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Comments and Feedback
In the spirit of open source, we invite anyone to provide feedback and comments on any of the
reference architectures. Although we review our papers internally, sometimes issues or typographical
errors are encountered. Feedback allows us to not only improve the quality of the papers we produce,
but allows the reader to provide their thoughts on potential improvements and topic expansion to the
papers. Feedback on the papers can be provided by emailing refarch-feedback@redhat.com. Please
refer to the title within the email.

Staying In Touch
Join us on some of the popular social media sites where we keep our audience informed on new
reference architectures as well as offer related information on things we find interesting.

Like us on Facebook:

https://www.facebook.com/rhrefarch

Follow us on Twitter:

https://twitter.com/RedHatRefArch

Plus us on Google+

https://plus.google.com/114152126783830728030/
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1. Executive Summary
Over the last ten years consumption model of the Service Provider (SP - AKA Telco) network has
evolved. Service Providers/Mobile Operators are finding themselves competing with leaner/meaner
Over the Top Providers  (OTP) such as Google and Amazon who have redefined what they use, when
they use and how they use. In order to compete with these OTPs, operators need to be able to:

• Be nimble (expand and shrink the network resources based on consumption)

• Be agile (in creating and providing services)

• Be cost effective (CAPEX & OPEX)

As a result of this, the Telcos are now leaning towards using Commercial Off The Shelf (COTS)
equipment (Dell, HP, IBM & Cisco Servers) to deploy Network Function Virtualization (NFV). The
functions are referred to as Virtual Network Functions(VNF). Examples of VNFs are virtualized routers,
switches, gateways, firewall, Network Address Translation (NAT) and Deep Packet Inspection (DPI).
This gives the SPs the low cost generic hardware and the freedom from vendor-lock at the same time
allowing them to scale the network as the demand grows and shrink as it decreases which they would
not be able to do as easily with purpose-built hardware.

The agility in deploying the systems and services on demand comes from what is referred to as
“Orchestration”. Systems orchestration allows us to deploy the VNFs on the fly as well as manage the
lifecycle of these  (Liveliness, Health etc). Service orchestration on the other hand deals with
provisioning the VNFs for day-N configuration that is generally related to services.
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2. Background
Mobility includes all the mobile network types - Macro, Micro and Wifi. Macro network is the 3th
Generation (3G), 4th Generation Long Term Evolution (4G/LTE) networks that we connect to from our
cell phones. Micro networks are small-cell networks which are overlay networks that provide 3G/4G
access over an IP infrastructure (public or private). Increasingly the trend has been to provide
seamless service to the end-user (subscriber) regardless of the access-type.

The motivation for NFV in mobility can be be captured through Table 1:

Criteria Past Present

Network usage People People & Machines (Internet of
Things)

Network Access Macro Macro/Micro/Wifi

Network Service Voice/Text Voice/Text/Data/Social
Networking, Apps, Gaming

Network Usage Predictable Dynamic based on events (e.g.
Super Bowl, Super Tuesday)

Network Architecture Fixed Elastic

Table 1: Evolution of Mobile Networks

We have seen that the adoption rate and interest for NFV is huge amongst mobile operators around the
world. While there are few VNFs available for Wifi, major use cases for NFV in mobility are:

• Virtual Packet Core (sometimes referred to as Virtual EPC - Virtual Evolved Packet Core abbreviated
as vEPC)

• GiLAN

• Voice over LTE (VoLTE)/Virtual IP Multimedia System (vIMS)


It should be noted that even though this document covers the above three use cases
in general, more emphasis is placed on vEPC as is more widely deployed by mobile
operators around the globe.  Adoption of GiLAN is in pockets. vIMS will pick up as
VoLTE deployments grow.

2.1. Virtual Packet Core
Packet Core is the term used to refer to the part of the mobile network where the 3GPP gateway
functions such as Service Gateway (SGW)/Packet Data Switch Network Gateway (PGW)/Mobile
Management Entity (MME) (4G/LTE) and Service GPRS Support Node (SGSN)/Gateway GPRS Support
Node (GGSN)/Packet Data Serving Node (PDSN) (3G) reside. A virtualized instance of packet core is
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referred to as Virtual Packet Core or VPC in short. Mobile Gateways get deployed differently based on
requirement/function:

• Virtual Evolved Packet Core is when a mobile operator who may have a 3G core has decided to start
offering 4G/LTE service and is building an evolved packet core. In this case typically most of the
functions listed above may be virtualized - PGW, SGW, MME, PCRF, FW, Router, DPI, Switches, LB.
This use case is typically for operators who are building a brand new mobile packet core or
upgrading and want to take the virtualization route rather than to invest in purpose built
hardware. This also covers Trusted Wireless Local Area Network (WLAN) Access Gateway
(TWAG)/Trusted WLAN AAA Proxy (TWAP) for Wifi termination from trusted networks and
Evolved Packet Data Gateway (EPDG) case which is responsible for terminating WiFi connections
from untrusted networks. It should be noted that the untrusted (EPDG) case typically uses IPSec
and encryption which could have a higher compute demand of the NFV Infrastructure (NFVi) (This
is typically performed in hardware).

• Enterprise Overlay Services/Enterprise Access Point Name (APN - A private instance for an
enterprise customer). Mobile Network Operators (MNOs) offer dedicated APN services to large
enterprises. The services offered for these enterprise APNs vary from simply having dedicated
gateways to having additional security, custom QoS, VPN services to connect end-points to
enterprise hub locations, Enterprise Billing and other value added services. Typically, creating
enterprise APNs means having a dedicated GGSN/PGW while other nodes that constitute the mobile
packet core may be shared or dedicated based on the design and deployment. An example of
enterprise APN may be a packaging and logistics company like FedEx who may choose to have their
own APN where their mobile devices connect. By connecting to FedEx APN these devices will
automatically inherit certain connectivity (e.g. to FedEx Corp Cloud), have certain services enabled
(firewall, NAT) etc.

• D-Core/Mobile Virtual Network Operators (MVNO) offer mobile services using parts of the actual
network that is owned and operated by MNOs. D-Core stands for Dedicated Core where a MNO
offers a mobile packet core per network instance per customer. For example, if a large logistics
company needs to have their own mobile network, they can buy radio (air-time) from one or more
MNOs and use a dedicated core which usually is a virtual packet core (VPC) instance created for the
logistic company.

• Public Safety - During major events such as Republican National Convention (RNC) it is common to
create a local channel for communication amongst all public safety factions - police, fire, medics
etc. Nowadays this could be standing up a specialized 4G network for the duration of the event.
This could be done in one of many ways - 4G in a box on a truck, temporary data center setup at the
venue or in the cloud. Regardless of the choice the main point to be noted is that this network is
temporary and lives for the period of the event. Although purpose built hardware can also be used
they have a huge footprint in terms of real estate, power, cooling and simply difficult to manage
and operate. Virtual Packet Core (VPC) lends itself perfectly for such an application

• Machine to Machine (IOT) - Machine to Machine AKA M2M is another application that requires
dedicated gateways to be setup per M2M instance. M2M traffic tends to be sparse and have lower
throughput while having a higher session count requirement. Adding these gateways based on
consumption and keeping it elastic makes M2M a classic use-case for VPC. A more successful and

www.redhat.com 5 refarch-feedback@redhat.com



visible M2M/IOT use-case is “Connected Cars” which has been deployed successfully by major
mobile operators in North America

2.2. GiLAN
Mobile Packet Core networks can be viewed as having two connections - Radio network or wireless
side where the subscribers connect from and the Internet facing side. The Internet facing side of the
network in a 3G network is labelled as “Gi” interface (referred to as “SGi” in a 4G/LTE/EPC network). IP
services such as Firewall (FW), Network Address Translation (NAT), Deep Packet Inspection (DPI),
Parental Control, Video and Web optimization reside on the Gi or SGi interfaces after leaving the
gateway towards the Internet.

Depending on the APN and the services being offered, mobile operators are looking to create dynamic
chains of these services. For e.g. when a subscriber roams from a 4G/LTE coverage area to a 3G
coverage area, if they are watching video, their viewing experience may become degraded due to
network congestion. In such situations, the mobile operator would like to dynamically apply video
optimization (transsizing and transcoding) to keep the user experience consistent. This ability to
dynamically apply different functions to the subscriber traffic is referred to as “Service Chaining”
(https://datatracker.ietf.org/wg/sfc/documents/). Software Defined Networking (SDN) capabilities of
programmable APIs and actual use of SDN controllers (policy aware) in conjunction with NFV (ability
to create capacity on the fly) makes it possible to deploy such features/functions in production. The
operational nightmare of creating the permutations and combinations of all these functions when
overlaid with subscriber policy and intelligence (Location Based Services) made it impossible to deploy
prior to NFV/SDN.

2.3. VoLTE
LTE is an “All-IP” network. This allows applications such as voice that was traditionally analog to be
offered as Voice over IP (VoIP). VoIP in an LTE network is referred to as Voice over LTE or VoLTE for
short. VoLTE has service function chains that offer different functions such as Session Border
Controller (SBC), Call Session Control Function (CSCF) etc., which are being virtualized to fit into the
NFV model.

refarch-feedback@redhat.com 6 www.redhat.com

https://datatracker.ietf.org/wg/sfc/documents/


3. ETSI
European Telecommunications Standards Institute or ETSI is a standards body that is responsible for
or desires to standardize the NFV architecture. Telecoms/SPs around the world as well as all major
network equipment manufacturers have representation at ETSI.

It is important to understand that ETSI provides a framework and not necessarily a strict standard that
should be followed by all vendors. More details about ETSI/NFV can be found at
http://www.etsi.org/technologies-clusters/technologies/nfv.

Figure 1 shows the NFV architectural framework as defined by ETSI. The figure has components that
make up the NFV on the left such as NFV Infrastructure(NFVI), VNF etc and the Management and
Orchestration (MANO) sitting on the right. ETSI/NFV defines all aspects of the architecture including:

• NFVI - NFV Infrastructure: NFVI is the infrastructure that includes the compute (servers), storage
and networking as well as the hypervisors that offers the virtualization. It is an abstraction that
allows us to simply install VNFs without having to worry about the details of the underlying
hardware. NFVI forms the foundation for the NFV stack. It supports multi-tenancy and is managed
by the Virtual Infrastructure Manager (VIM). In deployments today the VIM is OpenStack. The
virtualization layer is typically KVM.

