TECHNISCHE

UNIVERSITAT @ e-UOting.CC

IR TALLINNA TEHNIKAULIKOOL
11111 DARMSTADT

| TALLINN UNIVERSITY OF TECHNOLOGY

Robert Krimmer and Melanie Volkamer (Eds.)

Second International Joint Conference on Electronic
Voting

E-VOTE-ID
2017

24-27 October 2017, Lochau/Bregenz, Austria

Co-organized by
Tallinn University of Technology
Ragnar Nurkse School of Innovation and Governance

Technische Universitat Darmstadt
Center for Advanced Security Research Darmstadt

E-Voting.CC GmbH
Competence Center for Electronic Voting and Participation

IEEE
Region 8 (Europe)

Gesellschaft fir Informatik
German Informatics Society, SIG SEC/ECOM

German
Informatics Society

PROCEEDINGS

Robert Krimmer and Melanie Volkamer (Eds.)

2"* Joint International Conference on Electronic Voting
E-VOTE-ID 2017

24-27 October 2017, Lochau/Bregenz, Austria

Co-organized by the Tallinn University of Technology,
Technische Universitit Darmstadt, E-Voting.CC, IEEE
and Gesellschaft fiir Informatik

TUT
PRESS

Proceedings EVOTE2017
TUT Press

ISBN 978-9949-83-138-8
Volume Editors

Prof. Dr. Robert Krimmer
Tallinn University of Technology

Ragnar Nurkse Department of Innovation and Governance

robert.krimmer@ttu.ee

Prof. Dr. Melanie Volkamer
Technische Universitdt Darmstadt
melanie.volkamer@secuso.org

Nadja Braun-Binder

German Research Institute for Public
Administration

E-mail: nadjabraun@gmzx.ch

Ardita Driza Maurer

Zentrum fiir Demokratie Aarau/Zurich
University

E-mail: ardita.driza@sefanet.ch

David Duenas-Cid
Tallinn University of Technology
E-mail: david.duenas@ttu.ee

Norbert Kersting

University of Miinster

E-mail: norbert.kersting@uni-
muenster.de

Oksana Kulyk
Technische Universitit Darmstadt
E-mail: oksana.kulyk@secuso.org

© E-Voting.CC, Sulz 2017
printed by TUT Press, Tallinn

Leontine Loeber
University of East Anglia
E-mail: leontine.loeber@xs4all.nl

Olivier Pereira
Université Catholique de Louvain
E-mail: olivier.pereira@uclouvain.be

Peter Roenne
University of Luxembourg
E-mail: peter.roenne(@gmail.com

Carsten Schirmann
IT University on Copenhaguen
E-mail: carsten@itu.dk

Priit Vinkel
National

Estonia
E-mail: pvinkel@gmail.com

Election Commission

of

E-Vote-1ID 2017 preface

Preface

This volume contains papers presented at E-Vote-ID 2017: International Joint Conference on
Electronic Voting held from 24 to 27 October 2017 in Bregenz, Austria. The current edition
represents the Second International Joint Conference on Electronic Voting (E-Vote-ID), after
merging EVOTE and Vote-1D.

Together with last years’ conference more than 800 experts from over 35 countries over the
last thirteen years have attended the conference series. With this, the conference continues as
one of the major events in the field of electronic voting providing ample room for interdisci-
plinary and open discussion of all issues relating to electronic voting.

Also this year, the conference consists of:

Security, Usability and Technical Issues Track;

Administrative, Legal, Political and Social Issues Track; and

e Election and Practical Experiences Track; as well as

PhD Colloquium on the day before the conference.

This publication compiles the 25 papers accepted in the conference to be presented in their
specific tracks, three invited papers for keynote speakers and the 9 PhD presentations to be
discussed in the PhD colloquium. The selected papers cover a wide range of topics connected
with Electronic Voting including experiences and revisions of the real uses of E-voting systems
and corresponding processes in elections.

Special thanks go to the members of the international program committee for their hard
work in reviewing, discussing and shepherding papers. They ensured the high quality of these
proceedings with their knowledge and experience.

We also would like to thank the German Informatics Society (Gesellschaft fiir Informatik)
with its ECOM working group for their partnership over several years. A big thank you goes
also to the Swiss Federal Chancellery for their continued support.

October 2017 Robert Krimmer
Bregenz Melanie Volkamer
Nadja Braun Binder

Ardita Driza Maurer

David Duenas-Cid

Norbert Kersting

Oksana Kulyk

Leontine Loeber

Olivier Pereira

Peter Roenne

Carsten Schiirmann
Priit Vinkel

This conference is co-organized by:

TECHNOLOGY

e-voting
< IEEE
rromaatcssocety €
Supported by:

BM.| *

BUNDESMINISTERIUM FUR INNERES

\m‘ Vorarlberg

Sponsored by:

s Scyti

Innovating Democracy

TALLINN UNIVERSITY OF

Tallinn University of Technology -
Ragnar Nurkse School of Innovation and Governance

Technische Universitit Darmstadt -
Center for Advanced Security Research Darmstadt

E-Voting.CC GmbH -
Competence Center Electronic Voting & Participation

IEEE — Region 8 (Europe)

Gesellschaft fiir Informatik,
German Informatics Society, SIG SEC/ECOM

Federal Ministry of the Interior - Austria

Regional Government of Vorarlberg

Scytl S.A. — Platinum Sponsor

E-Vote-1ID 2017 Program Committee

Program Committee

Roberto Araujo Universidade Federal do Pard (UFPA), Brazil

Frank Bannister Trinity College Dublin, Ireland

Jordi Barrat i Esteve EVOL2 - eVoting Legal Lab / University of Catalonia

Josh Benaloh Microsoft, USA

David Bismark Votato, Sweden

Nadja Braun Binder German Research Institute for Public Administration

Christian Bull Ministry of Local Government and Modernisation, Norway

Susanne Caarls Federal Ministry of the Interior, Netherlands

Gianpiero Catozzi EC-UNDP, Belgium

Veronique Cortier CNRS, France

Chakrapani Dittakavi CIPS

Ardita Driza Maurer self-employed; Zentrum fiir Demokratie Aarau/Zurich Univer-
sity

Aleksander Essex Western University, Canada

David Galindo University of Birmingham, UK

J Paul Gibson Telecom SudParis, France

Kristian Gjgsteen Norwegian University of Science and Technology, Norway

Nicole Goodman University of Toronto

Rajeev Gore Australian National University, Australia

Ruediger Grimm University of Koblenz, Germany

Rolf Haenni Bern University of Applied Science, Switzerland

Tarmo Kalvet Tallinn University of Technology, Ragnar Nurkse School of
Innovation and Governance, Estonia

Norbert Kersting University of Muenster, Germany

Aggelos Kiayias University of Athens, Greece

Shin Kim Hallym University, South Korea

Robert Krimmer Tallinn University of Technology, Ragnar Nurkse School of
Innovation and Governance, Estonia

Ralf Kuesters University Trier, Germany

Oksana Kulyk Technische Universitat Darmstadt, Germany

Steven Martin OSCE/ODHIR, Poland

Ronan Mcdermott Mecdis, Switzerland

Juan Manuel Mecinas Montiel CIDE, México

Hannu Nurmi University of Turku, Finland

Jon Pammett University of Carleton, Canada

Olivier Pereira Université Catholique de Louvain, Belgium

Julia Pomares CIPPEC

Marco Prandini DISI, University of Bologna, Italy

Josep M Reniu University of Barcelona

Peter Roenne University of Luxembourg, Luxembourg

Mark Ryan University of Birmingham, UK

Peter Y. A. Ryan University of Luxembourg, Luxembourg

Steve Schneider University of Surrey, UK

Berry Schoenmakers TU Eindhoven, Netherlands

Carsten Schiirmann IT University, Denmark

Uwe Serdiilt ZDA, Switzerland

E-Vote-ID 2017

Oliver Spycher
Robert Stein
Vanessa Teague
Priit Vinkel
Melanie Volkamer

Kare Vollan

Dan Wallach

Leontine Weesing-Loeber
Gregor Wenda

Peter Wolf

Filip Zagorski

Program Committee

Federal Chancellery, Switzerland

Federal Ministry of the Interior of Austria
The University of Melbourne, Australia
National Election Commission of Estonia
Technische Universitdt Darmstadt, Karlstad University, Ger-
many

Quality AS

Rice University, USA

University of East Anglia, UK

Federal Ministry of the Interior of Austria
International IDEA, Sweden

Wroclaw University of Technology, Poland

Track on Security, Usability and
Technical Issues

Pereira, Olivier Université Catholique de
Louvain, Belgium

Schuermann, Carsten [T University,
Denmark

Track on Administrative, Legal, Political
and Social Issues

Braun Binder, Nadja German Research
Institute for Public Administration,
Germany
Kersting, Norbert University of Miinster,
Germany

Track on Election and Practical
Experiences

Driza Maurer, Ardita Independent
Consultant, Switzerland
Vinkel, Priit National Electoral
Commission, Estonia

PhD Colloquium-

Kulyk, Oksana Technische Universitit
Darmstadt, Germany

Weesing-Loeber, Leontine University of
East Anglia, Netherlands

Organizational Committee

Dueifias-Cid, David Ragnar Nurkse School
of Innovation and Governance, Estonia
Krivonosova, Tuliia Ragnar Nurkse School
of Innovation and Governance, Estonia
Traxler, Gisela E-Voting.CC, Austria
(Main Contact)

Outreach Chair

Roenne, Peter University of Luxembourg,
Luxembourg

E-Vote-ID 2017 Table of Contents

Table of Contents

Keynote Speakers

Cryptographic Security Analysis of E-Voting Systems: Achievements, Misconceptions,
and Limitations e 1

Ralf Kiisters and Johannes Miiller

Election Security and Economics: It’s all about Eve.........., 21
David Basin, Hans Gersbach, Akaki Mamageishvili, Lara Schmid and Oriol Tejada

Voting in E-participation: A Set of Requirements to Support Accountability and Trust
by Electoral Committees 41
Peter Parycek, Michael Sachs, Shefali Virkar and Robert Krimmer

Attitudes, Norms and Challenges

Canadians’ Attitudes to Online Votingo 57
Jon Pammett

The Brazilian Electronic Voting System: evolution and challenges 59
Jorge Lheureuz-De-Freitas and Marie Anne Macadar

Trust

Trust Implications of DDoS Protection in Online Elections 72
Chris Culnane, Mark Eldridge, Aleksander Essex and Vanessa Teague

Cast-as-Intended Mechanism with Return Codes Based on PETs 92

Tomasz Truderung and Achim Brelle

Return Code Schemes for Electronic Voting Systems ...t 109
Shahram Khazaei and Douglas Wikstrom

Public Evidence from Secret Ballots. i 121

Matthew Bernhard, J. Alex Halderman, Ronald Rivest, Poorvi Vora, Peter Ryan,
Vanessa Teague, Josh Benaloh, Philip Stark and Dan Wallach

Digital Transformation

Outstripping of the eVoting Evolution........ ... e 141
Marija Lindemane and Jekaterina Kuzmina

Bits or Paper: which should get to carry your vote? oo i 156
Jan Willemson

Verifiability experiences in government online voting systems 170
Jordi Puiggali, Jordi Cucurull, Sandra Guasch and Robert Krimmer

Governance

Leontine Loeber

E-Vote-ID 2017 Table of Contents

Updated European Standards for e-voting - The Council of Europe Recommendation
Rec(2017)5 on Standards for E-voting......... ... 189

Ardita Driza Maurer

Digitization of the Electoral Process

Party Endorsement Systems and Internet Voting it 207
Carsten Schirmann and Soeren Stauning

Open Data in Electoral Administration.o, 209
Peter Wolf

Verification

A Mechanized Proof of Selene Receipt Freeness and Privacycoooiia.. 220

Alessandro Bruni, Fva Drewsen and Carsten Schiirmann

A Formally Verified Single Transferable Vote Scheme with Fractional Values.............. 236
Milad Ghale, Rajeev Gore and Dirk Pattison

No More Excuses: Automated Synthesis of Practical and Verifiable Vote-counting
Programs for Complex Voting Schemes........ ... 256

Lyria Bennett Moses, Ron Levy, Dirk Pattison, Mukesh Tiwari and Rajeev Gore

Voting Protocols

Estonian Voting Verification Mechanism Revisited Again.....................ooooiia... 274
Ivo Kubjas, Tiit Pikma and Jan Willemson

Eos A Universal Verifiable and Coercion Resistant Voting Protocol 288
Stefan Patachi and Carsten Schiirmann

The Weakness of Cumulative Votingo 306

Josh Benaloh

Practical Experiences

The use of supporting software in the Netherlandso i .. 315
Peter Castenmiller and Kees Uijl

A Secure E-Voting Infrastructure. Implementation by Swiss Post......................... 326
Raffaele Stefanelli, Dr. Denis Morel and Xavier Monnat

The Use of New Technologies in Electoral Process in BiH — Where we started and where
WE ATE BOIILE « + o vttt ettt et ettt e et et e e e e e e e e e e 342

Suad Arnautovic

Attacks

Douglas Wikstrom, Jordi Barrat, Sven Heiberg, Robert Krimmer and Carsten
Schiirmann

E-Vote-ID 2017 Table of Contents

Clash attacks and the STAR-Vote Systemt 366
Oliver Pereira and Dan Wallach

Reverse Bayesian poisoning: How to use spam filters to manipulate online elections....... 385
Hugo Jonker, Sjouke Mauw and Tom Schmitz

PhD Colloquium

A different approach to code-voting: Achieving coercion-resistance and individual

veriability without the assumption of a trusted channel............. 400
Inigo Querejeta Azurmendi
Challenge vs Coding - Which is more usable?....... i i, 402

Karola Marky

Total cost formula for e-voting implementation............o oo, 404
Tuliia Krivonosova

Machins in Politic: the co-production of informatic and democratic system in Kenyan

2007 €leCtiOnS ...ttt 406
Cecilia Passanti

Formal Verification of an Internet Voting Protocol.......... 408
Kristjan Krips

Mixnets for long-term privacyo.ou ittt e 410
Nuria Costa Mirada

Secure voter registration and eligibility checking for Nigerian elections.................... 412

Nicholas Akinyokun and Vanessa Teague

E-voting Adoption in Developing Countries.o.ouueinininn i, 414
Samuel Agbesi

Between Law and Technology: Internet Voting, Secret Suffrage and the European

Electoral Heritage. e 416
Adria Rodriguez-Pérez

Keynote Speakers

Cryptographic Security Analysis of
E-Voting Systems: Achievements,
Misconceptions, and Limitations

Ralf Kiisters' and Johannes Miiller?

! University of Stuttgart, ralf .kuesters@sec.uni-stuttgart.de
2 University of Trier, muellerjoh@uni-trier.de

Abstract. Rigorous cryptographic security analysis plays an important
role in the design of modern e-voting systems by now. There has been
huge progress in this field in the last decade or so in terms of formaliz-
ing security requirements and formally analyzing e-voting systems. This
paper summarizes some of the achievements and lessons learned, which,
among others, challenge common believes about the role of and the re-
lationships between central security requirements.

1 Introduction

Privacy, verifiability, accountability, and coercion-resistance are fundamental se-
curity requirements for modern e-voting systems. Privacy ensures that the way a
particular voter voted is not revealed to anybody. Intuitively, verifiability guar-
antees that it is possible to verify that the published election result is correct,
even if voting machines/authorities are (partially) untrusted. In the literature,
one often finds that verifiability is divided into individual and universal verifi-
ability. Accountability is a stronger form of verifiability: accountability does not
only require that it is detected if the published result is incorrect, but that mis-
behaving parties can be singled out and thus held accountable. This notion so far
has gained much less attention than verifiability, although rather than aiming for
mere verifiability, modern e-voting system should really strive for accountability
in order to be useful in practice, as later explained and further emphasized in
this paper. Coercion-resistance protects voters against vote buying and coercion.
A weaker form of coercion-resistance is called receipt-freeness.

In order to find out whether a given voting system achieves its desired se-
curity properties, informally analyzing its security is not sufficient since critical
aspects can easily be overlooked. Therefore, it is necessary to formally analyze
the security of voting systems based on reasonable and formal security defini-
tions.

There have been major achievements in the field of rigorous cryptographic
analysis of e-voting systems in the last decade or so. Formal definitions for the
central security requirements have been proposed and intensively been studied
(see, e.g., [31, 32, 12, 35, 5]). Some of these definitions are formulated in general

and widely applicable frameworks so that they can be applied to virtually any e-
voting protocols. These frameworks and definitions have been applied to perform
rigorous security analysis of various existing e-voting systems (see, e.g., [13, 2,
10, 14, 29, 38, 37, 35, 34, 31, 32|), often with surprising results, and newly
proposed systems more and more come with security proofs right away (see,
e.g., [28, 26, 25, 27, 7)).

The rigorous approach also has helped to reveal some confusions and common
misconceptions concerning security requirements and their relationships, and
by this aided the deeper understanding of such requirements, providing a solid
formal basis for the design and analysis of e-voting systems.

In this paper, some of these confusions and misconceptions will be highlighted
and explained. In particular, based on various works from the literature, we point
out the following:

— The still popular notions of individual and universal verifiability together
are neither sufficient nor necessary to achieve end-to-end (E2E) verifiability,
as explained in Section 2.

— E2E verifiability alone is typically insufficient for practical purposes. E-
voting systems should really be designed with accountability in mind, a
notion presented in Section 3.

— While it is commonly believed that coercion-resistance implies privacy, sur-
prisingly, this is not true in general. Moreover, improving the level of privacy
can lead to a lower level of coercion resistance (see Section 4).

Throughout the paper, we also emphasize the importance of widely applicable
security definitions. The definitions which we recall in this paper are all based on
a common general framework where systems and protocols are formulated as sets
of interactive probabilistic polynomial time Turing machines (see Section 2.1).
By this, virtually any e-voting system can be modeled in such a framework.
All definitions presented here are cryptographic game-based definitions. The
definitions also allow one to measure the level of security an e-voting system
provides. This is crucial as security typically is not perfect, since, for example,
only a fraction of voters perform certain checks.

Before we conclude in Section 6, we briefly discuss limitations of the crypto-
graphic analysis of e-voting systems in Section 5, such as usability aspects, legal
requirements, implementation and deployment issues.

2 Verifiability

E-voting systems are complex hardware/software systems. In such systems, as in
all complex systems, it is almost impossible to avoid programming errors. Even
worse, components of e-voting systems, such as voters’ devices, voting machines,
and voting servers, might have deliberately been tampered with. In fact, it has
been demonstrated that numerous e-voting systems suffer from flaws that make it
possible for more or less sophisticated attackers to change the election result (see,
e.g., [51, 52, 49, 19]). Such manipulations are often hard or virtually impossible

to detect. In some occasions, announced results were incorrect and/or elections
had to be rerun (see, e.g., [23]).

Therefore, besides vote privacy, modern e-voting systems strive for what is
called verifiability, more precisely end-to-end (E2E) verifiability. Roughly speak-
ing, E2E verifiability means that voters and possibly external auditors should be
able to check whether the published election result is correct, i.e., corresponds to
the votes cast by the voters, even if voting devices and servers have programming
errors or are outright malicious.

In the remainder of this section, we first recapitulate the notion of E2E verifi-
ability and its formal definition. We then discuss other notions of verifiability, in
particular the prominent notions of individual and universal verifiability. Follow-
ing [35, 37, 28], we show that, unlike commonly believed, these two notions fail
to provide a solid basis for verifiability. In particular, they are neither necessary
nor sufficient to achieve E2E verifiability.

2.1 E2E Verifiability

About 30 years ago, Benaloh already provided a first definition of E2E verifi-
ability [4]. As discussed in [12], while Benaloh’s definition is fairly simple and
captures the essence of verifiability, it requires unrealistically strong properties
so that it would reject even reasonable e-voting systems.

In [32], Kiisters, Truderung, and Vogt introduced a generic framework (the
KTV framework) for verifiability and, more precisely, the even stronger notion
of accountability (see Section 3). They also instantiated the framework to define
E2E verifiability; also called global verifiability in [32], in contrast to individual
and universal verifiability (see Section 2.2). This framework and definition since
then have been used to analyze several e-voting protocols and mix nets [32,
35, 37, 38, 28, 29|, such as Helios, ThreeBallot, VAV, Wombat Voting, sElect,
Chaumian RPC mix nets, and re-encryption RPC mix nets. It can also be applied
to other domains, such as auctions and contract signing [32].

Cortier et al. [12] demonstrated that it is possible to cast all formal verifia-
bility definitions from the literature into the generic KTV framework (see also
below).

E2F Verifiability in Short. In short, Kiisters et al. capture E2E verifiability in the
KTV framework as follows: The probability that a run is accepted (by a judge
or other observers), but the published result of the election does not correspond
to the actual votes cast by the voters is small (bounded by some parameter §).
More specifically, the result should contain all votes of the honest voters, except
for at most k honest votes (for some parameter k£ > 0), and it should contain at
most one vote for every dishonest voter.

