
s
o
u
r
c
e
:

h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
5
0
2
7
6

|

d
o
w
n
l
o
a
d
e
d
:

2
3
.
1
2
.
2
0
2
2

NextServe Framework: Supporting Services
Over Content-Centric Networking

Dima Mansour, Torsten Braun, and Carlos Anastasiades

Communication and Distributed Systems, University of Bern
Neubruckstrasse 10, 3012 Bern, Switzerland
{mansour,braun,anastasi}@iam.unibe.ch

http://cds.unibe.ch

Abstract. The future Internet architecture aims to reformulate the way
services and content objects are requested in a location-independent
manner. Information-Centric Networking is a new network paradigm,
which tries to achieve this goal by making content objects identified and
requested by names instead of addresses.

In this paper, we extend the Information-Centric Networking architec-
ture to support services to be requested and invoked by names. We
present the NextServe framework, which is a service framework with a
human-readable self-explanatory naming scheme. NextServe is inspired
by the object-oriented programming paradigm and is applicable in real-
world scenarios.

Keywords: Service-Centric Networking, Content-Centric Networking,
Information-Centric Networking, Future Internet Architecture.

1 Introduction

The design of current Internet architecture relies on the fact that every node has
an IP address. The sender’s packet should contain the IP addresses of the source
and the destination. The increasing use of the Internet, the new requirements by
mobility of users and security, as well as the expanding content volume prompt
researchers to think about new designs for the Internet architecture [1].

There are many questions about the next-generation Internet architecture.
Some of them are related to the way content objects are requested, some are
related to the optimal routing scheme for content object requests, and others
investigate the capability to build a suitable architecture for the current use
case scenarios of the Internet.

Information-Centric Networking (ICN) [2] proposes some answers for those
questions by giving content objects names instead of addresses. There are many
implementations of ICN like Content-Centric Networking (CCN) [2], Publish-
Subscribe Internet Routing Paradigm (PSIRP) [3], and Data-Oriented Network
Architecture (DONA) [4] . These projects differ in design and implementation,
but agree on the concept that content is the first-class citizen in the network.

2 Dima Mansour, Torsten Braun, and Carlos Anastasiades

There is one main limitation with those projects. They all support static
content only and there is no natural support for services. By taking a look at the
current Internet applications and user needs, we can see that a high percentage
of user requests is for services. Some are simple like “user sign up” services, and
others are complex like financial transaction services. So, we believe that future
ICN projects and architectures should support dynamic services as well as static
content.

In this paper we extend an ICN architecture and naming scheme to sup-
port services. Our approach allows services to be requested and invoked by their
names to reach the concept of Service-Centric Networking (SCN), where ser-
vices are also first-class citizens of the network. Our service naming scheme is
inspired by the object-oriented programming paradigm and takes into considera-
tion simple and complex service characteristics. NextServe is the implementation
of our approach to support services over ICN. Our implementation is based on
the CCNx project [5], which is an implementation of the Content-Centric Net-
work (CCN) protocol [6]. We explain the architecture and the naming scheme of
the NextServe framework and discuss the advantages and the limitations of our
approach.

The rest of the paper is organised as follows: In Section 2, we introduce the
necessary technical information regarding the CCN protocol. In Section 3, we
explain our approach and its architecture. We demonstrate a detailed example
and motivate our design decisions. In Section 4, we discuss the naming schemes
of previous projects in Service-Centric Networking and show the advantages of
NextServe over those projects. Finally, we conclude this paper in Section 5 and
discuss future work in Section 6.

2 Technical Background

Content-Centric Networking (CCN) deals with content objects as separate enti-
ties regardless of the hosts’IP addresses. The elements of the CCN architecture
and the CCN communication model is shown in Figure 1. Content publishers
publish their content objects by advertising them to content Routers. The CCN
communication model relies on two types of packets rather than IP packets. The
consumer sends an Interest packet containing the content name. The producer
sends a Data packet containing the corresponding data. The content router pro-
cesses the request using three tables:

1. The Content Store (CS) is a cache memory that stores the retrieved data
mapped with the corresponding content name.

2. The Forwarding Information Base (FIB) is a table of outbound faces for
Interests. The FIB table is a standard routing table used for Interest for-
warding based on content names rather than IP addresses.

