NH₃ – The <u>Optimal</u> Alternative Fuel

ARPA-E REFUEL Kickoff Meeting

August 17-18, 2017

Denver, Colorado

Norm Olson President - NH3 Fuel Association

NH₃ – Optimal Fuel, Versatile Chemical

Fuel

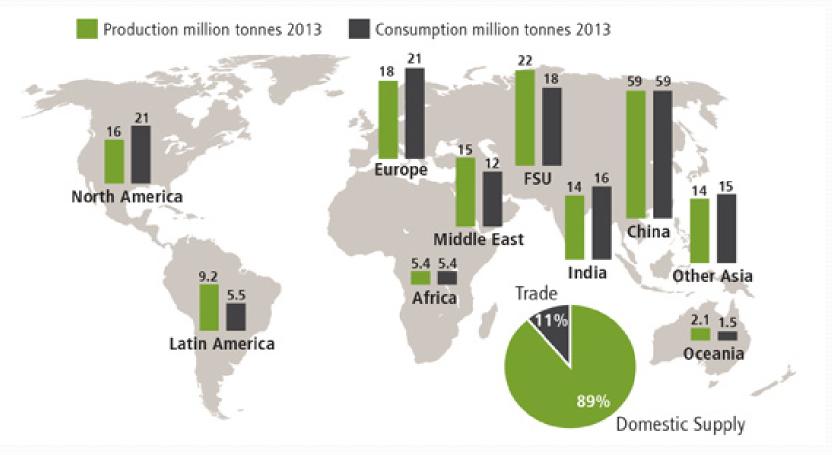
Energy Storage

Fertilizer

NH3 FA and AIChE Meeting

Become a member of the NH₃ FA and attend the AIChE Annual Meeting at a significant discount (see details at link below).

https://nh3fuelassociation.org/join-us/


AIChE 2017 Annual Meeting. October 29-November 3. Minneapolis, MN NH3 Energy+ Topical Conference. 40 presentations!

Recent Developments

Netherlands Conference (~150 attendees) - Europe's First! Shell, Yara, Ammonia Casale, IEA, Siemans, Proton Ventures, etc. 2017

Japan Program 2015-2018 Siemens wind to NH3 project in Great Britain 2016-2017 (UMM 2008) Global NH3 Fuel Federation 2016 IEA – white paper 2017 Ammonia Casale – 10 tpd unit announced 2017 Australia – 1st non-U.S. NH3 FA chapter 2017 ARPA-E DOE – 13 NH3 fuel related projects 2017 AIChE – 40 presentations 2017 ACS – first ever NH3 fuel session in 2017 Hydrofuel - Greg Vezina, 1981 And many more

NH3 Facts - Production

Source: Fertecon, CRU, PotashCorp. Last updated: Aug 31, 2014

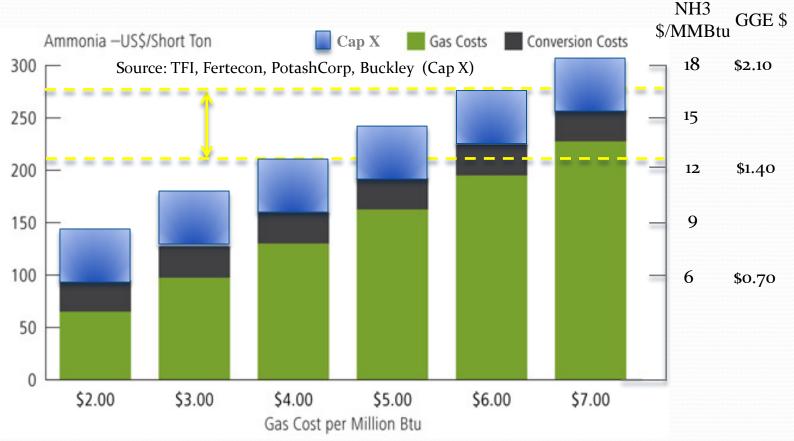
NH3 Facts - Consumption

CF Expects Global Nitrogen Demand To Grow at 2 Percent per Year

OCFIndustries

NH3 Production vs U.S. Gasoline Use

U.S. Gasoline Consumption: 143 Billion Gallon (2015)

