

Next Generation Malware

Detection, Clustering and Heuristics

Proofpoint Staff:

Brad Woodberg

MSU Team:

Graham Thomas

George Zhao

Brad Doherty

Crystal Lewis

Yash Patel

2

Table of Contents
Executive Summary ... 3

Functional Requirements .. 4

Design Requirements ... 5

Overview ... 5

Process Flow ... 6

Web Applications .. 7

Dashboard Home Page .. 8

Specific File Page ... 9

Technical Specifications .. 10

System Architecture .. 10

Backend Analysis .. 11

Front End Web Interface ... 12

Server System ... 12

Software Technologies.. 12

Development Environment ... 13

Test Plan .. 13

Database .. 13

Risk Analysis .. 14

Schedule .. 16

3

Executive Summary
Proofpoint is one of the leading next-generation cybersecurity companies in

the world. Proofpoint protects the software that people use in their daily life like

email, mobile applications, and social media. The company was originally founded

in 2002 and is currently headquartered in Sunnyvale, CA. Every day, they detect

and block threats in more than 600 million emails, 7 million mobile apps and

hundreds of social media accounts. Additionally, they also help people send large

files securely, and protect sensitive information. In order to do all this, they have

malware analysts look over hundreds and thousands of malware files per day. With

the threat of malware growing faster than malware analysts can scale, it would be

more efficient if they spent more time looking over malware that is new and more

malicious. That is why we are introducing “Next Generation Malware Detection,

Clustering, and Heuristics”.

This dashboard is going to work in real time by analyzing all the provided

malware and provide information about which ones need further inspection and

which malware is already known. The main purpose of the dashboard is to help an

analyst spend less time analyzing the known malware and more time analyzing the

unknown malware.

4

Functional Requirements

The landscape of malware is ever-changing, with millions of malware

samples being created and distributed daily. Proofpoint has proposed a way to

reduce the number of malware an analyst must analyze by creating a tool which

automates the malware analysis process as much as possible. This tool flags

unknown malware, so that the analyst can focus their time determining what this

new malware does and how it does it. The tool also shows the analysts information

about the malware that will increase the speed of signature generation.

Additionally, the analysis tool clusters malware together, based on similarity

between information about the malware, so that it is easily displayed on the web

application. The web application dashboard will display relevant information

about the batch of malware being processed such as flagged files, total number of

analyzed files, and specific information about a selected file.

The primary goal of this project is to reduce the amount of malware that

must be analyzed and cluster the analyzed malware together. By automating the

process, the workload of an analyst is reduced significantly. The tool processes the

malware corpus hosted remotely, statically analyzes it, determines if dynamic

analysis is appropriate and runs it through a clustering tool. The clustering tool will

group similar types of malware together so that the web application can display the

information generated by the tool.

The web application dashboard for analysts is a secondary goal for this

project. This dashboard will display all relevant information pertaining to the

malware that has been analyzed. The web app will interact with an API that

handles all relevant information gathering. The dashboard display contains a

graphical representation of the batch of malware, as well as a table containing

every file that has been processed. Clicking on a malware entry navigates to a

webpage with specific information about the file (e.g. file size, file hashes, time

needed to analyze, etc.).

The third goal of this project is to provide a framework to develop signatures

for malware after dynamic analysis. If, after dynamic analysis, the malware

matches no known signatures, the analysis tool provides a way for an analyst to

easily create a signature for the new malware. It collects information that is

important for an analyst to be able to develop a new signature for it.

5

Design Requirements
Overview

Next Generation Malware Detection, Clustering, and Heuristics is an

application designed to decrease the amount of malware a human analyst needs to

manually examine by automating the process wherever possible. Using malware

analysis techniques such as static and dynamic analysis, this tool filters out

malware that is not interesting to a human analyst and prioritize malware that

requires further human analysis. When possible, the system automates the job of

the analysts by generating new signatures for malware that has not been seen

before.

The web-based dashboard gives human analysts real-time information about

malware currently being processed by the system. This information is organized in

a manner that will allow the analysts to quickly pick up on any trends or other

information which will assist them in their job. Users can filter malware based on

Yara Rule matches, flagged status, and more in an effort to increase their

efficiency as much as possible.

Figure one shows the flow of malware through our back-end analysis tool, a

piece of malware is first run through static analysis. The results of static analysis

determines whether or not dynamic analysis is run on the malware file. If dynamic

analysis is not run the results are sent immediately to the database. However, if the

file requires dynamic analysis the results of dynamic analysis will also be sent to

the database, after it is analyzed. The tool clusters these results based on similar

based on metrics such as file signatures, behavior, network signatures, malware

type, hash, etc. This system provides a framework which assists malware analysts

in signature generation, by gathering all relevant data related to signature writing

and displaying the results. This data is accessed using an API, and the front-end

dashboard will display these clusters of malware graphically. Additionally, the

dashboard displays details about files which have been analyzed by the tool.

