate since it has now already
been computed:

δ1(∇Pn
k ,∇q) = −δ1(Û

n
k · ∇Ûn

k ,∇q)− (∇ · Ûn
k , q) ∀q ∈ Wh. (2.30)

Writing Ûn
k as 1

2 (U
n
k +Un−1) and collecting only terms involving Un

k on the left hand
side(

Un
k

kn
, v

)
+

1

2
(Ûn

k−1 · ∇Un
k , v + δ1(Û

n
k−1 · ∇v)) +

1

2
ν(∇Un

k ,∇v) +
1

2
δ2(∇ · Un

k ,∇ · v)

=

(
Un−1

kn
, v

)
− (

1

2
Ûn
k−1 · ∇Un−1 +∇Pn

k−1, v + δ1(Û
n
k−1 · ∇v))− 1

2
ν(∇Un−1,∇v)

−1

2
δ2(∇ · Un−1,∇ · v) ∀v ∈ V 0

h .

(2.31)

The pressure equation (2.30) remains the same, since there is only one term with the
new iterate Pn

k which is already the only term on the left hand side.
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Then, the system of equations can be solved using fixed-point iteration in the fol-
lowing manner:

Algorithm 2: Fixed-point iteration for cG(1)cG(1)
Choose initial starting guess (U0, P 0), and desired maximum increment size ϵ;
for n = 1, 2, . . . do

/* Next time step. */
Set Un

0 = Un−1, Pn
0 = Pn−1;

for k = 1, 2, . . . do
/* Iteration steps within a time step. */
Solve equation (2.31) for Un

k ;
Solve equation (2.30) for Pn

k , treating Un
k as given;

if ∥Un
k − Un

k−1∥+ ∥Pn
k − Pn

k−1∥ < ϵ then
Exit For;

end
end

end
There are different ways to approach this iteration scheme.
One can devise other criteria for leaving the iteration than the sum of the norm of

velocity and pressure - for the experiments run in this thesis, a fixed number of iterations
was done.

Also, other splitting-methods with iteration for the incompressible Navier-Stokes
equations exist, such as Chorin’s method (see [20, pages 318f.]).

2.6 Newton’s Method
2.6.1 General Introduction to Newton’s Method
Another technique for solving non-linear equations is Newton’s method (also known as
the Newton-Raphson method). It is slightly more complex than fixed-point iteration,
but has usually faster convergence.

The presentation here follows [20, chapter 9.2].
Let again

g : X → X, y = g(x) (2.32)

be a non-linear function of the single variable x ∈ X.
Newton’s method can then be used to find roots of g, i.e. solve the equation

g(x) = 0. (2.33)

Let again x̄ be the solution of the equation.
Newton’s method can then be derived by representing x̄ as the sum of a known initial

guess x0 and a correction term δx:

x̄ = x0 + δx. (2.34)

Assuming that δx is small (if the guess x0 is close to x̄), a Taylor expansion of g(x)
around x̄ can be done:

g(x̄) = g(x0 + δx) = g(x0) + g′(x0)δx+O(δx2). (2.35)
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Since g(x̄) = 0, and neglecting O(δx2)-terms,

0 ≈ g(x0) + g′(x0)δx. (2.36)

Rearranging gives
δx ≈ −g(x0)/g

′(x0). (2.37)

Adding this δx to x0 gives x̄ due to equation (2.34).
By iterating this approach, algorithm 3 is derived.

Algorithm 3: Newton’s method for a scalar non-linear function
Choose initial starting guess x0, and desired maximum increment size ϵ;
for k = 0, 1, 2, . . . do

Compute δxk = −g(xk)/g
′(xk);

Derive new guess xk+1 = xk + δxk;
if |δxk| < ϵ then

Stop.
end

end

For vector-valued functions, Newton’s method can be derived quite similarly. The
main difference is that instead of having to divide by the scalar derivate g′(xk), one has
to multiply by the inverse of the Jacobian matrix (the matrix of all first-order partial
derivatives of g at xk) J−1, or equivalently - and preferably! solve the linear system of
equations Jkδxk = −g(xk).