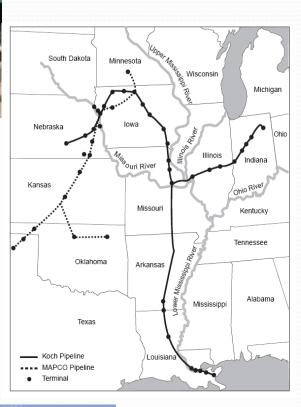

2016 World NH3 Production: 180 million tonne = ~80 Billion Gallon = ~40 Billion GGE

~3.5X

NH₃ Affordability

Similar to propane infrastructure costs 2nd most transported chemical in world Over 3000 miles of NH3 pipeline in U.S. 800 retail outlets in Iowa alone 1.3 times more hydrogen than liquid H2 (by volume)

NH₃ Production Costs w/ Cap X


Natural Gas Represents More Than 75 Percent of US Producers' Costs Natural gas is the most important feedstock in ammonia production and, depending on price, makes up 70-85 percent of the US cash cost of producing ammonia. Cap X: \$1500/ton, 30 year amortization, ~\$50/ton Gasoline @ \$3.50/gallon = \$30/MMBtu

Ammonia Storage & Transport

E 200

APICS Inc.

NUMB

1st Hydrogen Shipment? Not really.

"Australia and Japan prepare for world's first bulk hydrogen shipment" Zoe Reynolds | 11 January 2017

NH3 vs Hydrogen Storage Costs

	NH3	CNG	H2	Cryo NH3	Cryo H2
	(250 psi)	(3200 psi)	(10k psi)	(-28 F)	(-423 F)
Application					
On-board vehicle ¹	\$700	\$1500	\$6000		
Filling station	\$68,000 ²		\$2,643840 ³		
Large storage facility				\$20 million ⁴	\$81.6 million ³

¹Phone conversation with John Coursen, Worthington Industries, February 17, 2017. <u>Relative</u> ~costs ~50 liter tank: LPG/NH3 - \$700, CNG (3200 psi) - \$1500, Hydrogen (10,000 psi) - \$6000.

²1Phone conversation with Don Wallace, Trinity Containers. 18,000 gallon NH3 bullet tank - \$68,000. @80% fill capacity = 14,400 gallon x 5lbs/gallon x 0.176 lbs H2/lb NH3 /2.2 lbs/kg = 5760 kg = \$11.81/kg H2.

³"Hybrid Hydrogen Energy Storage", Michael Penev, May 22, 2013. 10k psi H2: \$459/kg x 5760 kg = \$2,643,840. Cryo H2 Storage: \$25.5/kg x 3.2 million kg= \$81.6 million.

⁴Rentech Press Release, January 12, 2012. Chilled NH3 20,000 ton = \$20 million. 20k ton x 2000 x 0.176 /2.2 lbs/kg = 3.2 million kg. H2.

What Makes NH₃ Optimal?

- Affordability
- Safety
- Efficiency
- Environmental Performance
- Sustainability
- Production Flexibility
- End-Use Flexibility
- County Building

Safety

Numerous design choices – As safe as it needs to be.

Pressurized storage – safe enough to meet most stringent standards Chilled storage – safer yet: -28 F NH3, -265F LNG, -420F H2 Chemical storage – Too safe? Amminex, ammonium carbonate (solids)

Ammonia's Safety Reputation: Whence comest thou?

Bhopal, 1984, Union Carbide, Methylisocyanate release, 1000's killed.

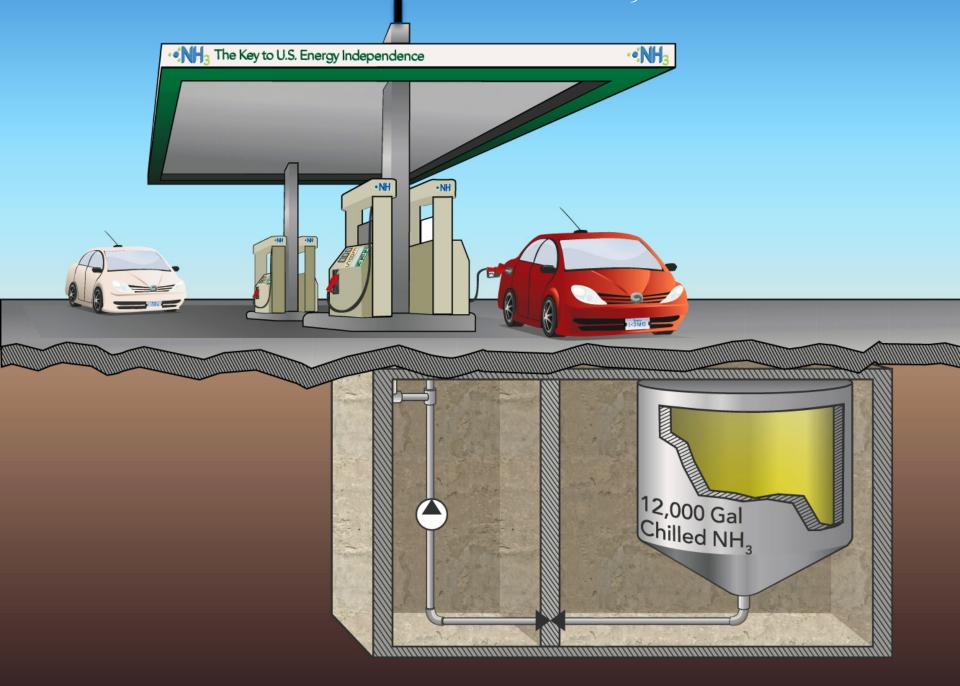
U.S. response:- EPCRA developed, 300 "extremely hazardous chemicals". NFPA: 2 to 3 arbitrarily.