• MANO - NFV Management and Orchestration: One of the main goals of NFV is to decouple the
hardware and the software. This decoupling requires additional layer of management. This
management is addressed by the MANO spec from ETSI. MANO defines the VNFM - Virtual Network
Function Manager which manages the lifecycle of the VMs/VNFs either by interacting directly with
the VMs/VNFs or through Element Management System (EMS) that work with various VMs/VNFs.
The other important component defined by MANO is the Orchestrator also known as NFVO. NFVO
is the overall orchestrator that interfaces with various databases and systems including OSS/BSS on
the north and with the VNFM on the south. If the NFVO wants to create an instance of a VNF/VM, it
requests to VNFM to create one such instance.

• NFV Software Architecture - This section deals with the transition of network functions from
hardware-based to software-based. It describes software architecture that can be leveraged when
decoupling software from the hardware.

• NFV Reliability and Availability - as the name suggests deals with reliability and availability of
VNFs/VMs. There are a lot of challenges in making such a complex system resilient. It is a key
requirement for all Telcos/SPs. The reliability and availability group studies the requirements and
provides guidelines of how they should be incorporated in NFV deployments.

• NFV Performance and Portability - One of main goals of NFV is to support a framework that will
allow existing industry network applications to be represented with their existing requirements
and characteristics. i.e The throughput, performance, scale attributes of these network functions.
Additionally they should be portable, meaning we should be able to instantiate these VMs/VNFs in a
cloud.

• NFV Security - Security of the cloud that houses mission critical applications of the SPs and their
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customers is of paramount importance. NFV security group was formed to focus on this aspect of
NFV. Telcos are known to require customer aware (Policy, Authentication etc) VMs to run in a
separate DMZ and other non-customer-aware VMs to be zoned off and have firewalls separating
the zones. NFV architecture has to take into account such requirements from telcos.

Figure 1: ETSI/NFV Architectural Framework (Source:ETSI GS NFV 002 V1.1.1 (2013-10))

Figure 2 shows a mapping of Red Hat products to the ETSI/NFVI architecture.
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Figure 2: Red Hat product mapping to ETSI NFV

3.1. NFVI
The high-level goals of NFV is to abstract the compute, storage and network from the application -
decoupling the software functions from the hardware. At an architectural level we should not be
concerned about what type of compute, storage or networking is being used. However, characteristics
of each of these components need to be addressed in order to elicit the most optimal performance that
is required by Telcos in the NFV architecture.

• Compute

• Storage

• Network

3.1.1. Compute

From a compute perspective it is important for a VNF to be able to clearly specify the “quantity” and
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“quality” required by that VNF of the underlying NFVI in order to be able to function optimally

Often NFV performance optimizations are required that include but not limited to:

• CPU Pinning

• Huge pages

• NUMA nodes

• NOVA scheduler

• Realtime  Kernel-based Virtual Machine (KVM)/Kernel (RT-KVM)

• Tweaking/disabling overcommit?

3.1.2. Storage

Storage can be local or cloud storage. Most VNFs are new. We have not had years of experience to be
able to quantify and qualify the storage characteristics such as IOPS (Input/Output Operations Per
Second), Latency etc. As a result, VNF vendors may tend to be conservative and design their VNFs
assuming local storage. Although we have seen mostly local block storage being used (Cinder) as well
as Ceph, it is too early to be able to create benchmarks for storage as it relates to NFV. However, NFV
architecture should discuss the pros and cons of different models.

Red Hat OpenStack supports storage plug-ins including Cinder. This allows 3rd party storage to be
directly integrated into OpenStack. This is very important as many Telcos may have been using storage
from storage vendors (EMC, NetApp and others). Certified plug-ins for Cinder can be found at:
https://access.redhat.com/articles/1535373

3.1.3. Network

Within NFV, the networking can get fairly convoluted because of the nesting nature of what is being
conducted. NFV architecture should discuss the various models and the pro & cons of using each type
and their recommended usage. The following network topics  will be discussed as relevant to mobile
virtualization:

• Provider networks

• Tenant networks

• Flat networks

• VLANs

• VXLANs

• PCI Passthrough

• Single Root Input/Output Virtualization (SR-IOV)

• Data Plane Development Kit (DPDK)

• Commercial SDNs using Neutron plugins
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4. Mobile Architectures

4.1. vEPC Deployment Models
It should be noted that Virtual Packet Core (VPC) is what mobile operators deploy, making VPC an NFV
use case. However within VPC mobile operators have more specific use cases depending on what
services they provide. Here is the list of some common functions that are becoming candidates for
virtualization within the packet core:

• Packet Data Serving Node Gateway (PGW)/Gateway GPRS Support Node (GGSN)

• Serving Gateway (SGW)

• Mobile Mangement Entity (MME)

• Policy and Charging Enforcement (PCEF)

• Policy and Charging Rules Function (PCRF)

• Evolved Wireless Access Gateway (eWAG), ePDG

• Firewall (FW)

• Deep Packet Inspection (DPI)

• Value Added / IP services (Video/Content Caching/Optimizing)

• Carrier Grade Network Address Translation (CGN)

• Routers

• Switches

• Load Balancers (LB)

• Virtual S2a Mobility Over GTP (vSaMOG)

• Session Border Controller (SBC)

• Security Gateway (SecGW)

Services they sell to their end customers (Enterprise or Non-enterprise) could also be considered use-
cases for NFV.

In order to come up with an NFV architecture that will meet all the requirements for virtualizing the
mobile packet core, it is imperative that we first understand and capture all the requirements of the
mobile services and applications running on the top of the mobile packet core.
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Figure 3: Elements of a Mobile Network

The typical mobile operator’s network consists of multiple networks such as Radio Access Network
(RAN) Backhaul where the subscribers connect to over the radio, which then gets aggregated to the
IP/NGN network to which the mobile packet core is connected  to in the regional or national data
center.  This is shown in Figure 3. Common IP services such as DPI, NAT, DNS etc could be dedicated
and part of the mobile packet core or a shared infrastructure that the SP is leveraging for other non-
mobile services that they may be offering. Figure 4 exposes the components that make up the Evolved
Packet Core (EPC)

Figure 4: Evolved Packet Core (EPC) components

The mobile or User Equipment (UE) connects to the network over the eNodeB. The connection
terminates on the PDN Gateway (PGW). MME, Home Subscriber Server (HSS) and SGW are other
important components in establishing connection and providing subscriber services and make up the
evolved packet core. Based on a couple of technical and business factors, we have seen two types of
deployments:

• SGW, PGW, MME, HSS colocated in the same data center/Mobile Telephone Switching Office (MTSO)

• MME + SGSN (3G) located in the regional data centers/MTSOs (closer to the subscriber) and
PGW/SGW + HSS + IP services located in the core or the national data center.

The NFV architecture needs to take the above two models into account. In the 2nd case where one or
more components may be distributed, the underlying infrastructure design including OpenStack will
be impacted. This is referred to as Distributed NFV (D-NFV). If only some 3gpp functions are placed in
the regions/edge, we may chose to deploy on compute nodes in that region as long as the latency is
below the latency threshold of OpenStack and application control plane. These compute nodes may be
integrated with storage and deployed as Hyper Converged Infrastructure (HCI). In some cases, a
smaller deployment of OpenStack may be used in these regions. This raises a lot of design questions
regarding shared identity (Keystone) and images (Glance).
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VPCs may be deployed in many different ways:

• Dedicated Private Cloud for VPC

• Colocated with other VNFs in operators private cloud

• Hosted in public clouds (Infrastructure aa Service, Platform as a Service or VNF as a Service)

• Hosted in vendor’s private cloud and offered as a service (e.g. IMS as a Service)

VNF vendors tend to bundle combinations of the above services based on functional requirements of
operators. These combinations could lead to varying deployment models all the way from the number
of VMs to HA, scale, traffic mix and throughput requirements.

Depending on the type of service(s) being deployed the VNFs may be deployed in one of the following
ways:

• Lightweight deployments that uses All-in-One (AIO) OpenStack that typically runs on a single server

• If multiple functions are required, multiple servers are deployed, each running the VNF. This is
shown in Figure 8.

• Runs on blade or rack-mount servers

• Suitable for cloud deployment on private, public or hybrid-clouds

• Running on pre-bundled, fixed configuration blade-servers over KVM.

• Easy to deploy

• Easy to migrate as an extension of existing purpose-built hardware

• Tested and certified with specific versions of Red Hat Enterprise Linux (RHEL)/KVM and VPC
software

• Easy to support (few,fixed and known components)

• Full HA Red Hat OpenStack Platform deployment comprising of multiple servers (blades or rack-
mount).

• Typically used when building entire packet core with all functions as a replacement for
hardware-based packet cores

4.2. GiLAN
The Internet facing interface of the GGSN (3G gateway) is referred to as “Gi” in 3GPP specifications
(Known as “SGi” in 4G/LTE network). This is shown in Figure 5.  As the packet leaves the gateway
(GGSN/PGW), it no longer has context of the subscriber. It is a pure IP packet. IP services such as DPI,
Parental Control, Video Optimization, Web Optimization, URL filtering/enrichment, Firewall and NAT
are applied to the IP packets as they leave the mobile network towards the Internet. Since these
services reside on the Gi/SGi interface they are commonly referred to as “GILAN” services. These
services typically are deployed in some combinations and form a logical chain.
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Figure 5: GiLAN Services in mobile core (Source: IETF 87, Walter Haeffner)

Most mobile operators offer some variation of GiLAN services but restrict it to APN granularity rather
than subscriber level. This is because traditional GiLAN services required physical connections to form
the chain.