Newton’s method is not guaranteed to converge - it needs a non-zero derivative at
the iterates, and a smooth surface. For difficult cases, methods such as line search have
been developed. See [22] for details.

Apart from its relative ease of implementation, Newton’s method is popular for its
convergence properties.

2.6.2 Quadratic Convergence
Similar to the linear convergence found for fixed-point iteration in subsection 2.5.2, a
sequence xk is defined to converge quadratically to x̄ if there exists a number µ > 0
such that

lim
i→∞

|xi+1 − x̄|
|xi − x̄|2

= µ. (2.38)

Note the exponent of 2 in the denominator. A further difference to the definition of
linear convergence is that the factor µ is allowed to be larger than 1.

Under certain given circumstances such as sufficient smoothness of the function
around the guessed point, Newton’s method will converge quadratically. For a proof,
see [22, Theorem 3.5].

Otherwise, it will only converge linearly, or, in adverse cases as mentioned above,
not at all.

2.6.3 Newton’s Method in the Finite Element Method
Similarly to the derivation of Newton’s method for a non-linear scalar equation in sub-
section2.6.1, it can be derived for a non-linear partial differential equation.
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Let, similar to equations (2.2a) and (2.2b), a partial differential equation in its strong
form be defined by

NL(u) = f, in Ω (2.39a)
u = 0, on δΩ (2.39b)

with NL() a non-linear differential operator, and f a given function.
Then, u can be written as u = u0 + δu, with u0 being an approximation of u, and

δu a small correction.
Inserting this into equation (2.39a) gives

NL(u0 + δu) = f, in Ω. (2.40)

Doing a Taylor expansion of NL(u0 + δu) around u0 gives

NL(u0) +NL′(u0)δu+O(δu2) = f, in Ω. (2.41)

Neglecting all terms that are quadratic in δu gives

NL(u0) +NL′(u0)δu = f, in Ω, (2.42)

which is a linear equation in δu.
From this and equation (2.39b), a weak form and a finite element method can be

defined similarly to the steps in section 2.2.
Once the derived equations have been solved for δu, the iteration can continue with

the new guess u1 = u0 + δu.
For a more thorough example, see [20, chapter 9.3].
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Chapter 3

Method

Based on the theoretical background presented above, the following derivations and
implementations have been made:

1. Newton’s method has been applied to a modified cG(1)cG(1)-method.

2. The resulting equations have been implemented in a C++ framework.

3. Numerical experiments have been run on both this implementation, and an existing
one using fixed-point iteration, and compared to each other.

3.1 Newton’s Method for cG(1)cG(1)
In what follows, equation (2.18) for the modified cG(1)cG(1)-method is simplified by
removing the external force-term involving f , with the same argumentation as earlier
in subsection 2.5.3 when removing the force-terms in the fixed-point iteration scheme
which lead from equations (2.25) and (2.26) to (2.27) and (2.28).

This yields (
Un − Un−1

kn
, v

)
+ (Ûn · ∇Ûn +∇Pn, v + δ1(Û

n · ∇v +∇q))

+(∇ · Ûn, q) + ν(∇Ûn,∇v) + δ2(∇ · Ûn,∇ · v) = 0 ∀(v, q) ∈ V 0
h ×Wh.

(3.1)

Now, let the set {Un, Pn} be the true solution of the equation at time step n.
Since the equation depends in a non-linear manner on Un, Newton’s method will

be derived by representing Un as the sum of the guess Un
0 and a correction term. In

subsection 2.6.1, this correction term for the variable x was called δx. Since the letter δ
already occurs in the current equations, the correction term will instead be called ϵ, so
that

Un = Un
0 + ϵ. (3.2)

One can then write Ûn as Ûn = 1
2 (U

n + Un−1) = 1
2 (U

n
0 + ϵ + Un−1) = Ûn

0 + 1
2ϵ,

where
Ûn
0 =

1

2
(Un

0 + Un−1). (3.3)

This will then be used in an iteration scheme, where for the k-th iteration,

Un
k = Un

k−1 + ϵk, (3.4)

19
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and
Ûn
k−1 =

1

2
(Un

k−1 + Un−1). (3.5)

Also, let Pn
k be the k-th pressure-iterate.