40 times more lethal. EV range 100 x 40 = 4000 miles 40 mpg x 40 = 1600 mpg

Safety LC50

	Table 1	: Toxicity (Classes:	Hodge and S	terner Scale	(CCOHS)
		Routes of Administration				
			Oral LD50	Inhalation LC50	Dermal LD50	
Corresponding NFPA Ratings (LC50)	Toxicity Rating	Commonly Used Term	(Single dose to rats) mg/kg	(Exposure of rats for 4 hours) ppm	(Single application to skin of rabbits) mg/kg	Probable Lethal Dose for Man
		Extremely				1 grain (a
	1	Toxic	1 or less	10 or less	5 or less	taste, a drop)
4 (0-100)	2	Highly Toxic	1-50	10-100	5-43	4 ml (1 tsp)
		Moderately				30 ml (1 fl.
3 (100-500)	3	Toxic	50-500	100-1000	44-340	oz.)
		Slightly				600 ml (1
2 (500-2500)	4	Toxic	500-5000	1000-10,000	350-2810	pint)
		Practically	5000-			1 litre (or 1
1 (2500-20,000)	5	Non-toxic	15,000	10,000-100,000	2820-22,590	quart)
		Relatively	15,000 or			1 litre (or 1
0 (>20,000)	6	Harmless	more	100,000	22,600 or more	quart)

Source: Canadian Centre for Occupational Health and Safety (CCOHS). NFPA data addition by Norm Olson, NH3 FA. LC50/4hour (ppm): NH3 - 2000; Chlorine – 146.5; Methyl Isocyanate – 5 (**Source**: Praxair, other)



- NH3 is a common, naturally occurring chemical found in or used by nearly all animal life forms. It is not a carcinogen and is not a greenhouse gas. Its ozone depletion number is zero.
- NH3 is safer than propane and as safe as gasoline when used as a transportation fuel.
- The Iowa Energy Center funded a comparative quantitative risk assessment (CQRA) study completed March 2009, by Quest Consultants Inc., Norman, Oklahoma. "Comparative Quantitative Risk Analysis of Motor Gasoline, LPG, and Anhydrous Ammonia as an Automotive Fuel", June, 2009.
- "Safety assessment of NH3 as a transportation fuel", Nijs Jan Duijm, Frank Markert, Jette Lundtang Paulsen, Riso National Laboratory, Denmark, February, 2005

Safety II

- NH3 plant operators hydrogen vs NH3
- NH3 is classified by DOT as a non-flammable liquid and an inhalation hazard (not a poison)
- The degree of safety for NH3 Fuel is an <u>engineering decision</u> and does not require any technology miracles/breakthroughs (unlike hydrogen and electric vehicles).
- The challenge: Design an ASME tank and valve system that is fail safe. A rather trivial challenge.

