AIRBUS DS COMMUNICATIONS

home of **VESTA®**

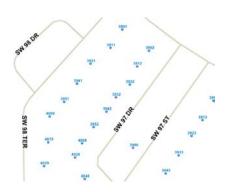
Lights, Camera, NG9-1-1!

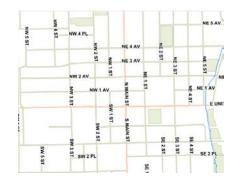
Diana Gijselaers diana.gijselaers@airbus-dscomm.com August 26, 2015

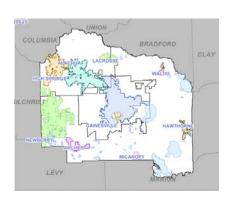
TODAY

- •GIS
- NG9-1-1 Basics
- How GIS is used in NG9-1-1
- •NG9-1-1 Call Flow Skit

WHAT IS GIS?


- Geographic Information Systems
- According to Esri: 'A geographic information system (GIS) integrates hardware, software, and data for capturing, managing, analyzing, and displaying all forms of geographically referenced information.'


WHAT DOES GIS DO?


- Store, reference, combine, and analyze multiple layers – NG9-1-1Database
- Allows you to query based on geographic location NG9-1-1Database
- Allows you to Visualize data E9-1-1 & NG9-1-1Map

WHAT DOES GIS DO?

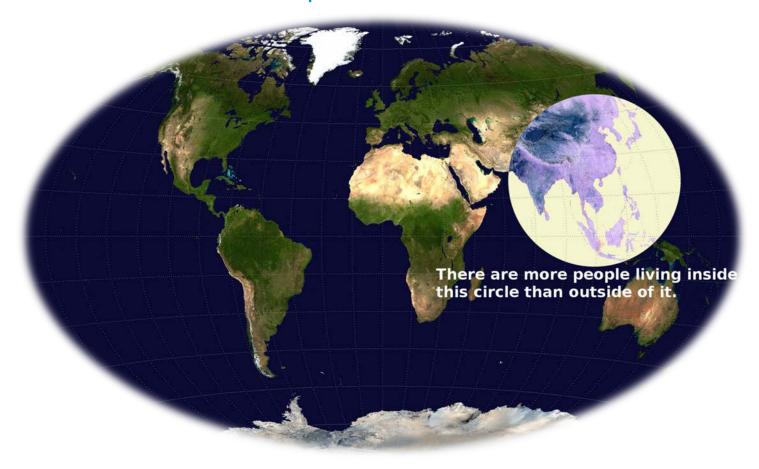
- GIS works with geographic features and their corresponding attribute information.
 - Vector Point, line, polygon representations of real world features with associated attributes