Inserting this and equations (3.4) and (3.5) into equation (3.1) gives(
Un
k−1 + ϵk − Un−1

kn
, v

)
+ ((Ûn

k−1 +
1

2
ϵk) · ∇(Ûn

k−1 +
1

2
ϵk) +∇Pn

k , v + δ1(Û
n
k−1 · ∇v +∇q))

+(∇ · (Ûn
k−1 +

1

2
ϵk), q) + ν(∇(Ûn

k−1 +
1

2
ϵk),∇v) + δ2(∇ · (Ûn

k−1 +
1

2
ϵk),∇ · v)

= 0 ∀(v, q) ∈ V 0
h ×Wh,

(3.6)

where the ϵk-term was dropped in the term δ1(Û
n
k−1 ·∇v+∇q) since this term would in-

volve more complexity and is likely small due to the product with the small stabilization
factor δ1.

Similarly, when bringing all terms except for the ones involving ϵk or pn onto the
left hand side, products of the type ϵk · ∇ϵk are dropped since they are likely small:(

ϵk
kn

, v

)
+ (

1

2
Ûn
k−1 · ∇ϵk +

1

2
ϵk · ∇Ûn

k−1 +∇Pn
k , v + δ1(Û

n
k−1 · ∇v +∇q))

+
1

2
(∇ · ϵk, q) +

1

2
ν(∇ϵk,∇v) +

1

2
δ2(∇ · ϵk,∇ · v)

=

(
Un−1 − Un

k−1

kn
, v

)
− (Ûn

k−1 · ∇Ûn
k−1, v + δ1(Û

n
k−1 · ∇v +∇q))

−(∇ · Ûn
k−1, q)− ν(∇Ûn

k−1,∇v)− δ2(∇ · Ûn
k−1,∇ · v) ∀(v, q) ∈ V 0

h ×Wh.

(3.7)

This leads to the following algorithm for the cG(1)cG(1) with Newton’s method:
Algorithm 4: Newton’s Method for cG(1)cG(1)

Choose initial starting guess (U0, P 0), and maximum desired increment size γ;
for n = 1, 2, . . . do

/* Next time step. */
Set Un

0 = Un−1, Pn
0 = Pn−1;

for k = 1, 2, . . . do
/* Iteration steps within a time step. */
Solve equation (3.7) for the variables {ϵk, Pn

k };
Set Un

k = Un
k−1 + ϵk;

if ∥Un
k − Un

k−1∥+ ∥Pn
k − Pn

k−1∥ < γ then
Exit For;

end
end

end
Similar to the fixed-point method, one can devise other criteria for leaving the itera-

tion than the sum of the norm of velocity and pressure - for the experiments run in this
thesis, a fixed number of four iterations was done. The number was chosen by balancing
run-time against accuracy.

Note that the difference between the method introduced in subsection 2.5.3 and in
this current section is two-fold: One difference is the use of Newton’s method instead



3.2. Implementation 21

of fixed-point iteration, the other difference is the solve of the complete system at each
iteration instead of a splitting scheme.

3.2 Implementation
3.2.1 Code and Numerical Libraries
An existing C++ code for running the fixed-point method as derived in subsection 2.5.3
has been extended for running Newton’s method.

The code was set up in a similar fashion to the related project CMLFET[17], which
was developed in the Computational mathematics[32]-research group at Umeå Uni-
versity.

The following tools and libraries where used:

• PETSc[2] for parallel data structures and algorithms for scientific computations
involving partial differential equations,

• ParMETIS[19] for parallel graph partitioning and fill reduction,

• and tetgen[30] for generating the 3D mesh.

As a linear solver, PETSc’s GMRES-solver was chosen, with a Jacobi-preconditioner.
Most of this implementation was already in place. This thesis added mainly the use

of Newton’s method, and analysis of the results.