Today’s solution uses Software Defined Networking (SDN) to create logical chains between GiLAN
elements. The actual application runs in a virtual environment typically on top of OpenStack rather
than purpose built appliances. This offers a huge advantage - applications can scale based on demand
and conversely shrink. A classic example of this would be when people return from work and turn on
their TV or Over The Top (OTP) video (Netflix, Amazon etc). This creates a surge in traffic and creating
a demand on GiLAN elements.

From an infrastructure point of view, GiLAN will closely resemble the vEPC VNF. It will have the same
requirements of Orchestration, VNF lifecycle management, performance and security. Additionally
GiLAN will require:

• Metering capability to determine the resource usage * Ability to grow and shrink based on demand.
This may be done completely automatically in theory. However, mobile operators prefer to have
manual control of resource allocation. * Service Function Chaining (SFC) - SFC is defined by the
Internet Engineering Task Force (IETF) working group. Related documents can be found at
https://datatracker.ietf. org/wg/sfc/documents.  SFC may use Network Service Header (NSH) or may
be based on Multi Protocol Label Switching (MPLS). OpenStack networking will need to support SFC
or may be an overlay function over OpenStack.

4.3. Voice over LTE (VoLTE)/IP Multimedia Services (IMS)
VoLTE utilizes the IP Multimedia Services (IMS) in the core of the mobile network. IMS is also used by
SPs to offer non-mobile voice service including High Definition (HD) Voice, Video Calling, Wi-Fi Calling,
Messaging Services etc. IMS consists of several components that traditionally were hardware
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appliances that got virtualized and deployed in the cloud by NEPs and Telcos. These include:

• Call Session Control Function (CSCF)

• Media Gateway Controller

• Session Border Control

• Application Servers

• Policy and Charging Rules Function

• Diameter and Radius Servers

• Home Subscriber Server

Figure 6 shows details of the IMS architecture. From a NFV and virtualized IMS point of view, the
requirements would be a very similar to vEPC application. There are no special SFC or dynamic grown
and shrink requirements. However, attention has to be paid to packet size and latency as this
application is primarily used for delivery high quality voice for VoLTE and non-mobile voice and
multimedia services.

Figure 6: IMS Architecture (Source: http://ipv6.com/articles/general/IP_IMS.htm)
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5. High Availability
Two key requirements of Telcos for any application are performance and high availability (HA). In the
multi-layered world of NFV, HA cannot be achieved only at the infrastructure layer. HA needs to be
expansive and overarching in all aspects of design including hardware support, following best practice
for layer 2 and layer 3 design of the underlay network, at the OpenStack level and last but not the least
at the application layer. ETSI NFV (ETSI GS NFV-REL 001 V1.1.1 (2015-01)) defines “Service Availability”
rather than talking in terms of five 9s. “At a minimum, the Service Availability requirements for NFV
should be the same as those for legacy systems (for the same service)”. This refers to the end-to-end
service (VNFs and infrastructure components).

5.1. Geo-redundancy
vEPC components such as SGW and PGW may be placed either centrally at the core data center
(National Data Center) or regionally to serve the local cell sites or exit points. The eNodeBs are
collocated with the tower (Cell Site). In a 4G/LTE network, deciding which SGW (Ingress into the
network) to use is typically based on subscriber location (Tracking Area Code). The subscriber
connection terminates on the PGW. The decision of which PGW to assign to the subscriber depends on
the context (APN) and other factors. The actual assignment may be done based on DNS lookup. This is
shown in Figure 7.

Because of this reason, the SGW and the PGWs could be placed in regional data centers closer to the
service they need to provide. This approach is taken by many operators. However, in many
deployments, the gateways, MME and other functions may be collocated in a centralized national
datacenter. GiLAN and IMS services are typically deployed only in the core of the mobile network.

Regardless of which way it is deployed, it is important to have redundancy built in at a datacenter
level. Additionally geo-redundancy should also be factored in so that similar functions can be
leveraged from other datacenters in case of a catastrophic failure at one of the datacenters. It should
be noted that apart from using traditional routing to reroute traffic to the gateways/elements that
became active due to the failure of the primary, SDN and Software Defined Wide Area Network (SD-
WAN) technology could be employed to reprogram the underlying layer 2 and layer 3 networks to
provide the appropriate level of bandwidth and functionality needed.
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Figure 7: Datacenter redundancy and deployment of vEPC

5.2. Chassis/Blade Redundancy
For lightweight All In One (AIO) deployments (shown in Figure 8, common data center design rule of
thumb should be followed. Don’t place active and standby VNFs on the same chassis/host. Follow
datacenter and cloud deployment best practices:

• Blade Redundancy - DO NOT deploy active and standby instance of the same/related VNF on the
same host/blade

• Chassis Redundancy - DO NOT deploy active and standby instances of the same/related VNF on the
same chassis

• Rack Redundancy - DO NOT deploy active and standby instances of the same/related VNF on the
same rack/row
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Figure 8: Lightweight, AIO VPC deployment

Multi-server deployments regardless of whether they run on top of KVM or a full fledged OpenStack
deployed in HA mode should follow the above mentioned Chassis/Blade redundancy best practices. In
addition, HA best practices should be followed at the application layer. Typically, VPC VNFs have
dedicated VMs acting as Control Modules which handles control traffic and the data traffic is typically
handled by switching or Service Modules. Depending on whether a single chassis is being deployed or
multiple chassis are being deployed, it will be important to place the control modules and service
modules to allow for high availability and redundancy.
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Figure 9: Single Chassis deployment of control and switching modules.

Figure 9 shows deployment of VPC VNF on a single blade server chassis. Multiple blade server will
distribute the control modules (CMs) across the chassis so that each chassis to mitigate failure. The
number of control and switching modules and their deployment best practices will come from the VNF
vendors. This can be seen in Figure 10.
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Figure 10: Multi-chassis VNF HA Deployment

GiLAN elements that form logical service chains (SFC), can be deployed the following manner:

• All VNFs required to form a logical service function chain is deployed on each server. In this model,
the server and its resources become one logical deployment unit for each service chain. The
advantage of this is that the operation becomes simple as deployment is uniform. To scale you
simply add more servers. The disadvantage is that some elements of the SFC tend to get more
utilized than others and tend to become bottlenecks which means for example, even though a
parental control VM may be at 30% utilization (because it is only applied to child subscribers), DPI
may be at 90% utilization because it is very CPU intensive.

• Alternately, VNFs are deployed based on their resource requirement of the server and managed at
a higher level by the VNF Manger (VNFM) or NFV Orchestrator (NFVO). In this scenario, if a VNF is
deemed non-responsive or additional unit of the VNF needs to be instantiated, an appropriate
server that matches the resource requirements of the VNF. If such as server is not available, the
entire service chain cannot be deployed.

IMS elements will be similar to GiLAN in the sense that they are made up of some discrete elements
required to perform the various functions. Care has to be taken to ensure that hardware or network
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failure does not isolate functions. Basic principles of HA and best practices apply to for deployment of
all virtual mobile network VNFs.

5.3. Datacenter Topology (Underlay)
Datacenter topologies have changed and evolved over time. Prior approach was three layered and
consisted of Access, Aggregation(Distribution) and Core layers (Figure 11.) Access layers typically
consisted of layer 2 switches where the servers connected. These switches connected into layer 2/layer
3 switches which were then connected up to pure layer 3 routers that formed the core.

Figure 11: Traditional three-tier datacenter topology

This approach served as the classic datacenter topology for many years. However, it had limitations
and complexity typically from running Spanning Tree Protocol (STP) which offers protection against
layer 2 loops but could leave the network with half the capacity due to blocked ports, not to mention
complexity of troubleshooting STP! Today’s data center has been replaced by what is referred to as
leaf-spine architecture. In leaf-spine architecture, servers are dual-homed to two leaf switches. The leaf
as well as spine switches are not connected to each other but form a full mesh between each other as
shown in Figure 12.
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Figure 12: Leaf and spine datacenter topology

Leaf-spine can be either layer 2 or layer 3. In a layer 2 approach, all connections are active/active. In
leaf-spine architecture, Transparent Interconnection of Lots of Links (TrILL) or Shortest Path Bridging
(SPB) are used instead of STP. However, leaf-spine architecture with layer 3 has the advantage of
simplicity. In such a layer-3-only network, hosts may run a routing agent that will announce /32 to the
leafs. Equal Cost MultiPath (ECMP) is used for evenly distributing traffic across links. It is possible to
use Open Shortest Path First (OSPF) or Border Gateway Protocol (BGP) to distribute routes across the
datacenter fabric. BGP is becoming a favorite with new enhancements such as BGP unnumbered
which makes configuration a breeze. BGP is also proven to be highly scalable and reliable as it has
been carrying Internet Routes for decades now. It should be noted however, that OpenStack
networking is typically layer 2 based (VLAN, VxLAN). Most OpenStack deployments including for
NFV/virtual mobile networks are layer 2 based. Red Hat OpenStack Platform uses the Neutron
networking service to create and deploy tenant networks.  It should be noted that routed (layer 3) leaf-
spine deployments are not currently supported by OpenStack Platform director. Director installations
have the following pre-defined networks (https://access.redhat.com/documentation/en/red-hat-
openstack-platform/10/paged/director-installation-and-usage/chapter-3-planning-your-overcloud):

• Intelligent Platform Management Interface (IPMI)
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• Provisioning

• Internal API

• Tenant

• Storage

• Storage Management

• External

• Floating IP

• Management

Each of these networks will be mapped to IP subnets and typically VLANs. Details of networking for
vEPC is discussed under the networking section.

For the layer 2 based design, it is recommended when possible to use link bundling using Link
Aggregation Control Protocol (LACP) on the servers and using Multi-chassis Link Aggregation (MLAG)
on the switches. In this scheme, two (or more) NICs are bonded (using Linux LACP bonding). One of the
NICs is connected to one leaf switch and the other NIC to a different leaf switch. The two switches will
run MLAG between each other. This will ensure that failure of a single switch will not cause the server
to be isolated. Figure 13 shows how this is connected

Figure 13: High availability server connection

NICs 3 & 4 of the server carry Internal traffic including storage, internal API, etc. They are bonded. NIC
3 connects up to the switch on the top, whereas NIC 4 connects to the bottom switch. The two switches
run MLAG. The bonded NIC will trunk all the VLANs for internal traffic. Similarly NICs 5 & 6 may be
bonded to carry external traffic (accessible to the outside world). It should be noted however, that
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current deployments of vEPC use Single Root Input Output Virtualization (SR-IOV) for datapath (data
plane) and in order to use SR-IOV, bonding should not be done at the host level. NIC bonding at guest
VM/VNF level is however supported for SR-IOV and can be be used by VNFs to mitigate risk of uplink
switch failure.