In what follows, we first briefly recall the generic KTV framework and then
its instantiation which captures E2E verifiability (see [32] for details or the pre-
sentation of this framework in [12]). In [32], formalizations both in a symbolic as
well as a computational model were presented. Here, as throughout the paper,
we concentrate on the computational model.

Protocol Model of the KTV Framework. A protocol is simply modeled as a set
of probabilistic polynomial-time interactive Turing machines (ITMs) where the
ITMs are connected via named tapes. We also refer to such a set as a process.
By this, arbitrary protocols can be modeled.

More specifically, a protocol P is defined by a set of agents/parties X and
an I'TM 7, for each agent a in Y. The set X' may contain voters, voting devices,
bulletin board(s), various tellers, auditors, etc. Note that one can easily model
voters and voting devices as separate entities (ITMs) in this framework. The
program 7, is called the honest program of a. By mp we denote the process
consisting of all of these (connected) ITMs. This process is always run with an
adversary A which may run an arbitrary (probabilistic polynomial-time) program
ma and which is connected to all other parties. The adversary can model the
network and/or dishonest parties. Also, A may statically or dynamically corrupt
parties (by sending a corrupt messages to these parties); parties who should not
be corruptable would simply ignore corruption messages by the adversary. A run
of P with adversary ma is a run of the process mp|ma (the union of the ITMs in
wp and the ITM 7p).

A Generic Verifiability Definition in the KTV Framework. The KTV framework
provides a general definition of verifiability, which in particular can be instan-
tiated to model E2E verifiability (see below). The definition assumes a judge J
whose role is to accept or reject a protocol run by outputting accept or reject (on
some tape). To make a decision, the judge runs a so-called judging procedure,
which performs certain checks (depending on the protocol specification), such as
verification of zero-knowledge proofs (if any) and taking voter complaints into
account. Typically, the judging procedure can be carried out by any party, in-
cluding external observers and even voters themselves, as the information to be
checked is public. Hence, the judge might just be a “virtual” entity.

The generic KTV verifiability definition is centered around a goal v of the
protocol. Formally, v is a set of protocol runs.? The goal 7 specifies those runs
which are correct or desired in some protocol-specific sense. In the context of
e-voting and for E2E verifiability, the goal would contain those runs where the
announced election result corresponds to the actual choices of the voters.

Now, the idea behind the definition of verifiability in the KTV framework is
very simple. Only those runs r should be accepted by the judge in which the goal
v is met, i.e., r € . In the context of e-voting, if in a run the published result
does not correspond to the actual choices of the voters, then the judge should
reject the run. More precisely, the definition requires that for all adversaries
the probability (over the set of all protocol runs) that a run is accepted by the
judge but the goal is not met is bounded by some constant ¢ (plus a negligible
function). Although § = 0 is desirable, this would be too strong for almost
all e-voting protocols. For example, typically not all voters check whether their
ballots appear on the bulletin board. This give the adversary the opportunity to
manipulate or drop some votes without being detected. Therefore, § = 0 cannot

3 Note that a single run is determined by the random coins used by the parties involved
in the run.

be achieved in general. The parameter § is called the verifiability tolerance of
the protocol.

By Pr(n(® +— =y, (J: accept)) we denote the probability that the process T,
with security parameter 1¢, produces a run which is not in v but nevertheless
accepted by J.

Definition 1 (Verifiability). Let P be a protocol with the set of agents X. Let
0 € [0,1] be the tolerance, J € X be the judge, and v be a goal. Then, we say
that the protocol P is (v, d)-verifiable by the judge J if for all adversaries ma
and ™ = (mp||wa), the probability

Pr(r®) — —v, (J: accept))
is 8-bounded* as a function of .

We note that the original definition in [32] also captures soundness/fairness:
if the protocol runs with a benign adversary, which, in particular, would not
corrupt parties, then the judge accepts all runs. This kinds of fairness/soundness
can be considered to be a sanity check of the protocol, including the judging
procedure, and is typically easy to check.

We note that Definition 1 does not (need to) assume any specific protocol
structure, and hence, is widely applicable. It also takes into account real-world
uncertainties. As mentioned before and shown in [12], all definitions of verifia-
bility from the literature can be captured by appropriate choices of the goal ~.
The specific protocol structures often assumed in such definitions can also easily
be captured.

E2F Verifiability in the KTV Framework. In [32], Kiisters et al. proposed an
instantiation of the generic verifiability definition to capture E2E verifiability.
To this end, they introduce a family of goals {fyk}kzoz‘5 the goal 74 contains
exactly those runs of the voting protocol in which (¢) all but up to k votes of the
honest voters are counted correctly, and (i7) every dishonest voter votes at most
once (see the technical report [33] of [32] or [12] for the formal definition). For
example, consider a run of an e-voting protocol with three honest voters and two
dishonest voters. Assume that there are two candidates/choices A and B, and
that the tallying function returns the number of votes for each candidate. Now,
if all honest voters vote for, say, A and the final result is (A4, B) = (2,2), then
vk is achieved for all £ > 1 but vy is not achieved: one vote of an honest voter
is missing (dropped or flipped to a vote for B), and there is at most one vote
for every dishonest voter; g is not satisfied because it requires that all votes of
honest voters are counted, which is not the case here.

With this definition of goals, Definition 1 captures E2E verifiability: the prob-
ability that the judge accepts a run where more than k votes of honest voters
were manipulated or dishonest voters could cast too many votes, is bounded
by §. In security statements about concrete e-voting protocols, § will typically

4 Bounded by &, plus some negligible function in the security parameter £.
® In [12] (subsection 10.2), these goals have been refined.

depend on various parameters, such as k and the probability that voters per-
forms certain checks. While &k = 0 is desirable, this is in most cases impossible
to achieve because, for example, voters might not always perform the required
checks, and hence, there is a chance that manipulation of votes goes undetected.

Importantly, this definition of E2E verifiability allows one to measure the
level of E2E verifiability an e-voting protocol provides.

2.2 Individual and Universal Verifiability

Sako and Kilian [45] introduced the notions of individual and universal verifi-
ability. These requirements (and subsequent notions, such as cast-as-intended,
etc.) have become very popular and are still used to design and analyze e-voting
systems. According to Sako and Kilian, an e-voting system achieves individual
verifiability if “a sender can verify whether or not his message has reached its
destination, but cannot determine if this is true for the other voters”. Universal
verifiability guarantees that it is possible to publicly verify that the tallying of
the ballots is correct. That means that the final election result exactly reflects
the content of those ballots that have been accepted to be tallied.

The notions of individual and universal verifiability have later been for-
malized by Chevallier-Mames et al. [8] (only universal verifiability), Cortier et
al. [10], and Smyth et al. [48]. As mention in [32] and demonstrated in [12], these
notions can also be captured in the KTV framework.

A Common Misconception. Unfortunately, it is often believed that individual
together with universal verifiability implies E2E verifiability, which is the security
property that e-voting systems should achieve. However, in [32], [37], and [28§],
Kiisters et al. have demonstrated that individual and universal verifiability are
neither sufficient nor necessary for E2E verifiability.

In short, there are e-voting systems, such as ThreeBallot and VAV [42] as well
as variants of Helios, that arguably provide individual and universal verifiability
but whose verifiability is nevertheless broken, i.e., they do not provide E2E
verifiability. Conversely, there are e-voting systems, such as sElect [28], which
provide E2E verifiability without having to rely on universal verifiability.

In what follows, we explain these results in more detail.

2.3 Not Sufficient

We recall several attacks that break the E2E verifiability of e-voting systems,
even though these systems provide individual and universal verifiability. The first
class of attacks uses that (dishonest) voters possibly with the help of malicious
authorities might cast malformed ballots. In the second class of attacks (so-called
clash attacks), the same receipt is shown to different voters who voted for the
same candidate, allowing malicious voting devices and authorities to drop or
manipulate ballots.

An Illustrative Example: A Modification of Helios. Helios [1] is one of the most
prominent remote e-voting systems which, on a high level, works as follows.

Trustees share a secret key sk which belongs to a public/private ElGamal key
pair (pk, sk). Voters encrypt the candidate of their choice under the public key
pk and submit the resulting ciphertext to the bulletin board. Then all ciphertexts
are publicly multiplied so that, by the homomorphic property of the ElGamal
public-key encryption scheme, the resulting ciphertext encrypts the number of
votes for each candidate. Finally, the trustees perform distributed and verifiable
decryption of this ciphertext and publish the resulting plaintext as the outcome
of the election.

In order to guarantee the integrity of the final result, several zero-knowledge
proofs (ZKP) are used. Among others, a voter has to prove that her ciphertext
encrypts a valid choice, and, for privacy reasons, that she knows which choice it
encrypts.

It has been formally proven that under certain assumptions Helios is E2E
verifiable (see, [37, 11]). Furthermore, assuming that the voting devices are hon-
est, Helios provides individual verifiability because each voter can check whether
her ballot appears on the bulletin board. Universal verifiability follows from the
fact that the multiplication of the ciphertexts on the bulletin board is public
and that the tellers perform verifiable decryption. Thus, Helios provides E2E
verifiability as well as individual and universal verifiability.

To see that individual and universal verifiability together do not imply E2E
verifiability consider a modification of Helios in which voters do not have to prove
that their votes are correct, i.e., dishonest voters may cast malformed ballots
without being detected. Then a (single!) dishonest voter could completely spoil
the election result by encrypting an invalid choice. Such a malformed ballot might
contain negative votes for certain candidates, and hence, effectively subtracting
votes from candidates, or the malformed ballot might contain many more votes
for a candidate then allowed. So, such a system certainly does not provide E2E
verifiability. At the same time, such a system can still be considered to provide
individual and universal verifiability. Voters can still check that their ballots
appear on the bulletin board (individual verifiability), and ballots on the bulletin
board can still be tallied in a universally verifiable way. But dishonest voters
might have spoiled the election result completely and this is not detected.b

This simple example demonstrates that, even if an e-voting system achieves
individual and universal verifiability, its overall verifiability can nevertheless
completely and trivially be broken.

Another Example: ThreeBallot. The attack illustrated above conceptually also
applies to the ThreeBallot voting system [42] (also to VAV), but the details of
the attack differ. We start by briefly describing how ThreeBallot works.

In ThreeBallot, a voter is given a multi-ballot consisting of three simple
ballots. On every simple ballot, the candidates, say A and B, are printed in
the same fixed order, say A is listed first and B is listed second. In the secrecy
of a voting booth, the voter is supposed to fill out all three simple ballots in
the following way: she marks the candidate of her choice on exactly two simple

5 Note that the arguments hold true even when assuming that only eligible voters
(honest or dishonest) may vote.

ballots and every other candidate on exactly one simple ballot. Assume, for
example, that a voter votes for candidate A. Then

(2)-(2)-C) = ()-()-C)

would be valid multi-ballots to vote for A. After this, the voter feeds all three
simple ballots to a voting machine (a scanner) and indicates the simple ballot
she wants to get as a receipt. The machine checks the well-formedness of the
multi-ballot, prints secretly (pairwise independent) random numbers on each
simple ballot, and provides the voter with a copy of the chosen simple ballot,
with the random number printed on it. Note that the voter does not get to see
the random numbers of the remaining two simple ballots. The scanner keeps all
simple ballots (now separated) in a ballot box.

In the tallying phase, the voting machine posts on the bulletin board (elec-
tronic copies of) all the cast simple ballots in random order. From the ballots
shown on the bulletin board, the result can easily be computed: The number
of votes for the ith candidate is the number of simple ballots with the ith po-
sition marked minus the total number of votes (since every voter marks every
candidate at least ones).

ThreeBallot offers (some level of) individual verifiability because each voter
may check whether the simple ballot she has taken as a receipt appears on
the bulletin board. Thus, it should be risky for any party to remove or alter
simple ballots. Additionally, ThreeBallot offers universal verifiability because the
tallying is completely public. However, as Kiisters et al. [35] have pointed out,
ThreeBallot does not offer E2E verifiability. One variant of the attack presented
in [35] assumes that the scanner is dishonest. To illustrate the attack, assume
that an honest voter votes for, say, candidate A by submitting a multi-ballot of
one of the forms shown above. Now, a dishonest voter which collaborates with
the dishonest scanner could create a malformed ballot of the form

(£)-(2)-)

which, together with the ballot of the honest voter (no matter which one of the
two kinds shown above), yields two (valid!) votes for candidate B and no vote
for candidate A. Clearly, E2E verifiability is broken: a vote for A and one invalid
ballot result in two valid votes for B. But no honest voter would complain be-
cause none of their single/multi-ballots were manipulated. So, this attack neither
invalidates individual verifiability nor universal verifiability, showing again that
these notions together do not imply E2E verifiability, and are really insufficient.

Clash Attacks. The idea of individual and universal verifiability not only fails
due to undetected malformed ballots. Another problem are clash attacks [37],
which might break E2E verifiability, while individual and universal verifiability
together again do not detect such attacks. As demonstrated in [37], several e-
voting system are vulnerable to clash attacks, including several variants of Helios.

To illustrate the attack, consider the Helios voting system, where the voting
devices might be dishonest and where the ballots of the voters are published
on the bulletin board without voter names or pseudonyms attached to them.
Now, if two voters vote for the same candidate, the voting devices might use the
same randomness to create the ballots, and hence, the two ballots are identical.
However, instead of putting both ballots on the bulletin board, authorities might
add only one of them to the bulletin board and the other ballot might be re-
placed by one for another candidate. The two voters can check individually that
“their” ballot appears on the bulletin board (individual verifiability); they do
not realize that they are looking at the same ballot, i.e., they do not realize the
“clash”. Universal verifiability is obviously guaranteed as well. Still, the system
does not provide E2E verifiability: a vote of an honest voter was replaced in an
undetectable way by another vote.

Adding More Subproperties? Now that we have seen that individual and universal
verifiability do not imply the desired security property E2E verifiability, it might
be tempting to search for more subproperties that would then, eventually, yield
a sufficiently strong verifiability notion.

In [12], it has been demonstrated that all verifiability notions proposed in
the literature so far that are split up into additional subproperties, such as
individual and universal verifiability, do not provide E2E verifiability, even if
more subproperties are added. In [10], for example, a subproperty was introduced
that rules out clash attacks but the resulting verifiability notion is still too weak
(see [12], Appendix B, for details).

When existing systems are analyzed w.r.t. verifiability or new systems are
proposed, one should always check for E2E verifiability as introduced above, as
E2E verifiability is the kind of verifiability modern e-voting systems ultimately
should aim for. While subproperties, such as individual and universal verifiabil-
ity, can guide the design of e-voting systems, unless formally proven that their
combination in fact implies E2E verifiability, such properties alone might miss
important aspects and can therefore not replace E2E verifiability.

2.4 Not Necessary

The examples and attacks above illustrate that the notions of individual and
universal verifiability are not sufficient to provide E2E verifiability. Following
[28], we now demonstrate that they are not necessary to achieve E2E verifia-
bility either. More specifically, in [28] the remote e-voting system sElect was
proposed, and it was shown that it provides E2E verifiability (under reasonable
assumptions). But sElect is not universally verifiable.

sElect. sElect [28] is a conceptually simple remote voting system which is based
on a Chaumian mix net.

A Chaumian miz net consists of mix servers My, ..., M, where each one of
them holds a public/secret key pair (pk;, sk;) of a (CCA2-)secure public-key
encryption scheme. The input to the mix net is a set of ciphertexts c¢y,...,¢q

where each ciphertext c¢; is a nested encryption of a plaintext m; under the
public keys of the mix servers in reverse order, i.e.,

¢;i = Enc(...Enc(m;, pky) ... ,pk1).

When the mix net is executed, the first mix server decrypts the outer encryption
layer with its secret key ski, shuffles the result,” and forwards it to the second
mix server, which decrypts the next encryption layer with sky, shuffles the re-
sulting ciphertexts, and so on. Finally, the output of the mix net is a random
permutation 7 of the input plaintexts mq,...,m;. As long as one of the mix
servers is honest, the permutation 7 remains secret. That is, it is not possible to
connect the input ciphertexts to their corresponding plaintexts.

Note that there are no ZKPs for correct shuffling or correct decryption, which
means that Chaumian mix nets are not universally verifiable.

Now, roughly speaking, sElect works as follows. A voter uses her voting
device (a browser) to select the candidate of her choice m;. Then, the voting
device creates a random nonce n; (which can be done jointly with the voter to
decrease trust in the voting device). Afterwards, the device encrypts (m;,n;)
under the public keys of the mix servers as explained above. For verification
purposes, the voter memorizes or writes down the nonce n;. In addition, the
voting device stores this information and the random coins that were used for
encryption. In the tallying phase, all input ciphertexts are processed by the
mix net as explained above, and the final result is, as well as all intermediate
ciphertexts, published on the bulletin board. Each voter is finally invited to use
her voting device in order to check whether her candidate m; appears next to
her personal nonce n;. In addition, the voting device performs a fully automated
verification procedure. In particular, if the voter’s vote and nonce do not appear
together in the final result, the voting device can provably single out the mix
servers that misbehaved because it has stored all information needed to follow
the trace of the voter’s ballot through the mix net (and because the mix servers
signed certain information).

E2F Verifiability Without Universal Verifiability. It has been formally proven [28]
that sElect provides a reasonable level of E2E verifiability (and even account-
ability) because it is extremely risky for an adversary to manipulate or drop even
only a few votes. At the same time, sElect does not rely on universal verifiability.
The Chaumian mix net is not verifiable by itself: it takes the voters to perform a
simple check. Therefore, the example of sElect shows that universal verifiability
is not necessary for E2E verifiability.

3 Accountability

In e-voting systems, and for many other cryptographic tasks and protocols (e.g.,
secure multi-party computation, identity-based encryption, and auctions), it is

" In order to protect against replay attacks [13], duplicates are removed, keeping one
copy only (see [28] for details.)

extremely important that (semi-)trusted parties can be held accountable in case
they misbehave. This fundamental security property is called accountability,® and
it is a stronger form of verifiability: it not only allows one to verify whether a
desired property is guaranteed, for example that the election outcome is correct,
but it also ensures that misbehaving parties can be identified if this is not the
case.

Accountability is important for several practical reasons. First of all, ac-
countability strengthens the incentive of all parties to follow their roles because
they can be singled out in case they misbehave and then might have to face, for
example, severe financial or legal penalties, or might lose their reputation. Fur-
thermore, accountability can resolve disputes that occur when it is only known
that some party misbehaved but not which one. This can, for instance, help to
increase the robustness of cryptographic protocols because misbehaving parties,
such as a dishonest trustee in an e-voting protocol, can be excluded and the
protocol can be re-run without the parties that misbehaved.

Unfortunately, despite its importance, accountability is often not taken into
account (at least not explicitly), neither to design e-voting protocols nor to
analyze their security (see, e.g., [1, 9, 44, 11, 15, 25, 26, 43, 7, 27]).

In [32], Kiisters et al. provided a general formal definition of accountabil-
ity and emphasized its importance. This formal definition has since been used
to analyze different e-voting protocols (Helios, sElect, Bingo Voting), mix nets
(re-encryption and Chaumian mix nets with random partial checking), auction
schemes (PRST [41]), and contract signing protocols (ASW [3]). These analyses
brought forward several accountability issues, e.g., for different versions of He-
lios [37]. In what follows, we give a brief summary of the accountability definition,
for details see the original paper [32].

A Formal Accountability Definition. The accountability definition by Kiisters
et al. [32] is based on the same generic and expressive protocol model as the
verifiability definition (see Section 2), and can therefore be applied to all classes
of voting protocols and also to other domains.

In contrast to the verifiability definition, the judge now not only accepts or
rejects a run, but may output detailed verdicts. A verdict is a positive Boolean
formula v built from propositions of the form dis(a), for an agent a, where dis(a)
means that (the judge thinks that) agent a misbehaved, i.e., did not follow the
prescribed protocol. For example, in a voting protocol with voters Vi,...,V,,
a bulletin board B, and trustees Ty,..., T, if the judge J states, say, dis(B) A
dis(T1)A...Adis(T,,), then this expresses that the judge beliefs that the bulletin
board and all trustees misbehaved; the judge would state dis(V;) V dis(B) V
(dis(T1) A ... Adis(T,y,)) if she is not sure whether voter V;. the bulletin board,
or all trustees misbehaved.

8 In the context of secure MPC, accountability is sometimes called identifiable
abort [22]

Who should be blamed in which situation is expressed by a set ¥ of what
are called accountability constraints. These constrains are of the form

C=a= |,

where « is a property of the voting system, similar to the goal v in Section 2.1 (a
set of runs of the system, where one run is determined by the random coins used
by the parties), and 1, ..., are verdicts. Intuitively, the set « contains runs
in which some desired goal v of the protocol is not met (due to the misbehavior
of some protocol participant). The formulas)1, ...,y are the possible minimal
verdicts that are supposed to be stated by J in such a case; J is free to state
stronger verdicts (by the fairness condition these verdicts will be true). That is,
if a run belongs to «, then C' requires that in this run the judge outputs a verdict
1 which logically implies one of ;.