3.2.2 Hardware
All development and computations where done on a Intel(R) Core(TM) i7-4700HQ ma-
chine with 8 cores with 2.40GHz each (four cores with hyper-threading), with 16313964
kB RAM and running Ubuntu 15.10, using mpiexec with four cores. Only four cores
where used since extra cores due to hyper-threading might not perform well on numerical
tasks.

It had also been considered to run the simulation on the Medusa-cluster of the Com-
putational mathematics[32]-research group at Umeå University in order to get higher
speedup. However, since Johansson[17, page 14] found out when running CMLFET on
this setup that using more than one node did not yield higher execution due to latency
of the ethernet, this idea was not followed up.

3.2.3 Analysis of Results
The results of the simulation were exported as .vtu-files. This file type is the Visual-
ization Toolkit (VTK)’s[15] xml-based file format for unstructured meshes[16]. The
result files were analyzed with the help of ParaView[14], a software for scientific visu-
alization which is built on top of VTK.
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Chapter 4

Results and Discussions

Here, several results of the implementation will be presented and discussed.

4.1 Background - Lid-Driven Cavity
The Lid-Driven Cavity was chosen in order to test the implementation, as it is a common
benchmark problem in fluid dynamics. It consists of a cubic cavity, whose lid (the
top layer) has a uniform velocity, and whose interior is filled with a fluid undergoing
incompressible flow. Here, the cavity of size [0m, 1m]3 is considered.

The problem is easy to understand and set up due to its simple geometry and bound-
ary conditions. See [31] for more background.

While the 2D-version of the problem is relatively simple, the 3D-problem which will
be treated here leads to interesting phenomena. See figure 4.1 for an example. Given
a specific geometry, the parameters to vary between different experiments are the lid’s
velocity at the top, as well as the fluid’s viscosity.

4.1.1 Boundary Conditions
The lid-driven cavity has no-slip boundary conditions on all six walls. On the bottom
wall and the side walls, u = (0, 0, 0)T , while on the top wall (the lid), u = (uD, 0, 0)T ,
where the driving velocity uD in x-direction is one of the input parameters of the sim-
ulation.

4.2 Implementation Details
4.2.1 Parameters
Starting from 0 at t = 0, the driving velocity uD is ramped up to its final input value
according to the curve in figure 4.2. The final input value is 1m/s in all experiments.

Apart from the driving velocity, other parameters include the kinematic viscosity of
the fluid ν, as well as its density ρ, which is set to 1000kg/m3 (the density of water) in
all experiments.

Parameters which do not change the physics-related setup of the experiment, but
have influence on the numerical behavior, are the time step ∆t and the spatial resolution
h. Since the latter will in general not be uniform, several measures could be considered
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Figure 4.1: Streamline-visualization using ParaView of a simulation run of the lid-
driven cavity with lid-velocity uD = 1m/s in x-direction, and ν = 0.001Pa · s, at
t = 44.19s, using fixed-point iteration. Magnitude of velocity u is shown both alongside
the streamlines, and at the boundary using a wire-frame visualization.
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Figure 4.2: Ramping up of velocity from t = 0 to simulation end time.
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- here, h will be defined as the longest edge length of the smallest tetrahedron (where
the size of a tetrahedron shall be defined by its longest edge).

The stabilization factors introduced in equation (2.18) where set for each tetrahedron
to δ1 = 1.0∗hi/uD and δ2 = 2.5∗hi respectively, where hi is the respective tetrahedron’s
largest edge.

4.2.2 Meshing
In all the numerical experiments run here, the same meshing was chosen using the library
tetgen, with the following properties:

• Mesh points: 8328

• Mesh tetrahedra: 41258

• Mesh faces: 86040

• Mesh faces on facets: 7048

• Mesh edges on segments: 384

• Mesh minimum chunkiness parameter (defined as cK = sK
hK

, as in 2.2.2): 0.33288

The spatial resolution h is 0.0441942m, and the time step ∆t was chosen as h/uD,
so for the case of uD = 1m/s, ∆t = 0.0441942s.