Network Equipment Providers (NEPs) are looking to move away from SR-IOV based vEPC solution in
the future and are looking to use Open Virtual Switch (OVS) + Data Plane Development Kit (DPDK) as
their fast datapath. NIC bonding at the host level will be supported for OVS+DPDK thus allowing NICs 5
& 6 to be bonded as well.

It should be noted that if another pair of NICs is available, it is a good idea to split off the storage
network to have its own bond if we are using a CEPH cluster as our storage backend. If we are using
external/cloud storage this is not required.

5.4. NFVi (OpenStack) Availability
Red Hat OpenStack Platform offers several features to support HA. These features are supported and
can be deployed using Red Hat OpenStack director. Since OpenStack control plane and services mostly
reside on the controller nodes, HA features are targeted towards the controller nodes. OpenStack HA
features that are employed for HA are:

• Pacemaker is responsible for lifecycle management of services within the HA cluster. It ensures the
services are available. If it deems the service as “not available” either because the service itself
went down or the node went down, Pacemaker can restart the service, reboot the node and if all
else fails, remove the node from the cluster and eventually try to restore the service. HAProxy runs
on all controller nodes and is responsible for load balancing traffic to the services running on these
nodes.

• Galera - Red Hat OpenStack Platform uses the MariaDB Galera Gluster to manage database
replication.

OpenStack HA may be deployed in one of two modes:

• Active/Active: In this mode, services are running on multiple controller nodes at the same time.
HAProxy is used to load balance and distribute traffic.

• Active/Passive: In this mode, the service is active only on one controller node. HAProxy directs that
traffic to that node.

Pacemaker can also be used to restart services on compute nodes if they fail. Pacemaker can assume
responsibility for neutron-ovs-agent, nova-compute and ceilometer-compute.

More details on Red Hat OpenStack HA can be obtained in the document “UNDERSTANDING RED HAT
OPENSTACK PLATFORM HIGH AVAILABILITY” which is available on the customer portal. Additionally,
it is important to note that with Red Hat OpenStack Platform 10 release (Newton), another HA
component is introduced known as “systemd”. Some services will be managed by Pacemaker whereas
others will be managed by systemd. Also there will be common controllers vs. dedicated controllers.
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These will be discussed in release-specific addendums to this architecture document where release-
specific features and their configurations will be covered.

vEPC and virtual mobile NEPs in general expect the VIM (OpenStack) to be running in full HA mode as
vEPC could be running mission critical services such as 911 and typically hosts millions of subscribers
per instance.

5.5. Application Layer HA
NEPs have had resilience and high availability in mind through design and deployment of virtualized
mobile networks (vEPC, GiLAN and IMS). The purpose built hardware had HA features built into the
products from the get-go all the way from the backplane design, deployment of control modules and
service modules (data plane processors) to port redundancy to in service software upgrades. With the
advent of virtualized solutions (NFV), the control and service modules became VMs that use the
“Internal Networks” created in OpenStack to communicate with each other. However, the application
logic that existed to manage availability and detect failure of service modules continue to exist in the
virtualized solution as well. Control modules typically keep tab of the deployed and available service
modules, use some load-balancing criteria to distribute traffic and assign service modules to
subscriber flows. N+1 or N+N redundancy depending on design makes certain service modules active
while one or more service modules may serve as standby, thus allowing these standby modules to take
over upon failure of an active service module. Since typically these applications use some sort of heart-
beat mechanism to keep track of the service module liveliness, whether they run in a virtual
environment or not becomes immaterial. Additionally, session recovery between physical chassis will
continue to be supported in the virtual environment. For this typically, some control plane protocol is
used to determine active and standby nodes, failure detection and state change from standby to active
based on some failure condition.

5.5.1. Host Aggregates and Availability Zones

NEPs who provide mobility VNFs require creation of Availability Zones in OpenStack. This is used to
ensure certain VMs or groups of VMs land on certain compute nodes. This could be based on
availability of local disk within that zone, it could be based on hardware profiles (nodes that support
NUMA, CPU pinning, or have certain type of NICs that support SR-IOV). The application may also chose
to place VMs in different zones to achieve load-sharing and mitigate risk during failure.

5.5.2. Shared File System

Shared file system can be used to store configurations of VNFs to be able to mirror the functions that is
perhaps located in a geo-redundant data center.

5.5.3. Instance HA

Previous sections discussed how OpenStack services can be protected using pacemaker and other tools.
However, it is also important to keep track of VNFs that run as VMs on the top of OpenStack and
recover them in case of failure. This is referred to as “Instance HA”. Instance HA is available in Red Hat
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OpenStack starting with version 7. It can be used for VNFs that are are not managed by the SVNFM
(Specialized VNFM that is vEPC/GiLAN/IMS application aware).
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6. Networking
Earlier networks typically required for OpenStack Platform directorOSP-Director during installation of
OpenStack was discussed. They are:

• IPMI

• Provisioning

• Internal API

• Tenant

• Storage

• Storage Management

• External

• Floating IP

• Management

Figure 14 illustrates the typical OpenStack networking topology.
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Figure 14: Typical OpenStack Network Topology

Virtual mobile VNFs (vEPC, GiLAN & IMS) are considered complex VNFs that is made up of several
VMs, may contain its own Element Manager (EM) and typically consists of multiple networks. Different
NEPs may call these networks by different names and may have have one or more of each type. For
instance, vEPC will have networks for:

• vEPC Management network (virtio): Used for management/Operations and Management (OAM)
through floating IP addresses as well as for control traffic of vEPC itself. Keeping track of liveliness
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of nodes/functions, application level session management, redundancy, error logging, recovery,
auto-scaling etc. This is typically deployed as VX-LAN tenant network.

• External/Internet (Typically virtio). This also deployed as VX-LAN tenant network.

• Internal Traffic - Typically East-West Traffic, between control modules and switching modules. This
network can get used the following:

• Storage access

• Inter-node communication by vEPC application

• Control

• Data plane (sometimes during failover)

• OpenStack API traffic

• If the vEPC (mobile) application is only passing control traffic on this network, it can be
configured as VX-LAN tenant network that uses virtio. However, some NEPs may actually
choose to send dataplane traffic on this network during failure of a service module. In such
cases, the NEP may chose to use SR-IOV provider network to optimize throughput.

• Application traffic - This is actual North-South subscriber traffic. In the context of 3gpp it is the
GTPu (User Plane) traffic. This network is typically designed to carry huge amounts of traffic. Most
current deployments of vEPC use SR-IOV (Single Root Input Output Virtualization) to allow high
throughput (close to 10G on a 10G port) with minimal latency.  The SR-IOV networks are typically
created as provider networks in Openstack opposed to tenant network. An important note
regarding SR-IOV ports is that they show up as Virtual Functions (VFs) on the guest VM. SR-IOV
ports cannot be bonded using LACP at the host level. It is the responsibility of the VNF to
bond/bundle two or more VNICs (Virtual Network Interface Cards) derived from VFs to achieve
higher throughput beyond 10G or more typically to ensure high availability. This is achieved by
mapping the PNICs (Physical NICs) of the SR-IOV ports to different datacenter switches. This
ensures that the guest VM continues to have connectivity if and when an uplink switch fails.
Several NEPs are testing OVS-DPDK as an alternative datapath to SR-IOV as it has several
shortcomings which will be discussed later under the performance optimization section. With OVS-
DPDK, bonding of Ethernet ports will be supported at host level similar to what we can do with
virtio.

6.1. Neutron Plugins
NEPs may chose to use some commercial neutron plugin instead of using OVS for OpenStack
networking. This is supported by Red Hat OpenStack and is done as a part of customization during
deployment of OpenStack at the Telco by the NEP or their partner.

Red Hat certified plug-ins for Neutron can be found at https://access.redhat.com/articles/1535373. Red
Hat has a plethora of 3rd party plug-ins. Information regarding this can be found at
https://access.redhat.com/ecosystem.
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6.2. IPv6 Networking
Mobile operators deploy dual-stack IP networks. Whether IPv4 or IPv6 is used depends on the APN
(Access Point Name) or context. Typically for LTE(Long Term Evolution), IPv6 is used for VoLTE APN.
Internet APN could use both IPv4 and IPv6. IPv4 is being maintained for backward compatibility as
certain applications still don’t work with IPv6.

OpenStack Networking supports IPv6 tenant subnets in dual-stack configuration, so that projects can
dynamically assign IPv6 addresses to virtual machines using Stateless Address Autoconfiguration
(SLAAC) or DHCPv6. OpenStack Networking is also able to integrate with SLAAC on your physical
routers, so that virtual machines can receive IPv6 addresses from your existing infrastructure. For
more information, see Tenant Networking with IPv6.
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7. Storage
Virtual mobile VNFs requires storage for the following:

• Images (Glance)

• Storing CDR (Call Data Records) used for billing

• Video and Web caching

• Logging data, core files, availability & performance statistics, files and snapshots useful for
technical support and other stateful information

While some NEPs clearly recommend using fully redundant CEPH deployment for storage, most work
with both local and cloud storage options as long as the storage can be provisioned and deployed using
OpenStack. Mobile VNFs are known to use Cinder and Glance OpenStack services:

• For the Glance service, you need enough storage to provide the space needed to hold your images
(such as qcow images that are perhaps a couple hundred MB and bootable installation ISO images
such as a 4GB RHEL install image).

• For the Cinder service, you need enough storage to provide the block storage needed for your VMs
to run. For our example, we started out with a 25GB NFS share for Glance and a 100GB NFS share
for Cinder.