To illustrate the notion of accountability constraints, let us continue the
example from above. Let a contain all runs in which the published election
result is incorrect, e.g., @ = oy = —y, with the goal 7y as defined in Section 2.
Now, consider the following constraints:

Cy = a = dis(B)|dis(T1)] - - - [dis(T,n), (1)
Cy=a=dis(Vy)V---Vvdis(V,) Vdis(B) V (dis(T1) A--- Adis(T,)), (2)
Cs = a = dis(B)[dis(T1) A -+ - A dis(To). (3)

Constraint C requires that if in a run the published election result is incorrect,
then at least one (individual) party among B, T1,..., T,, can be held account-
able by the judge J; note that different parties can be blamed in different runs.
Constraint Cy states that if the published election result is not correct, then the
judge J can leave it open whether one of the voters, the bulletin board B, or all
trustees misbehaved. Constraint C3 requires that it is possible to hold B or all
trustees accountable.

As pointed out in [32], accountability constraints should provide at least in-
dividual accountability. That is, the postulated minimal verdicts should at least
single out one misbehaving party. In the above example, C; and C3 provide in-
dividual accountability, but Cy does not. In fact, Cs is very weak, too weak for
practical purposes. If a judge states exactly this verdict, there are no real con-
sequences for any party, since no individual party can be held accountable. This
is particular problematic if in such a “fuzzy” verdict not only voting authorities
are involved but also voters.

A set @ of constraints for a protocol P is called an accountability property
of P. Typically, an accountability property @ covers all relevant cases in which
a desired goal v for P is not met, i.e., whenever v is not satisfied in a given
run r due to some misbehavior of some protocol participant, then there exists
a constraint C' in @ which covers r. We write Pr(7() — =(J: ®)) to denote
the probability that =, with security parameter 1¢, produces a run r such that
J does not satisfies all accountability constrains for this run, i.e., there exists
C =a= 1| |t with r € a but the judge outputs a verdict which does not
imply some ;.

Definition 2 (Accountability). Let P be a protocol with the set of agents X..
Let 6 € [0,1] be the tolerance, J € X be the judge, and @ be an accountability
property of P. Then, we say that the protocol P is (&, d)-accountable by the
judge J if for all adversaries mp and ™ = (mwp||wa), the probability

Pr(z) = =(J: @)
s 0-bounded as a function of L.

Just as for the verifiability definition (Definition 1), the full definition in [32]
additionally requires that the judge J is fair, i.e., that she states false verdicts
only with negligible probability.

Kiisters et al. also showed that verifiability (as defined in Definition 1) can
be considered to be a weak form of accountability, and, as mentioned before,
verifiability alone is typically too weak for practical purposes.

Instead of explicitly specifying ¥ as necessary in the above definition, there
have been attempts to find generic ways to define who actually caused a goal
to fail and ideally to blame all of these parties. There has been work pointing
into this direction (see, e.g., [16, 20, 21]). But this problem turns out to be very
tricky and has not been solved yet.

4 Coercion-Resistance and Privacy

To achieve verifiability, a voter typically obtains some kind of receipt which,
together with additional data published in the election, she can use to check
that her vote was counted. This, however, potentially opens up the possibility
for vote buying and voter coercion. Besides verifiability, many voting systems
therefore also intend to provide so-called coercion-resistance.

One would expect that privacy and coercion-resistance are closely related: If
the level of privacy is low, i.e., there is a good chance of correctly determining
how a voter voted, then this should give the coercer leverage to coerce a voter.
Some works in the literature (e.g., [39, 17]) indeed suggest a close connection.
However, Kiisters et al. [35] demonstrated that the relationship between privacy
and coercion-resistance is more subtle.

Among others, it turns out that improving the level of privacy of a protocol
in a natural way (e.g., by changing the way honest voters fill out ballots) can lead
to a lower level of coercion-resistance. Clearly, in general, one does not expect
privacy to imply coercion-resistance. Still, the effect is quite surprising.

A maybe even more important and unexpected finding that comes out of
the case studies in [35] is that the level of privacy of a protocol can be much
lower than its level of coercion-resistance. The reason behind this phenomenon
is basically that it may happen that the counter-strategy a coerced voter may
carry out to defend against coercion hides the behavior of the coerced voter,
including her vote, better than the honest voting program.

On the positive side, in [35] Kiisters et al. proved a theorem which states that
under a certain additional assumption a coercion-resistant protocol provides at

least the same level of privacy. This is the case when the counter-strategy does
not “outperform” the honest voting program in the above sense. The theorem is
applicable to a broad class of voting protocols.

In what follows, we explain the subtle relationships between coercion-re-
sistance and privacy in more detail. The findings are based on formal privacy
and coercion-resistance definitions proposed in [35] and [31, 36], respectively.
These definitions build upon the same general protocol model as the one for
verifiability, and hence, they are applicable to all classes of voting systems (see,
e.g., [32, 35, 37, 28, 36, 31, 34]), and they also have been applied to analyze mix
nets [38, 29]. We only informally introduce the privacy and coercion-resistance
definitions in what follows and point to the reader to [35, 31, 36] for the formal
definitions.

Intuitively, the privacy definition in [35] says that no (probabilistic poly-
nomial-time) observer, who may control some parties, such as some authorities
or voters, should be able to tell how an honest voter, the voter under obser-
vation, voted. More specifically, one considers two systems: in one system the
voter under consideration votes for candidate ¢ and in the other system the voter
votes for candidate ¢’; all other honest voters vote according to some probability
distribution known by the observer. Now, the probability that the observer cor-
rectly says with which system he interacts should be bounded by some constant
0 (plus some negligible function in the security parameter). Due to the param-
eter d, the definition allows one to measure privacy. As discussed in [28], this
ability is crucial in the analysis of protocols which provide a reasonable but not
perfect level of privacy. In fact, strictly speaking, most remote e-voting protocols
do not provide a perfect level of privacy: this is because there is always a certain
probability that voters do not check their receipts. Hence, the probability that
malicious servers/authorities drop or manipulate votes without being detected is
non-negligible. By dropping or manipulating votes, an adversaries obtains some
non-negligible advantage in breaking privacy. Therefore, it is essential to be able
to precisely tell how much an adversary can actually learn.

For the definition of coercion-resistance (see [36, 31]), the voter under obser-
vation considered for privacy is now replaced by a coerced voter and the observer
O is replaced by the coercer C. We imagine that the coercer demands full control
over the voting interface of the coerced users, i.e., the coercer wants the coerced
voter to run a dummy strategy dum which simply forwards all messages between
the coerced voter and the coercer C. If the coerced voter in fact runs dum, the
coercer can effectively vote on behalf of the coerced voter or decide to abstain
from voting. Of course, the coercer is not bound to follow the specified voting
procedure. Now, informally speaking, a protocol is called coercion-resistant if the
coerced voter, instead of running the dummy strategy, can run some counter-
strategy cs such that (¢) by running this counter-strategy, the coerced voter
achieves her own goal 7 (formally, again a set of runs), e.g., successfully votes
for a specific candidate, and (i¢) the coercer is not able to distinguish whether
the coerced voter followed his instructions (i.e., run dum) or tried to achieve her
own goal (by running cs). Similarly to the privacy definition, the probability in

(#4) is bounded by some constant § (plus some negligible function). Again, § is
important in order to be able to measure the level of coercion-resistance a pro-
tocol provides: there is always a non-negligible chance for the coercer to know
for sure whether the coerced voter followed his instructions or not (e.g., when
all voteres voted for the same candidate).

Improving Privacy Can Lower the Level of Coercion-Resistance. To illustrate
this phenomenon, we consider the following variant of ThreeBallot (for details
of ThreeBallot see Section 2). An honest voter is supposed to submit, according
to her favorite candidate,

e (:()-0) = ()-0)-0)

and always take the first single ballot <i) as her receipt. The scheme is ideal

in terms of privacy because the bulletin board and the receipts do not leak any
information apart from the pure election result. However, this scheme does not
provide any coercion-resistance. Assume that the coerced voter is instructed to

(£ () ()

and take the first single ballot as receipt (which is allowed but never done by
honest voters). If the coerced voter actually wants to vote for candidate A, the

voter would have to cast
o T T
z/)’'\o) \o/"~

But then, as all the honest voters submit

(5 () ())06

the coercer could easily detect that he was cheated, by counting the number of

ballots of type <2) on the bulletin board.

Coercion-Resistance Does Not Imply Privacy. For the original variant of Three-
Ballot and the simple variant of VAV, Kiisters et al. proved that the level of
privacy is much lower than its level of coercion-resistance. The reason behind
this phenomenon is basically that the counter-strategy hides the behavior of
the coerced voter, including her vote, better than the honest voting program
hides the vote. In these voting systems, a receipt an honest voter obtains indeed
discloses more information than necessary (for details see [35]).

The following simple, but unlike ThreeBallot and VAV, artificial example,
carries this effect to extremes: Consider the ideal voting protocol which collects
all votes and publishes the correct result. Now, imagine a voting protocol in
which voters use the ideal voting protocol to cast their vote, but where half of

the voters publish how they voted (e.g., based on a coin flip). Clearly, the privacy
level this protocol provides is very low, namely § > % However, a coerced voter
can be more clever and simply lie about how she voted. This protocol indeed
provides a high level of coercion-resistance.

As mentioned at the beginning of Section 4, in [35] it is shown that if the
counter-strategy does not “outperform” the honest voting program (or con-
versely, the honest voting program does not leak more information than the
counter-strategy), then indeed if a voting system provides a certain level of
coercion-resistance, then it provides the same level of privacy. Fortunately, in
most systems which are supposed to provide coercion-resistance, the counter-
strategy indeed does not outperform the honest program.

5 Limitations of Cryptographic Security Analysis

The previous sections were concerned with and highlighted the importance of
formally analyzing the security of e-voting systems. However, to obtain a full
picture of an e-voting system and to carry out an election, many more aspects
have to be taken into account which are beyond formal/cryptographic analysis.
Some of these aspects are specific to the field of e-voting, while others apply to
virtually all complex systems.

In what follows, we briefly discuss some of these aspects. We start with
usability issues and legal requirements, as they are particularly important for
e-voting systems.

Usability and Its Relationship to Security. E-voting systems are used by human
beings, such as voters, administrators, and auditors. Therefore, the security an
e-voting system provides in practice crucially depends on whether, or at least to
which degree, the involved human parties follow the protocol.

For example, it is, by now, well-known that many voters are not sensitized
enough to verify whether their voting devices created a correct ballot, and even
if they are, they often fail to do so because the individual verification procedures,
such as Benaloh challenges, are too complex (see, e.g., [24, 40]). Similarly to these
verification issues, many coercion-resistant e-voting protocols (e.g., Civitas [9])
require that coerced voters successfully deceive their coercer, e.g., by creating
faked receipts. It is questionable whether average voters are able to do this.

Therefore, usability of e-voting systems is not only important to ensure that
all voters can participate, but it also determines whether an e-voting system is
secure in the real world: if a security procedure is difficult to use, it worsens the
security of the system and may render it insecure. However, it is hard to measure
usability; instead, certain usability attributes can be measured and empirically
be tested, for example, how often users make the same error.

In order to analyze the impact of a system’s usability w.r.t. its security,
security notions are necessary which allow one to take usability attributes into
account. To some degree, this is incorporated in the security definition presented
in the previous sections. For example, Kiisters et al. have studied the verifiability
levels of Helios, sElect, Bingo Voting, ThreeBallot, and VAV as functions of the

probability that a voter (successfully) carries out her verification procedure. For
example, for the system sElect [28]. Kiisters et al. formally proved that sElect
(roughly) provides a verifiability level of § ~ (1—p)**! where p is the probability
that an honest voter carries out the verification procedure, i.e., checks whether
her vote along with the verification code is in the final result, and where & is
the tolerated number of manipulated (honest) votes (see Section 2 for details).
Hence, the probability that no one complains but more than k£ votes of honest
voters have been manipulated is bounded by (1 — p)k*!. Using results from
usability studies one can now estimate what realistic values for p are, and hence,
better assess the security of a system.

Perceived vs. Provable Security. In addition to the provable security a system
provides, the level of security perceived by regular voters might be just as im-
portant and even more important for a system to be accepted. Regular voters
simply do not understand what a zero-knowledge proof is and for that reason
might not trust it. Therefore simplicity and comprehensibility are very crucial,
which, for example, was a driving factor for the system sElect [28]. This system
features a simple and easy to understand verification procedure, allows for fully
automated verification, and uses asymmetric encryption and signatures as the
only cryptographic primitives.

Legal Requirements. Since e-voting systems are used in many countries for po-
litical elections, they have to provide certain legal requirements which depend
on the political system. Unfortunately, it is difficult to formally capture all le-
gal requirements in order to rigorously analyze whether a given e-voting system
achieves them. Vice versa, it is also challenging to express formal security defini-
tions in legal terms. There are some approaches that address this problem (see,
e.g., [46, 50, 47]).

Cryptographic Analysis vs. Code-Level Analysis. Cryptographic analysis as con-
sidered in this paper, typically does not analyze the actual code of a system but
a more abstract (cryptographic) model. Hence, implementation flaws can easily
go undetected. While carrying out a full-fledged cryptographic security analysis
of an e-voting system is already far from trivial, performing such an analysis on
the code-level is even more challenging. A first such analysis for a simple e-voting
system implemented in Java has been carried out in [30]. In recent years, there
has also been successful code-level analysis of cryptographic protocols, such as
TLS (see, e.g., [18, 6] for some of the most recent work in this direction).

Implementation and Deployment. It is possible to model strong adversaries and
capture potentially flawed program code in a formal model by weak trust as-
sumptions and various kinds of corruptions. However, at least some parties have
to be assumed to be honest in essentially all voting systems to achieve a reason-
able security level. With the diverse ways systems can be and are attacked within
and outside the domain of e-voting, actually guaranteeing the trust assumptions
is highly non-trivial. This is even more true in political elections where e-voting
systems can be targets of extremely powerful adversaries, such as intelligence
agencies and hostile states (see, e.g., [49]).

Even without assuming such powerful adversaries, securely deploying an e-
voting system in practice is non-trivial and involves a lot of organizational issues
which are not captured nor considered by formal analysis. For example, abstract
system descriptions assume that trust is distributed among several trustees and
that keys are securely generated and distributed. But it might not always be
clear in practice, who the trustees should be. Again, it is therefore important to
keep e-voting systems as simple as possible to avoid organizational and technical
overheads in order to improve the practical security of systems.

6 Conclusion

The development of secure e-voting systems that are also easy to use, to under-
stand, and to implement is still a big challenge. Rigorous formal analysis is an
important piece of the puzzle. This research area has made huge progress in the
last decade or so. Many central security requirements have been formulated by
now and their relationships have been studied intensively. As explained in this
paper, this helped to obtain a better understanding of desired security proper-
ties and to overcome some common misconceptions. This alone is already very
important to help thinking about the security of e-voting systems and shaping
the design of these systems. For newly proposed systems it is more and more
common and expected that they come with a cryptographic security analysis.
The general formal frameworks and solid formulations of fundamental security
requirements are available for such analyses. While rigorous analysis is highly
non-trivial and certainly does not and cannot cover all aspects in the design,
implementation, and deployment of e-voting systems, it forms an important and
indispensable corner stone.

References

1. B. Adida. Helios: Web-based Open-Audit Voting. In USENIX 2008, pages 335—-348,
2008.

2. M. Arnaud, V. Cortier, and C. Wiedling. Analysis of an Electronic Boardroom
Voting System. In Vote-ID 2013, pages 109-126, 2013.

3. N. Asokan, V. Shoup, and M. Waidner. Optimistic fair exchange of digital signa-
tures. IEEE Journal on Selected Areas in Communications, 18(4):593-610, 2000.

4. Josh Daniel Cohen Benaloh. Verifiable Secret-Ballot Elections. PhD thesis, 1987.

5. D. Bernhard, V. Cortier, D. Galindo, O. Pereira, and B. Warinschi. SoK: A Com-
prehensive Analysis of Game-Based Ballot Privacy Definitions. In S&P 2015, pages
499-516, 2015.

6. K. Bhargavan, B. Blanchet, and N. Kobeissi. Verified Models and Reference Im-
plementations for the TLS 1.3 Standard Candidate. In S&P 2017, pages 483-502,
2017.

7. P. Chaidos, V. Cortier, G. Fuchsbauer, and D. Galindo. BeleniosRF: A Non-
interactive Receipt-Free Electronic Voting Scheme. In CCS 2016, pages 1614-1625,
2016.

8. B. Chevallier-Mames, P.-A. Fouque, D. Pointcheval, J. Stern, and J. Traoré. On
Some Incompatible Properties of Voting Schemes. In WOTE 2006, pages 191-199,
2010.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

M. R. Clarkson, S. Chong, and A. C. Myers. Civitas: Toward a Secure Voting
System. In SE&P 2008, pages 354-368, 2008.

V. Cortier, F. Eigner, S. Kremer, M. Maffei, and C. Wiedling. Type-Based Verifi-
cation of Electronic Voting Protocols. In POST 2015, pages 303-323, 2015.

V. Cortier, D. Galindo, S. Glondu, and M. Izabachéne. Election Verifiability for
Helios under Weaker Trust Assumptions. In ESORICS 201/, pages 327344, 2014.
V. Cortier, D. Galindo, R. Kiisters, J. Miiller, and T. Truderung. SoK: Verifiability
Notions for E-Voting Protocols. In S&P 2016, pages 779-798, 2016.

V. Cortier and B. Smyth. Attacking and Fixing Helios: An Analysis of Ballot
Secrecy. In CSF 2011, pages 297-311, 2011.

V. Cortier and C. Wiedling. A formal analysis of the Norwegian E-voting protocol.
Journal of Computer Security, 25(1):21-57, 2017.

Chris Culnane, Peter Y. A. Ryan, Steve A. Schneider, and Vanessa Teague. vVote:
A Verifiable Voting System. ACM Trans. Inf. Syst. Secur., 18(1):3:1-3:30, 2015.
A. Datta, D. Garg, D. K. Kaynar, D. Sharma, and A. Sinha. Program Actions as
Actual Causes: A Building Block for Accountability. In CSF 2015, pages 261-275,
2015.

Stéphanie Delaune, Steve Kremer, and Mark Ryan. Coercion-Resistance and
Receipt-Freeness in Electronic Voting. In (CSFW-19 2006), pages 28-42, 2006.
A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, J. Protzenko, A. Rastogi,
N. Swamy, S. Zanella Béguelin, K. Bhargavan, J. Pan, and J. K. Zinzindohoue.
Implementing and Proving the TLS 1.3 Record Layer. In S&P 2017, pages 463—
482, 2017.

Jeremy Epstein. Weakness in Depth: A Voting Machine’s Demise. IEEE Security
& Privacy, 13(3):55-58, 2015.

Joan Feigenbaum, Aaron D. Jaggard, and Rebecca N. Wright. Towards a formal
model of accountability. In NSPW 2011, pages 45-56, 2011.

Gregor Gofller and Daniel Le Métayer. A general framework for blaming in
component-based systems. Sci. Comput. Program., 113:223-235, 2015.

Yuval Ishai, Rafail Ostrovsky, and Vassilis Zikas. Secure Multi-Party Computation
with Identifiable Abort. In CRYPTO 2014, pages 369-386, 2014.

Douglas Jones and Barbara Simons. Broken ballots: Will your vote count? CSLI
Publications, 2012.

F. Karayumak, M. M. Olembo, M. Kauer, and M. Volkamer. Usability Analy-
sis of Helios - An Open Source Verifiable Remote Electronic Voting System. In
EVT/WOTE °11, 2011.

Aggelos Kiayias, Thomas Zacharias, and Bingsheng Zhang. DEMOS-2: Scalable
E2E Verifiable Elections without Random Oracles. In CCS 2015, pages 352-363,
2015.

Aggelos Kiayias, Thomas Zacharias, and Bingsheng Zhang. End-to-End Verifiable
Elections in the Standard Model. In EUROCRYPT 2015, pages 468-498, 2015.
Aggelos Kiayias, Thomas Zacharias, and Bingsheng Zhang. An Efficient E2E Veri-
fiable E-voting System without Setup Assumptions. S&P 2017, 15(3):14-23, 2017.
R. Kiisters, J. Miiller, E. Scapin, and T. Truderung. sElect: A Lightweight Verifi-
able Remote Voting System. In CSF 2016, pages 341-354, 2016.

R. Kiisters and T. Truderung. Security Analysis of Re-Encryption RPC Mix Nets.
In EuroSE&P 2016, pages 227-242. IEEE Computer Society, 2016.

R. Kiisters, T. Truderung, B. Beckert, D. Bruns, M. Kirsten, and M. Mohr. A
Hybrid Approach for Proving Noninterference of Java Programs. In CSF 2015,
pages 305-319, 2015.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

R. Kiisters, T. Truderung, and A. Vogt. A Game-based Definition of Coercion-
Resistance and its Applications. In CSF 2010, pages 122-136, 2010.