The finite element type used was order 1 Lagrange elements, which consist of simple
hat functions as shown for the 2D-case in section 2.2. See [20, Chapter 8.12] for a
definition and details.

4.2.3 Reynolds Number
As noted earlier, the Reynolds number Re is a common heuristic for classifying fluid
flow from laminar (at low Reynolds numbers) to turbulent (at high Reynolds numbers).
It is defined as Re = u·L

ν , with u being a typical velocity for the scenario, and L a
typical length scale. In this scenario, u = uD, the driving velocity, and L = 1m, the
edge length of the cubic cavity. Thus, Re = 1

ν .
Simulations were run for ν = 0.01, ν = 0.001 and ν = 0.0001, leading to Re = 100,

Re = 1000 and Re = 10000, respectively. This gave different results, which will be
analyzed in the following sections.

4.3 Velocity
The velocity results of the approach using the fixed-point method and Newton’s method
appear qualitatively similar, when considering figure 4.3 for streamline visualization
plots of the velocity for simulations run with ν = 0.01, ν = 0.001 and ν = 0.0001, and
figure 4.4 for a slice of the xz-plane through point (0.5, 0.5, 0.5) of the same simulations.

It can be seen that at ν = 0.01, the laminar flow dominates, whereas at lower ν (and
thus higher Reynolds number), the flow becomes more turbulent, as is to be expected.
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(a) Velocity from fixed-point method for
ν = 0.01.

(b) Velocity from Newton’s method for ν =
0.01.

(c) Velocity from fixed-point method for
ν = 0.001.

(d) Velocity from Newton’s method for ν =
0.001.

(e) Velocity from fixed-point method for
ν = 0.0001.

(f) Velocity from Newton’s method for ν =
0.0001.

Figure 4.3: Streamline-visualization of velocity using ParaView. Simulations run of the
lid-driven cavity with lid-velocity uD = 1m/s in x-direction, and several values of ν, at
t = 44.19s.
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(a) Velocity from fixed-point method for
ν = 0.01.

(b) Velocity from Newton’s method for ν =
0.01.

(c) Velocity from fixed-point method for
ν = 0.001.

(d) Velocity from Newton’s method for ν =
0.001.

(e) Velocity from fixed-point method for
ν = 0.0001.

(f) Velocity from Newton’s method for ν =
0.0001.

Figure 4.4: Velocity profile at the xz-plane through point (0.5, 0.5, 0.5) of velocity using
ParaView. Simulations run of the lid-driven cavity with lid-velocity uD = 1m/s in x-
direction, and several values of ν, at t = 44.19s. Note that the scale ends at 0.3m/s
instead of 1.0m/s in order to highlight the flow inside the cavity.
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4.4 Pressure
Like the velocity results mentioned above, the pressure results from Newton’s method
and the fixed-point method are qualitatively similar. See figure 4.5 for pressure plots
for ν = 0.01, ν = 0.001 and ν = 0.0001.

As a side note: Since the lid-driven cavity test case used here does not introduce
any boundary conditions for the pressure, the pressure can only be determined up to an
additive constant. When presenting the results in figure 4.5, the pressure results from
the simulation had been averaged to zero first. This has been done by integrating over
the pressure resulting directly from the simulation, and reducing the resulting additive
constant from the pressure. The additive constants can be seen in table 4.1. The additive
constants for Newton’s Method are constant with regard to ν and quite close to zero,
whereas the ones for the fixed-point method are farter from zero and differ slighly with
ν.

Fixed-Point Method Newton’s Method
ν = 0.01 -0.242666 -0.00975585
ν = 0.001 -0.243358 -0.00975585
ν = 0.0001 -0.242837 -0.00975585

Table 4.1: Table additive constants in pressure results for fixed-point method and New-
ton’s method, for several values of ν.

Given that both the velocity and the pressure results from fixed-point iteration and
Newton’s Method agree well, it is interesting to compare them with regards to their
respective convergence properties and computation time.