Both persistent and ephemeral storage may be requested and used by mobile applications.

Three types of storage solutions have been used in deployments:

• Local storage - Early deployments using mostly rack-mount servers with local storage slots

• Cloud storage - Storage provided by commercial storage vendors (EMC, NetApp etc…)

• Ceph storage - Either external or part of Red Hat OpenStack Platform deployment using director.

Red Hat OpenStack Platform director creates a cloud environment called the Overcloud. The director
provides the ability to configure extra features for an Overcloud. One of these extra features includes
integration with Red Hat Ceph Storage. This includes both Ceph Storage clusters created with the
director or existing Ceph Storage clusters. This guide provides information for integrating Ceph
Storage into your Overcloud through the director and configuration examples.
(https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/paged/red-hat-ceph-
storage-for-the-overcloud/)

For virtual mobile deployment, we recommend using OpenStack director installation to create the
Ceph cluster. The Ceph cluster is made up of two main components:

• Ceph OSD (Object Storage Daemon) which is deployed on three dedicated Ceph nodes. Replication,
rebalancing, recovery, monitoring and reporting functions are performed by OSD nodes.

• Ceph Monitor maintains a master copy of Ceph storage map with the current state of the storage
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cluster. For virtual mobile deployment, we will use OpenStack controller nodes to host Cep monitor
function

This is shown in Figure 15.

Figure 15: Ceph cluster for virtual mobile networks
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8. Performance and Optimization
The fundamental business model for Communication Service Providers (CSPs) and Telcos is based on
providing mission critical applications to a large pool of subscribers with least amount of service
disruption. Earlier we highlighted that there are two key requirements for NFV (others requirements
also important). Performance and high availability. Although high availability was covered in an
earlier section, it should not be construed as being a higher priority than performance. The need for
high performance for CSPs and Telcos stems from the fact that they need to be able to support the
highest number of subscribers using the lowest amount of resources so as to maximize profits.
Without being able to achieve very high throughputs that are comparable to what is achievable with
purpose built hardware solutions, this whole business model breaks down.

The journey began with using Linux bridges, virtio and OVS. As demand for higher performance grew
in NFV, PCI passthrough, SR-IOV, OVS with DPDK and Vector Packet Processing (VPP) were introduced
to meet the demand. We cover each of them in the following sections and their use in vEPC. The higher
performance requirement also applies to GiLAN when deployed because GiLAN is in the dataplane.

8.1. Open vSwitch
Open vSwitch (OVS) is an open source software switch designed to be used as a vSwitch within
virtualized server environments. OVS supports many of the capabilities you would expect from a
traditional switch, but also offers support for “SDN ready” interfaces and protocols such
as https://www.opennetworking.org/sdn-
resources/openflow[OpenFlow] and https://tools.ietf.org/html/rfc7047[OVSDB]. Red Hat recommends
Open vSwitch for Red Hat OpenStack Platform deployments, and offers out of the box OpenStack
Networking (Neutron) integration with OVS.

Standard OVS (Figure 16) is built out of three main components:

• ovs-vswitchd – a user-space daemon that implements the switch logic

• kernel module (fast path) – that processes received frames based on a lookup table

• ovsdb-server – a database server that ovs-vswitchd queries to obtain its configuration. External
clients can talk to ovsdb-server using OVSDB protocol

When a frame is received, the fast path (kernel space) uses match fields from the frame header to
determine the flow table entry and the set of actions to execute. If the frame does not match any entry
in the lookup table it is sent to the user-space daemon (vswitchd) which requires more CPU processing.
The user-space daemon then determines how to handle frames of this type and sets the right entries in
the fast path lookup tables.

vEPC VNF has several supports several applications as we have discussed earlier - data,

voice and video. Each application has different tolerance to delay (latency), jitter and packet loss. This
is summarized in Table 2. 3GPP specifies using AMR-NB (narrow band) codec for Voice over LTE
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(VoLTE). However, many operators also offer HD voice which uses AMR-WB. Actual codecs deployed by
operators vary. In general when it comes to frame loss. The voice applications require far less than 1%
frame loss. The closer to zero frame loss the better.

OVS has several ports: outbound ports which are connected to the physical NICs on the host using
kernel device drivers, and inbound ports which are connected to VMs. The VM guest operating system
(OS) is presented with vNICs using the well-
known http://wiki.libvirt.org/page/Virtio[VirtIO] paravirtualized network driver.

Figure 16: Standard OVS architecture; user-space and kernel space layers

While most users can get decent performance numbers with the standard OVS, it was never designed
with NFV in mind and does not meet some of the requirements we are starting to see from VNFs. Thus
Red Hat, Intel, and others have contributed to enhance OVS by utilizing DPDK, boosting its
performance to meet NFV demands or entirely bypass OVS using PCI passthrough or SR-IOV.

With traditional cloud applications such as Wordpress, Apache web servers and databases, the
applications were not network centric. One could get away with the performance delivered by virtio
and then stacking VMs to scale the number of users (subscribers). For NFV workloads this is no longer
adequate.  In order to improve network performance for VMs initial approach was to use PCI
passthrough.

Mobile VNFs could still use standard OVS for management network etc that may not require very high
throughput.
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8.2. PCI Passthrough
Through Intel’s VT-d extension (IOMMU for AMD) it is possible to present PCI devices on the host
system to the virtualized guest OS. This is supported by KVM (Kernel-based Virtual Machine). Using this
technique it is possible to provide a guest VM exclusive access to a NIC. For all practical purposes, the
VM thinks the NIC is directly connected to it.

Figure 17: PCI Passthrough: Issue

PCI passthrough suffers from one major shortcoming - a single vNIC on one of the VMs has complete
access and ownership of the physical NIC.  This can be observed in Figure 17 where VM2 is left with no
connectivity and the TenGig 1 NIC on the host is assigned to VM1/vNIC1. NEPs providing vEPC VNFs
often run multiple VMs per node and it is highly desirable to share the Ten GigE. Prior to advent of SR-
IOV, NEPs used PCI passthrough mostly for demos and POCs. By the time vEPC went to production, SR-
IOV was available and was chosen over passthrough.

8.3. SR-IOV (Single Root I/O Virtualization)
SR-IOV is a standard that makes a single PCI hardware device appears as multiple virtual PCI devices.
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SR-IOV works by introducing the idea of physical functions (PFs) and virtual functions (VFs). Physical
functions (PFs) are the full-featured PCIe functions and represent the physical hardware ports; virtual
functions (VFs) are lightweight functions that can be assigned to VMs. A suitable VF driver must reside
within the VM, which sees the VF as a regular NIC that communicates directly with the hardware. The
number of virtual instances that can be presented depends upon the network adapter card and the
device driver. For example, a single card with two ports might have two PFs each exposing 128 VFs.
These are, of course, theoretical limits.

SR-IOV for network devices is supported starting with Red Hat OpenStack Platform 6, and described in
more details in this two-series blog post.

While direct hardware access can provide near line-rate performance to the VM, this approach limits
the flexibility of the deployment as it breaks the software abstraction. VMs must be initiated on
Compute nodes where SR-IOV capable cards are placed, and the features offered to the VM depend on
the capabilities of the specific NIC hardware.

Steering traffic to/from the VM (e.g based on MAC addresses and/or 802.1q VLAN IDs) is done by the
NIC hardware and is not visible to the Compute layer. Even in the simple case where two VMs are
placed in the same Compute node and want to communicate with each other (i.e intra-host
communication), traffic that goes out the source VM must hit the physical network adapter on the host
before it is switched back to the destination VM. Due to that, features such as firewall filtering
(OpenStack security-groups) or live migration are currently not available when using SR-IOV with
OpenStack. Therefore, SR-IOV is a good fit for self-contained appliances, where minimum policy is
expected to be enforced by OpenStack and the virtualization layer. Figure 18 shows how SR-IOV
provides a mechanism for sharing the physical NIC.

It should be noted that each VM/VNF images will need to be built with the NIC driver that supports that
NIC. Also SR-IOV is only supported on certain Intel NIC.
http://www.intel.com/content/www/us/en/support/network-and-i-o/ethernet-products/000005722.html
contains a FAQ from Intel which covers the NICS that support SR-IOV.
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Figure 18: NIC sharing using SR-IOV

NEPs providing vEPC and GiLAN VNFs have been deploying SR-IOV in order to be able to get the
performance required from the application and have the ability to share the physical NIC amongst
VMs. However, a major drawback with SR-IOV is that the VNF images have to be packaged with the NIC
drivers that support the specific PNIC. This is a departure from the goals of decoupling hardware from
software and achieving abstraction. Additionally, live migration is not supported with SR-IOV as guests
cannot access passed-through devices after migration.

8.4. Vhost-User
A stock VM running on Qemu(Quick Emulator)/KVM in the absence of  acceleration features will use
virtio for data communication using the virtio_net paravirtualized driver. The virtio driver provides a
‘virtio ring’  that contains transmit/receive queues for the VM to use. The guest VM shares the queues
with Qemu. When packets are received on these queues, Qemu will forward them to the host network.
This forms a bottleneck and prevents higher throughput especially when we have smaller size packets
which implies higher number of packets.  Vhost is a solution which allows the guest VM running as a
process in user-space to share virtual queues with the kernel driver running on the host OS directly.
We will still require Qemu to setup the virtual queues on the PCI device (NIC in this case), however, the
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packets in the queue will no longer have to be processed by Qemu. This significantly improves network
I/O performance.

8.5. Data Plane Development Kit (DPDK)
The Data Plane Development Kit (DPDK) consists of a set of libraries and user-space drivers for fast
packet processing. It’s designed to run mostly in user-space enabling applications to perform their own
packet processing operations directly from/to the NIC. This results in delivering up to wire speed
performance for certain use cases depending on the processing depth by reducing some of the bulk.

The DPDK libraries only provide minimal packet operations within the application but enable
receiving and sending packets with a minimum number of CPU cycles. It does not provide any
networking stack and instead helps to bypass the kernel network stack in order to deliver high
performance. It is also not intended to be a direct replacement for all the robust packet processing
capabilities (L3 forwarding, IPsec, firewalling, etc.) already found in the kernel network stack (and in
many cases these features aren’t available to DPDK applications.)