R. Kiisters, T. Truderung, and A. Vogt. Accountability: Definition and Relation-
ship to Verifiability. In CCS 2010, pages 526-535, 2010.

R. Kiisters, T. Truderung, and A. Vogt. Accountability: Definition and Relation-
ship to Verifiability. Technical Report 2010/236, Cryptology ePrint Archive, 2010.
http://eprint.iacr.org/.

R. Kiisters, T. Truderung, and A. Vogt. Proving Coercion-Resistance of Scantegrity
II. In ICICS 2010, pages 281-295, 2010.

R. Kiisters, T. Truderung, and A. Vogt. Verifiability, Privacy, and Coercion-
Resistance: New Insights from a Case Study. In S&P 2011, pages 538-553, 2011.
R. Kiisters, T. Truderung, and A. Vogt. A Game-Based Definition of Coercion-
Resistance and its Applications. JCS 2012, pages 709-764, 2012.

R. Kiisters, T. Truderung, and A. Vogt. Clash Attacks on the Verifiability of
E-Voting Systems. In S&P 2012, pages 395409, 2012.

R. Kiisters, T. Truderung, and A. Vogt. Formal Analysis of Chaumian Mix Nets
with Randomized Partial Checking. In S&P 2014, pages 343-358, 2014.

T. Moran and M. Naor. Receipt-Free Universally-Verifiable Voting With Everlast-
ing Privacy. In CRYPTO 2006, pages 373-392, 2006.

Maina M. Olembo, Steffen Bartsch, and Melanie Volkamer. Mental Models of
Verifiability in Voting. In Vote-ID 20183, pages 142-155, 2013.

D. Parkes, M. Rabin, S. Shieber, and C. Thorpe. Practical secrecy-preserving,
verifiably correct and trustworthy auctions. In ICEC’06, pages 70-81, 2006.

R. L. Rivest and W. D. Smith. Three Voting Protocols: ThreeBallot, VAV and
Twin. In EVT 2007, 2007.

P. Y. A. Ryan, P. B. Rgnne, and V. Iovino. Selene: Voting with Transparent
Verifiability and Coercion-Mitigation. In FC 2016 International Workshops, pages
176-192, 2016.

Peter Y. A. Ryan, David Bismark, James Heather, Steve Schneider, and Zhe Xia.
The Prét a Voter Verifiable Election System. Technical report, 2010.

Kazue Sako and Joe Kilian. Receipt-free mix-type voting scheme - A practical
solution to the implementation of a voting booth. In FUROCRYPT 1995, pages
393-403, 1995.

A. Schmidt, D. Heinson, L. Langer, Z. Opitz-Talidou, P. Richter, M. Volkamer, and
J. A. Buchmann. Developing a Legal Framework for Remote Electronic Voting. In
VOTE-ID 2009, pages 92—105, 2009.

Bryan Schwartz and Dan Grice. FEstablishing a legal framework for e-voting in
Canada. Elections Canada, 2014.

Ben Smyth, Steven Frink, and Michael R. Clarkson. Computational Election Ver-
ifiability: Definitions and an Analysis of Helios and JCJ. Number 2015/233, 2015.
D. Springall, T. Finkenauer, Z. Durumeric, J. Kitcat, H. Hursti, M. MacAlpine,
and J. A. Halderman. Security Analysis of the Estonian Internet Voting System.
pages 703-715, 2014.

Robert Stein and Gregor Wenda. The Council of Europe and e-voting: history and
impact of Rec(2004)11. In EVOTE 2014, pages 1-6, 2014.

S. Wolchok, E. Wustrow, J. A. Halderman, H. K. Prasad, A. Kankipati, S. K.
Sakhamuri, V. Yagati, and R. Gonggrijp. Security analysis of India’s electronic
voting machines. pages 1-14, 2010.

Scott Wolchok, Eric Wustrow, Dawn Isabel, and J. Alex Halderman. Attacking
the Washington, D.C. Internet Voting System. In FC 2012, pages 114-128, 2012.

Election Security and Economics:
It’s all about Eve

David Basin!, Hans Gersbach?, Akaki Mamageishvili?, Lara Schmid®, and
Oriol Tejada?

! Institute of Information Security ETH Zurich
2 Chair of Macroeconomics: Innovation and Policy ETH Zurich

Abstract. A system’s security must be understood with respect to the
capabilities and behaviors of an adversary Eve. It is often assumed in
security analysis that Eve acts as maliciously as possible. From an eco-
nomic perspective, Eve tries to maximize her utility in a game with other
participants. The game’s rules are determined by the system and its se-
curity mechanisms, but Eve can invent new ways of interacting with
participants. We show that Eve can be used as an interface to explore
the interplay between security and economics in the domain of elections.
Through examples, we illustrate how reasoning from both disciplines
may be combined to explicate Eve’s motives and capabilities and how
this analysis could be used for reasoning about the security and perfor-
mance of elections. We also point to future research directions at the
intersection of these disciplines.

1 Introduction

Election security is an important societal problem as attacks on elections put
democracy at risk. When establishing that an election system is secure, one
must reason about the adversarial environment in which the system is used.
This requires specifying the capabilities of the adversary, henceforth called Eve.

In the security community, one provides an adversary model that specifies
Eve’s capabilities and assumes she will exploit these capabilities, independent of
the costs. For election security, one typically assumes the existence of reasonably
strong adversaries when designing the system, for example adversaries that may
compromise the client’s platform but not the voting server or the postal channel.
Such assumptions are usually made without detailed economic justifications.
In economics, one considers what Eve is rationally motivated to do and one
looks at the entire range of sophisticated mechanisms available to her to exploit
the humans that use the system. For example, a wealthy adversary might try
to buy votes in elections, with adverse consequence; see e.g. [I4]. Moreover,
economists may consider the scenario where a majority of citizens base their
voting decisions on false assumptions about their decisions’ effects, with adverse
long-term societal consequences [6].

In this paper, we outline these two perspectives of Eve. We show that the
perspective used in one discipline can sharpen the assumptions, models, and

results used in the other discipline. Hence, both disciplines together can best
ensure election security and the quality of election outcomes.

First, security analysis is central to economic models of elections since these
models always depend implicitly on security properties such as integrity or co-
ercion resistance, as we will illustrate in this paper. Hence, trust in an election’s
outcome depends on whether such security properties can be proven to hold.
Moreover, when harmful adversarial behavior cannot be ruled out, an analysis
of the adversary’s capabilities provides a guide to constructing economic mod-
els involving these adversaries. One can then calculate the expected election
outcome in the presence of the modeled adversary.

Second, economic analysis is important for security analysis in order to de-
termine what a rational adversary will do. On the one hand, Eve may never
undertake certain actions and thus these actions can be omitted from the secu-
rity analysis. On the other hand, Eve may invent entirely new games to interact
with a system’s participants, which can undermine the system’s security proper-
ties. This may necessitate modeling Eve or other participants differently in the
security analysis. We illustrate this with two examples in this paper. In the first
example, we show that the use of decoy ballots, which are fake ballots that are
introduced to avoid vote buying, are much less secure than assumed so far. In
the second example, we explain why the authenticity of voting-related informa-
tion must be considered to be a central security property since, otherwise, an
adversary could spoof a trusted information source and send biased information
to voters, which could lead to undesirable voting outcomes.

Most research in security analysis and economics has been carried out inde-
pendently. In recent times, research straddling these two disciplines has emerged.
For example, malware researchers [8I25] have investigated the behavior of real-
life adversaries and how this behavior relates to their economic goals. Other
researchers [IJTTI5] have modeled (coercible) users and security providers as
rational agents and used this to investigate the adequacy of different security
measures. Game-theoretic models have been employed [2427] to analyze the se-
curity of physical environments, such as airports and harbors, and to determine
the best strategies to protect them against adversaries. Recently, researchers in
elections have started investigating this interplay too, for example, in the con-
text of vote buying [I8]. We see our work in line with this trend, explicating
the interplay between security and economics and highlighting Eve’s use as an
interface between these disciplines.

We proceed as follows. In Section |2} we review how (voting) protocols are
generally formalized in information security and economics, highlighting Eve’s
special role. In Section [3] we describe two voting protocols, a simple voting
protocol and Chaum’s [9] random sample elections, which we use in Sections
and [5] to illustrate how information security researchers and economists analyze
voting protocols and to investigate the interplay between these two disciplines.
Finally, in Section[6 we draw conclusions and provide a perspective on the scope
and some of the challenges of this important interdisciplinary research area.

2 General approaches

2.1 Information security

To analyze a system in information security, one must specify the system P,
the adversary (alias “Eve”) A, and the desired security properties Prop. The
system’s security is established by proving an assertion of the form P, A F Prop,
which states that all possible system behaviors satisfy the property Prop, when
P is executed in an environment with the adversary A. When the system is
distributed, such as (voting) protocols are, this essentially means that all possible
behaviors arising from agents executing the protocol, operating in parallel with
the adversary, satisfy the property Prop. Rigorously establishing this requires
precise specifications of P, A, and Prop and constructing proofs, ideally, using
theorem provers or model checkers. For security protocols, the specifications
are often given using symbolic models, and proofs are constructed using model
checkers like ProVerif [7] or Tamarin [I7J20]. See [4] for more on this.

We now further describe P, A, and Prop, focusing on the distributed set-
ting. Here, P specifies the protocol that honest agents follow. For example, P
is defined by role specifications that describe the behavior of honest agents in
terms of which messages they send and receive and in which order. The proto-
col’s execution semantics is defined by all possible interleavings of instantiated
roles, also interleaved with actions of the adversary A.

A property Prop is intended to hold in every possible execution of the pro-
tocol. What Prop specifies depends on the system under consideration. For vot-
ing protocols, we are typically interested in the following properties. Integrity
demands that information, e.g., votes, cannot be changed by an unauthorized
entity. Verifiability additionally stipulates that integrity can be verifiably es-
tablished, e.g., by individuals who check that their own votes are recorded as
cast (individual verifiability) or that all votes are counted as recorded (univer-
sal verifiability). Secrecy and privacy guarantee that it is indistinguishable who
voted for what. Finally, coercion resistance states that a voter cannot prove to
an adversary how he voted, even if he actively collaborates with the adversary.

Eve, the adversary A, is the focus of this paper. We emphasize that a system’s
security can only be analyzed meaningfully with respect to a class of adversaries.
For example, a system P that keeps data secret (Prop) in the face of a network
adversary A, may be insecure against a stronger adversary with physical access
to the system, who can perform side channel attacks or even remove and copy
the hard disk. For security protocols, a popular adversary is the Dolev-Yao ad-
versary [I0], who has full control over the network. This adversary can read and
change everything sent over the network, and can also send messages herself.
Furthermore, this adversary can compromise agents and learn their secrets. We
will consider a number of other adversaries shortly in the context of voting.

2.2 Economics

Economic models of collective decision mechanisms help to analyze the design
and goals thereof. In particular, they can be used to establish if a given vot-

ing protocol is based on principles of liberal democracies and whether it yields
welfare gains.

Game-theoretical models, in particular, are best suited for assessing the prop-
erties of collective decision mechanisms. These models aim to explain the strate-
gic interaction between agents with opposing interests and to discern why some
agents may opt for particular behaviors. A game-theoretical model of a collective
decision mechanism demands that we specify the following elements:

1. The player set (Who): who are the agents that can participate in the game?

2. The game rules (How): what is each agent allowed to do and what informa-
tion is available to him when he takes his decisions?

3. The strategy set (What): what strategies are available to the agents, where
a strategy describes what the agent does in each game situation?

4. Utilities (Why): what does each player want to achieve in such a game?

Each player aims to maximize his (expected) utility, given his observations
about other players’ past actions and his predictions about past and future ac-
tions. Given a game, one looks for its equilibria, i.e., for the situations where
no player has an incentive to change his decision given the (expected) decisions
of the remaining players. These equilibria are predictions about the outcome of
collective decisions, and can be investigated with respect to the quality and costs
of the game’s outcome. Most game-theoretical models do not assume the exis-
tence of an adversary that can influence the outcome of the collective decision.
There is however a strand of literature that explicitly incorporates an adversary
as an active player of the game. In this paper we examine one instance of such
a model.

3 Voting protocols

Numerous voting protocols have been proposed in the past. We introduce here
two protocols that we will subsequently use to illustrate how voting protocols
are analyzed from the information security and economic perspectives.

Voting protocols often involve players (or agents) acting in roles, which
are called principals. These include a voting server/election authority, with a
database that processes all the cast votes, stores them, and tallies them. Often,
the election authority, who conducts the elections, and the voting server are
considered to be one principal. The eligible voters are the principals who are
legally entitled to vote. When voting electronically, they cast their vote using a
computing platform. Usually, one considers a public bulletin board where votes
are published in an authentic way and cannot be altered afterwards. Finally,
auditors are the principals who check the published information for consistency.
Auditors may be voters, party members, candidates, or independent parties.

3.1 Simple voting protocol

A simple voting protocol is shown in Figure [I} This protocol is overly sim-
ple; it merely serves to illustrate Eve’s role in the following sections. The three

vote vote

A\
\

[aiy]

result result

Fig.1: A simple voting protocol.

involved principals, from left to right, denote a voter, a voting server, and a
database where votes are collected. Here we explicitly separate the server from
the database to model a traditional three-tier architecture with a presentation
tier (browser on the client), a server tier, and a storage tier. In the protocol, a
voter sends his vote to the server, which stores the vote in the database. After
all votes have been collected, the votes in the database are tallied and the result
is published on the server. A voter can read the published result from the server.

3.2 Random sample elections

A more complex protocol, but with stronger security guarantees, is random sam-
ple elections as introduced by Chaum [9]. The main novelty is that only a ran-
dom sample of the electorate votes. The motivation is economic: this procedure
should be less costly than voting by the entire electorate, and voters may be
better informed when they vote less frequently.

In more detail, random sample elections partition the electorate into three
sets. The first set consists of the randomly selected (real) voters, whose votes
will be counted. The second set consists of decoy voters who can ask for, and
receive, fake ballots, which they can sell to adversaries. The third set contains
those members of the electorate who are not selected and do not ask for fake
ballots. Votes cast with fake ballots will have no effect on the tally. Neverthe-
less, after a decoy voter has ordered a ballot, he behaves exactly as a normal
voter when casting his vote. As we explain below, decoy votes are intended to
prevent coercion. Additionally, there are auditors, who may be voters or other
individuals.

Figure [2| illustrates some of the actions that can take place in random sam-
ple elections. As a preliminary step, decoy voters can actively order ballots; in
contrast, selected real voters receive ballots without prior actions. This optional
step for decoy voters is illustrated by the dashed arrow. Afterwards, the protocol
for real voters and decoy voters is identical. First, each voter is provided a pair of
ballots by mail. Each ballot has a serial number, 200a and 200b in the example,
and two answers, yes/no, each with a unique code. A voter can choose either
ballot for voting. Second, to cast his vote, the voter enters online the serial num-
ber of the chosen ballot and the code of his choice. Figure 2] depicts an example

order decoy vote

... »
serial no: 200a serial no: 200b
code: vote: code: vote:
543 yes 987 yes
275 no 325 no

<%

choose ballot
choose vote . .
te: ves serial no, choice

[>
, >

destroy voted
ballot

Fig. 2: The voting protocol for random sample elections, illustrated on an exam-
ple. The dashed arrow indicates the message only sent by decoy voters.

of this in gray. Namely, the voter decides to vote with the ballot with the serial
number 2000 and the vote yes. Therefore, he looks up the code corresponding
to yes on this ballot, which is 987, and he casts his vote by entering the serial
number and this code online. Finally, the voter destroys the ballot with the serial
number 2000 so that no one can learn to which vote this code corresponds. He
may write down the code 987 to help him remember later what he has sent.

During the voting procedure, the election authority posts information on
the bulletin board to enable auditors to verify that the voting procedure was
correctly followed. We explain next, on an example, the election authority’s
internal representation of this information.

Consider a random sample election with two voters, a real voter V,. and
a decoy voter V;. We assume that there are the two pairs of ballots given in
Figure |3| The first pair (the two ballots on the left) is from Figure [2[and we
assume that it was sent to the real voter V.. The second pair (the two ballots
on the right) is sent to the decoy voter V. Furthermore, we assume that, as in

serial no: 200a serial no:200b . (serial no:023a serial no: 023b
code: vote: code: vote:| | code: vote: code: vote:
543 yes ©87) yes| ®42) yes 555 yes

275 no 325 no ! 735 no 524 no

Fig. 3: Two pairs of ballots, where the left pair is from a real voter and the right
pair is from a decoy voter. Choices are circled in gray.

code print vote|voted |decoy
200a, 543(200a, 543 |yes |- -
200a, 275(200a, 275|no |- -
200b, 987|- yes |X -
200b, 325|- no |- -
023a, 642 |- yes |x decoy
023a, 735|- no |- decoy
023b, 555|023b, 555|yes |- decoy
023b, 524|023b, 524|no |- decoy

Fig. 4: Internal representation of the information stored by the election authority
in random sample elections (simplified).

Figure [2] V; selects ballot 2000 and votes yes and that V; selects ballot 023a
and votes yes.

Figure |4] illustrates the table that is known only to the election authority
after the votes are cast. The first column denotes the serial numbers and the
codes as appearing on the ballots. The second column indicates which ballots
have not been used for casting votes and lists the serial number and codes of
these ballots again. Recall that each voter receives two ballots, but only uses
one for voting. In the example, the ballots 200a and 023b have not been used
for casting votes. The third column indicates the vote that corresponds to the
respective code in this column. For example, the first row indicates that on
the ballot with serial number 200a, the code 543 represents the vote yes. The
fourth column marks which votes have been chosen. For example, the third row
indicates that on ballot 2000, the code 987, which encodes the choice yes, has
been voted. Finally, the last column indicates whether the respective ballot was
sent to a decoy voter, which is the case here for the ballots 023a and 023b.

We will explain in the next section how protocols for posting parts of this
information enable verifiability.

4 Information security analysis

We first present the information security approach to analyzing security proto-
cols. We start with the simple protocol from Section [3] and use it to highlight
the importance of adversary models and also the relationship of these models to
trust assumptions. Afterwards, we turn to random sample elections.

4.1 Adversary

Trust and compromised principals. In information security, one reasons about
the adversary Eve, as formalized by an adversary model, or by trust assumptions.
These notions are dual: if we trust a principal, for example a system component,
to act in a certain way (e.g., to follow a specification), this is equivalent to
assuming that FEve cannot compromise the component and thereby alter its

behavior. For example, if we consider a trusted client and server in our simple
voting protocol (Figure, we can send messages to the server over the Transport
Layer Security protocol TLS (which establishes a secure channel) and hence an
adversary who can only observe the network cannot eavesdrop or tamper with
transmitted messages, such as votes or election results. However, if we consider
a compromised client platform, the adversary can both learn and alter the votes
sent. Similarly, if we do not trust the server, i.e., if it can be compromised, then
it does not help to use a secure channel to send votes over the network. Eve can
still learn and alter the votes because she can learn all the server’s secrets.

The following example illustrates that considering different trust assumptions
for different usage scenarios is commonplace.

Example 1. The Swiss regulations for electronic voting [22/23] dictate that if
at least 30% of the electorate vote electronically, it is assumed that the platform
is untrusted but the server is trusted. However, if at least 50% of the electorate
vote electronically, it must be assumed that both the platform and the server
are untrusted. Equivalently, in the first case, it is assumed that Eve can corrupt
just the platform, whereas in the second case, she can corrupt the server as well.
Hence two different adversary models are used for the two scenarios. |

Channel assumptions. Continuing with our simple voting protocol, suppose the
connection from the voter to the server is not secured by TLS but instead that
the unencrypted votes are sent over the insecure network. The voting protocol
then does not achieve vote secrecy, even with respect to a weak adversary such
as a passive, eavesdropping adversary. It is thus crucial that we state for all prin-
cipals whether they can be compromised and, moreover, for all communication
channels, what Eve’s capabilities are.

For online voting, many formalisms assume a Dolev-Yao adversary who can
control the network. Assume now that in the simple protocol, votes are not cast
online but that the postal service is used instead. Some voting schemes effec-
tively introduce the postal service as an auxiliary (out-of-band) communication
channel, which is assumed to be trustworthy, i.e., a secure channel. However,
as the following example suggests, one must carefully examine whether such
assumptions are justified and what the effects are when these assumptions fail.

Example 2. A reported case of voter fraud took place in the canton of Valais,
Switzerland, in March 2017 [2Tl26]. Normally, ballots are sent to voters by the
postal service, after which they are filled out and signed by the voters. The
ballots are subsequently cast using the postal service or are hand-delivered to
a polling station. In the reported case, some empty ballots were never received
by the intended voters. The election protocol used allows voters to order new
ballots in such situations. However, when casting their newly ordered ballots,
the affected voters noticed that someone else had already voted in their name.
The most likely explanation is that the ballots were stolen from their mail boxes
and cast by an adversary. Hence, the postal channel did not provide a secure
channel from the election authority to the voters, as an adversary had access to
the ballots. |

Summarizing, the adversary model must precisely define for each principal
involved and each channel used how Eve can interact with and possibly compro-
mise them. Otherwise security cannot be meaningfully established. See [4] for
an account of how to formalize such models in general. [2I35] explain how to
formalize channel models and adversaries with a wide range of capabilities.