4.5 Convergence
Both fixed-point iteration and Newton’s method are iterative methods.

For comparing the convergence of the two approaches, their respective convergence
rates can be considered. See subsection 2.5.2 for a definition of linear convergence, and
subsection 2.6.2 for a definition of quadratic convergence.

For simplicity, the i-th iteration update |∆ui| for the velocity will be used as ap-
proximation instead of |xi − x̄| from equation (2.24) (and similarly, the pressure i-th
iteration update |∆pi| will be used for measuring the convergence of the pressure).

The update errors for velocity and pressure for both methods are presented in the
tables 4.2, 4.3, 4.4 and 4.5 for two points in time, together with the quotient between
each iteration update. Note that for the both methods, four iterations were done per
time step.

In table 4.6, a simulation was run with a time step of ∆t = 0.004419s, 1/10th of
the one in the other runs, and with 10 Newton iterations, in order to have a closer
look on the convergence process. For practical purposes, this high resolution would be
impractical, since simulations would take several days to complete. By considering the
steady decrease in the iteration update size for both u and p, it can be seen that the
Newton process converges. When reaching iteration update sizes of about 1E-11, the
convergence rate decreases drastically - this is most likely due to round-off issues so close
to machine precision. The following things can be noted:
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(a) Pressure from fixed-point method for
ν = 0.01.

(b) Pressure from Newton’s method for
ν = 0.01.

(c) Pressure from fixed-point method for
ν = 0.001.

(d) Pressure from Newton’s method for
ν = 0.001.

(e) Pressure from fixed-point method for
ν = 0.0001.

(f) Pressure from Newton’s method for ν =
0.0001.

Figure 4.5: Pressure visualization using ParaView of simulations run of the lid-driven
cavity with lid-velocity uD = 1m/s in x-direction, and several values of ν, at t = 44.19s.
Note the different scales.
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1. The fixed-point method converges after three steps for the velocity, and one step
for the pressure, so that a convergence rate as above cannot be defined for the
latter - however, the convergence is faster than can be hoped for when using the
fixed-point method, which generally converges linearly (see section 2.5).

2. Newton’s method converges here linearly or slightly less than that (similar to the
fixed-point method with regards to velocity), since a µ as in equation (2.24) cannot
be defined. This is not what is expected from section 2.6.

3. Since Newton’s method converges worse than expected here, more iterations would
be needed in some of the time steps in order to get a satisfactory result. Instead
of a fixed number of iterations, a tolerance-based termination criterion would be
preferable, but has not been tested due to lack of time - simulations of this size
with a high number of iterations would take several days to complete.

However, it should be noted that Newton’s method here considers the complete sys-
tem, whereas the fixed-point method treats a split system, and its convergence numbers
which we get here are only for the sub-parts of the system. In order to compare the two
approaches, a different measure should be used, such as e.g. the residual when inserting
the found solution into the complete equation.

Fixed-Point Method Newton’s Method
iteration i |∆ui| |∆ui|

|∆ui−1| |∆ui| |∆ui|
|∆ui−1|

1 8.367640E-02 - 1.048800E+01 -
2 8.232040E-04 9.837947E-03 2.906260E-02 2.771034E-03
3 4.700480E-05 5.709982E-02 8.427050E-05 2.899620E-03
4 0.000000E+00 0.000000E+00 4.478770E-07 5.314754E-03

Table 4.2: Table over convergence of u using fixed-point method and Newton’s method,
for ν = 0.001 and t = 4.419 (after 100 time steps).

Fixed-Point Method Newton’s Method
iteration i |∆ui| |∆ui|

|∆ui−1| |∆ui| |∆ui|
|∆ui−1|

1 1.081610E-03 - 2.684680E+01 -
2 0.000000E+00 0.000000E+00 2.611480E-01 9.727342E-03
3 0.000000E+00 - 4.644280E-03 1.778409E-02
4 0.000000E+00 - 1.142960E-04 2.461006E-02

Table 4.3: Table over convergence of u using fixed-point method and Newton’s method,
for ν = 0.001 and t = 44.19 (after 1000 time steps).