LOCATION AND ATTRIBUTES

state(010											
Г	FID	Shape '	AREA	PERIMETER	STATESP010	STATE	STATE_FIPS	ORDER_ADM	MONTH_ADM	DAY_ADM	YEAR_ADM
Г	9	Polygon	0.017	0.886	- 11	District of Columbia	11	. 0		.0	0
Г	- 10	Polygon	0.533	5.469	10	Delaware	10	1	December	7	1787
Г		Polygon	12.531	17.686	42	Pennsylvania	42	2	December	12	1787
Г	45	Polygon	0.211	2.567	.42	Pennsylvania	42	2	December	12	1767
Г	36	Polygon	2.073	17,481	34	New Jersey	34	3	December	18	1787
Г	12	Polygon	14.625	35.561	13	Georgia	13	4	January:	2	1788
Г	8	Polygon	1.391	7,986	9	Connecticut	09	5	January	9	1788
Г	22	Polygon	2.293	23.275	25	Massachusetts	25	6	February	6	1788
Г	23	Polygon	2.884	50.893	24	Maryland	24	7	April	28	1788
Г	48	Polygon	7.796	34.72	45	South Carolina	45	8	Way	23	1788
Г	35	Polygon	2.677	10.088	33	New Hampshire	33	9	June	21	1788
Г	53	Polygon	10.559	57.087	51	Virginia	51	10	June	25	1788
۲	39	Polygon	13,909	42.221	36	New York	36	- 11	July	26	1788
۲	40	Polygon	1.166	13.524	36	New York	36	- 11		26	1788
۲	32		12.705	64.572	37	North Carolina	37	12		21	1789
۲	47	Polygon	0.304	8,629	- 44	Rhode Island	4	13	May	29	1790
۲	54	Polygon	2.799	9.455	50	Vermont	50	14		- 4	1791
H	20		10.884	22.51	21	Kentucky	21	15		- 1	1792
۲	50	Polygon	10.89	22.359	47	Tennessee	47	16	June	- 1	1796
h	41	Polygon	11.325	19.294	39	Ohio	39	17	March	- 1	1803
H		Polygon	0.994	10.146	39	Ohio	39	17		- 1	1803
H	21	Polygon	11.424	59.94	22	Louisiana	22	18	April	- 30	1812
H	17	Polygon	9.873	17,293	18	Indiana	18	19	December	11	1816
H	18	Polygon	0.065	1,694	18	Indiana	18	19	December	- 11	1816
H	30	Polygon	11.881	26.186	28	Vissasco	28	20	December	10	1817
H	15	Polygon	15.408	21.66	17	Bros	17	21	December	3	1818
۲		Polygon	0.443	3,098		linois	17	21	December	3	1818
۲	3	Polygon	12.879	21.642	- 1	Alabama	01	22	December	14	1819
۲	24	Polygon	9.666	51.869	23	Maine	23	23	March	15	1820
۲		Polygon	18.615	24.682	29		29	24	August	10	1821
۲	4	Polygon	13.588	21,737	5	Arkansas	05	25	June	15	1836
Н	25	Polygon	18.991	83.131	28	Michigan	26	26	January	28	1837
H	28		11.527	75.243	28		26	26	January	26	1837
H	11	Polygon	13.477	112.896	12	Florida	12	27	March .	3	1845
H	51	Polygon	65.141	87.128	48	Texas	40	20	December	29	1845
H	13		15.856	20 132	19	lowa	19	29		28	1846
H	57	Polygon	16,482	29.492	55	Waconsin	55	30	May	29	1848
H	58	Polygon	2,739	23.805	55	Waconsin	55	30	May	29	1848
Н	50	Polygon	41,613	55,323	50	California	06	31	September	9	1850
H	27		25.537	34,873	27	Vinnesota	27	-	May	11	1858
H	name in	Polygon			27	Vinnesota	27	32		- 11	
۲	28 44	Polygon	28.147	7.392	41		41	32	May	11	1858
H	-					Oregon		33	February		1859
۲	19	Polygon	22.005	21.41	20	Kansas	54	34	January	29	1861
Η	59	Polygon	6.492	20.039	54	West Virginia		35	June	20	1863
۲	38	Polygon	29.943	23.854	32	Nevada	32	36	October	31	1884
H	34	Polygon	21.614	24.233	31	Nebraska	31	37	March	1	1887
H	7	1.00 8411	28.039	22.017		Colorado	08	38	August	1	1876
H	33	Polygon	21.84	24.683	38	North Dekota	38	39	November	2	1889
ŀ	49	Polygon	22.58	23.292	46	South Dakota	46	40	November	2	1889
H	31	Polygon	45.081	36.427	30	Montana	30	41	100.000.000	8	1889
L	55	Polygon	20.844	58 094	53	Washington	53	42	November	11	1889
L	56	Polygon	0.874	36.906	53	Washington	53		November	- 11	1889
Ш	14	Polygon	24.459	30.909	16	Idaho	16	43	July	3	1890

MAPS TELL A STORY

The United States Is...


HOW IS GIS USED IN E9-1-1?