4.2 Security properties

There are many security properties relevant for voting protocols. We concen-
trate on coercion resistance, integrity, and verifiability, and consider them in the
context of random sample elections. We also present some additional properties
specific to random sample elections.

Coercion resistance. In voting, Eve may try to coerce voters or pay them to vote
as she wishes. Sometimes a distinction is made as to whether the voter is willing
to collaborate with Eve, for example, for money. In such a context, a protocol
where a voter cannot possibly prove that he voted as Eve demanded is more
secure with respect to coercion than a protocol where the voter can prove how
he voted if he chooses to collaborate with Eve.

In random sample elections, Chaum [J] suggests that coercion resistance can
be achieved by employing decoy votes. These votes are indistinguishable from
real votes, but they do not contribute to the tally. Since they can be sold, Eve
may be less interested in buying votes because she cannot distinguish a real vote
from a decoy vote. In terms of the adversary model, the security properties, and
the protocol, this can be understood as follows: if decoy votes are effective, Eve
will not buy votes and therefore we can exclude the action of vote buying from
the adversary model. Of course, if we model an adversary that does not engage
in vote buying, coercion resistance holds, independent of the protocol.

Whether or not Chaum’s proposal is an adequate countermeasure to vote
buying boils down to an economics question. Eve’s problem, according to [19],
is that she must offer a sufficiently high price for votes in order to attract real
votes in addition to the decoy votes that will always be offered to her. Whether
Eve engages in vote-buying in such a situation depends on two factors. First,
as the share of decoy votes increases, Eve can buy fewer real votes with a given
budget. However, an adversary with an extremely large budget might not be
deterred by decoy votes. Second, Eve must know the distribution of the real
voters’ willingness to sell their votes. Otherwise, she risks buying mainly decoy
votes if the price is low or, alternatively, vote-buying may be extremely expensive.

Current analysis of decoy votes [19] suggests that an appropriate design of
decoy votes is a viable tool to achieve coercion resistance, however, never in
an absolute sense. In Section we will discuss new ways to buy votes when
there are decoy votes, which cast doubt on whether decoy votes achieve their
intended purpose. Furthermore, we demonstrate that they allow an adversary to
distinguish real from decoy voters.

Finally, as a side remark, note that decoy votes may pose a challenge to
the credibility of the entire voting process since the electorate is encouraged to
interact with the adversary.

Integrity and verifiability. Integrity is the property that data cannot be changed
in unauthorized ways, for example, the votes cannot be manipulated. Verifiabil-
ity is the property that participants or outsiders can establish the integrity of
the election results. Equivalently, it is verifiable that no one, including the elec-
tion authority or even errors in the voting software, can alter the result without
this being detected. Verifiability properties are often classified as either indi-
vidual verifiability or universal verifiability. Individual verifiability states that
each voter can verify that his vote was recorded as cast. Universal verifiability
states that auditors, which can be anyone, can verify that the recorded votes
were counted correctly by the server. To establish such a property, the elec-
tion authority often publishes different stages of its computations. For example,
it publishes the recorded votes in encrypted form and then publishes the de-
crypted votes as the final tally. Additionally, the authority proves that the tally
corresponds to the encrypted votes.

Verification can be performed in different ways. Take, for example, the prob-
lem of showing that the decrypted votes correspond to the encrypted ones. A
possible strategy is to verify this by a cut and choose argument. In cut and
choose, the authority constructs several tables of intermediate results and cryp-
tographically commit to them. Once committed, they cannot change the tables’
entries. A random event then decides which columns of each table must be
revealed. The revealed columns allow anyone to verify that the tables are con-
sistent, without revealing anything secret. Note that at the time it commits to
the tables, the election authority does not know which columns will later be
revealed. Therefore, if the consistency checks are verified in many iterations of
this procedure, all the computations must have been done correctly with high
probability.

Example [3, at the end of this section, illustrates cut and choose on the
example of random sample elections. Chaum does not explicitly formalize the
considered adversary model in random sample elections. However, the presented
mechanism establishes the verifiability of the voting tally even if the election
authority is compromised.

If we assume that an adversary cannot compromise the election authority, we
are usually not concerned with verifiability properties. If the election authority
behaves according to the protocol, the result will not be manipulated. However,
if we assume that the election authority can be compromised, then verifiability is
important. Also, as the adversary can manipulate each part of the computation,
we must ensure that we check all relevant parts, from ballot printing all the way
to the fact that the ballots are recorded as cast and counted as recorded.

Other properties. Two other security properties specific to random sample elec-
tions are the integrity and the verifiability of the random selection. This means

code print vote|voted|decoy| |[code print vote|voted|decoy
200a, 543|200a, 543 |yes |- - 023b, 524|023b, 524|no |- decoy
200a, 275(200a, 275|no |- - 023a, 735|- no |- decoy
200b, 987|- yes |X - 200b, 987|- yes |[x -
200b, 325|- no |- - 023a, 642 |- yes |x decoy
023a, 642 |- yes |x decoy | |200b, 325|- no |- -
023a, 735|- no |- decoy | |023b, 555|023b, 555|yes |- decoy
023b, 555(023b, 555|yes |- decoy | |200a, 275[200a, 275|no |- -
023b, 524(023b, 524|no |- decoy | |200a, 543|200a, 543|yes |- -

(a) Full (internal) representation. (b) Check individual verifiability.
code print vote|voted|decoy| |code print vote|voted|decoy
200b, 325|- no |- - 023b, 555|023b, 555|yes |- decoy
200a, 275(200a, 275/no |- - 023a, 735|- no |- decoy
023a, 735|- no |- decoy | |200b, 987|- yes |x -
023a, 642 |- yes |x decoy | |200b, 325|- no |- -
023b, 524(023b, 524|no |- decoy | |023b, 524|023b, 524|no |- decoy
200a, 543 (200a, 543 |yes |- - 023a, 642 |- yes |x decoy
200b, 987|- yes |x - 200a, 543|200a, 543 |yes |- -
023b, 555(023b, 555|yes |- decoy | |200a, 275(200a, 275|no |- -

(c) Check print auditing. (d) Check final tally.

Fig.5: Simplified version of cut and choose for random sample elections.

that the sampled voters are drawn uniformly at random from the set of possi-
ble voters, that the election authority cannot manipulate the sample group, and
that everyone can verify this while still ensuring the anonymity of the real vot-
ers. Similarly to establishing the verifiability of the tally, the election authority
publishes information on the bulletin board that allows such verification. In par-
ticular, the election authority commits to certain values before an unpredictable
public random event produces the randomness for the random sampling.

Another important property for random sample elections is the anonymity
of the sample group. This states that no one can learn who the real voters are.
Random sample elections aim to achieve this with decoy voters that can interact
with the election authority in exactly the same way as real voters. Hence they are
indistinguishable from the perspective of an observing adversary. Interestingly,
if the adversary can also interact with real and decoy voters, she can use this to
her advantage as we explain in the following section.

Example 3. We present a simplified version of cut and choose for random sam-
ple elections, continuing the example from Section For readability, in Fig-
ure [ba] we present again the table that is only known to the election authority.
We gray out this table’s content to denote that the gray values are not visible
on the bulletin board, but only known internally.

Of course, at the beginning of the election, some of these entries are not
yet known. In a first phase, which takes place before the ballots are sent to the

voters, the election authority fills in the first, third and fifth columns of the table
in Figure [ba] while the second and fourth columns remain empty. The election
authority then produces multiple copies of this table, 3k copies in this example,
and randomly permutes their rows, resulting, for example, in the tables shown in
Figures[5b}{bdl Then, it encrypts each column of each table with a different secret
key and publishes all the resulting encrypted tables on the bulletin board. At
this stage, the bulletin board contains 3k tables where columns one, three, and
five are filled in but the content is not yet readable by the auditors. The columns
are encrypted in such a way that they hide the contents of the columns but they
can later only be decrypted to the original plain text. With this mechanism, the
election authority commits to the content without revealing it at this point.

Afterwards, the real voters are chosen, the ballots are sent to the real and de-
coy voters, and the voters cast their votes. Then, the second and fourth columns
are filled into all 3k copies of the table, after the votes have been recorded.
The resulting columns are again encrypted and published, such that the bulletin
board now contains 3k full, but hidden tables; this concludes the “cut”-phase.

Next, in the “choose”’-phase, the 3k tables are divided into three disjoint
batches, each containing k tables, based on an unpredictable, random event. The
membership of a table to a batch decides which of the table’s columns must be
revealed on the bulletin board for auditors to inspect. Each table in Figures [5b]-
represents one batch. The white columns depict which columns are revealed
for all tables in this batch for the verifiability checks. The gray columns are
never revealed. It is important that the event that determines which tables go
into which batch is unpredictable so that the election authority cannot prepare
the tables in such a way that all the checks go through even when the tables
are inconsistent. Furthermore, it is crucial that the columns of all tables have
already been committed to, since this allows an auditor to discover if the election
authority has manipulated the tables after-the-fact. The following verifiability
checks are used by this procedure.

In the first batch, depicted by the table in Figure the serial numbers and
codes, their repetition in unused ballots, and the voted marks (white columns)
are revealed on the bulletin board. This enables every voter to verify that his
vote has been recorded as cast. For example, the voter V,. can verify that the
ballot 2000 was used to cast a vote (because the field in “print” is empty) and
that the code 987 was marked as voted. However, no one else learns that the
code 987 corresponds to the yes vote.

The published columns in Figure enable voters to verify print auditing,
that is that the ballots were printed correctly by the election authority. Each
voter can check that the code-vote association of his unused ballot is correctly
depicted by the table. For example, the voter V,. can check that for the ballot
200a, the code 275 corresponds to no and 543 to yes, corresponding to the copy of
the ballot he still has in his possession. This ensures that the election authority
cannot forge votes by printing ballots incorrectly. In particular, because the
authority cannot predict which ballot will be chosen by the voter, it cannot
know which ballot must be revealed for the consistency check.

In the final batch, as depicted in Figure the last three columns of the
tables are revealed. This enables all participants to verify the tally. In the ex-
ample, everyone can see that there are two votes for yes and one of them has
been sent by a decoy voter and will thus not be counted in the tally. EI Note that
because all tables have different row permutations, this procedure also ensures
vote privacy. No auditor of the bulletin board can conclude, for example, that
the voter with ballots 200a and 2006 voted yes with code 987. |

Note that although Chaum does not provide formal models, the protocol
we have sketched (and his extensions) are sufficiently detailed that they can be
appropriately formalized and verified from the information security perspective.

5 Economic perspective

In this section, we outline the economic analysis of random sample elections
with decoy votes, explore the required security properties, and show that more
sophisticated adversaries may violate some of the security properties of random
sample elections with decoy votes.

5.1 Economic analysis

We illustrate the analysis of random sample elections. In the simplest setting
with private values and costly voting, we consider a model that has the following
features:

1. There are two alternatives (S and P), representing candidates or issues.

2. The electorate is a given finite set N, which is randomly split into three
subsets N1, Ny and N3. Members of N; have the right to vote (henceforth
called “sample group”), members of Ny obtain decoy ballots (henceforth
“decoy group”), and members of N3 do not participate in the process. For
any given set S, we use |S| to denote its cardinality.

3. Voters i € N are of two types t; = S and t; = P, that is, they either prefer
SorP.

4. A share \s prefers S and a share Ap prefers P, with As + Ap = 1.

5. Any voter i’s utility is:

t; chosen|t; not chosen

i votes 1-c¢ —c

1 does not vote 1 0

In this table, we have normalized the utility gain to 1 when the preferred
alternative is chosen by the sample group. Voting is costly, as citizens need
time to make up their minds and to vote. These costs are captured by the
parameter ¢, 0 < ¢ < 1, which is assumed to be the same for all voters for
illustrative purposes.

3 The actual table in random sample elections is more involved and also includes
information allowing one to ascertain that the right voters have been provided with
ballots. We refer to [9] for further details, which are not relevant for this paper.

6. Real and decoy voters decide whether to abstain or to vote for one of the
two alternatives. The votes of decoy voters are disregarded.

Finding the equilibria of the above game is the core of the economic analysis.
For examples related to this game, see [16]. An immediate observation is that
no voter will cast a vote against his preferred alternative. Building on equilibria
outcomes, we can then make welfare comparisons relative to the standard voting
system where all N citizens vote simultaneously, which serves as a benchmark.
The equilibria can be used to assess whether the voting outcome will achieve a
low quality or high quality of collective decisions and whether or not the election
generates high costs for the citizens.

In the random sample elections game introduced before, we can immediately
observe that the highest decision quality is achieved if and only if

1
S is chosen & s > —.

[\

Regarding the costs, the best possible situation occurs when nobody votes. In
this case, however, no democratic decision-making is possible. Accordingly, there
is a trade-off between quality and costsE| Typically, this is resolved by a welfare
function that incorporates these two objectives or, alternatively, by achieving
a certain quality at minimal cost. In most of the well-established costly voting
models, the voting outcome does not achieve particularly high quality and the
margin between the votes cast for § and P is much smaller than the margin
between the support for the two alternatives in the entire population. Intuitively,
this can be explained as follows: If a voter is in favor of the same decision as most
voters are, he will more likely not vote. He can save the cost of voting because it
is probable that his favored choice wins anyways. The small difference between
votes cast for S and P opens up great opportunities for Eve. By manipulating a
small number of votes, Eve can arrange that her preferred alternative wins, even
if the support for the other alternative is much larger in the entire population.

5.2 Implicit security properties

In the following, we review some standard assumptions that are typically taken
for granted in the voting model in Section We show that with the insights
provided by information security analysis, these assumptions can be made ex-
plicit and can be proven to hold.

Economic models usually assume that the adversary does not interfere with
the voting process. However, if one takes Eve seriously, it is easy to imagine
different ways that she can affect the outcome of a collective decision directly.
First, a small fraction of votes may be manipulated after they have been sub-
mitted by the voters, but before they have been made public. The severity of
this problem increases the more a voting system tends to compress the vote

4 In general, this does not hold for all citizens. A fraction of voters derives positive
value from engaging in deliberation and voting.

margin, say by providing members of the majority with lower incentives to turn
out than members of the minority. When margins are small, manipulating a few
votes may suffice to change the outcome. As we have seen, the property of in-
formation security that denotes that no one can alter the votes after they have
been cast is integrity. Additionally, one can require that everyone must be able
to verify that this property holds. This is captured by the properties individual
and universal verifiability.

Second, Eve may want to influence the selection of the voters in the sample
group. To ascertain that a protocol is not vulnerable to such attacks, the sample
group must be chosen randomly, and the integrity of the assignment of voters
to the sample group must hold. Again, an additional requirement can be that
these properties are verifiable.

Third, Eve may want to buy certain votes directly from the citizens. For this
to be possible, she must have access to the voters’ identities, who, in turn, need
to prove to Eve that they have voted as agreed. Hence, both the anonymity of
the sample group and coercion resistance are important properties.

Finally, Eve could try and send messages with political content to (targeted)
voters to influence their evaluations of alternatives, and ultimately their de-
cisions. This is related to the channel assumptions in the adversary model of
information security. If we assume that there are only insecure channels from
the election authority to the voter, then Eve could effectively influence voters
by forging information as coming from the authority. If, however, the channels
from the authority to the voter enable message authentication, then Eve cannot
convincingly send messages as coming from the authority; this might decrease
her chances to influence the voters.

For completeness, we summarize the security requirements needed for the
successful implementation of random sample elections. They are: integrity and
verifiability of the tally and the selection, random selection of the sample group,
anonymity of the sample group, coercion resistance, and message authentication.
We have just argued that economic models rely on these properties, which must
be established by using the methods of information security. Conversely, as dis-
cussed in Section [4:2] information security sometimes assumes certain adversary
capabilities that are based on economic reasoning, for example the argument
that Eve will not buy votes if decoy votes are deployed because they make vote
buying ineffective. Economic approaches can help to devise extremely sophis-
ticated adversaries that exploit humans. We demonstrate that if we model a
more sophisticated adversary, even with a very low budget she can break the
anonymity of the sample group when decoy votes are used.

5.3 Vote buying

Decoy ballots have been advocated as a viable tool against vote buying. For
instance, [19] analyze decoy ballots from a game-theoretic perspective and con-
clude that they are reasonably immune to vote-buying attempts by malicious
adversaries facing budget constraints. In their analysis, they only consider sim-
ple attacks by the adversary: she sets a price at which she is willing to buy

votes, both from real voters and decoy voters. With the help of a simple model,
we briefly discuss how a more sophisticated adversary Eve can separate decoy
votes from real votes in the process of vote—buying

Consider now that the electorate N is composed of risk-neutral citizens,
which base their decision solely on expected gains. We also assume that |N| is
sufficiently large so that we can work with the law of large numbers, and we
denote by p, for 0 < p < 1, the percentage of citizens who have real votes. These
voters are chosen randomly. The rest of the electorate obtains decoy votesﬂ We
stress that the parameter p can be chosen by the election designer. Whether one’s
ballot is real or decoy is private information, and hence, there is no possibility
for an outside agent (including Eve) to distinguish between the two types of
ballots. For a voter ¢, let V; be the utility he obtains from voting. If a voter i
has a decoy ballot, his utility is V; = 0. If a voter ¢ has a real ballot, his utility is
Vi =V > 0. The exact value of V' is determined in equilibrium. We assume that
the adversary’s goal is to buy half of the real votes, which amount to a share
p/2 of the population.

We consider two possible procedures employed by Eve. First, suppose that
she offers each citizen a certain amount x in exchange for his vote. Clearly, if
x < V, she will only obtain decoy ballots. Hence assume that x = V, so that
all citizens who are offered the deal accept. In order for Eve to obtain half of
the real votes, on average she then needs to offer x to a half of the population
since decoy ballots and real ballots are indistinguishable. This means that Eve
expects per-capita costs denoted by B where

B=—.
2

Second, suppose that Eve chooses an entirely different approach and uses
so-called “Devil’s Raffles”, i.e. offering lotteries Ly = (pk,qx), (k = 1,2,...) of
the following kind: with probability pg, the voter will receive a sure payoff ¢, in
exchange for his vote, and with probability 1 — p; no transaction will occur and
the voter (real or decoy) will keep his ballot. Consider now two lotteries Ly and

L2 with
1

p2::2
q =V —¢
q2 Z:V+€

for some small value € > 0. Moreover, let

e+ paqa e+3(V+e)

a1 B V—e @

p1:

5 The simple model we consider is different from, yet similar in spirit to, the one
considered by [19].

5 Thus we assume that |N3| = 0. This is without loss of generality. Moreover, a full-
fledged analysis reveals in our setting that all members of Ny will apply for decoy
votes.

Hence,

PL-qir=c+p2-q@2>p2-qe=5-(V+e). (2)

N =

Thus, the expected payoff from choosing lottery L; is higher than that from
choosing Ls.

Let us next examine the utilities of citizen ¢. On the one hand, if he accepts
the lottery Ly, for k € {1,2}, he expects

E[é sells his vote for L] = pr - qx + (1 — pi) - V. (3)
If, on the contrary, citizen ¢ does not sell his vote, he expects
E[i does not sell his vote] = V; (4)

which is zero for decoy voters and V for real voters.
Since V; = 0 for decoy voters, they will buy lottery L; since p1q; > p2ge. For
real voters V; =V and choosing lottery Lo therefore yields the expected payoff

1 1 1

while selecting L yields

n(V—-—e)+(1—p)V=V—pe. (6)

Hence real voters will buy lottery Ls.
Eve will offer these lotteries to a share s of the population. In order to obtain,
on average, half of the real votes again, s must satisfy

s pt(-p)0)=p/2es=5— =1
P2

This calculation reflects that p - py is the probability that a real voter gives
Eve his vote (in lottery two), whereas (1 — p) - 0 is the probability that Eve
receives a real vote from a decoy voter. The result makes sense: Real voters have
a chance of % to be able to sell their votes. Hence, the entire electorate must be
invited to apply for the lotteries.

We next calculate Eve’s expected aggregate costs. For this purpose, we make
¢ arbitrarily small and neglect it in the calculation. Then the expected budget
amounts to

1 |4

BZP'P2'Q2+(1—p)-p1'CJ1 %Pz'Q2=§'Q2=§-

‘We obtain two conclusions from an economics perspective. First, attacks with
Devil’s Raffles are useful to identify who has a decoy ballot and who does not
have one because real and decoy voters choose the lottery Lo and L to sell their
votes, respectively. Moreover, Eve can elicit p if it is not known to her with a
small budget by selecting small values of p; and ps. Second, regarding the budget
needed to obtain half of the real votes: there is no improvement compared to

the first procedure where a price is fixed at which a fraction of votes is bought.
However, there are more sophisticated forms of Devil’s Raffles that also lower
the budget [13].