4.6 Computation Times
The computation times between the approach using Newton’s method were much higher
than when using fixed-point, as can be seen in table 4.7. They are approximately 16
times as high, independent on the value of ν.

This can be explained by the following considerations:
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Fixed-Point Method Newton’s Method
iteration i |∆pi| |∆pi|

|∆pi−1| |∆pi| |∆pi|
|∆pi−1|

1 1.364060E-01 - 5.846910E-02 -
2 2.175190E-04 1.594644E-03 6.239610E-02 1.067164E+00
3 1.298340E-05 5.968858E-02 7.802060E-06 1.250408E-04
4 0.000000E+00 0.000000E+00 2.457430E-08 3.149719E-03

Table 4.4: Table over convergence of p using fixed-point method and Newton’s method,
for ν = 0.001 and t = 4.419 (after 100 time steps).

Fixed-Point Method Newton’s Method
iteration i |∆pi| |∆pi|

|∆pi−1| |∆pi| |∆pi|
|∆pi−1|

1 1.092770E-04 - 4.032620E-01 -
2 0.000000E+00 0.000000E+00 4.036940E-01 1.001071E+00
3 0.000000E+00 - 7.581700E-04 1.878081E-03
4 0.000000E+00 - 9.585140E-06 1.264247E-02

Table 4.5: Table over convergence of p using fixed-point method and Newton’s method,
for ν = 0.001 and t = 44.19 (after 1000 time steps).

Newton’s Method
iteration i |∆ui| |∆ui|

|∆ui−1| |∆pi| |∆pi|
|∆pi−1|

0 2.5680E-01 - 5.3917E-04 -
1 7.0315E-07 2.7381E-06 1.1657E-05 2.1620E-02
2 2.0098E-12 2.8582E-06 5.6144E-11 4.8164E-06
3 7.7833E-13 3.8727E-01 9.4996E-13 1.6920E-02
4 . . . . . . . . . . . .

Table 4.6: Table over convergence of u and p using Newton’s method with a time
step ∆t = 0.004419s being 1/10th of the one used in the other examples, and with 10
iterations, for ν = 0.001 and at t = 0.08838 (after 20 out of 10000 time steps). Only the
first 4 iterations are shown, since values oscillate around 1.0E-12 then.

The fixed-point method uses a splitting scheme, and computes thus only two smaller
matrices, whereas the approach using Newton’s method assembles one large matrix.
Given the meshing described above with 8382 points, the matrix sizes are like this:

1. The split-velocity-matrix has a size of 24984 x 24984 entries.

2. The split-pressure-matrix has a size of 8328 x 8328 entries.

3. The complete system matrix (used in Newton’s method) has 33312 x 33312 entries.

Assuming the same sparsity pattern, and a best-case linear scaling of the iterative solver,
the ratio between the number matrix entries in matrix 3, and sum of the matrix entries
in matrices 1 and 2 is 1109689344

693555840 = 1.6. On top of this factor, however, the complete
matrix seems harder to solve: GMRES needs usually 50-800 Krylov subspace iterations
on it (depending on time step and Newton iteration), whereas the two solves for the
smaller matrices take usually between 10 and 100 Krylov subspace iterations.
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This result makes the use of this approach based on Newton’s method less attractive
in the general case, it might however still be useful if correct pressure computations are
of interest, as shown above.

While there was hope that using Newton’s Method would lead to better convergence
and thus optimization of the run-time, low-level optimization of the implementation for
execution time has not been a focus of the thesis, which makes it likely that there is
room for improvement on that end.

Fixed-Point Method Newton’s Method
ν = 0.01 0:48:53h 13:24:37h
ν = 0.001 0:54:24h 15:57:54h
ν = 0.0001 0:50:48h 13:41:52h

Table 4.7: Table over computation times for simulations using fixed-point method and
Newton’s method, for several values of ν.

4.7 Kinetic Energy
A sanity check for the quality of the numerical solution with regard to the real-world
system being modeled is the kinetic energy. The simulation starts with the fluid being
in a rest state. Due to the constant velocity being applied at the lid, one expects a
steady state or something similar to have been reached after a certain amount of time.