Map Display

- Confirming/validating emergency caller's location
- Display emergency caller's location on a map in order to determine location
- Provide vehicular routing

MAPS CAN TELL A STORY IN A LANGUAGE EVERYONE CAN UNDERSTAND

Maps can reveal data and help reach conclusions

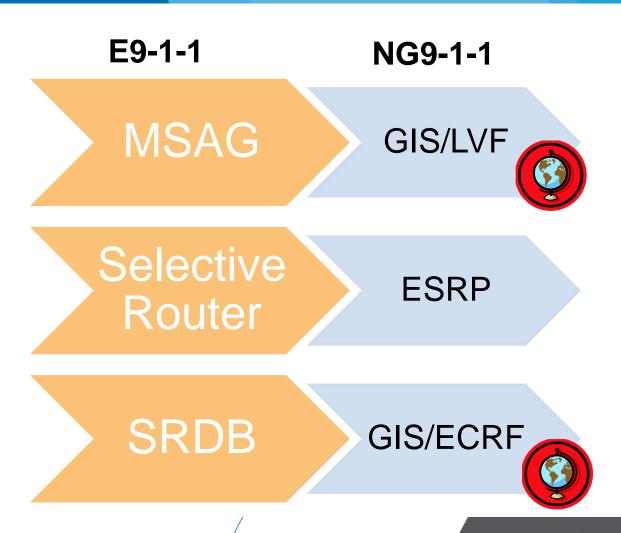
THE PSAP ENVIRONMENT

- 9-1-1 Centers are high stress environments!!!!
- Information overload
- Multitasking

- Decreased productivity
- Impaired decision making

GOOD MAPS LEAD TO

- Improved decision making
- Increased ability to understand complex data and spatial relationships


E9-1-1 LOCATION VALIDATION & CALL ROUTING

Master Street Address Guide (MSAG) – A data base of street names and house number ranges within their associated defining Emergency Services Zones (ESZs) and their associated Emergency Service Numbers (ESNs) to enable proper routing of 9-1-1 calls. Primary functions: validate address and assign ESN.

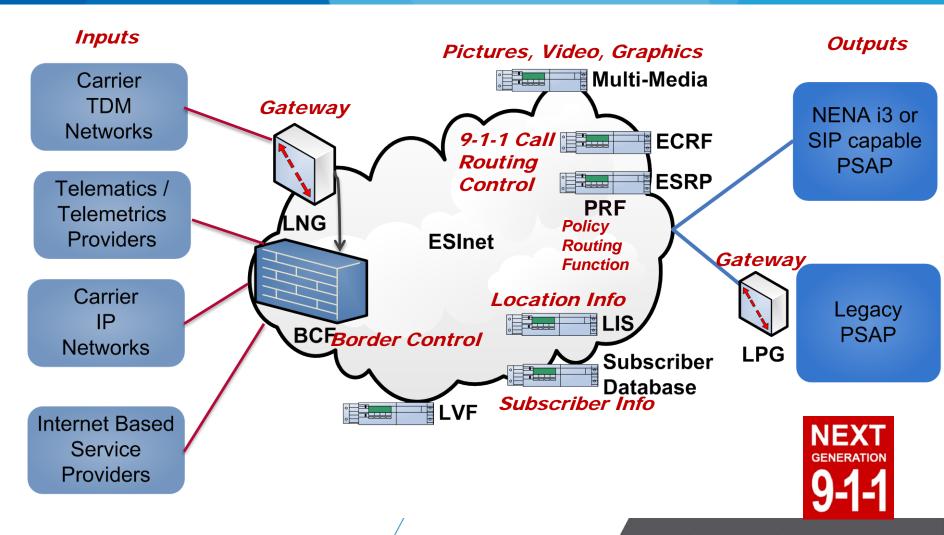
Selective Router (SR) – The routing of a 9-1-1 call to the proper PSAP based upon the location of the caller. Selective routing is controlled by the ESN which is derived from the customer location.

Selective Routing Data Base (SRDB) – The routing table that contains telephone number to ESN relationships which determine the routing of 9-1-1 calls.

E9-1-1 TO NG9-1-1

HOW IS GIS USED IN NG9-1-1?

Database


- Location Validation
- Geospatial Call Routing

Map Display

- Confirming/validating emergency caller's location
- Display emergency caller's location on a map
- Provide vehicular routing

NENA NG9-1-1 – I3 ELEMENTS SIMPLIFIED DIAGRAM (WITH ENGLISH SUBTITLES!)

ACRONYMS!