6

Figure 1: Process Flow

7

Web Application

The dashboard is accessible by malware analysts working at Proofpoint.

Analysts are presented with a graph which displays a count of all the Yara rules

that are matched for that batch. Malware may be determined to be similar based on

metrics such as file signatures, behavior, network signatures, malware type, hash,

etc. This graph will be updated in real time with malware that the system has

finished processing.

The dashboard includes a web page for each file in the system. This web

page shows information pertaining to each file, such as file hashes, file statistics,

similar malware, Yara output, etc. The similar malware table contains links to the

webpages of the malware that has been deemed similar by the system.

8

Dashboard Home Page

The dashboard home page contains a bar graph that shows the total number

of malware that have matched a specific Yara rule, as well as a table that has an

entry for each file that has been processed by our system.

Figure 2: Bar graph showing number of malware matching the Yara rule

9

Figure 3: In-depth analysis of a file

Specific File Page

The specific file page contains information about the specific file. It will

contain file statistics, such as run time, file size, and the file extension.

Additionally it has information about the file hashes, similar malware, and the

output of the Yara rule it matched, if any.

10

Figure 4: System Architecture Diagram

Technical Specifications

System Architecture

The system is hosted on a cluster managed by VMWare ESXi

hypervisor. On top of the hypervisor, five virtual machines running Ubuntu

operating systems run the malware corpus, the static malware analysis tool, the

dynamic malware analysis tool, the Mongo database, and the Apache web

server. When a piece of potential malware is fed into the system it first undergoes

static analysis by tools such as ClamAV antivirus and Yara Rules. From here, a

report is generated that the decision logic can use to determine if the malware

should undergo further dynamic analysis. If the decision logic determines a need

for further analysis, the malware is executed in Cuckoo sandbox. In both cases,

however, information from static analysis and sandboxing, if applicable, is parsed

into a format that provides information for signature writing. After the piece of

malware has been processed, it passes through clustering logic to determine what

11

other pieces of malware it is similar to. All this information is then written to the

Mongo database server.

When interacting with the web interface, a user can see details on malware

that has been passed through the system through a Bootstrap framework web

page. The front end interacts with the back using API calls to the Apache web

server that passes the call to NodeJs for call processing.

Backend Analysis

The backend analysis of a piece of malware begins with the parsing of file

type and intended architecture. This along with clustering, tool output processing,

and the driver for the backend system is written in Python 2.7, a language familiar

to the development team with support for software tools like YARA and Cuckoo

Sandbox.

 The next step in the process is automated analysis using static

methods. The piece of malware is analyzed against Yara rules, ClamAV virus

scanner, and PE, SHA256, MD5, SHA1 hashes. Hashes provide static binary

matches and near matches to known malware file patterns, while Yara rules and

ClamAV look for particular static patterns. The information from the static

analysis is then processed by the logic responsible for flagging malware for

dynamic analysis for attributes that may indicate an interesting file.

If a piece of malware has interesting static characteristics, it will be passed

to a sandboxing environment for dynamic analysis. A sandbox is a piece of

software that leverages virtualization technology to execute the malware safely and

record its behavior. In our case, we will be using Cuckoo sandbox because of it

features built in IDS support. Cuckoo will provide a detailed account of malware

behavior for further analysis.

After dynamic analysis, static analysis information such as hashes, Yara

Rule hits, and ClamAV signatures are combined with dynamic analysis

information such as screen-shots, PCAP information, network traffic, Suricata

alerts, and dropped files into a format that is easily navigable for the purpose of

signature assignment. Some of this relevant signature information is used to

automate some signature generation (e.g. coinbots). All of the contents of the

report are added into a database that can be used for cluster analysis and front end

information population.

12

Front End Web Interface

The user facing web application is built on the Bootstrap JavaScript

framework, incorporating HTML models and CSS style descriptions. Bootstrap

was chosen for its robust dynamic front end application support. Apache web

server serves the webpage elements to the browser, and the API calls to get data

pertaining to instances of malware and the statistics of the malware set is handled

through NodeJs. Finally, the database server for the data delivered by the analysis

tool is Mongo database, a database familiar to the development team.

Server System

The webserver, database server, and malware analysis systems are run on a

cluster. The allocated cluster resources are managed by VMWare ESXi

hypervisor, and the five previously mentioned features are run atop Ubuntu

distributions of Linux operating system. Inside the analysis tool, virtual machines

required by the sandbox software Cuckoo are powered by VirtualBox.

Software Technologies

 Yara Rules

 ClamAV

 Python 2.7

 Cuckoo

 MongoDB

 NodeJs

 Apache Server

 Linux OS

 Bootstrap(JavaScript)

 ESXi Hypervisor

13

Development Environments

The backend logic, written in Python 2.7, will be created in Visual Studio

Code. The backend logic will be tested using the PyTest module. The front end

web-page will be built in the JetBrains PHPStorm. The production, development

and testing phases will all take place on the cluster.