3. The Pending Interest Table (PIT) matches between the content name and all
faces that are interested to reach the corresponding data. Then, the router
can remember the outstanding Interests.

NextServe: Supporting Services over CCN 3

(b) Processing the Interest message

CS

Name Data

ccn://journals.com/springer/v3/part2

——————————————

———————

ccn://journals.com/springer/v3/part2

PIT

Prefix Faces

———————

1

———————

ccn://journals.com/

Prefix Faces List

FIB

——————————————

1, 2

Index PTR

PIT

CS

FIB

face 0

face 1

.

.

.

.

Receive an
Interest message

Check if the
corresponding

data exists in CS
EndStart Check if there is

an entry in PIT
Check if there is
an entry in FIB

Retrieve data from CS
and send it to the

interested face

Add the interested face
to the corresponding

entry

Add a new PIT entry

Send the Interest via
FIB faces

YesYes Yes

No NoNo

(a) CCN node design

Fig. 1. A general overview of the CCN protocol.

When a client sends an Interest packet, the content router looks it up in the CS
to retrieve the corresponding data directly. When there is no corresponding entry
in CS, the router searches the PIT for an entry that has the same content name.
If it finds one, it adds the interested interface to it. If it does not find a match,
it adds a new entry with the content name and the corresponding interested
interface. Finally, the router searches in the FIB. If there are matching prefixes
in the FIB, it will forward the Interest to the corresponding faces. Otherwise (no
matching prefixes in FIB), there is no way to reach the corresponding data.

The names in CCN are arranged in a hierarchical structure to facilitate the
aggregation, management, and discovery of services. Each name consists of mul-
tiple components, which in turn can be any string of arbitrary length. These
names have also information like versions and chunks of data. For instance, the
name ccn://Journals/springer/v3/part2 is to ask for the second part of the third
version of the content ccn://Journals/springer.

4 Dima Mansour, Torsten Braun, and Carlos Anastasiades

3 The NextServe Framework

3.1 Naming Scheme

The naming scheme in NextServe is very similar to the method invocation style
in modern programming languages like Java or C#. Service names follow the
grammar in Figure 2. From those production rules, we can see that services have
exactly the hierarchical names as content objects in CCN, but with the following
additions:

– Services can accept parameters.
– Service parameters can be primitive values (string, integer, etc.), content

objects, and other services.
– The returned result from one service can be a parameter to another ser-

vice.This allows for service composition easily.
– The service parameters are contained between “/(” and “/)”.
– The service parameters are separated using “,”.
– When the parameters are primitive values, they are contained within double

quotations.

To summarize, the service name is: /prefix1/prefix2/.../ServiceName/(param1,
param2,.../). The parameters can be simple scalar values (”2”, ”3.14”, ”Hello
World”, etc.), content objects (e.g.,/unibe/iam/cds/schedule), or other services.

<CompleteName>, ::=,/,<ServicePrefix>,<ServiceName>,<Parameters>
<ServicePrefix>,,::=,identifier/,|,identifier/,<Component>
<Component> ::=,identifier/,|,identifier/,<Component>
<ServiceName> ::=,identifier
<Parameters> ::=,/(<Params>/),|,epsilon
<Params>, ::=,epsilon,|,<ParamValue>,|,<ParamValue>,<Param>
<Param>,,,,,,,,,,::=,<ParamValue>,|,<ParamValue>,<Param>
<ParamValue> ::=,<LocalParam>,|,<CompleteName>
<LocalParameter>,::=,"<Value>"
<Value>,,,,,,,,,,::=,text

Fig. 2. The grammar of the naming scheme in NextServe

3.2 Architecture

The layered architecture of our approach is shown in Figure 3. The topmost
layer contains the services. These services contain the application-specific busi-
ness logic. The middle layer contains the necessary components for publishing
services, handling requests, responses, and service parameters, as well as invoking
service implementations. The lowest layer contains the CCN core.