In particular, DPDK provides the most significant performance improvement for situations where your
application needs to handle many small packets (~64 bytes). Traditionally, the Linux network stack
doesn’t handle small packets very well and incurs a lot of processing overhead when dealing with
these small packets thus restricting throughput. The rationale behind the processing overhead is
somewhat of a compounded answer. However, it stems from that fact that the Linux network stack is
designed to address the needs of general purpose networking applications where commodity
hardware is used. It actually works quite well for this use case and not only does it support the various
protocols across each of the different networks layers, but it can even function as a router. As such, it
wasn’t designed (optimized) for cases where you may need to deal with the processing of just these
very small packets.

At a high-level technical standpoint, there are several reasons for the bulk including overhead of
allocating/deallocating socket buffers, complexity of the socket buffer (sk_buff) data structure, multiple
memory copies, processing of packets layer by layer within the network stack, and context switching
between kernel level and user-space applications  - all of which leads to a CPU bottleneck when you
have many small packets (resulting in inefficient data processing through the kernel.)

The DPDK libraries are designed to address many of these issues and provide a lightweight framework
for getting packets directly to/from applications. The DPDK is broken up into several core components:

Memory Manager

Responsible for allocating pools of objects in memory

A pool is created in hugepage memory space and uses a ring to store free objects

Also provides an alignment helper to ensure that objects are padded to spread them equally on all
DRAM channels
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Buffer Manager

Reduces by a significant amount the time the operating system spends allocating and de-allocating
buffers

Pre-allocates fixed size buffers which are stored in memory pools.

Queue Manager

Implements safe lockless (and fixed sized) queue instead of using spin-locks that allow different
software components to process packets while avoiding unnecessary wait times.

Flow Classification

Provides an efficient mechanism which incorporates Intel Streaming SIMD Extensions (Intel SSE) to
produce a hash based on tuple information so that packets may be placed into flows quickly for
processing, thus greatly improving throughput

Poll Mode Drivers

Designed to work without asynchronous, interrupt-based signaling mechanisms, which greatly speeds
up the packet pipeline at the cost of allocating a CPU core to be constantly polling for new packets.

For vEPC and GiLAN applications that want to use the underlying DPDK-accelerated OVS for high
throughput, it is important to note that to fully take advantage of OVS-DPDK, the guest VMs will also
have to be DPDK enabled.

8.6. DPDK-accelerated Open vSwitch (OVS-DPDK)
Open vSwitch can be bundled with DPDK for better performance, resulting in a DPDK-accelerated OVS
(OVS+DPDK). At a high level, the idea is to replace the standard OVS kernel datapath with a DPDK-
based datapath, creating a user-space vSwitch on the host, which is using DPDK internally for its
packet forwarding. The nice thing about this architecture is that it is mostly transparent to users as the
basic OVS features as well as the interfaces it exposes (such as OpenFlow, OVSDB, the command line,
etc.) remains mostly the same. Figure 19 shows a comparison of standard OVS vs DPDK-accelerated
OVS.

The development of OVS+DPDK is now part of the http://openvswitch.org/support/dist-
docs/INSTALL.DPDK.md.txt[OVS project], and the code is maintained
under http://openvswitch.org[openvswitch.org]. The fact that DPDK has established an upstream
community of its own was key for that, so we now have the two communities – OVS and DPDK – talking
to each other in the open, and the https://www.sdxcentral.com/articles/news/intel-dead-ends-fork-open-
vswitch/2014/11/[codebase for DPDK-accelerated OVS available in the open source community].

Starting with the Red Hat OpenStack Platform 8 release, DPDK-accelerated Open vSwitch is available
for customers and partners as a https://access.redhat.com/support/offerings/techpreview[Technology
Preview] feature based on the work done in upstream OVS 2.4. With release of Red Hat OpenStack
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Platform 10, OVS-DPDK is fully supported. It includes tight integration with the Compute and
Networking layers of OpenStack via enhancements made to the OVS Neutron plug-in and agent. The
implementation is also expected to include support for dpdkvhostuser ports
(using http://wiki.qemu.org/Features/vhost-user-ovs-dpdk[QEMU vhost-user]) so that VMs can still use
the standard VirtIO networking driver when communicating with OVS on the host.

Red Hat sees the main advantage of OVS+DPDK in the flexibility it offers. SR-IOV, as previously
described, is tightly tied to the physical NIC, resulting in a lack of software abstraction on the
hypervisor side. DPDK-accelerated OVS promises to fix that by offering the “best of both worlds”:
performance on one hand, and flexibility and programmability through the virtualization layer on the
other.

Figure 19: Standard OVS versus user-space OVS accelerated with DPDK

8.7. DPDK with Red Hat OpenStack Platform
Generally, we see two main use-cases for using DPDK with Red Hat and Red Hat OpenStack Platform.

1. DPDK enabled applications, or VNFs, written on top of RHEL as a guest operating system. Here we
are talking about Network Functions that are taking advantage of DPDK as opposed to the standard
kernel networking stack for enhanced performance.

2. DPDK-accelerated Open vSwitch, running within Red Hat OpenStack Platform Compute nodes (the
hypervisors). Here it is all about boosting the performance of OVS and allowing for faster
connectivity between VNFs.

We would like to highlight that if you want to run DPDK-accelerated OVS in the compute node, you do
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not necessarily have to run DPDK-enabled applications in the VNFs that plug into it. This can be seen as
another layer of optimization, but these are two different fundamental use-cases.

Figure 20: Standard OVS with DPDK-enabled VNFs

Figure 20 shows an example of a DPDK enabled guest running on the top of a standard OVS.
Alternatively, it is possible to run a standard guest over DPDK-accelerated OVS as shown in Figure 21.
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Figure 21 : DPDK-accelerated OVS with standard VNF s

Additionally, it is possible to run DPDK-enabled VNFs without using OVS or OVS+DPDK on the Compute
node, and utilize SR-IOV instead. This configuration requires a VF Poll Mode Driver (PMD) within the
VM itself as shown in Figure 22.
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Figure 22: SR-IOV with DPDK enabled VNFs

As we have mentioned earlier, the vEPC and GiLAN VNF requires very high throughput as it
terminates millions of subscribers. As such, it is recommended the NEPs use the DPDK-accelerated OVS
with DPDK enabled VNFs as shown in Figure 23. This option will provide the best throughput while
still offering decoupling from specific NIC hardware.
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Figure 23: DPDK-accelerated OVS with DPDK enabled VNFs

To improve the performance of OVS with DPDK, vHost user multiqueue support was introduced.

vHost user as explained earlier improved overall throughput by allowing the VM that runs in user
space to bypass the QEMU and directly talk to the kernel memory using sockets. This standard vHost
user setup looks like what is shown in Figure 24.
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Figure 24: vHost single queue

This single queue on the guest VM can become a bottleneck. To overcome this problem and to further
speedup packet transfer, vHost multiqueue can be employed. This is illustrated in Figure 25.  More
details on multiqueue vHost user is available at: https://software.intel.com/en-us/articles/configure-
vhost-user-multiqueue-for-ovs-with-dpdk
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Figure 25: vHost user multiqueue setup

8.8. NUMA topology
NUMA, or Non-Uniform Memory Access, is a shared memory architecture that describes the placement
of main memory modules with respect to processors in a multiprocessor system. Like most every other
processor architectural feature, ignorance of NUMA can result in subpar application memory
performance (Reference: Optimizing applications for Numa. David Ott. https://software.intel.com/en-
us/articles/optimizing-applications-for-numa)
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8.8.1. CPU Socket Affinity

When running workloads on NUMA hosts it is important that the CPUs executing the processes are on
the same node as the memory used. This ensures that all memory accesses are local to the NUMA node
and thus not consuming the limited cross-node memory bandwidth, for example via Intel QuickPath
Interconnect (QPI) links, which adds latency to memory accesses.

Red Hat OpenStack Platform 6 (onwards) provides a NUMA aware scheduler that will consider the
availability of NUMA resources when choosing the host to schedule on.

OpenStack NUMA scheduler consumes the information of the NUMA topology defined through the
OpenStack API to place the resources consequently. When defining the NUMA topology is important to
take into account the performance drawbacks of a wrong NUMA topology. Figure 26 shows an
undesired NUMA resources placement, a core on socket 1 receives packets from and transmits packets
to interfaces on socket 0. This is the worst case situation. (Reference: Network Function Virtualization:
Virtualized BRAS with Linux* and Intel® Architecture
https://networkbuilders.intel.com/docs/Network_Builders_RA_vBRAS_Final.pdf)

Figure 26: NUMA node Sub-optimal I/O scenarios

To avoid the previous situation, it’s recommended to select a NUMA topology of 1 numa node, so that
the OpenStack Compute scheduler will deploy the resulting scenario shown in Figure 27.
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Figure 27: NUMA node optimal I/O scenarios

The drawback of doing this is the VM might not fit into one NUMA node depending on the resources
available and used on the hosts.

For virtual mobile as well as for all other NFV applications, it is also important that the I/O devices
(NICs) conform to NUMAhttps://blueprints.launchpad.net/nova/+spec/input-output-based-numa-
scheduling[ topology]. Because NFV applications are network intensive, if the NICs are not collocated
with the CPUs there is a significant performance hit (up to 30%)!

8.9. Huge pages
From a memory management perspective, the entire physical memory is divided into "frames" and the
virtual memory is divided into "pages".

The memory management unit performs a translation of virtual memory address to physical memory
address. The information regarding which virtual memory page maps to which physical frame is kept
in a data structure called the "Page Table". Page table lookups are costly. In order to avoid performance
hits due to this lookup, a fast lookup cache called Translation Lookaside Buffer (TLB) is maintained by
most architectures. This lookup cache contains the virtual memory address to physical memory
address mapping. So any virtual memory address which requires translation to the physical memory
address is first compared with the translation lookaside buffer for a valid mapping.