NH₃ Refueling Station

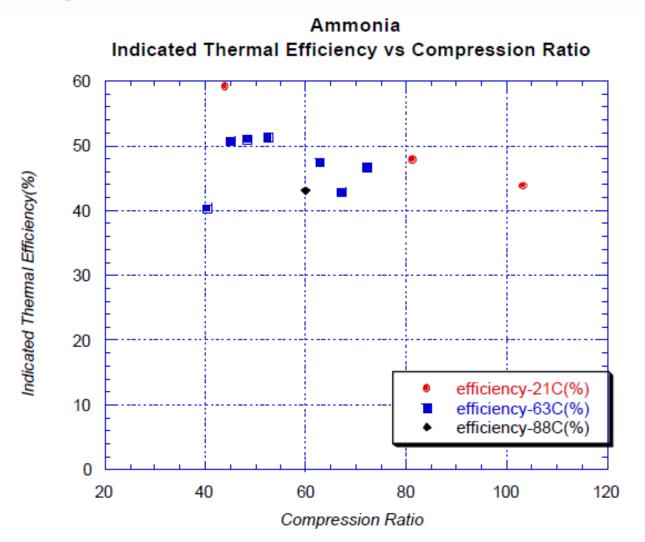
What Makes NH₃ Optimal?

- Affordability
- Safety
- Efficiency
- Environmental Performance
- Sustainability
- Production Flexibility
- End-Use Flexibility
- County Building

Production Energy Efficiency

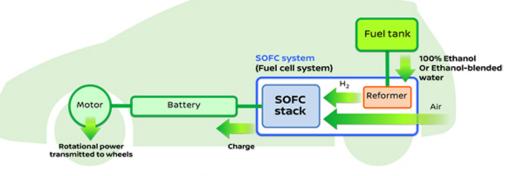
	kWh/kg H2	%LHV
NH3 via Haber-Bosch	2.26 ¹	6.8%
700 bar H2 Refueling (880 bar)	2.85 ²	8.5%
Liquid H2	10 ²	30.1%
Liquid H2 (advanced)	7 ²	21.1%

¹ "Efficient Ammonia Production" Power Point presentation, page 63. Jim Gosnell, KBR. 2005 NH3 Fuel Association Meeting. Argonne National Laboratory.

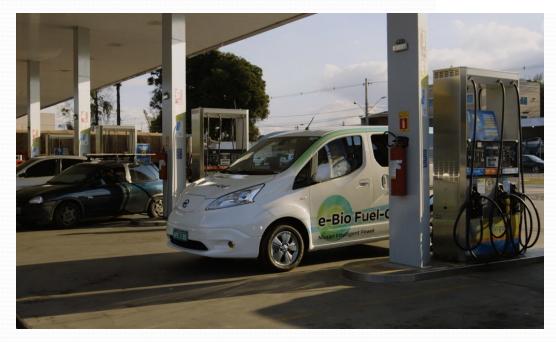

²Source H2 Data: "Energy requirements for hydrogen gas compression and liquefaction as related to vehicle storage needs." DOE Hydrogen and Fuel Cells Program Record. Record #: 9013. July 7, 2009. Air Products and Chemicals Inc. (APCI). 2.67 + 0.18 = 2.85. Page 3 of resource above.

Efficiency in Engines

Octane, Octane, Octane


NH₃'s very high octane rating (>120) and high (tunable) resistance to detonation allow the use of extremely high compression ratios and therefore IC engines with the highest possible efficiencies.

NH₃ IC Engine Efficiency



Source: Van Blarigan, Sandia National Lab, 2001

Nissan SOFC Vehicle – 60% Eff. ?

SOFC : Solid Oxide Fuel Cell

https://www.youtube.com/watch?v=HF-eE8pRzMw

What Makes NH₃ Optimal?

- Affordability
- Safety
- Efficiency
- Environmental Performance
- Sustainability
- Production Flexibility
- End-Use Flexibility
- County Building

Cleaner Than Hydrogen?!

No carbon NH3 used to clean up NOx Zero <u>measurable</u> pollutants possible with IC engines Not a greenhouse gas Ozone depletion number of zero Not a known carcinogen Huge natural occurrence in the earth's nitrogen cycle Natural mechanisms for spill remediation

What Makes NH₃ Optimal?

- Affordability
- Safety
- Efficiency
- Environmental Performance
- Sustainability
- Production Flexibility
- End-Use Flexibility
- County Building