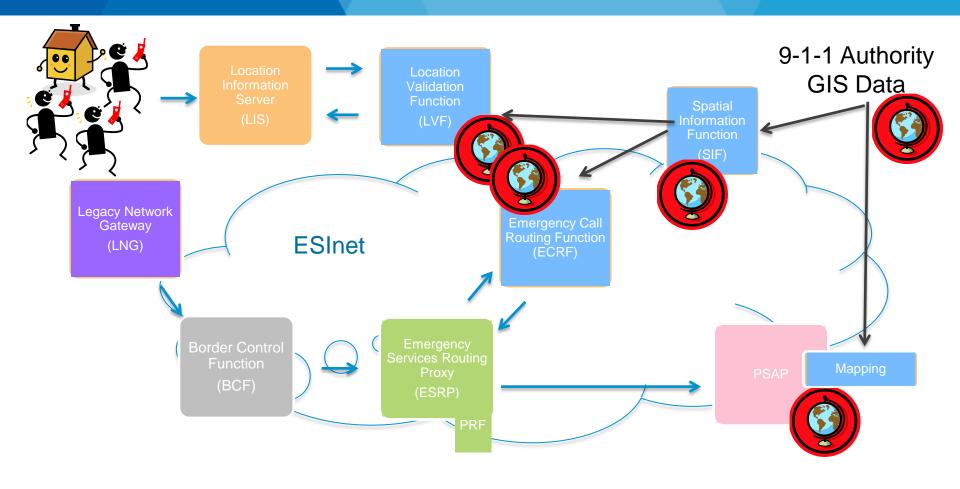
PIDF-LO Service URN Route URI

Service URN

Service Uniform Resource Name

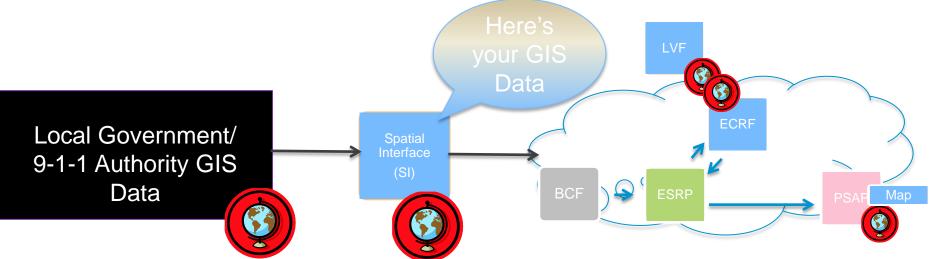
nena:service:sos

Route URI


Route Uniform Resource Identifier

psap@AwesomePSAP.O R.us

LOST QUERY Location-to-Service Translation


```
<?xml version="1.0" encoding="UTF-8"?> <findService
xmlns="urn:ietf:params:xml:ns:lost1" recursive="true"
serviceBoundary="value"> <location id="627b8bf819d0bcd4d"
profile="civic"> <civicAddress
xmlns="urn:ietf:params:xml:ns:pidf:geopriv10:civicAddr"> <country>US</country> <A1>OR</A1> <A3>Brooks</A3> <RD>APCO</RD> <STS>ST</STS> <HNO>911</HNO> </civicAddress> </findService>
```

ESINET COMPONENTS & GIS

ACT I: GIS DATA PROVISIONING

GIS Data is created and maintained at the local level

SI – Spatial Information Function

- Base database for NG9-1-1 maintains copies of required GIS layers
- •Nearly all location related data is derived from the SI. SI supplies data for the ECRF/LVF and map views for alternate PSAPs
- •Provisioned by the 9-1-1 Authority, or other government agencies
- •Provides an interface between an authoritative copy of GIS data and Functional Elements within the ESInet

Three things done by the SI:

- •Projection WGS 84
- Layer replication WFS + ATOM GeoRSS feed
- Transform data to CLDXF

PURPOSES OF CLDXF

- Civic Location Data Exchange Format NENA-STA-004
- Map a profile between IETF PIDF-LO and NENA PIDF - Presence Information Data Format
 - "hello, it's me and I'm waiting for an answer"
 LO Location Object
 - "this is exactly where I am"
 - coordinate location or civic address
- Support the exchange of address data by providing "definitive set of core civic location data elements"
 - Ensure portability of address data
 - Permit efficient design of software systems
 - Meet functional needs of call-routing and dispatch