When a valid address translation is not present in the TLB, it is called a "TLB miss". If a TLB miss
occurs, the memory management unit will have to refer to the page tables to get the translation. This
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brings additional performance costs, hence it is important that we try to reduce the TLB misses.

Most modern virtualization hosts support a variety of memory page sizes. On x86 the smallest, used by
the kernel by default, is 4kb, while large sizes include 2MB and 1GB. The CPU TLB cache has a limited
size, so when there is a very large amount of RAM present and utilized, the cache efficiency can be
fairly low which in turn increases memory access latency. By using larger page sizes, there are fewer
entries needed in the TLB and thus its efficiency goes up. [3]

The ability to control the amount of page memory in Kilo Bytes (KB) exposed to the guest has been
available since Red Hat OpenStack Platform 6.

8.10. CPU Consumption
Dedicated EPC hardware may have dedicated processors to perform network I/O. In some
implementations, NEPs use specialized ASICs (Application-Specific Integrated Circuits) to speedup
network I/O. For vEPC/GiLAN and NFV in general (except for cases where we use OVS offload and other
hardware assist techniques), network I/O is performed by CPU of the server. Typically, when a packet
arrives on the input queue the CPU gets an interrupt and one of the cores is assigned to move the
packet from the input queue to the VM. Simply put, network I/O consumes CPU. Because of this reason,
it is important to dimension the servers with adequate horsepower to not perform classic processor
bound tasks but also for network I/O operations.

vEPC vendors (true for other VNFs as well) provide guidelines for running each VNF and application
(MME, SGW/PGW, ePDG). They usually recommend the number virtual CPUs (vCPUs) required for that
application along with the DRAM and disk.

Physical CPU model is a moving target. Newer, better and faster CPUs are released by Intel and other
vendors constantly. For validating this architecture the following specifications were used for server
hardware:

• 2 Intel Xeon Processor E5-2650v4 12-Core

• 128GB of DRAM

• Intel x540 10G NIC cards

• Storage:

• 400GB SSD drives for CEPH monitors

• 300GB SAS drives for the host OS

• 6TB SAS drives for CEPH OSD

It should be noted that even with dataplane acceleration such as OVS with DPDK, in order to get
adequate throughput, multiple CPUs may need to be assigned depending on the requirement following
NUMA guidelines.
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8.11. CPU Pinning
CPU pinning is a technique that allows processes/threads to have an affinity configured with one or
multiple cores.

By configuring a CPU affinity, the scheduler is now restricted to only scheduling the thread to execute
on one of the nominated cores. In a NUMA configuration, if specific NUMA memory is requested for a
thread, this CPU affinity setting will help to ensure that the memory remains local to the thread. Figure
28 shows a logical view of how threads that can be pinned to specific CPU cores and memory can be
allocated local to those cores. Details of this can be found in A Path to Line-Rate-Capable NFV
Deployments with Intel® Architecture and the OpenStack® Juno Release

https://networkbuilders.intel.com/docs/PathToLine-Rate_WP_V1.pdf

Figure 28: Pinning threads to CPU cores.
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9. Traffic Profile and Dimensioning
vEPC and for that matter hardware based EPC solutions are typically based on use-case, call-model
(ePDG, PGW, SGW/PGW or MME/SGW), number of subscribers being served. Typically, mobile
operators share “call model” (exact call flow ladder diagrams) with NEPs so that the vEPC setup and
configuration is tailored for that application.

vEPC consist of a rich set of features and capabilities ranging from normal 3gpp functions (SGW, PGW,
MME etc) to Deep Packet Inspection (DPI), URL filtering/enrichment, Video/Content caching etc.
Additionally for a connected-cars use case the same 3gpp functions may have different scaling
requirements than when terminating 10 Million subscribers with smartphones. Good news is most
vEPC VNFs are expected to support all these services and applications. They can be viewed as Swiss
Army Knives as shown in Figure 29.

Figure 29: vEPC applications and their relationship to system resources

Based on the application, the dimensioning of vEPC could vary. IoT/M2M (Machine to Machine) is
typically high in session count but low from throughput requirement. IoT devices could vary from
small devices embedded in fields measuring nitrogen and moisture content to health care industry
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where it may be used to measure and ensure consistent temperature of medicine or organs being
transported. These devices are typically not very chatty. They wake up, say what they need to say using
tiny messages (could even be SMS) and then they go back to sleep. Due to the very high session count
(imagine a future world where every device and appliance has an IPv6 address and is capable of
communicating), the vEPC would have to be dimensioned for high memory. Billing applications take
Call Data Records (CDRs) and creating and store billing entry constantly on disk. For this vEPC and
underlying infrastructure (OpenStack and Hardware) will need to be designed and provisioned so that
this constant Input/Output Operations (IOPs) don’t become an issue. Policy and control applications
(PCRF) and Radius could be very chatty. Constant messaging occurs based on various activity of the
subscribers. VoLTE (Voice over Long Term Evolution) is the voice application for 4G/LTE mobile
networks. Voice typically implies a lot of small packets (We spec for 64 byte packets, however, in reality
they could be more like 100 bytes and vary based on codec being used). In summary, there has to be
some design and tuning done at the infrastructure level to accommodate different mobile services
running on top of vEPC.

Table 2 summarizes the general requirements of vEPC. Some deployments could be smaller while
others larger. While some KPIs such as session count, total bandwidth requirement could vary based
on size of the deployment, others stay constant. Important KPIs to pay attention to are packet loss, jitter
and latency.

Table 2: vEPC Traffic Profile (Source: OPNFV Summit 2016)

Dimensioning for GiLAN and IMS tracks that of vEPC or EPC subscribers if GiLAN is deployed with a
non-virtualized EPC.

refarch-feedback@redhat.com 52 www.redhat.com



10. Deployment and Lifecycle Management

10.1. Management and Network Orchestration (MANO)
ETSI-NFV provides a framework for provisioning and maintenance of VNFs in the Management and
Network Orchestration in ETSI GS NFV-MAN 001 V1.1.1 (2014-12). We will discuss the orchestration
aspects in general and as it pertains to vEPC in this section.

10.2. Orchestration: VNFM, NFVo and Virtual
Intrastructure Manager (VIM) interactions
A note about VNFMs. There are two types of VNFMs - Generic VNFM (GVNFM) and Specialized VNFM
(SVNFM) . The SVNFMs are tightly coupled with the VNFs that they manage. Lifecycle management of
vEPC is a very complex task. Altough GVNFMs may be able to perform most of the tasks required in
vEPC in theory, in practice, there would have to be a lot of customization to make the GVNFM
knowledgeable about the vEPC VNF . KPI monitoring, element management, failover, load-balancing,
elasticity and application healing aspects require a deep and real-time knowledge of the application
state. As a result complex VNFs such as vEPC tend to have their own VNFM provided by the VNF
vendor.

In vEPC deployments, the NFV-O acts as the top-level orchestration layer that interfaces with
northbound entities such as the service catalog, customer portal and service assurance. Customers in
the vEPC context are not end users of mobile/smartphones typically. They may be enterprise customers
ordering over-the-top enterprise VPN service from the mobile operator or ordering an instance to
house additional M2M (Machine to Machine) instances. Typically, this order will result in one of the
following:

• It can be accommodated on the existing vEPC instance where sufficient capacity exists on active
instance

• Accommodated on existing vEPC where some new instances (new PGW for instance) is required

• Brand new instance of vEPC will be required because we have run out of capacity on the existing
instance and due to infrastructure or other limitations we cannot add more instances to existing
vEPC

Regardless of which case, when a customer orders a service that results in modifications to the vEPC
(existing or new), mobile operators prefer it goes through a manual approval process where a human
checks to make sure the order is valid. Once customer service/onboarding team approves the order,
the NFV-O gets messaging with service attributes. The NFV-O will take the following action(s):

• Translate it into actual infrastructure/application requirements. For e.g. it may need another VM
with more service modules to accommodate this customer order

• Check available resources against a resource database
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• Send one or more requests to a VNFM if one exists to instantiate the new resource (new
server/host, new VM, additional network ports/capacity etc). Some mobile operators choose not to
use any VNFM at all and embed the VNFM functionality into the NFV-O. While this model does not
strictly adhere to the ETSI NFVI model, the operators see this as a better fit in terms of architectural
alignment as well as operational. It should be noted that the NFV-O in actual deployments may also
talk to some configuration automation engine such as Red Hat Ansible to push configurations to
underlay network elements or other lower layer requests that will be required to complete this
order.

• The next step is for the VNFM to translate the request from the NFV-O into actual commands that
the VIM would understand. For e.g. it may be a “Nova Boot” or “Neutron Net Create” etc.

• Success or failure is reported back to NFV-O.

• NFV-O updates resource database if required, updates order processing system, adds the new
resources into the service assurance system or fault management system to monitor

Figure 30 shows a flow diagram with details of VNF instantiation as recommended by ETSI. It should
be noted that vEPC VNFs may be accompanied by Element Managers (EMs) that assist in managing the
VNF from an application standpoint.

Figure 30: VNF Instantiation flow as per ETSI

10.3. Day0 Config
The VNFM typically is responsible for Day0 configuration. It will start the VM using the ssh-keys
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assigned for it, configure Eth0 if required for management/SSH access. All higher level configuration
such as protocols (BGP, Firewall rules etc.) will be done through configuration automation tool such as
Ansible.

10.4. Fixed IP Addressing
For internal communication between the control modules and service modules, vEPC application may
have reserved internal IP address ranges. These are typically RFC-1918 non-routable IP subnets. The
application may choose not to use the DHCP services offered by OpenStack L3 agent.

If the platform uses provider networks for their tenant connectivity and compute hosts don’t have
access to the dhcp-agent running on the controller using the provider networks, special provisions
need to be made to enable DHCP services for the guests, or the guests need to use pre-provisioned
static IP addresses.  One of the ways to accomplish this is to use config-drive to pass networking
information to the guests.  Images used to instantiate the VMs need to contain a cloud-init package
capable of mounting the config-drive or a special script can be created to mount the drive, depending
on the guest OS.