Sustainability

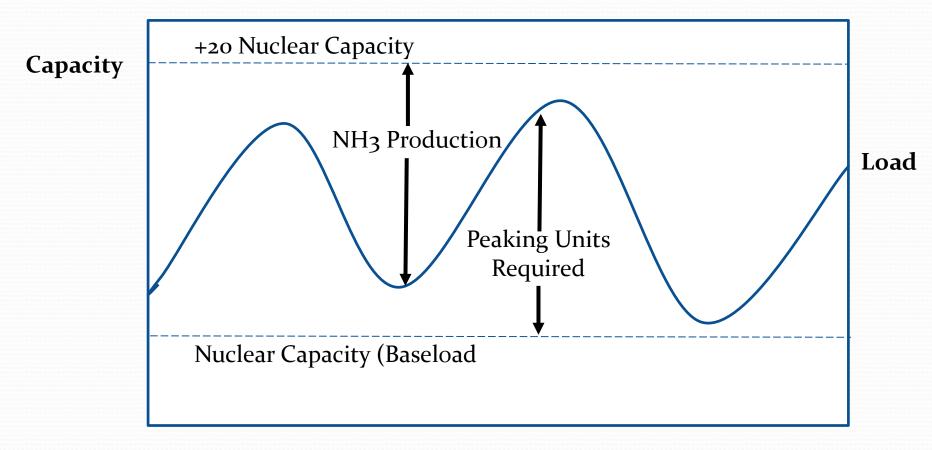
As long as the sun continues to shine, the earth's atmosphere contains significant amounts of nitrogen, there is some readily available source of hydrogen, and iron is available as a catalyst....

NH₃ will be sustainable on planet earth!

What Makes NH₃ Optimal?

- Affordability
- Safety
- Efficiency
- Environmental Performance
- Sustainability
- Production Flexibility
- End-Use Flexibility
- County Building

Production Flexibility


NH₃ can be produced using any and all primary energy sources including but not limited to Solar, natural gas, wind, nuclear, OTEC, coal, hydro, etc.

Scalability of NH₃ production plants is very good and could range from units as small as one ton per year to mega-ton production facilities.

Affordable NH₃ could be produced from (carbon free) natural gas now and from any renewable energy source (and water) in the near future.

Several promising new alternative NH₃ production technology alternatives are being developed (i.e. alternatives to Haber-Bosch)

Nuclear Synergism – Fusion?

Time of Day

What Makes NH₃ Optimal?

- Affordability
- Safety
- Efficiency
- Environmental Performance
- Sustainability
- Production Flexibility
- End-Use Flexibility
- County Building

End Use Flexibility

SI engines CI engines – dual fuel now...high compression future Fuels cells Gas turbines Burners

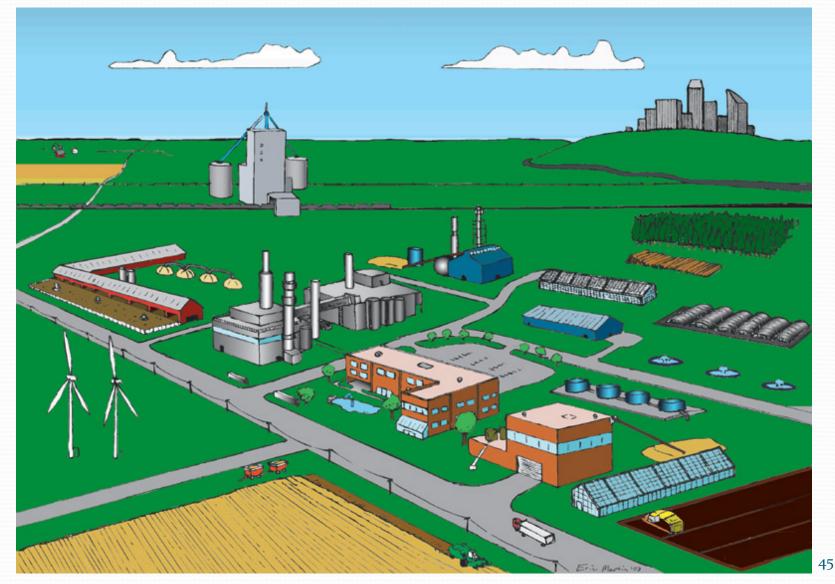
Optimizing prime movers for a single fuel has <u>huge</u> benefits. An engine designed to use both gasoline and ethanol severely compromises the efficiency potential of ethanol, another very-high octane fuel.

What Makes NH₃ Optimal?

- Affordability
- Safety
- Efficiency
- Environmental Performance
- Sustainability
- Production Flexibility
- End-Use Flexibility
- Country Building

Sustainable, Self-Sufficient Community

NH₃ fertilizer made from a fraction of the net increase in crop residue (e.g. corn stalks) due to the addition of NH₃ fertilizer , allows a transition from subsistence farming to income-producing farming.