From the security perspective, we learn that a sophisticated adversary can
buy votes, even in the presence of decoy ballots. Given this, a protocol using
decoy votes is unlikely to provide coercion resistance unless other more effec-
tive mechanisms are in place. Repairing this problem would require a protocol
redesign. Moreover, the economic analysis demonstrates that decoy votes vio-
late the anonymity of the sample group. Thus even if coercion resistance can
be established using decoy ballots, this mechanism should not be used when the
anonymity of the sample group is important.

6 Outlook

Through examples, we have shown how the adversary Eve provides an effective
interface between security and economics. In particular, information security fo-
cuses on what Eve can technically do in a system that incorporates security
mechanisms with the aim of achieving security properties. In contrast, economic
models investigate what Eve is rationally motivated to do in a self-designed game
with the system’s participants. We have illustrated how these two viewpoints can
complement each other. Economic models implicitly assume security properties
that can be made explicit and be proven by using the techniques of information
security. Similarly, informal economic arguments motivating the adversary mod-
els used in information security must be analyzed with great care. The example
of the decoy votes, which are supposed to avoid coercion, shows that sophisti-
cated adversaries can design out-of-the box games that endanger other security
properties, such as the anonymity of the sample group.

An important future research direction is certainly to investigate the wide
spectrum of adversary models used in election research, their economic justifi-
cations, their effects on critical security properties, and as a consequence how
voting protocols must be strengthened (or weakened). In addition there are se-
rious concerns that go beyond the actual voting and tallying protocol. Free and
fair elections [I2] impose requirements before and after the election: including
basic freedoms like those of free speech, free press, free movement and assembly,
as well as more specialized rights like access to polls and protection from intim-
idation. Recent elections in America and France have shown that organizations
and other countries can attempt to influence public opinion by propaganda or
“fake news”.

Such election hacking is a major challenge for democracy and an important
research direction for both information security and economic research. We con-
clude with an illustration based on our example from Section [5.1} Suppose that
Eve manages to send a message about the relative merits of the two alternatives
S and P that is perceived to be from a trusted authority and affects through
biased information (“fake news”) individual evaluations of the alternatives. As-
sume in our random sample elections game that Eve can manipulate in this way

a small fraction of the sample group’s members. Two possibilities can occur.
First, and less plausibly, assume that it is common knowledge among all voters
that Eve has manipulated a fraction of voters who then vote as desired by Eve
and that Eve’s preferred alternative is also commonly known. Then, the other
voters could adjust their decision whether to abstain or not and could—and
would—neutralize this manipulation. Second, and more plausibly, assume that
Eve’s manipulation is hidden. Since vote margins are typically small in costly
voting setups, such a hidden manipulation—even of a small fraction of voters—
would affect the outcome significantly. This type of manipulation makes voting
outcomes extremely vulnerable and developing adequate security countermea-
sures is a considerable challenge.

References

1. Anderson, R.: Why Information Security is Hard — An Economic Perspective. In:
Proceedings of the 17th Annual Computer Security Applications Conference. pp.
358-365. ACSAC 01, IEEE Computer Society, Washington, DC, USA (2001),
http://dl.acm.org/citation.cfm?id=872016.872155

2. Basin, D., Cremers, C.: Modeling and analyzing security in the presence of com-
promising adversaries. In: Computer Security - ESORICS 2010. Lecture Notes in
Computer Science, vol. 6345, pp. 340-356. Springer (2010)

3. Basin, D., Cremers, C.: Know your enemy: Compromising adversaries in protocol
analysis. ACM Trans. Inf. Syst. Secur. 17(2), 7:1-7:31 (Nov 2014), http://doi.
acm.org/10.1145/2658996

4. Basin, D., Cremers, C., Meadows, C.: Model Checking Security Protocols, chap. 24.
Springer-Verlag (2017)

5. Basin, D.A., Radomirovic, S., Schlapfer, M.: A complete characterization of secure
human-server communication. In: 2015 IEEE 28th Computer Security Foundations
Symposium. pp. 199-213. IEEE Computer Society (2015)

6. Beilharz, H.J., Gersbach, H.: Voting Oneself into a Crisis. Macroeconomic Dynam-
ics 20(4), 954-984 (2016)

7. Blanchet, B.: An Efficient Cryptographic Protocol Verifier Based on Prolog Rules.
In: Proceedings of the 14th IEEE Workshop on Computer Security Foundations.
pp. 82-96. CSFW ’01, IEEE Computer Society, Washington, DC, USA (2001),
http://dl.acm.org/citation.cfm?id=872752.873511

8. Caballero, J., Grier, C., Kreibich, C., Paxson, V.: Measuring Pay-per-Install: The
Commoditization of Malware Distribution. In: Proceedings of the 20th USENIX
Conference on Security. pp. 13-13. SEC’11, USENIX Association, Berkeley, CA,
USA (2011), http://dl.acm.org/citation.cfm?id=2028067.2028080

9. Chaum, D.: Random-Sample Voting, http://rsvoting.org/whitepaper/white_
paper.pdf|, accessed: 2017-07-07

10. Dolev, D., Yao, A.: On the Security of Public Key Protocols. IEEE Transactions
on information theory 29(2), 198208 (1983)

11. van Eeten, M.J., Bauer, J.M.: Economics of Malware: Security Decisions, Incen-
tives and Externalities. OECD Science, Technology and Industry Working Papers
2008(1) (2008)

12. ElKklit, J., Svensson, P.: What Makes Elections Free and Fair? Journal of Democracy
8(3), 32-46 (1997)

http://dl.acm.org/citation.cfm?id=872016.872155
http://doi.acm.org/10.1145/2658996
http://doi.acm.org/10.1145/2658996
http://dl.acm.org/citation.cfm?id=872752.873511
http://dl.acm.org/citation.cfm?id=2028067.2028080
http://rsvoting.org/whitepaper/white_paper.pdf
http://rsvoting.org/whitepaper/white_paper.pdf

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Gersbach, H., Mamageishvili, A., Tejada, O.: Sophisticated Attacks on Decoy
Votes. Mimeo (2017)

Gersbach, H., Miihe, F.: Vote-buying and Growth. Macroeconomic Dynamics
15(5), 656-680 (2011)

Gordon, L.A., Loeb, M.P.: The Economics of Information Security Investment.
ACM Transactions on Information and System Security (TISSEC) 5(4), 438-457
(2002)

Krasa, S., Polborn, M.K.: Is Mandatory Voting Better than Voluntary Voting?
Games and Economic Behavior 66(1), 275-291 (2009)

Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN Prover for the Sym-
bolic Analysis of Security Protocols. In: Proceedings of the 25th International Con-
ference on Computer Aided Verification. pp. 696-701. CAV’13, Springer-Verlag,
Berlin, Heidelberg (2013), http://dx.doi.org/10.1007/978-3-642-39799-8_48
Oppliger, R., Schwenk, J., Helbach, J.: Protecting Code Voting Against Vote Sell-
ing. In: Sicherheit 2008: Sicherheit, Schutz und Zuverlassigkeit. Konferenzband der
4. Jahrestagung des Fachbereichs Sicherheit der Gesellschaft fiir Informatik e.V.
(GI), 2.-4. April 2008 im Saarbriicker Schloss. LNI, vol. 128, pp. 193-204. GI (2008)
Parkes, D.C., Tylkin, P., Xia, L.: Thwarting Vote Buying Through Decoy Ballots.
In: Proceedings of the 16th Conference on Autonomous Agents and MultiAgent
Systems. pp. 1679-1681. International Foundation for Autonomous Agents and
Multiagent Systems (2017)

Schmidt, B., Meier, S., Cremers, C., Basin, D.: Automated Analysis of Diffie-
Hellman Protocols and Advanced Security Properties. In: Proceedings of the 2012
IEEE 25th Computer Security Foundations Symposium. pp. 78-94. CSF 12, IEEE
Computer Society, Washington, DC, USA (2012), http://dx.doi.org/10.1109/
CSF.2012.25

Schweizer Radio und Fernsehen (SRF): Spurensuche nach
dem Wahlbetrug im Wallis. https://www.srf.ch/news/schweiz/
spurensuche-nach-dem-wahlbetrug-im-wallis, accessed: 2017-06-22
Schweizerische Bundeskanzlei: Anhang zur Verordnung der Bundeskanzlei iiber die
elektronische Stimmabgabe. https://www.bk.admin.ch/themen/pore/evoting/
07979/index .html?lang=de, Inkrafttreten: 2014-01-15, Accessed: 2017-06-16
Schweizerische Bundeskanzlei: Verordnung der Bundeskanzlei iiber die elektro-
nische Stimmabgabe. https://www.admin.ch/opc/de/classified-compilation/
20132343/index.html#appl) Inkrafttreten: 2014-01-15, Accessed: 2017-06-16
Shieh, E., An, B., Yang, R., Tambe, M., Baldwin, C., DiRenzo, J., Maule, B.,
Meyer, G.: Protect: A Deployed Game Theoretic System to Protect the Ports
of the United States. In: Proceedings of the 11th International Conference on
Autonomous Agents and Multiagent Systems-Volume 1. pp. 13-20. International
Foundation for Autonomous Agents and Multiagent Systems (2012)

Stone-Gross, B., Holz, T., Stringhini, G., Vigna, G.: The Underground Economy of
Spam: A Botmaster’s Perspective of Coordinating Large-Scale Spam Campaigns.
LEET 11, 4-4 (2011)

Tages Anzeiger: Wahlbetrug im Oberwallis — 30-jahriger Schweizer
verhaftet. http://www.tagesanzeiger.ch/schweiz/standard/
Wahlbetrug-im-0Oberwallis--30jaehriger-Schweizer-verhaftet/story/
14197130, accessed: 2017-06-22

Tambe, M.: Security and Game Theory: Algorithms, Deployed Systems, Lessons
Learned. Cambridge University Press (2011)

http://dx.doi.org/10.1007/978-3-642-39799-8_48
http://dx.doi.org/10.1109/CSF.2012.25
http://dx.doi.org/10.1109/CSF.2012.25
https://www.srf.ch/news/schweiz/spurensuche-nach-dem-wahlbetrug-im-wallis
https://www.srf.ch/news/schweiz/spurensuche-nach-dem-wahlbetrug-im-wallis
https://www.bk.admin.ch/themen/pore/evoting/07979/index.html?lang=de
https://www.bk.admin.ch/themen/pore/evoting/07979/index.html?lang=de
https://www.admin.ch/opc/de/classified-compilation/20132343/index.html#app1
https://www.admin.ch/opc/de/classified-compilation/20132343/index.html#app1
http://www.tagesanzeiger.ch/schweiz/standard/Wahlbetrug-im-Oberwallis--30jaehriger-Schweizer-verhaftet/story/14197130
http://www.tagesanzeiger.ch/schweiz/standard/Wahlbetrug-im-Oberwallis--30jaehriger-Schweizer-verhaftet/story/14197130
http://www.tagesanzeiger.ch/schweiz/standard/Wahlbetrug-im-Oberwallis--30jaehriger-Schweizer-verhaftet/story/14197130

Voting in E-participation:
A Set of Requirements to Support
Accountability and Trust by Electoral Committees

Peter Parycekl, Michael Sachs', Shefali Virkar' and Robert Krimmer?

! Danube University Krems
Department for E-Governance in Administration
{peter.parycek,michael.sachs, shefali.virkar}@donau-uni.ac.at
% Tallinn University of Technology
Ragnar Nurkse Department for Innovation and Governance
robert.krimmer@ttu.ee

Abstract. Voting is an important part of electronic participation whenever it
comes to finding a common opinion among the many participants. The impact
of the voting result on the outcome of the e-participation process might differ a
lot as voting can relate to approving, polling or co-decision making. The greater
the impact of the electronic voting on the outcomes of the e-participation pro-
cess, the more important become the regulations and technologies that stipulate
the voting system and its procedures. People need to have trust in the voting
system in order to accept the outcomes. Hence, it is important to use thoroughly
trustworthy, auditable and secure voting systems in e-participation; especially
whenever the voting within the e-participation process is likely to have a signif-
icant impact on the outcome. This paper analyses the verdict of the Austrian
Constitutional Court in relation to the repeal of the Elections to the Austrian
Federation of Students in 2009 where electronic voting was piloted as addition-
al remote channel for casting a ballot. The court states its perspectives on elec-
tions and electronic voting which serve as sources for the derivation of legal re-
quirements for electronic voting in this paper, namely requirements for ac-
countability and trust by the electoral committee. Then, possible solutions for
the requirements based on scholarly literature are described. The paper does not
intend to explicitly provide e-voting solutions for elections, but instead propos-
es to serve as a basis for discussion of electronic voting in different e-
participation scenarios.

Keywords: e-participation, e-voting, electoral committee, accountability, trust

1 Introduction

Electronic participation is characterized by the participation of citizens in political
decision-making processes with tools based on modern information and communica-
tion technologies (ICTs). Procedures for the participation of citizens in the decision-
making process are possible at all administrative levels, from the municipality to the

European Union, but can also be integrated in other contexts such as private organisa-
tions. The implementation of electronic participation has the potential to reduce hur-
dles for participation and to lower the costs of these processes in the long-term [1].

E-participation can be used for various purposes and in different forms, hence, the
processes and platforms are often tailor-made for specific contexts. Models that de-
scribe e-participation usually divide elements of participation according to the degree
of impact each has on the final decision [2]. While low levels of participation, such as
accessing information or commenting on ideas, do usually not require strong regula-
tions and high technical security standards, forms of participation with high impact on
decision-making outcomes require the implementation of higher standards. As soon as
selections and votes are part of the participation process, technical security and de-
tailed regulations are required in order to establish trust in the outcomes of the partic-
ipatory actions. The greater the impact of the participatory process on the final result,
the higher the demands for proper regulations, implementation and secure systems
[3]-

E-voting in its legally binding context of official elections is the form of
e-participation with the most direct impact on the actual decision. Consequently, it is
relevant to look closely at e-voting requirements for use in secure voting processes in
e-participation.

1.1 Background: The Elections to the Austrian Federation of Students

The elections to the Austrian Federation of Students in 2009 have been the first and
only instance of electronic voting in Austria up until now. As the level of participation
is traditionally low in the elections to the Austrian Federation of Students [4], e-
voting was seen as a means with the potential to increase engagement and to test new
technology within a young target group. The implementation of an e-voting pilot as
additional remote channel to cast a vote along side the paper ballot in these elections
was accompanied by a controversial discussion among students and in the public.

The update of the Regulation of the Elections to the Austrian Federation of Stu-
dents from 2005' came into effect on 3 October 2008 and expired on 13 January
2012. The regulation was challenged by individuals in the Austrian Constitutional
Court, which repealed the regulation on e-voting as it was not in alignment with the
corresponding Federation of Students law. Consequently, the election was considered
invalid. Major issues influencing the verdict of the Constitutional Court pertained to
regulations related to the electoral committee and a lack of clear definitions concern-
ing the processes of the verification within the entire voting system. For a comprehen-
sive analysis, see the works of Krimmer, Ehringfeld and Traxl [5], [6].

' In German: ,Hochschiilerinnen- und Hochschiilerschaftswahlordnung 2005”. Available at:

https://www.ris.bka.gv.at/Dokument.wxe? Abfrage=Bundesnormen&Dokumentnummer=N
OR30006701

1.2 Relevance for the electoral committees and accountability

The Austrian Constitutional Court dealt extensively with the Austrian Federation of
Students elections in 2009, and the relevant judgements can provide guidelines for the
implementation of secure e-voting in any context. This paper aims, therefore, to pro-
vide a basis for the discussion of possible solutions to legal and technical issues en-
countered during the adoption of an e-voting system based on the demands made by
the Constitutional Court.

In the framework of electronic participation, participatory decision making is usu-
ally not legally binding. E-voting regulations for officially binding elections hence
address the highest standards of security, audibility and reliability, and are of rele-
vance within the context of co-decision making in e-participation.

One must bear in mind that voting regulations and suffrage differ among countries,
and even differ within countries depending on the purpose and context of the voting
process. While the requirements formulated in this document may not be directly
applicable to different electronic voting contexts they do indeed serve as a base for
the creation of tailor-made solutions.

1.3 Structure of the Paper

In order to provide a robust analysis of e-voting as a participatory mechanism, and to
present an informed account of the legal concepts and technical solutions underpin-
ning the requirements for secure electronic voting in Austria, this research paper is
structured as follows. First, the chapter entitled Methodology presents an account of
the research design and methodological tools employed by the authors within the
context of this research project. The next chapter, Requirements based on Literature,
examines the selected legal requirements as embedded case studies supported by evi-
dence based in scholarly and practitioner literature. The penultimate chapter, Discus-
sion, offers an informed concluding analysis of e-voting and its potential as a tool for
greater public engagement; locating the process within the broader conceptual frame-
work of e-participation in Europe. The paper closes with the final chapter, Acknowl-
edgements.

2 Methodology

This paper takes into account the legal considerations of the Austrian Constitutional
Court ruling regarding the implementation of e-voting in the Elections of the Austrian
Federation of Students of 2009 in order to reflect the requirements for secure voting
systems that enable the electronic participation of citizens. For this purpose, legal
requirements for electronic voting were derived from the verdicts passed by the Aus-
trian Constitutional Court. Possible solutions for these requirements were then ex-
tracted in a literature analysis of international scientific works. While the original
study takes into consideration all requirements derived from the judgements of the
Austrian Constitutional Court, this paper focuses on those that consider the require-
ments for the electoral committee and those that pertain to system accountability as

these can potentially be transferred to other scenarios and contexts of voting as a form
of e-participation.

2.1 Deduction of requirements

Sentences of the Austrian Constitutional Court were analysed for references to
e-voting in the Elections of the Austrian Student. Not all judgements with such refer-
ences included relevant information, for some appeals were rejected as they were not
considered lawful or valid. The source of the sentences was the website of the Legal
Information System of the Republic of Austria.” The following pronouncements of
the Constitutional Court were analysed, and they are listed below according to date of
sentence and reference number:

— 25 June 2009, V28/09, V29/09 ua

— 10 December 2009, G165/09, V39/09

— 23 February 2010, V89/09

— 9 March 2011, G287/09

— 02 December 2011, WI-1/11, V85/11ua, B1214/10, B1149/10, B898/10
— 5 March 2012, WI-2/11

— 22 August 2014, WI 2/2014

Once all possible legal requirements were extracted from the original texts they were
clustered and filtered. These requirements were then further simplified for the purpose
of better handling, and redundant requirements were merged with others or deleted.
The categories for the clustering were thereafter derived from the content of all re-
quirements and not prior based on literature. In this paper the authors only discuss the
requirements that are part of the categories electoral committee and accountability.

2.2 Literature research for solutions

This section consists of a description of the research strategy adopted by the authors
whilst conducting a review of existing literature for legal concepts and technological
solutions relevant to the research project. To search for literature pertaining to elec-
tronic voting in general and to the derived legal requirements in particular, this project
made use of one database of peer-reviewed literature (Scopus), one specialist search
engine (Google Scholar), and one database of full-text books (Google Books).

The Scopus Database was queried specifically for peer-reviewed, scholarly litera-
ture. In order to optimally utilize the resource, a systematic conventional query string
was constructed to conduct the search within the ‘title’, ‘abstract’ and ‘keywords’
fields of the publications indexed by this database. Searches were also filtered by
scholarly discipline in order to narrow down search results and to identify highly rele-
vant material. This research project also made use of the Google Scholar search en-
gine to recover full-text sources of material previously discovered using Scopus, to
identify clusters of publications authored by the same person, and to obtain new cita-

% https://www.ris.bka.gv.at/defaultEn.aspx

tions through a conventional key word search. The Google Books database was also
queried exhaustively in order to access material from both single-author books and
chapters within edited volumes. Here, books identified from earlier literature searches
were first looked up, either by publication name or by author/editor name or a combi-
nation of the two. A conventional keyword search was also pursued.

3 Requirements based on Literature

This chapter outlines and analyses the legal requirements for the implementation of
secure e-voting in Austria derived from the rulings of the Austrian Constitutional
Court. In particular, it discusses in some detail an extensive collection of legal con-
cepts and technical solutions extracted through a systematic literature analysis of in-
ternational scientific works that are considered relevant to the two sets of legal re-
quirements selected as the embedded case studies for this research paper.

The research findings presented are organised in the following manner: first, the
chapter comprises of three sections. The first section presents the derivation of the
requirements based on judgements passed in Austria by the Constitutional Court, and
introduces the embedded case studies. The second section is then concerned with
derived legal requirements for the electoral committee, and the third with derived
legal requirements pertaining to electoral accountability. Each stipulated legal re-
quirement is listed individually, and is followed immediately by a discussion that
touches upon how existing scholarly literature informs the legal condition conceptual-
ly and/or where developments in technology further reflect or advance key fundamen-
tal legal concepts.

As this paper does not seek to provide concrete solutions for electronic distance
voting, but guidelines for voting at different stages within e-participation processes,
literature about remote electronic voting and electronic voting machines was consid-
ered for the scholarly discussion below.