NextServe: Supporting Services over CCN 5

The “CCN Connector” component handles the communication with the CCN
core. It manages the Interest and Data messages. The “Name Parser” component
parses the service requests according to the grammar shown in Figure 2 to deter-
mine the service implementation and the parameter values. When a parameter is
a content object or another published service, the “Parameter Retriever” fetches
the corresponding content data or service reply through the “CCN Connector”.
All the aforementioned functionality is encapsulated and abstracted from the
“Services” layer by the “Service Publisher” component, which is responsible for
publishing and un-publishing services.

Service Publishing Layer

NameParser

CCN Connector

Parameter
Retriever

Service
Publisher

CCN

Services

Fig. 3. The layered architecture of NextServe.

3.3 Concrete NextServe Use Case Scenario

To better explain the approach, we give a concrete example. This example is
completely implemented using CCNx and NextServe. The setting of the test
scenario is as follows (as in Figure 4):

– There are three content routers. Each one has a running “ccnd” daemon (the
executable of CCNx).

– There are two service providers. Each one is running a “ccnd” daemon and
NextServe.

– There is one content provider running a “ccnd” daemon.
– Each node in the setting is running on a separate virtual machine. All virtual

machines are connected via a network as in Figure 4.

6 Dima Mansour, Torsten Braun, and Carlos Anastasiades

In our example, there is an encryption service called /scn/encrypt. This service
takes two parameters. The first one is the encryption password. The second pa-
rameter is the content object to encrypt. Then, the service encrypts the content
object using the password. There is another service called /fileManager/zip. This
service takes a content object as a parameter and compresses it. A possible client
might submit the request /scn/encrypt/(“P@ssw0rd”,/fileManager/zip /(/uni-
versity/profile.pdf/)/). This request can be read exactly like a method invocation
in Java or C#. This means that the client wants to compress the file /univer-
sity/profile.pdf and then encrypt it using the password “P@ssw0rd”.

CCN Router Service Content Client

/scn/encrypt/("P@ssw0rd",
/fileManager/zip/(/university/profile.pdf/)/)

/fileManager/zip/(/university/profile.pdf/)

/university/profile.pdf

Interest Data

1

2

3

4

5

6

/scn/encrypt

/fileManager/zip Client

/university/profile.pdf

Fig. 4. The process of handling the request /scn/encrypt/(“P@ssw0rd”,/fileManager
/zip/(/university/profile.pdf/)/)

There are few points to notice here:

– The encryption service is published under the name /scn/encrypt.
– The compression service is published under the name /fileManager/zip.
– The profile content object is published under the name /university /pro-

file.pdf/.

NextServe: Supporting Services over CCN 7

Figure 4 shows the process of handling the service request using NextServe.
When the CCN router receives a request for /scn/encrypt/(“P@ssw0rd”, /fileM-
anager/zip/(/university/profile.pdf /)/), it performs name-based routing based
on the longest prefix match. In this case it is /scn/encrypt. The CCN router
does not understand the components in the parameter part. The perception of
the rest of the request is the responsibility of the “Service Publishing” layer
in the encryption service node. When the request reaches the service encryp-
tion node, the service publisher component receives the request and uses the
“Name Parser” to parse the service parameters. In this case, the service pub-
lisher extracts two parameters. The first one is the password “P@ssw0rd” and
the second one is “/fileManager/zip/(/university/profile.pdf/)”. Then the ser-
vice publisher uses the “Parameter Retriever” component to retrieve the sec-
ond parameter from the CCN network by sending a request for “/fileMan-
ager/zip/(/university/profile.pdf/)”. Again, when the CCN router receives that
request, it forwards it to the compression service node by maximum name com-
ponent matching, which is in this case “/fileManager/zip”. In the same way, the
service publishing layer parses the request name and extracts the parameter for
the compression service. This parameter in this case is “/university/profile.pdf ”.
Then, the “Parameter Retriever” component places a request for that content
from the CCN network. When the Data message for “/university/profile.pdf ”
is received, the “Service Publisher” invokes the “zip” service on that content
object data. Then, it sends the result in a Data message to the CCN network,
which routes it to the requester, i.e., the encryption service node. After receiving
the result, the “Service Publisher” component in the compression service node
invokes the service “encrypt” using the password and the content parameters.
Then it sends back the result in a Data message to the client via the CCN
network.