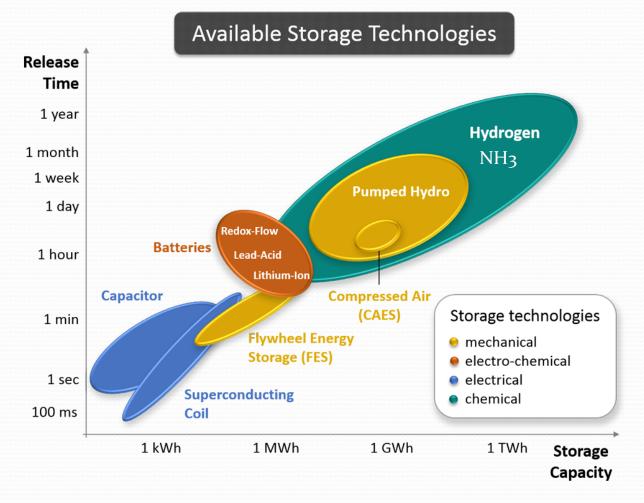

NH₃ fuel allows for locally produced transportation fuels and rural combined heat & power (CHP) units.

NH₃ refrigerant allows for efficient and environmentally-friendly cold food and perishables storage.

Where another of our other favorite chemicals (H2O) exists, one relatively simple refinery producing NH3 can provide enhanced, sustainable food production; a versatile transportation fuel; distributed electrification via CHP units; long-term, efficient renewable energy storage; and efficient refrigeration systems. This provides an excellent base for local self-sufficiency and a greatly improved standard of living.

Petroleum refineries are very complex and require a very large scale.

Bio-Refinery



Renewable Energy: Stranded and Long-term Storage

A significant amount of renewable energy will either be stranded (i.e. produced remotely and converted to a form that can be transported long distances) or will need long-term storage. Chemical storage likely be used for these two applications. NH₃ will likely be the most cost-effective option for chemical storage.

Once renewable energy is stored as NH₃, it is more efficient and cost-effective to use the NH₃ as a liquid transportation fuel in FCV and/or ICEV than to convert it to electricity and deliver it through the grid to EV filling stations for use in EV's.

Effective Energy Storage

Source: Hydrogenius Technologies. NH3 addition by NKO.

NH3 vs H2 vs Methylcyclohexane

700 bar Hydrogen - 0.03899 g/cm3 x 100% H2 = 0.03899 Liquid Hydrogen (-253 C)- 0.07099 g/cm3 x 100% H2 = 0.07099 Liquid Ammonia (NH3, -33C) - 0.682 g/cm3 x 17.6% H2 = 0.12003 Methylcyclohexane (MCH) - 0.77 g/cm3 x 6.1% H2 = 0.04700

NH3 dehydrogenation requires 31 kJ/mol H2. Methylcyclohexane dehydrogenation requires 68 kJ/mol H2, or ~ 2.2 times more energy per mole of hydrogen than for NH3.

	kWh/kg H2	%LHV
NH3 via Haber-Bosch	2.26 ¹	6.8%
700 bar H2 Refueling (880 bar)	2.85 ²	8.5%
Liquid H2	10 ²	30.1%
Liquid H2 (advanced)	7 ²	21.1%

NH₃ Big Picture

NH3 NH3 NH3 NH3 NH3 NH3 NH3 NH3

Conclusion

NH₃:

is clearly, the most affordable carbon-free fuel is the most efficient fuel in an internal combustion engine has optimal environmental performance has production flexibility second to none has excellent end-use flexibility (tunable fuel) has tremendous business development opportunities is the optimal choice for an alternative fuel

Many times "all of the above" or diversity is very beneficial – primary energy source diversity, food diversity, locations to live, music

Some times selecting one, optimal choice (standardization) has huge benefits – meanings of words, standard weights and measures, transportation/generation fuels.

Optimized engine/fuel cell/turbine cost/efficiency/emissions; optimized, nonredundant infrastructure; safety protocol optimization; optimized production effectiveness...

Prodigious business opportunity and tremendous world-wide benefits.

Top Technology Developments

Vaccines Synthetic Ammonia Fertilizer (Haber-Bosch) Personal Computer Internet NH3 Energy?

NH₃ – The Optimal Alternative Fuel

Thank You!

Contact: Norm Olson – President NH₃ Fuel Association Board of Directors <u>nkogman@yahoo.com</u>

John Holbrook- Executive Director NH₃ Fuel Association john.holbrook@charter.net

https://nh3fuelassociation.org/