3.1 Legal Requirements at a Glance: The Embedded Case Studies

The analysis of the verdicts passed by the Austrian Constitutional Court yielded at
total of 28 legal requirements, grouped by these researchers within 5 categories. Of
these 5 categories, two — electoral committee and accountability — were selected as
embedded case studies for this research paper.

Out of the 28 requirements identified, 5 relate to the category electoral committee.
The derived requirements for the category electoral committee include that: the elec-
toral committee must be able to carry out all its statutory tasks; the electoral commit-
tee must accept/receive the ballot; the electoral committee must examine the electoral
authority/eligibility of the elector; the verification of the identity of the person entitled
to vote must take place before the transmission of the electoral form; and, a certifica-
tion of the e-voting system by experts cannot replace the state guarantee of the elec-
toral principles observed by electoral committees.

Another 5 derived requirements may be clustered around the category accountabil-
ity. These include: the electoral committee must be able to determine the election
results and their validity; the verification of the validity of the ballot papers must be
ensured by the electoral committee; the electoral committee and the judicial authori-
ties of public law must be able to carry out a verification of the electoral principles
and results after the election; the essential steps of the electoral process must be relia-
bly verified by the electoral committee (without the assistance of experts) and the
judicial authorities of public law; and, the essential steps of the determination of re-
sults must be reliably verified by the electoral committee (without the participation of
experts).

3.2 Requirements for trust by electoral committees

This section discusses the legal concepts and technical solutions pertaining to the
requirements for trust by electoral committees as identified in the scholarly and prac-
titioner literature.

The electoral committee must be able to carry out all its statutory tasks. Today, a
large percentage of electoral management bodies (EMBs) use information and com-
munications technologies with the aim of improving administrative procedures asso-
ciated with the electoral process [7]. Technologies deployed range from the use of
basic office automation tools such as word processing and spreadsheets to the applica-
tion of more sophisticated data processing tools including data base management
systems, optical scanning, and geographic information systems [8].

According to Caarls (2010), for an EMB to successfully carry out all its statutory
tasks, therefore, it is important that a two-pronged approach be adopted [9]. On the
one hand, the tasks and responsibilities of the EMB need to be defined clearly in leg-
islation [10]. The extent to which the EMB is involved with the electoral process has
direct bearing on the type and nature of the technological solution it deploys. On the
other, it is also vital that personnel within the EMB possess the necessary technical
expertise to effectively manage the process of electronic voting [11]. Only when both
pre-conditions are fulfilled will the administering electoral body be able to successful-
ly adopt and implement technology solutions to effectively perform and enhance its
functions. For technical solutions see also (amongst others) Prosser et al. (2004) [12].

The electoral committee must accept/receive the ballot. Remote electronic voting
refers to the election process whereby electors can opt to cast their votes over the
Internet, most usually via a Web browser from home, or from possibly any other loca-
tion where they have Internet access [13]. Whilst many different aspects of this sort of
election warrant closer accountability, the focus of this recommendation is on Securi-
ty.

Voting in the traditional way, according to Chiang (2009), with physical ballots
submitted at a true polling station, is usually done with confidence because the tangi-
ble safeguards put in place ensure a tangible return to the electoral management au-

thority [14]. Technology-enabled elections are viewed with suspicion as votes might
be intercepted and tampered with at the time of transmission to the electoral authority
servers [15].

Just as the revamped election system needs to be seen as both reliable and trust-
worthy by electors [16], so must the system be considered impenetrable to external
malicious attacks or intent by the administering authority says Pieters (2006). In rec-
ognising this, Andreu Riera Jorba and Jordi Castella Roca have developed and patent-
ed under United States law a secure electronic voting system that employs interrelated
cryptographic processes and protocols to provide reliability to vote casting, ballot
recounts, and verification of vote or poll results [17].

The electoral committee must examine the electoral authority/eligibility of the
elector. Within the European Union, Ikonomopoulos et. al. (2002) have determined
that the process of examining the electoral authority/eligibility of the elector is a two-
fold procedure. First, the process of determining electors is performed, a step essential
for the current voting process, wherein all persons above a certain age have either the
right or the obligation to participate in the democratic process [18]. This stage is real-
ised by the state employees working for the electoral authority who determine, ac-
cording to the national census, each individual’s age and legal status. Second, the
requirement of providing a means of authentication to each elector then needs to be
fulfilled. This is achieved when state employees create a means of identification for
every elector, and when these are subsequently received by voters from the state.

Therefore, for an electronic voting system to be at once secure, legitimate and
complete, Tkonomopoulos et. al (2002) hold that it is important for the electoral com-
mittee be able to determine and establish the electoral authority/eligibility of the elec-
tor from a 1) legal, 2) functional, and 3) security systems-requirement perspective.
The legal framework for the traditional model of voting advanced above provides us
with a basis for the e-voting system requirements specification. In terms of functional
requirements, the starting point of any of interaction with the information system is
thus the provision of access to system functions that each actor is authorised to per-
form [18]. Building on this, Ibrahim et. al. (2003) have proposed a secure e-voting
systems architecture that applies security mechanisms in order to meet the legal secu-
rity requirements needed for any election process. According to the proposed system,
as individuals register themselves with the administrator of e-voting to be counted
amongst eligible voters, a validator is made responsible for the verification of elector
authority/eligibility and for the production of a ballot ID [19].

The verification of the identity of the person entitled to vote must take place be-
fore the transmission of the electoral form. In traditional voting/balloting, the au-
thentication of an elector is generally performed prior to the act of electing, when the
elector appears in person to vote at the election centre where they are registered [18].
Ikonomopoulos et. al (2002) outline the process in some detail, wherein the voter
arrives at the polling station, presents to the on-duty member of staff his or her identi-
ty papers, has them verified by the staffer in question, and is then presented with the

current electoral ballot paper. This process is performed to ensure that the elector
themselves votes, and consists of an interaction between the elector and the electoral
authority as represented by the personnel at the election centre [18].

For Internet voting to be secure, according to Regenscheid et. al. (2011), a similar
procedural requirement has often to be met: that the identity of the eligible elector
needs to be verified prior to the electronic transmission of the electoral form. In the
United States of America, for instance, state and local jurisdictions are given the op-
tion to employ systems to authenticate Uniformed and Overseas Citizen Absentee
Voting Act (UOCAVA) voters before serving them electoral forms, when permitted
under state law [20]. However, if voter identification data is indeed used to establish
trust that a given ballot was completed and returned by an eligible elector, it is carried
out on the premise that the electronic authentication of the person entitled to vote was
done prior to any transmission of the electronic ballot form [20].

A certification of the e-voting system by experts cannot replace the state guaran-
tee of the electoral principles observed by electoral committees. Richter (2010)
states that “...all forms of voting, including Internet voting have been criticized for not
fulfilling the Principle of the Public Nature of the Election which was declared as a
constitutional principle in the Voting-Machine-Judgement of the German Federal
Constitutional Court (BVerfG09) and which requires verifiability of the election for
every citizen without technical knowledge.” [21]

According to Gritzalis (2002), electronic voting should be considered only as a
complementary means to traditional election processes [22]. He argues that while e-
voting can be a cost-effective way to conduct the electoral process and a means of
attracting specific groups of people to participate, the continued prevalence of 1) the
digital divide within adopting societies, 2) an inherent distrust in the e-voting proce-
dure across populations, and 3) inadequate mechanisms to protect information sys-
tems against security risks make it only a supplement to, and not a replacement of,
existing paper-based voting systems.

Building on this argument, Caarls (2010) attempts to highlight the issues of trust
and confidence as necessary pre-conditions for the uptake of e-voting systems [9].
Here, Caarls argues that an e-voting system cannot be successfully adopted unless
citizens trust their current (paper-based) political and administrative systems. Further,
she maintains, the introduction of an e-voting system must not result in the exclusion
of certain groups within a given population. Security is also paramount, with time
needing to be set aside for research into the development of robust and secure system
before the eventual roll-out of the project. This is also tightly connected with the topic
of verifiability, which will be deal with in the next section.

3.3 Requirements for accountability

This section considers the legal concepts and technical solutions pertinent to the de-
rived legal requirements for accountability as obtained from the scholarly and practi-
tioner literature.

The electoral committee must be able to determine the election results and their
validity. As part of the electoral process, the election authority needs to be able to
verify the validity of every ballot cast, and that the tallying of the valid ballots has
been correct.

In the electronic voting literature, the term verifiability is closely related to the ac-
countability requirement of the integrity of the election result [23]. Gritzalis (2002)
contends, therefore, that an e-voting system should allow for its verification by both
individual voters (individual verifiability), and also by election officials, parties, and
individual observers (institutional or universal verifiability) — despite being in conflict
with principles of transparency [22]. Systems providing both types of verification are
known as end-to-end (E2E) verifiablility [24]. However, the ability of currently exist-
ing electronic voting systems to enable the election authority to verify the integrity of
the election result has been criticised as being flawed by recent scholarship [25].

This is because, as maintained by Gharadaghy and Volkamer (2010), universal ver-
ifiability is usually more complex to achieve than individual verifiability for, in order
to attain this condition, the election authority needs to ensure that all encrypted votes
cast and stored on the database are decrypted appropriately and properly tallied whilst
preserving ballot secrecy [24]. Gharadaghy and Volkamer go on to propose two main
cryptographic techniques to meet and overcome this challenge: either 1) the applica-
tion of homomorphic encryption schemes, such as the Helios 2.0 protocol [26], that
allow the encrypted sum of all encrypted votes to be computed without compromising
the secrecy of the ballot; or 2) the use of MIX networks to anonymize encrypted votes
prior to their decryption and eventual tallying [24]. Further, for a discussion of organ-
isational issues see also Krimmer (2016) [27].

The verification of the validity of the ballot papers must be ensured by the elec-
toral committee. It is the task of the electoral committee to ensure the validity of the
each of the ballot papers counted towards the final election result.

The need for reliability of the e-voting process, according to Gritzalis (2002), is de-
rived from the democratic need to ensure that the outcome of the election correctly
reflects the voters will [22]. In other words, a reliable system should ensure that the
outcome of the voting process accurately corresponds to the votes cast. It should be
impossible from a systems architecture point of view to exclude from the tally a valid
vote and to include an invalid one [28].

Khaki (2014) proposes both basic and advanced security protocols that may be ap-
plied by an electoral management body to successfully verify the validity of the sub-
mitted ballot papers [29]. Basic security measures advanced by this author include
either the use of Message Authentication Code (MAC) keys shared between the voter
and the server, or server digital signatures that constitute keys stored on the server. In
both cases, the server is able to generate for verification purposes the MAC or digital
signature of any vote.

Further, according to Khaki, vote integrity and authenticity can be assured through
the use of advanced security measures in the form of voter digital signatures [28],
wherein votes are digitally signed by the voter after they have been encrypted in such

10

a manner that the recipient server can validate and verify the signature as authentic
but cannot manipulate it. For an early technical proposal see [30].

The electoral committee and the judicial authorities of public law must be able to
carry out a verification of the electoral principles and results after the election.
In the post-election period, Caarls (2010) recommends that an audit trail be estab-
lished for all aspects of the systems used in the elections so that “...all changes and
decisions can be explained and defended” [9]. Following from this, therefore, audits
may be carried out by all the parties involved in the electoral process and can serve
many purposes. To paraphrase Norden et. al.(2007), such an audit can fulfil the fol-
lowing goals: 1) create public confidence in the election results, 2) deter election
fraud, 3) detect and provide information about large-scale systemic errors, 4) provide
feedback towards the improvement of voting technology and election administration,
5) set benchmarks and provide additional incentives for election staff to achieve high-
er standards of accuracy, and 6) confirm, to a high degree of confidence, that a com-
plete manual recount would not affect the election outcome [31].

There exist in the practitioner literature three noteworthy e-voting protocols that
overtly permit the electoral management body to carry out such a post-election verifi-
cation of electoral principles and results [32, 33, 34].

A. Punchscan: Fisher et. al. (2006) in their seminal paper put forward Punchscan, a
hybrid paper/electronic voting system based on a concept delineated by David Chaum
in December 2005 [32]. In improving upon the earlier idea, the Punchscan system
advanced by Fisher et. al. employs a two-layer ballot and receipt system in combina-
tion with a sophisticated cryptographic vote-tabulation mechanism called a “Punch-
board” that can be used to facilitate the running of an electronic election. During the
post-election phase, once the results of the ballot are posted online, auditors may con-
duct a post-election audit by choosing an area of the Punchboard’s decrypt table [32].
Any significant corruption of the Punchboard as a consequence of election malprac-
tice is almost certainly detectable.

B. Helios: Adida (2008) discusses the advantages of Helios, a web-based open-
audit voting system [33]. Designed to be deliberately simpler than most complete
cryptographic voting protocols, Helios focuses on the central precept of “public au-
ditability” — any group can outsource its election to Helios, and the integrity of that
election can be verified even if Helios itself is corrupted. To achieve this, the Helios
protocol provides users with the option of two verification programmes written in
Python: one for verifying a single encrypted vote produced by the ballot preparation
system with the “audit” option selected, and another for verifying the shuftling, de-
cryption, and tallying of an entire election [33].

C. Scantegrity: Chaum et. al. (2008) propose Scantegrity, a security enhancement
for optical scan voting systems [34]. The Scantegrity voting system combines E2E
cryptographic ideas with a widely used vote-counting system to provide the end-user
with the strong security guarantees of an E2E set-up whilst not interfering with exist-
ing procedural requirements such as a paper audit trail or a manual recount. Scantegri-
ty is furthermore universally verifiable, whereby, using special software of their
choice, anyone can verify online that the tally was computed correctly from official

11

data [35]. This makes it particularly useful for those electoral management bodies
wishing to carry out a post-electoral audit.

The essential steps of the electoral process must be reliably verified by the elec-
toral committee (without the assistance of experts) and the judicial authorities of
public law. From general perspective, in cases where an e-voting system has been
deployed, Caarls (2010) advocates that every part of the process be audited post-
election; including, the electoral voter register and its compilation, together with the
processes of voting, counting, archiving, and the destruction of votes [9]. One part of
the audit process could be to verify that the systems used for the election were in fact
based on source code certified for use prior to the election. Other parts of the audit
process might include the review of other documentation, including the functional and
technical system design [9].

In more particular terms of system functionality, and to paraphrase Prandini &
Ramilli (2012), e-voting systems are generally evaluated in terms of their security,
auditability, usability, efficiency, cost, accessibility, and reliability [36]. The princi-
ple of auditability, most especially, refers to the necessary pre-condition of there be-
ing reliable and demonstrably authentic election records [37] against which due pro-
cess can be accounted for. Software independence is one form of system auditability,
enabling the detection and possible correction of election outcome errors caused by
malicious software or software bugs [38]. The concept has been defined by Rivest
(2008) as follows: “A voting system is software independent if an (undetected)
change or error in its software cannot cause an undetectable change or error in an
election outcome.” [39]

In other words, the principle of software independence addresses directly the diffi-
culty of assuring oneself that cast ballots will be recorded accurately in adherence to
prevailing election principles and standards by complex and often difficult-to-test
software in the case of an all-electronic voting system [39]. For users of software-
independent voting systems, therefore, verification of the correctness of the election
result is possible without there being any lingering concern that the election result was
affected or even determined by a software bug or malicious piece of code [38].

The essential steps of the determination of results must be reliably verified by the
electoral committee (without the participation of experts). Similar to the legal
principle of the “public nature of elections” in Germany [40], which prescribes that all
the essential steps of an election are subject to the possibility of open accountability
by general public, it is argued here that (when applied to the use of electronic voting
machines in Austria) both legal and technical provision needs be made for the elec-
toral management body to be able to verify independently and reliably the essential
steps of voting and the ascertainment of the result post-election without its personnel
possessing any prior specialist knowledge.

Considered in terms of e-voting in general, the holding makes the security objec-
tive of election or end-to-end verifiability mandatory [41]. This is because, in contrast
to conventional paper-based elections, electronics-based ballots are still much less

12

transparent [42]. It may not be possible to observe all the electronic operations per-
formed on data, programming errors are usually difficult to detect, and attacks on a
system by malicious code might go unnoticed [26].

Remote electronic voting systems have to, therefore, also be considered from the
perspective of their usability [43]. The term ‘usability’, according to Winkler et. al.
(2009), is often used to describe the perceived ease of use and usefulness of an infor-
mation technology system [43]. Several studies point out the importance of undertak-
ing a usability evaluation when validating a new e-voting system [44]. Within the
context of the discussion, it may be inferred that a verifiable system should be user-
friendly to ensure that its users are able to carry out verification processes with rela-
tive ease and speed and independent of external specialists.

4 Discussion

It has been a declared target by the Europe Ministers responsible for e-government to
empower citizens through information and communication technologies [45]. Citizens
shall receive better and more transparent access to information that shall serve as the
basis for stronger involvement in the policy process. Hence, information and commu-
nication technologies shall enhance citizen participation. New political movements
and ideas all across Europe support the surge of an increasingly connected society
towards having a stronger say in political processes. Traditional parties seek to open
up to outside opinions, at least during election campaigns. These changes in the polit-
ical landscape must be supported with the necessary tools.

Citizens’ participation in general is a complex field with numerous different ap-
proaches being adopted to achieve similar aims. It has become evident that there is no
single possible solution to resolve the various obstacles in the path of optimal citizen
participation, but it has also become obvious that digital technologies, the internet and
its networking connectivity can support the management of citizen participation at
most stages of engagement.

This research paper focuses on the voting process as an integral part of electronic
participation. Votes are used to assess the opinions of participants on comments or
proposals which might not necessarily need highly regulated and secure technological
systems. Voting can also be used to make the final decision in an e-participation pro-
cess that might have direct impact on actual implementations in reality or legal regu-
lations. In the latter example, observing regulations and ensuring system security are
essential for successful and satisfactory participation.

This paper describes the legal requirements for e-voting as stipulated by the Aus-
trian Constitutional Court in the context of the Austrian Federation of Students Elec-
tion of 2009. While the derived requirements are only valid for this specific context,
they can be a good indication for the way forward in other scenarios.

Large-scale e-participation will involve electronic voting at some point in the pro-
cess, and this must be manged and implemented in an appropriate manner. Public
authorities need to be ready to answer citizens’ questions, and to have in place a strat-

13

egy to help citizens understand the system and its underlying technology. Trust-
building is a vital component of the engineering of participatory processes.

The introduction of e-participation should be considered as means of promoting
social inclusion, and care must be taken to ensure that its proliferation does not result
in the privileging of certain groups within society (those who can afford regular Inter-
net access, for instance) over others. In theory, the use of technology in citizens’ en-
gagement widens access to the democratic process by reaching out to and inviting a
greater number of people to participate. However, in practice existing digital and
social divides circumscribe who actually participates and, if not deployed sensibly,
technology could actually worsen prevailing democratic deficits.

5 Acknowledgements

The work of Robert Krimmer was supported in parts by the Estonian Research Coun-
cil project PUT1361 and the Tallinn Univerity of Technology project B42.

References

1. Viborg Andersen, K., Zinner Henriksen, H., Secher, C., Medaglia, R.: Costs of e-
participation: the management challenges. Transforming Government: People, Process and
Policy, 1(1), 29-43 (2007).

2. Arnstein, S. R.: A ladder of citizen participation. Journal of the American Institute of plan-
ners, 35(4), 216-224 (1969).

3. Schossbock, J., Rinnerbauer, B., Sachs, M., Wenda, G., & Parycek, P.: Identification in e-
participation: a multi-dimensional model. International Journal of Electronic Governance,
8(4), pp. 335-355 (2016).

4. Krimmer, R.: e-Voting.at: Elektronische Demokratie am Beispiel der Osterreichischen
Hochschiilerschaftswahlen. Working Papers on Information Processing and Information
Management 05/2002 of the Vienna University of Economics and Business (2002).

5. Krimmer, R., Ehringfeld, A., Traxl, M.: The Use of E-Voting in the Federation of Students
Elections 2009. In: Krimmer, R., Grimm, R. (eds.): Proceedings of the 4th International
Conference on Electronic Voting 2010, pp.33-44, Bonn (2010):

6. Krimmer, R., Ehringfeld, A., Traxl, M.: Evaluierungsbericht. E-Voting bei den
Hochschiilerinnen- und Hochschiilerschaftswahlen 2009. BMWF, Vienna (2010).

7. Lopez-Pintor, R.: Electoral Management Bodies as Institutions of Governance. Bureau for
Development Policy, United Nations Development Programme (2000).

8. ACE Electoral Knowledge Network. Elections and Technology, http://aceproject.org/ace-
en/topics/et/onePage , last accessed: 2017/04/21.

9. Caarls, S.: E-voting Handbook: Key Steps in the Implementation of E-enabled Elections.
Council of Europe Publishing, Strasbourg (2010).

10. Mozaffar, S., Schedler, A.: The Comparative Study of Electoral Governance — Introduc-
tion. International Political Science Review 23(1). 5-27 (2002).