10.5. Virtualized Infrastructure Manager (VIM)
While mobile VNF vendors tend to support both OpenStack as well as VMWare, the focus of this
document will be around Red Hat OpenStack as a VIM. vEPC VNFMs may use some middleware to
abstract the VIM API requests (for e.g. OpenStack API).
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11. Security
Security is top-of-mind for Telcos and specifically mobile operators. Security violations lead to
downtime which goes against the high availability requirements of Telcos.  There are stringent security
requirements that is stipulated by most local governments where EPC (3G or 4G) is deployed. Any
network or cloud deployment needs to be protected from malicious attacks. The key difference is that
in the past we used proprietary hardware and even protocols which were harder to hack.

In context of vEPC “Lawful/Legal Intercept” (LI) comes to mind. Many governments require service
providers/operators to be able to identify the subscriber based on request and furthermore, “Camp-on”
that subscriber’s session to be able to track messaging or data that is being transmitted on that session.
The government could also request triangulation of the subscriber to obtain the location of the
subscriber in certain cases. In the past EPC/MPC (Mobile Packet Core - 3G) ran on dedicated hardware
where sensitive information about subscribers were mostly passed between blades of chassis in most
instances. The LI packets would be traversing the backplane of the EPC/MPC hardware and not in any
danger of being exposed to hackers. With the advent of virtualization and cloud, the VMs that
constitute the vEPC VNFs could span several servers spread across the cloud. vEPC typically would be
deployed on private cloud opposed to public cloud such as Amazon and Azure. However, MVNOs could
obtain access to certain applications “As a Service (aaS)” which could bring public cloud into context.
The LI packets that traverse the cloud would now have to be encrypted due to their sensitive nature.
This may have significant impact on packet throughput unless specific steps are taken to use dedicated
hardware with sufficient horsepower to perform the encryption/decryption and in some cases even
use hardware assist.

Mobile operators go through numerous measures to ensure the environment in which vEPC runs is
secure. This includes but not limited to:

• Using rack-mount servers instead of blade servers . This is done by some operators as they
require console access to the physical servers. Blade servers use virtual consoles. If and when a VM
is compromised if all else fails, the operator may chose to use this Out Of Band (OOB) access the
server and shut it down

• Create zoning . The operators may employ zoning to segregate portions of the datacenter (servers)
that house and deal with sensitive information such as subscriber database, policy servers etc into
a “Secure Zone”. Only control plane data typically requires access to the secure zone. Data plane is
separated into its own zone. Firewalls are employed between zones to minimize exposure to
security threats and hacking.

• Hardening hardware and software : Service providers/Mobile operators require NEPs to provide
hardware and software that is hardened and less susceptible to security threats. Additionally
installing software updates and patches on a regular interval and conducting security audits is
required.

Platform Hardening (Hardware, Host OS and OpenStack) is not new to service providers. Mobile
operators should apply the same procedures and ensure security best practices are applied up and
down the stack from application all the way to the hardware, layer by layer.
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11.1. Operational Best Practices
Security cannot be an afterthought. It is very hard to go back to a completely open environment and
plug holes. It needs to be thought through along with the architecture and design of a network. This
requires security operational procedures to be agreed upon, documented, maintained and
implemented. This includes but not limited to:

• Physical security: Who has physical access to the datacenter. Even within the datacenter, it is
important to partition racks that belong to groups and create barriers or cages that only those
groups have access to. Sometimes the racks may be in Co-Los (Colocated in shared datacenter also
known as “hoteling”)

• Limiting access: Many Telcos will allow changes to be made to servers and network equipment to a
very small set of individuals. Others will to open a ticket to get this done. Often the servers/switches
can only be accessed is through jump-servers or known hosts. Additionally, there are several levels
of privileges that are assigned and controlled using AAA/Radius servers. Just because someone can
logon to a server/switch they cannot make configuration changes or cause damage

• Audit Trails: All access to servers/switches should be logged with accurate timestamps and details
of individuals who execute commands and what commands were executed.

• Credentials: Most Telcos implement complex passwords and require these password be changed
periodically. In some cases the passwords are assigned by the Telco to the users/admins and cannot
be modified.

• Monitoring: Syslogs, SNMP traps and log messages have to be proactively monitored for security
violations such as repeated password failure or someone trying to access something that they are
are not authorized to.

11.2. Hardware and Software
• Hardware: Server and switch firmware, BIOS etc have to be known certified quantities.

Additionally NIC level settings such as which port is allowed to PXE boot etc should be controlled.
There are some things to be aware of with hardware:

• PCI passthrough uses DMA to speed up transfers and allows access to physical memory on the
host. If compromised due by using a rogue firmware, it can potentially cause damage.

• Infected hardware is hard to manage, reset etc and may result in running the virtual machines
in an unsecure environment.

• Host OS and Virtualization: The hypervisor can become a weak link. If it has vulnerabilities, attacks
can be launched starting from the guest VM, breaking out using this vulnerability in the
hypervisor, replicating itself. If it reaches the host, it can access other tenants as well. It is
important to proactively harden QEMU and KVM by maintaining uniform code base, using
compiler hardening, and access control using SELinux. We should keep in mind that while the
beauty of NFV is to mix and match VNF vendors it can also become a security bottleneck as not all
vendors would have gone through the same high level of hardening and taken precautions as
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others. Many hypervisor vendors including Red Hat have achieved Common Criteria Certification -
Identification and Authentication, Audit, Role-Based Access Control etc. Details of this topic can be
obtained at http://docs.openstack.org/sec/

• Cryptography: Several options are available within OpenStack to use cryptography for various
activities such as identification and authorization, data transfer and protection of data at rest.

ETSI provides detailed guidelines on security and platform hardening for NFV. This can be found in
“ETSI GS NFV-SEC 012 V0.0.13 (2016-11)” and related documents.

The OpenStack security project issues Security Advisories (OSSA) and Security Notes (OSSN) which
operators, infrastructure providers as well as NEPs who provide VNFs should pay attention to.
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12. Operational Tools (monitoring, logging &
alarms)
Monitoring traditional hardware based EPC mostly involved Element Managers(EMs) that were
provided by the EPC vendor along with a set of generic monitoring tools and techniques including
SNMP monitoring (using snmpget and snmpwalk), SNMP traps and Syslog. However, with the advent of
vEPC, the solution is multi-layered and much more complex to monitor. In addition to monitoring the
vEPC at the application layer (using EM or otherwise), we now have to monitor:

• Server Hardware: Power supply, Temperature, Fans, Disk, fabric errors etc.

• Host OS: Memory, CPU, Disk and I/O errors

• OpenStack: Service daemons, Instance reachability, Volumes, Hypervisor metrics, Nova/Compute
metrics, Tenant metrics, Message Queues, Keystone Tokens and Notifications

It should be noted that the VNFM, if one is present also contributes to lifecycle management of the
VNFs, restarting VMs, starting new VMs if scaling is required.

12.1. Logging
OpenStack provides numerous log files for each component. It is an important activity to monitor these
log files. As an example, let us look at /var/log/nova/nova-compute.log:

2016-12-09 17:51:51.025 44510 INFO nova.compute.resource_tracker [req-336c8469-3c29-4b55-8917-
36db3303bb72 - - - - -] Auditing locally available compute resources for node overcloud-compute-
0.localdomain

2016-12-09 17:51:51.307 44510 INFO nova.compute.resource_tracker [req-336c8469-3c29-4b55-8917-
36db3303bb72 - - - - -] Total usable vcpus: 48, total allocated vcpus: 0

2016-12-09 17:51:51.307 44510 INFO nova.compute.resource_tracker [req-336c8469-3c29-4b55-8917-
36db3303bb72 - - - - -] Final resource view: name=overcloud-compute-0.localdomain
phys_ram=130950MB used_ram=2048MB phys_disk=372GB used_disk=0GB total_vcpus=48
used_vcpus=0 pci_stats=[]

2016-12-09 17:51:51.325 44510 INFO nova.compute.resource_tracker [req-336c8469-3c29-4b55-8917-
36db3303bb72 - - - - -] Compute_service record updated for overcloud-compute-
0.localdomain:overcloud-compute-0.localdomain

If the compute node is healthy and is able to communicate with the controller node, we should see
periodic log messages “Auditing locally available compute resources for node…” type of logs followed
by actual report providing a snapshot of resources available on that compute node. If for some reason
nova service is not healthy on that compute node or communication between the controller node and
this compute node has failed, we will stop seeing these updates in nova-compute.log file. Of course this
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can also be observed on OpenStack Horizon dashboard when VMs are not schedules on the compute
nodes that are considered “Out of service” by the controller node.

A complete list of log files can be found on Red Hat customer portal under each release. For OpenStack
Platfrom 10 release it can be found at https://access.redhat.com/documentation/en/red-hat-openstack-
platform/10/paged/logging-monitoring-and-troubleshooting-guide/.

12.2. Monitoring
OpenStack also provides various KPIs that should be monitored apart from the log files.

With OpenStack, monitoring the metrics and events listed in the table below enables mobile operators
with insights into performance, availability and overall health of the OpenStack.

Most useful metrics the following:

• hypervisor_load

• running_vms

• free_disk_gb

• free_ram_mb

• queue memory

• queue consumers

• consumer_utilisation

Details and a more complete listing of OpenStack KPIs can be found at
https://www.datadoghq.com/blog/openstack-monitoring-nova/?ref=wikipedia.
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13. Conclusion
Mobile operators have moved from Proof-of-Concepts (PoCs) to trials to production using virtualized
mobile network elements. This was first pioneered by Tier1 operators and we are seeing it being
followed by Tier2 and Tier3 operators around the world. Virtual mobile network offer the operators
freedom from vendor lock-in, ability to grow and shrink the network based on demand without having
to order and deploy new hardware. This has been made easy to deploy due to the Orchestration and
Management functions. Further operational gains can be gained by leveraging configuration
automation tools such as Red Hat Ansible. NEPs and Telcos are working against the backdrop set by
ETSI NFV standards body in standardizing the way NFV can be implemented, deployed and managed.
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