LOST QUERY Location-to-Service Translation

<?xml version="1.0" encoding="UTF-8"?> <findService
xmlns="urn:ietf:params:xml:ns:lost1" recursive="true"
serviceBoundary="value"> <location id="627b8bf819d0bcd4d"
profile="civic"> <civicAddress
xmlns="urn:ietf:params:xml:ns:pidf:geopriv10:civicAddr"> <country>US</country> <A1>OR</A1> <A3>Brooks</A3> <RD>APCO</RD> <STS>ST</STS> <HNO>911</HNO> </civicAddress> </findService>

GIS DATA PROVISIONED BY THE SI

- Road Centerline Required
- Emergency Services Boundary Required
- Authoritative Boundary- Required
- Address Points Strongly Recommended

Optional GIS Dataset for ECRF/LVF – can be useful to particular ECRF/LVF implementations to facilitate the URI mapping of invalid or incomplete civic location

- States or Equivalents Strongly Recommended
- Counties or Equivalents Strongly Recommended
- Municipal Boundary Strongly Recommended

NEW TO NG9-1-1

Emergency Service Boundary

New Fields:

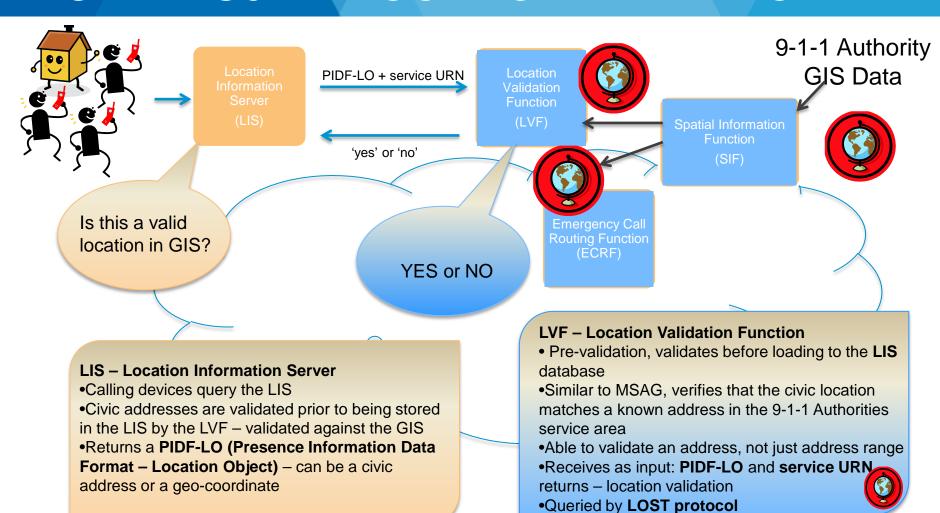
- Service URN Service Uniform Resource Name nena:service:sos
- Route URI Route Uniform Resource Identifier psap @awesomePSAP.OR.us

LOCATION VALIDATION

E9-1-1

MSAG

Tabular database



NG9-1-1

LVF

GIS database

ACT II: NG9-1-1 LOCATION VALIDATION

HOW IS GIS USED IN NG9-1-1?

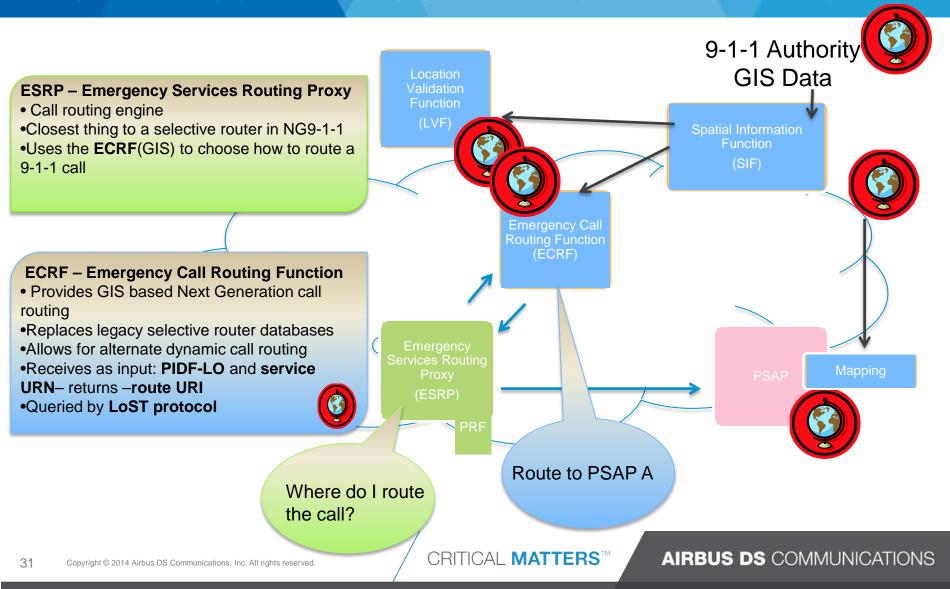
Location Validation – greater accuracy with address points