3.4 Implementing and Publishing Services

Publishing services is easy since the only interface that has to be dealt with is
the Service Publisher. The Service Publisher has a method called publish that
takes two parameters: The first one is the name of the published service as a
string (e.g.,/scn/encrypt). The second parameter is an object that has a method
called execute, which takes a list of byte arrays, which represent the parameter
values. When a request for a service is received, the “Service Publisher” fetches
the parameter values from the request and transforms them to a list of byte
arrays. Then it invokes the execute method on that ArrayList.

The service owner only needs to implement the parameter mappings to the
desired types and then invokes whatever business logic that needs to be invoked.
This mapping can also be automated through Java Reflection but it is not done
yet.

8 Dima Mansour, Torsten Braun, and Carlos Anastasiades

3.5 Motivating our Design Decisions

We chose the layered architectural style because it is very appropriate for network
applications and protocols. It also achieves the separation of concerns design
principle allowing each layer to evolve separately without affecting other layers.

The decision of putting the responsibility of handling services, service names,
and service parameters into the application or into the service provider is based
on the discussion in [7]. The authors in [7] discuss three approaches to implement
services over CCN: One of them is to implement services in the core of CCNx.
In this case some modifications are needed in the existing infrastructure of the
CCNx core. Another approach is to implement services at the publisher side.
Then, all publishers have to be modified to provide the service to all clients. The
third approach is to implement services as a separate application. In this case,
there is no need to touch the CCNx core.

NextServe follows the third approach and uses the CCN infrastructure as it
is without any modification. Our approach follows the CCN protocol guidelines
regarding naming, which specifically states that “CCNx content names are not
interpreted in the operation of the CCNx protocol itself, just matched” [8]. In this
way, our approach allows for caching because the parameters are components
in the Interest name. So, if two clients ask for the same service on the same
parameters, the CCN routers will only fetch one and forward the answer to both
clients. If a third client asks for the same service with the same parameters, the
CCN router gets the result from its Content Store.

4 Related Work & Discussion

There are many projects that aim at supporting services over ICN. CCNxServ[9]
is also built on top of CCN. It adopts the same hierarchical structure of the
names as CCN. The naming scheme is ContentName + ServiceName, where
ContentName is exactly as in CCN. ServiceName is the name of the service
module that should be invoked on the requested content. CCNxServ assumes
that services are implemented as separate Java JAR files. CCNxServ retrieves
the service file (as a JAR file) and the content file, then it executes the service
on the content. The CCNxServ architecture has three main components. The
first component is the CCN network. It is responsible for handling Interest and
Data messages. The second component is the ServiceProxy. It is responsible
for interpreting the name in the Interest message to get the service name and
the content name. ServiceProxy intercepts the Interest message and creates two
Interest messages instead. The first one is for the service file and the second one
is for the content file. After getting the files, ServiceProxy deploys and executes
the service on a service execution framework called NetServ[10], which is the
third component. NetServ is responsible for executing the service and returning
the result to the ServiceProxy, which in turn, returns the result to the client.

NextServe has the following advantages over CCNxServ:

– NextServe allows any number of parameters.

NextServe: Supporting Services over CCN 9

– NextServe allows for parameters to be sent from the client itself.
– NextServe allows for service composition.
– NextServe does not make any assumption about how the service is imple-

mented as long as it provides a compatible interface.