If all the volume of the cube of V = 1m3 with density of ρ = 1000kg/m3 were to
obtain the velocity of uD = 1m/s, this would lead to a kinetic energy of Ek = u2

DρV =
1000J .

As is known from the results shown earlier, only parts of the fluid obtain this velocity,
thus leading to a substantially lower kinetic energy. Since the motion (when disregarding
the turbulent behavior) is close to circular along the y-axis acting like a cylinder axis,
only fluid moving along the outermost radius will have a maximum velocity of 1m/s.
Motion closer to the center however will have linearly lower velocity. Further causes for
lower kinetic energy away from the lid include internal shear forces resisting the motion,
as well as turbulence.

Regarding other energy forms: Note that due to the constant density, the potential
energy in the system is constant. In the real system, internal friction and shear forces
would lead to kinetic energy being converted to heat energy, but the effects of tempera-
ture are not modeled by the formulation of the incompressible Navier-Stokes equations
considered here.

4.7.1 Comparison of Newton’s Method and Fixed-Point Method
The approaches using Newton’s method and the fixed-point method behave quite similar
here, as can be seen in figure 4.6. Compare figure 4.2 for the corresponding velocity
ramp-up.

Note that when generating this figure, the assumption was taken that all tetrahedra
in the mesh have uniform size. The meshing process used strives for equally-sized tetra-
hedra, but there might be some derivations, so the correct kinetic energy is expected to
differ slightly.
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Figure 4.6: Kinetic Energy in fixed-point method vs. Newton’s method, for ν = 0.001
and uD=1m/s.
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Chapter 5

Conclusion

5.1 Achievements
This thesis introduced an implementation of Newton’s method for the cG(1)cG(1)-
method of numerically solving the incompressible Navier-Stokes equations, and com-
pared it to an earlier version using fixed-point iteration.

The velocity and pressure results from both methods correspond closely, as inves-
tigated by qualitative analysis by considering streamlines and xz velocity profiles, as
well as considering the kinetic energy as a quantitative measure for velocity. For the
pressure, surface visualizations have been used for quantitative comparisons.

Newton’s Method in this implementation does not converge quadratically as hoped
for, and has a much higher computation time than the existing method using splitting
and fixed-point iteration.

5.2 Shortcomings
The following shortcomings have been found and could be addressed in future work:

• Tolerance-based termination criteria - For both iterative methods, a tolerance-
based termination criterion should be used, to make sure that the iteration pro-
cesses converge. Note that this might increase computation times considerably.

• Investigate Newton’s method’s bad convergence - It is expected to converge
quadratically when close to the solution, and linearly when further away. Here
however, it converges linearly or less than that, which should be investigated.
Approaches such as line search might help if this is an issue of global versus local
convergence.

• Investigate Newton’s method’s computation time - In order to improve
the computation time, optimizations and better use of parallelization should be
investigated, e.g. by delaying communication points.

• Low number of test cases - More test cases should be investigated, both regard-
ing geometry, boundary conditions, and parameters such as viscosity and external
force.
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• Compare the two iterative methods by using residual - To give a fairer
quality measure of the two iterative processes than their convergence rate, the
residual at each iteration step should be computed by inserting the found solution
into the complete equation.

5.3 Future Work
Apart from addressing the shortcomings mentioned above, the following ideas could be
followed up in future work:

• Update to a newer version of PETSc - The version used is quite old, and a
newer version might bring improvements in performance and stability.

• Examine Newton’s method included in PETSc - PETSc includes methods
for non-linear solves, amongst others Newton’s method. This would need a rewrite
of parts of the framework.

• Investigate use of GPGPU - Graphical Processing Units (GPUs) and other
dedicated hardware have outperformed more general processing units (CPUS) in
a number of computational tasks within the last years, leading to the field of
General Purpose GPUs (GPGPU). PETSc also supports GPU code. However, it
is a large task to make efficient use of a given GPU, or even an array of different
GPUs and other processors.
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