preDir	Street	Low	High	Comm	State	O/E	ESN
				Gaines			
NE	5TH PL	920	929	ville	FL	В	1
				Gaines			
NE	5TH PL	1004	1035	ville	FL	В	1
				Gaines			
NE	5TH PL	1102	1115	ville	FL /	В	1

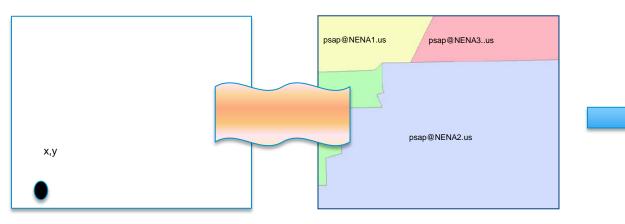
- 920 NE 5TH PL, Gainesville, FL
- 1020 NE 5TH PL, Gainesville, FL
- 1107 NE 5TH PL, Gainesville, FL

CALL ROUTING

E9-1-1

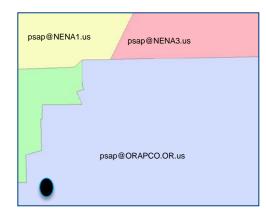

Selective Router
Tabular query

NG 9-1-1


ESRP/ECRF GIS query

ACT III: NG9-1-1 GEOSPATIAL CALL ROUTING

HOW GIS IS USED IN NG9-1-1


Geospatial call routing – ECRF GIS Query

Location coordinate of emergency call

PSAP Boundary with Service URN

nena:service:sos

Route URI from PSAP boundary

psap@NENA2.us

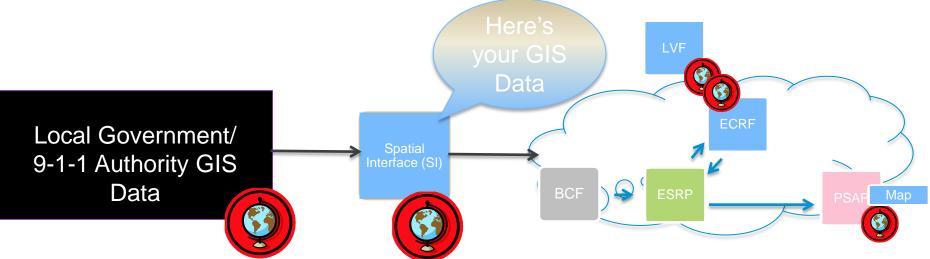
HOW GIS IS USED IN NG9-1-1

Geospatial call routing

Route to a PSAP

Route to Mobile Command Center

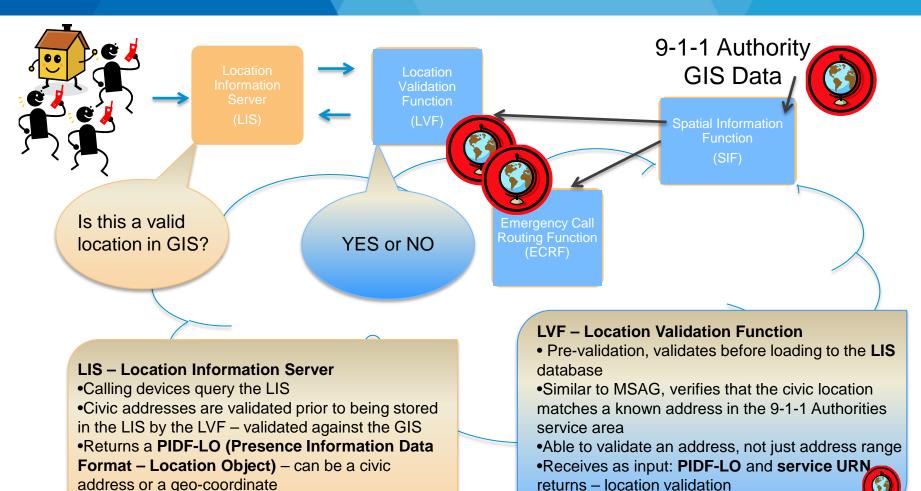
Route to a Queue


BENEFITS OF GIS AND NG9-1-1

- Allows call validation to an address point, not just a street based address range
- Enables on the fly call routing changes that take effect within minutes