Named-Function Networking (NFN)[11] is built on top of CCN to support
services. Service naming in NFN is inspired by the λ-expression language. For
instance, the corresponding grammar for the λ-expression: f(g(data)) has the
following CCN name: [ccn:nfn | /name/of/data | /name/of/g | /name/of/f].
This is a request for applying function “f” on the result of applying function
“g” on “data”. NFN is a promising approach but it still does not support local
parameters as in NextServe and its naming scheme is not as user-friendly as the
naming scheme in NextServe especially when the request is complicated.

Another important project in Service-Centric Networking is Serval[12]. Serval
changes the TCP/IP protocol stack to provide special interfaces to deal with
service allocation and connection. In Serval, every service has an ID, which
consists of three parts: Provider-Prefix + Provider-Specific + Self-Certification.
Provider-Prefix can be the company name (e.g., Apple). Provider-Specific can
be the service name (e.g., iMessage). Self-Certification is the hash of the public
key and the service name allowing the services to be self-authenticating without
relying on a central certifying authority. Serval introduces a new kind of routers
called “Service Routers”, which combine the functionality of load balancers,
proxies, and DNS. When a client asks for a certain service, the service routers
are responsible for finding the best service replica to serve the request. Serval
has many advantages in its architecture. It allows for load balancing, mobility,
sessions, and fault tolerance.

NextServe differs from Serval in the following points:

– NextServe does not change the underlying TCP/IP protocol stack. This
allows for easier adoption and integration into the current Internet architec-
ture.

– NextServe supports caching naturally.
– Serval has been mainly developed to support data centers. NextServe can be

adopted by any service provider or service client.

As mentioned in Section 3, NextServe does not change the implementation
of CCN. Hence, any evaluation results of CCN can be applied on NextServe. It
is shown in [6] that CCN performs better than TCP and also scales to numbers
of requests to exponential magnitudes of nowadays needs. Similar results in [13]
show that CCN introduces an overhead of 19% when compared with TCP/IP.
But as the number of consumers increases, CCN outperforms TCP/IP and the
download time in CCN is 25% less than it is in TCP/IP. In [14], it is stated that
network topology has no effect on the efficiency of CCN but multi-path routing
plays an important role in the performance of CCN. The main advantage of CCN
is coming from the caching mechanism. NextServe inherently supports caching
because of the naming scheme design. This leads to the fact that the evaluation
results of CCN can be extended to cover also NextServe.

10 Dima Mansour, Torsten Braun, and Carlos Anastasiades

5 Conclusions

In this paper, we introduce the field of Service-Centric Networking (SCN) and the
necessary background. Then we demonstrate NextServe, which is an SCN frame-
work to support services over Content-Centric Networking (CCN). We show
that NextServe overcomes most of the problems and shortcomings of previous
projects by applying a naming scheme that is inspired by object-oriented lan-
guages. NextServe is implemented in a way that does not put any limitations
on service implementations. NextServe does not change the underlying CCN
network but rather implements services in the application layer on the service
provider side.

6 Future Work

In CCN there might be redundant content retrievals if the router FIB table has
no entry for that specific content object and uses broadcast to find the content
object, or if the content object is not in the router Content Store (CS), and the
router FIB table has many route entries for the content object. In those cases the
Interest packet might reach many content replicas, all of them will respond with
Content packets but only one will reach the client. This redundancy becomes very
expensive when we deal with services. There are few attempts to overcome this
issue [15]. In the future we are going to investigate how we can find an optimal
or near-optimal routing solution in NextServe. Moreover, NextServe does not
support sessions. But after solving the routing problem, session support comes
for free because a client can connect to the best service replica from the beginning
and keep sending the following requests to the same replica. We also plan to
use Java Reflection to allow the automatic mapping between the parameters in
the Interest packet and the actual parameters in a Java method. In this way, we
decrease the amount of effort needed to publish any Java method as a service over
NextServe. Another important direction in the future is to evaluate the efficiency
and performance of NextServe in comparison with current service technologies
like web services.