Test Plan

The system will be first tested on a corpus of pre-processed malware

provided by Proofpoint. Later the system will be used on unknown samples to test

real world viability.

Database

The information Malware file hashes and file type, Networking Traffic

(DNS, SSL, TSL, and Suricata Alerts), Registry keys, mutex, and created files will

all need persistent storage in order to for the front end to access relevant

information. Proofpoint has provide a hardware cluster, in which we will be

running MongoDB Server with a Mongo database.

14

Risk Analysis
Many risks face this application and development team. These risks will affect

many different facets of the product, but through proper identification and

prioritization, they can be mitigated effectively.

Malware Categorization and Clustering
Difficulty: Low

Importance: High

Description: The clustering of different malware will be based off a set of

characteristics that we have to identify. These characteristics have not been

defined yet and if they are identified incorrectly the clustering will not be

accurate.

Mitigation: Conduct research to understand the behavior, origin and

defining characteristics of different types of malware. Conduct research to

understand how clustering algorithms work and what kind of information

from malware groups are needed to use clustering algorithm.

Scalability and Speed
Difficulty: High

Importance: Medium

Description: The volume of malware that will be analyzed in a given

timeframe isn’t known and will vary. The web application needs to be able

to handle large volumes of malware and be time efficient when analyzing

these files as well.

Mitigation: Establish a basis for the type of volume of malware to be

analyzed per given time period. After this basis is set, the resources for the

analysis software being used can be allocated and managed appropriately.

This includes calculations for the probability for how often Dynamic

Analysis will need to be conducted.

15

Understanding Dynamic and Static Analysis Tools
Difficulty: Low

Importance: High

Description: Static and Dynamic analysis will be conducted using a

collection of software tools the team is unfamiliar with. Each of this

software requires different input and have different output formats.

Understanding each of these for the software is important so that each piece

of malware can be properly analyzed and clustered.

Mitigation: Running different malware samples and testing different

scenarios will provide insight into inputs and outputs. Additionally, subject

matter expert advice from a Malware analyst will provide more accurate

high level views for how each tool can play a role in analysis.

Web API
Difficulty: Medium

Importance: High

Description: API is necessary for information between the analysis and

clustering process on the backend and the dashboard on the front end.

Development team is unfamiliar with this technology.

Mitigation: Prototype different test API to understand development process.

This will be done with research and trial and error.

Signature Generation Framework
Difficulty: High

Importance: High

Description: The malware analysts need to be able to easily create

signatures for files we analyze, especially involving new malware.

Mitigation: Determine what analysis information is relevant for a signature,

so that it can be easily displayed for the analyst on the dashboard.

16

Schedule
Product Stages

P0: Research and test malware software, configure tools and virtual

machines

P1: Identify file types for static analysis, begin dynamic analysis logic, basic

web layout

P2: Clustering implementation, Database implementation, Dynamic and

Static Analysis

 P3: API and Database and Web App integration, Signature Generation

P4: Real time cluster updates, Dashboard hyperlinks and more signature

generation

Week 1/8-1/14

-Team assignment

-Initial team meeting

-Established slack, point of contact and team dynamics

-Initial client meeting

Week 2: 1/15 - 1/21

-Research malware tools Cuckoo, ClamAV, and Suricata

-Establish outline for Dynamic Analysis

-Establish outline for Static Analysis

Week 3: 1/22 - 1/28

-Project Plan Presentation and Document complete

-Website Server and Database Server deployed

-Meet with Malware Analyst

17

Week 4: 1/29 - 2/4

-Read malware determine file type

-Run PE Hash

-Sandboxing environment set up

-Website skeleton implemented

Week 5: 2/5 - 2/11

-Basic API functionality mapped out

-Database set up and populated with Dummy data

-Parsing output for Dynamic and Static analysis

Week 6: 2/12 - 2/18

-Web functionality UI complete

-Feed info into database

-Begin clustering

Week 7: 2/19 - 2/25

-API complete

-Practice Alpha Presentation

-Finish clustering

-Alpha Presentation (2/12 - 3/1)

Week 8: 2/26-3/4

-Integration of API and website and clustering

-Begin decision logic for dynamic analysis

Spring Break: 3/5 - 3/11

-Framework relevant to signature info

-Finish decision logic for dynamic analysis

-Status Report

18

Week 9: 3/12 - 3/18

-Web Fully Functional

-Signature generation support

Week 10: 3/19 - 3/25

-Testing deployed malware feed

-Quality assurance

Week 11: 3/26 - 4/1

-Practice Beta presentations

-Beta Presentation (4/3 - 4/12)

Week 12: 4/2- 4/8

-Video outline plan

-Film video

Week 13: 4/9-4/15

-Video filmed, edited

-Status report

-Testing of the product

Week 14: 4/16-4/22

 - Finalize video

 -Testing of the product

Week 15: 4/23-4/29

 -Design day

 -All deliverables due