- Allows 9-1-1 calls to routed based on location to a specific PSAP or call queue

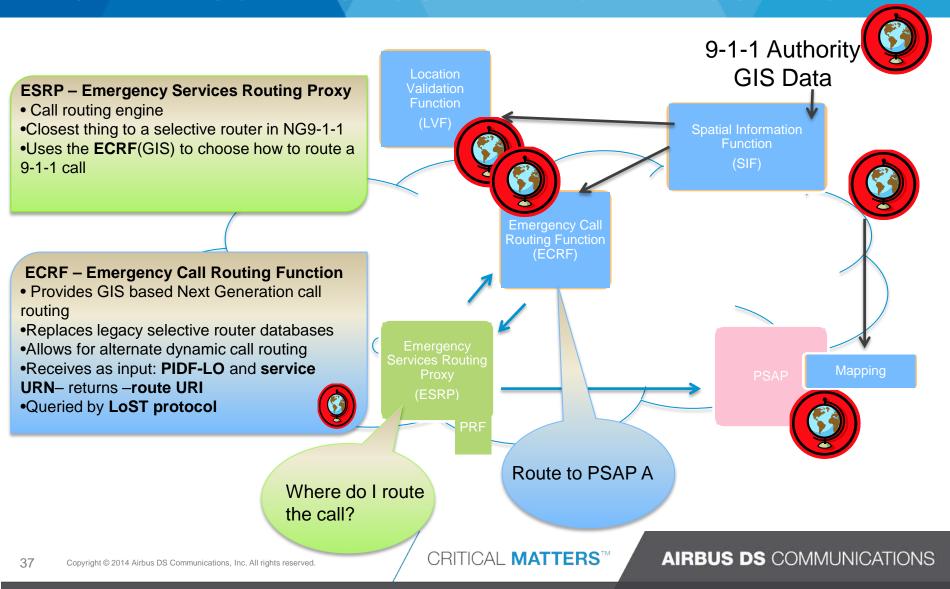
ACT I: GIS DATA PROVISIONING

GIS Data is created and maintained at the local level


SI – Spatial Interface

- Base database for NG9-1-1 maintains copies of required GIS layers
- •Nearly all location related data is derived from the SI. SI supplies data for the ECRF/LVF and map views for alternate PSAPs
- •Provisioned by the 9-1-1 Authority, or other government agencies
- •Provides an interface between an authoritative copy of GIS data and Functional Elements within the ESInet

Three things done by the SIF:


- •Projection WGS 84
- Layer replication WFS + ATOM GeoRSS feed
- Transform data to CLDXF

ACT II: NG9-1-1 LOCATION VALIDATION

Queried by LOST protocol

ACT III: NG9-1-1 GEOSPATIAL CALL ROUTING

WHAT TO TAKE AWAY

'Check' Your NG9-1-1 GIS Checklist:

- Do you know the Importance of GIS in NG 9-1-1 environment?
- Do you understand NG9-1-1 Call Flow and which components rely on GIS?
- Is your current GIS data ready for NG9-1-1?
- Is your GIS data in sync and consistent with the MSAG and ALI?