References

1. J. Pan, S. Paul, and R. Jain, “A survey of the research on future internet archi-
tectures,” Communications Magazine, IEEE, vol. 49, pp. 26–36, July 2011.

2. V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, and R. L.
Braynard, “Networking named content,” in Proceedings of the 5th international
conference on Emerging networking experiments and technologies, CoNEXT ’09,
(New York, NY, USA), pp. 1–12, ACM, 2009.

3. N. Fotiou, D. Trossen, and G. Polyzos, “Illustrating a publish-subscribe internet
architecture,” Telecommunication Systems, vol. 51, no. 4, pp. 233–245, 2012.

4. T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim, S. Shenker,
and I. Stoica, “A data-oriented (and beyond) network architecture,” SIGCOMM
Comput. Commun. Rev., vol. 37, pp. 181–192, Aug. 2007.

NextServe: Supporting Services over CCN 11

5. “Ccnx project official website.” http://www.ccnx.org/. Last Checked, December
06th, 2013.

6. V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, and R. L.
Braynard, “Networking named content,” in Proceedings of the 5th international
conference on Emerging networking experiments and technologies, CoNEXT ’09,
(New York, NY, USA), pp. 1–12, ACM, 2009.

7. E. Cheriki, “Design and implementation of a conversion service for content centric
networking,” Master’s thesis, Institute of Computer Science and Applied Mathe-
matics University of Bern, 2012.

8. “Ccn protocol overview.” http://www.ccnx.org/releases/latest/doc/

technical/CCNxProtocol.html. Last Checked, January 06th, 2014.
9. S. Srinivasan, A. Singh, D. Batni, J. Lee, H. Schulzrinne, V. Hilt, and G. Kunz-

mann, “Ccnxserv: Dynamic service scalability in information-centric networks,” in
Communications (ICC), 2012 IEEE International Conference on, pp. 2617–2622,
2012.

10. J. W. Lee, R. Francescangeli, W. Song, J. Janak, S. R. Srinivasan, M. S. Kester,
S. A. Baset, E. Liu, H. G. Schulzrinne, V. Hilt, Z. Despotovic, and W. Kellerer,
“Netserv framework design and implementation 1.0,” technical report, Columbia
University, http://academiccommons.columbia.edu/catalog/ac:135424, May 2011.

11. C. Tschudin and M. Sifalakis, “Named functions for media delivery orchestration,”
in Packet Video Workshop (PV), 2013 20th International, pp. 1–8, 2013.

12. E. Nordström, D. Shue, P. Gopalan, R. Kiefer, M. Arye, S. Y. Ko, J. Rexford,
and M. J. Freedman, “Serval: an end-host stack for service-centric networking,”
in Proceedings of the 9th USENIX conference on Networked Systems Design and
Implementation, NSDI’12, (Berkeley, CA, USA), pp. 7–7, USENIX Association,
2012.

13. P. H. V. Guimaraes, L. H. G. Ferraz, J. V. Torres, D. M. Mattos, P. Murillo,
F. Andres, L. Andreoni, E. Martin, I. D. Alvarenga, C. S. Rodrigues, et al., “Ex-
perimenting content-centric networks in the future internet testbed environment,”
in Communications Workshops (ICC), 2013 IEEE International Conference on,
pp. 1383–1387, IEEE, 2013.

14. D. Rossi and G. Rossini, “Caching performance of content centric networks under
multi-path routing (and more),” Relatório técnico, Telecom ParisTech, 2011.

15. S. Shanbhag, N. Schwan, I. Rimac, and M. Varvello, “Soccer: services over content-
centric routing,” in Proceedings of the ACM SIGCOMM workshop on Information-
centric networking, ICN ’11, (New York, NY, USA), pp. 62–67, ACM, 2011.

	1