11. Gillard, S.: Soft-Skills and Technical Expertise of Effective Project Managers. Issues in In-
forming Science and Information Technology 6, 723-729. (2009).

14

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Prosser, A., Kofler, R., Krimmer, R., Unger, M. K.: Implementation of quorum-based de-
cisions in an election committee. In: International Conference on Electronic Government,
pp- 122-127, Springer, Berlin/Heidelberg (2004).

Rubin, A. D.: Security considerations for remote electronic voting. Communications of the
ACM 45(12), 39-44. (2002).

Chiang, L.: Trust and security in the e-voting system. Electronic Government, an Interna-
tional Journal 6(4), 343-360 (2009).

Bishop, M., Wagner D.: Risks of e-voting. Communications of the ACM 50(11), p. 120
(2007).

Pieters, W.: Acceptance of voting technology: between confidence and trust. In: Stolen K.
et. al. (eds.) iTrust 2006, LNCS 3986, pp.283-297, Springer-Verlag, Berlin/Heidelberg.
(2006).

Jorba, A. R., Roca, J. C.: Secure remote electronic voting system and cryptographic proto-
cols and computer programs employed. U.S. Patent No. 7,260,552. 21 Aug. 2007.
Ikonomopoulos, S., Lambrinoudakis, C., Gritzalis, D., Kokolakis, S. Vassiliou. K.: Func-
tional requirements for a secure electronic voting system. In: Ghonaimy, M. A., El-Hadidi,
M. T., Mahmoud, T., Aslan, H. K. (eds.) Security in the Information Society: Visions and
Perspectives, pp.507-519. Springer US, New York, (2002).

Ibrahim, S., Kamat, M., Salleh, M., Aziz. S.R.A.: Secure E-voting with blind signature. In:
4th National Conference on Telecommunication Technology, 2003, NCTT 2003 Proceed-
ings, pp.193-197. IEEE Publications (2003).

Regenscheid, A., Beier, G.: Security Best Practices for the Electronic Transmission of
Election Materials for UOCAVA Voters, NISTIR 7711, National Institute of Standards
and Technology (NIST) — U.S. Department of Commerce, Gaithersburg, M.D. (2011).
Richter, P.: The Virtual Polling Station: Transferring the Sociocultural Effect of Poll Site
Elections to Remote Internet Voting. In: Krimmer R., Grimm R. (eds.) Proceedings of the
4th International Conference on Electronic Voting 2010, pp.79-86. Bonn (2010).

Gritzalis, D.A.: Principles and requirements for a secure e-voting system. Computers and
Security 21(6), 539-556 (2002).

Kiisters, R., Truderung, T., Vogt. A.: Accountability: Definition and Relationship to Veri-
fiability. In: Proceedings of the 17" ACM Conference on Computer and Communications
Security (CCS 2010), pp. 526-535. ACM, Chicago, I.L. (2010).

Gharadaghy, R., Volkamer, M. Verifiability in Electronic Voting - Explanations for Non
Security Experts. In: Krimmer R., Grimm R. (eds.) Proceedings of the 4th International
Conference on Electronic Voting 2010, pp.151-162. Bonn (2010).

Karayumak, F., Olembo, M. M., Kauer, M., Volkamer, M.: Usability Analysis of Helios-
An Open Source Verifiable Remote Electronic Voting System. EVI/WOTE, 11, 5-5
(2011).

Kremer, S., Ryan, M., Smyth, B.: Election verifiability in electronic voting protocols. In:
Gritzalis, D.A., Preneel, B., Theoharidou, M. (eds) Computer Security — ESORICS 2010.
LNCS, vol 6345, pp. 389-404. Springer, Berlin/Heidelberg (2010).

Krimmer, R.: Verifiability: a New Concept Challenging or Contributing to Existing Elec-
tion Paradigms? In: Proceedings of the 13th EMB Conference, pp. 102-107, Bucharest
(2016).

Mitrou, L., Gritzalis, D.A., Katsikas. S.: Revisiting Legal and Regulatory Requirements
for Secure E-Voting. In: Ghonaimy, M.A., El-Hadidi, M.T., Mahmoud, T., Aslan, HK
(eds.) Security in the Information Society: Visions and Perspectives, pp.469-480. Springer
US, New York, N.Y. (2002).

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

15

Khaki, F. Implementing End-to-End Verifiable Online Voting for Secure, Transparent and
Tamper-Proof Elections. IDC Whitepaper 33W (2014).

Prosser, A., Krimmer, R., Kofler, R., Unger, M. K.: The Role of the Election Commission
in Electronic Voting. In:. HICSS'05. Proceedings of the 38th Annual Hawaii International
Conference on System Sciences, 2005, pp. 119-119. IEEE (2005).

Norden, L., Burstein, A., Hall, J.L., Chen, M.: Post-Election Audits: Restoring Trust in
Elections, Report by Brennan Center for Justice at The New York University School of
Law and The Samuelson Law, Technology and Public Policy Clinic at the University of
California, Berkeley School of Law (Boalt Hall) (2007).

Fisher, K., Carback, R., Sherman, A. T.: Punchscan: Introduction and System Definition of
a High-integrity Election System. In: Preproceedings of the 2006 IAVoSS Workshop on
Trustworthy Elections, Robinson College (Cambridge, United Kingdom), International
Association for Voting System Sciences, [full citation unavailable] (2006).

Adida, B. Helios: Web-based Open-Audit Voting. In: van Oorschot, P.C. (ed.) Proceedings
of the 17" Conference on Security Symposium, pp. 335-348. USENIX Association, Berk-
ley, C.A. (2008).

Chaum, D., Essex, A., Carback, R., Sherman, A., Clark, J., Popoveniuc, S., Vora, P.:
Scantegrity: End-to-End Voter-Verifiable Optical Scan Voting. IEEE Security and Privacy
6(3), 40-46 (2008).

Sherman, A.T., Carback, R., Chaum, D., Clark, J., Essex, A., Herrnson, P.S., Mayberry,
T., Popovenuic, S., Rivest, R.L., Shen, E., Sinha, B., Vora, P.: Scantegrity Mock Election
at Takoma Park. In: Krimmer R., Grimm R. (eds.) Proceedings of the 4th International
Conference on Electronic Voting 2010, pp.35-51. Kollen Druck+Verlag GmbH, Bonn
(2010).

Prandini, M., Ramilli, M.: A Model for E-voting Systems Evaluation Based on Interntional
Standards: Definition and Experimental Validation. e-Service Journal 8(3), 42-72 (2012).
Internet Policy Institute: Report of the National Workshop on Internet Voting: Issues and
Research Agenda, An Internet Policy Institute Publication (2001).

Rivest, R.L., Virza, M.: Software Independence Revisited. In: Hao, F., Ryan, P.Y.A. (eds.)
Real-World Electronic Voting: Design, Analysis and Deployment. CRC Press, Boca Ra-
ton, F.L. [full citation unavailable] (2017)

Rivest, R.L.: On the notion of ‘software independence’ in voting systems. Philosophical
Transactions: Mathematical, Physical and Engineering Sciences 366(1881), 3759-3767
(2008).

German Federal Constitutional Court (Bundesverfassungsgericht): Use of voting comput-
ers in 2005 Bundestag election unconstitutional. Press Release No. 19/2009 of 03 March
2009,
https://www.bundesverfassungsgericht.de/SharedDocs/Pressemitteilungen/EN/2009/bvg09
-019.html, last accessed on 2017/04/27.

Schmidt, A., Heinson, D., Langer, L. Opitz-Talidou, Z., Richter, P., Volkamer, M., Buch-
mann, J.: Developing a Legal Framework for Remote Electronic Voting. In: Ryan,
P.Y.A, Schoenmakers B. (eds.) E-Voting and Identity - Vote-ID 2009, LNCS, vol
5767, pp. 92-105. Springer, Berlin/Heidelberg (2009).

Enguehard. C.: Transparency in Electronic Voting : the Great Challenge. IPSA Interna-
tional Political Science Association RC 10 on Electronic Democracy. Conference on “E-
democracy - State of the art and future agenda”, Jan 2008, Stellenbosch, South Africa, édi-
tion électronique (2008).

16

43.

44,

45.

Winckler, M., Bernhaupt, R., Palanque, P., Lundin, D., Leach, K., Ryan, P., Alberdi, E.,
Strigini, L.: Assessing the usability of open verifiable e-voting systems: a trial with the
system Prét a Voter. In: Proceedings of ICE-GOV (2009).

Herrnson, P. S., Niemi, R. G., Hanmer, M. J., Bederson, B. B., Conrad, F. G., Traugott,
M.: The Importance of Usability Testing of Voting Systems, Electronic Voting Technolo-
gy Workshop (Vancouver B.C., Canada, August 1, 2006) (2006).

Ministerial Declaration on eGovernment, https://ec.europa.cu/digital-agenda/sites/digital-
agenda/files/ministerial-declaration-on-egovernment-malmo.pdf, last accessed 2017/5/7.

Attitudes, Norms & Challenges

Canadians’ Attitudes to Internet Voting

Jon H. Pammett

Carleton University, Ottawa, Canada.
jon.pammett@carleton.ca

This paper uses a variety of national surveys of Canadian opinion to explore the over-
all interest of the population in casting an online ballot. The Canadian Election Stud-
ies have asked about this for a good part of the 2000s, culminating in 2015. A more
immediate stimulus to additional survey questions, however, has come from the con-
sideration of electoral reform by a committee of the Canadian Parliament, stimulated
by election promises by the Trudeau Liberals in 2015. Although the main focus of
that electoral reform discussion was on changes to the electoral system, other possible
reforms like mandatory voting and online voting were part of the discussion.

The Canadian electoral reform discussion of 2015 to the present has taken place in
relatively quiescent political times, lacking the atmosphere of crisis which has attend-
ed public demands for changes which might have been brought about by some injus-
tice of the system or by a critical drop in electoral participation. This has both ad-
vantages and disadvantages. On the one hand, it provides a more ‘normal’ distribution
of public opinion, not affected by heated debate. On the other, the results can be seen
as hypothetical and tentative, often lacking in substance or in a thorough realization
that imminent change is on the horizon. A dramatic event of some sort would no
doubt affect the results substantially.

Data from the Canadian Election Studies in 2011 and 2015 shows opinion is rela-
tively split about the desirability of giving citizens the option of voting online in Fed-
eral elections. The lack of qualifiers in question wording (eg, “if it were shown to be
secure” or “in the advance polling period”) is a benefit in the sense that it does not
deflect attention from the basic interest in casting an online ballot. It is also notewor-
thy that respondents are more likely to choose the “agree” or “disagree” response
categories, eschewing the possibility of stating those of “strongly agree” or “strongly
disagree.” This is consistent with the tentative nature of public opinion on this issue,
and is also found in surveys of other projected changes in institutions and practices, in
which opinion is not fully formed or in which information is lacking.

In a follow up question on the Canadian Election Studies of 2011 and 2015, over
half of the sample indicates that it is either “very” or ‘fairly” likely that they them-
selves would vote online in federal elections if given the opportunity to do so. Actual
future behaviour is of course difficult to predict, but there is no doubt that this indi-
cates that there is considerable interest in the possibility of online voting, and that if
offered the option would have considerable use. But what are we to make of the fact
that more people in the CES say they would vote online themselves than are support-
ive of Canadians being given the option to do so?

The mystery emerges quite clearly from a simple cross tabulation of the two ques-
tions measuring whether survey respondents are in favour of online voting being in-

troduced, and whether they would use such an option themselves. 32% of those who
say they would be “very likely” to vote online themselves disagree with the introduc-
tion of an online voting option. And 30% of those who claim to be “somewhat likely”
to vote this way are not in favour of Canadians being given the option. Who are these
people and what is going on in their heads?

All researchers of public opinion are aware of the “inconsistencies” in beliefs logi-
cally supposed to be consistent with one another according to some overall frame-
work. People lacking strongly felt opinions or information tend to approach opinion
questions independently of answers they may have given to previous questions. To
some degree, therefore, the apparent inconsistently of the answers to these questions
may be the result of some people simply answering each question the way it occurred
to them at that moment.

However, further analysis of the group of people who would propose to vote online
themselves while not wanting the option generally available shows that there are
some patterns which make this phenomenon more explicable. Those people who fa-
vour online voting for themselves but not others are more likely to be young, more
educated, and very strong identifiers with the Conservative Party. It seems quite likely
that they are quite confident in their own ability to use online technology but appre-
hensive that other (older?) Conservatives may not have the same skills. Or perhaps
they fear that supporters of other parties are more likely to take advantage of online
opportunities than those supporting their own party. This interpretation is of course
speculative, but the pattern of conservative parties being skeptical of online voting is
found in other countries, like Norway and Estonia.

What about the risks associated with online voting? A question in the 2011 and
2015 Canadian Election Studies asks whether respondents felt that online voting is
risky. Indeed, about half the sample says it is risky. But the question remains about
how seriously to take this perception of risk. A subsequent analysis reveals that al-
most all of those who think such voting is safe would vote over the internet, 63% of
those not sure would do so, and 43% of those who think it is risky would vote over
the internet (anyway.) This situation may indicate a general perception that all internet
activities entail a certain amount of risk, but that often that level of risk is acceptable,
as with banking.

The Brazilian Electronic Voting System: evolution and
challenges

Jorge Lheureux de Freitas' and Marie Anne Macadar?

' Business School - Pontificia Universidade Catdlica do Rio Grande do Sul — Porto Alegre,
Brasil
jorge.freitas@acad.pucrs.br

2Business School of Sdo Paulo — Fundagio Getllio Vargas Sdo Paulo, Brazil
mariemacadar@gmail.com

Abstract. Democracy and elections are manifestations of citizenship brought
together by information technology through electronic voting (e-voting), or
electronic ballot boxes, in Brazil. This paper describes the Brazilian electoral
voting system, its context, environment, features, strengths and weaknesses. In
addition, it presents statements by its critics and by three important managers
from the Brazilian Electoral Court. The objective of this study is to present the
evolution, challenges, logistics, and security information issues of the Brazilian
electronic voting program based on the testimony of those responsible for its
development and implementation. Facing criticism about e-voting in Brazil, the
interviewees provide their perception and their points of view. Brazilian e-
voting has had huge challenges in terms of logistic and development, but might
improve transparency and auditing by providing easier ways of source code ver-
ification and by implementing the record of vote content (the printed vote). De-
spite the criticism, there has not been any fraud in the 21 years of Brazilian e-
voting, which could be considered as strong evidence of its maturity and accu-
racy.

Keywords: Electronic Voting - Security Information — Electronic ballot boxes

1 Introduction

Throughout human history, the struggle for power has always been a constant event,
carried out by hegemony or by revolutions, invasions and armed interventions. Ac-
cording to Castells, power is "the relational capacity that allows a social actor to in-
fluence, asymmetrically, the decisions of other social actors, so as to favor the will,
interests and values of the Actor who has the power [1]".

Classic Athens was the oldest power sharing initiative wherein the citizen directly
decided about issues concerning the polis in the Athenian public square, the agora.
However, classical Greek democracy covered only a segment of the population, the
citizen, excluding representative stakeholders like the women and slaves, a portion of
the population literally dominated and oppressed by Athenian society [2]. Remaining
in the historical perspective, the Magna Carta, the American Independence, and the
French Revolution are episodes that caused deep changes in the power relations be-
tween citizens and the state, resulting in the current concept of representative democ-
racy.

Information Communication Technology (ICT) and Internet waves allow the
emergence of new forms of democracy, such as electronic democracy or e-
democracy, whose most important manifestation is electronic voting or e-vote. Ballot
paper replacement by virtual or electronic vote represents changes in democracy envi-
ronment usually well seen by politicians and legislators in terms of advantages of
technology use like an increasing factor of voter participation, lower costs and a more
efficient electoral process. Conversely, the costs are directly related with the process,
logistics and with the system adopted and, therefore, security issues must be consid-
ered [3].

Brazil, one of the most important developing countries and a member of the
BRICS' has adopted electronic voting in 1996. The aim of this paper is to describe the
evolution, challenges, logistics, and security information issues of the Brazilian elec-
tronic voting program based on the testimony of those responsible for its implementa-
tion and development.

2 A Literature Overview on E-Voting

Electronic participation is an important channel of discussion and deliberation in gov-
ernment decision-making processes since it helps create ties between citizens and
government. In other words, e-participation encompasses citizen involvement and
society empowering as a subset of electronic democracy [4].

In this context, e-vote is an important manifestation of e-participation highlighted
by Sxbe, Rose e Flack as a participation activity that “has received increased atten-
tion in the literature as the development of new ICT [5], but, referring to Kensky

Acronym that refers the five major emerging national economies: Brazil, Russia, India,
China and South Africa

(2005), they warn about “who do e-vote benefit?”’. Moreover, they point out some
questions concerning security of information, trust and frauds.

Basically, there are two kinds of e-vote: electronic ballot box, using an especial
machine to vote inside a polling station, and internet voting, by communication net-
work where the citizen votes on a computer at any place [5, 6, 7]. Unlike the world-
wide tendency, on grounds of limited experiences, e-voting in Brazil encompasses all
the country by the use of electronic ballot boxes. In terms of remoting vote, Estonia
was the first European country adopting the Internet as the platform to do it [7].

The adoption of e-voting must be carefully considered by each country because the
experience of one nation might not fit the other. Security failures, for instance, may
jeopardize the voting process and risk a right for which “people have fought in some
countries for years”; therefore, discussions about this topic have to be led with care
[8]. Scholars mention threats and risks in terms of internet e-voting that would harm
the process such as problems with anonymity, voter identification and audit trail and
manipulation through data transmission (changing, inserting, or deleting votes), vote
buying, audit trail and sabotage [9].

Even with the use of information security processes, high technology and a well-
structured legal system, trust is the main factor of electoral legitimacy. Trust is con-
nected with delegate power and “is an essential element of the democratic process
especially regarding the secrecy and freedom to express a vote that will legitimate the
choice of rulers for a whole country [10]”. Lack of trust in electoral system under-
mines the electoral process, the public institutions and harms the authority of the elect
government [11]. In this sense, Avgerou discusses the relationship between trust in e-
voting with trust in government institutions and states:

A context of democratization or existing trusted institutions of democracy enables
trust in e-voting, which subsequently contributes to boost confidence in democratic
institutions. Trust is both a mechanism in the production of particular outcomes in
many social phenomena and an outcome in its own right, the causal formation of
which needs to be explained [12].

The legal system has been an important link with electronic voting as far as the law
has underpinned its process, proceedings, and information systems. It works as the
basis of technological solutions because “for E-Voting the existing legal principles for
elections are important, the way E-Voting is (could be) implemented and in which
stage. E-Voting is in the legislation-making process (PROSSER and KRIMER,
2004)”. Overall, there are distinct national legal systems, like the uniform legislation
nationwide (eg. Brazil and India) or several legal systems in the same country, like in
the case of Argentina, France, United States, etc. [13].

3 The Brazilian Electronic Voting System

In Brazil, the electoral process landscape changed deeply in October 1994 due to
problems in the elections in Rio de Janeiro. In that year, frauds in the Rio de Janeiro
elections were widespread, forcing the Electoral Court to annul the elections, holding
a new one. In that electoral process, citizens voted by using ballot papers and the ac-

counting was manual. In the accounting process, the teller read aloud the paper ballot
content, followed by the accounting the votes cast. The fraud occurred at the account-
ing stage [14]. Electoral Justice belongs to judiciary branch and it is in charge of the
elections through Brazilian Superior Electoral Court (Tribunal Superior Eleitoral —
TSE) and Electoral Courts of the States (Tribunais Regionais Eleitorais — TRE).

The response to the electoral and institutional crisis was quick. In early 1995, TSE
appointed a commission of election experts (judges, IT technicians, administrators)
whose assignment was to establish electric voting. Four months later, the commission
provided the guidelines for Brazilian e-voting, such as: standalone machines running
on electricity and battery (parts of its territory comprised by forests where people
need to vote), numerical interface, customized hardware, printing vote, merger of the
poll stations to decrease the overall amount, e-voting to 30 million voters in 1996 etc.
[15]. Besides, the commission wrote a draft bill enabling and ruling the e-voting (fu-
ture law 9,100, September 20t 1995).

The first change impact was the way to vote. Before 1996, citizens usually voted
writing the name of the candidate on the ballot paper. Writing the candidate’s number
was an exception. The interface of the electronic ballot box was a numerical keypad
identical to a phone numerical keypad, forcing the voter to type numbers. This
change, from ballot paper to electronic ballot box and writing names to typing num-
bers, demanded a nationwide advertising campaign to explain the new proceedings to
the Brazilian people, including shows on TV, radio, articles in newspapers, magazines
and presentations introducing the electronic ballot box in unions, schools, bus sta-
tions, airport, squares, fairs etc. The first phase of e-voting in Brazil affected the state
capitals and cities with more than 200 thousand voters involving 32,488,183 voters
[16].

From 1996 until now, the electronic voting process has developed and improved
constantly in terms of hardware, software, interface, efficiency, and security accord-
ing to TSE. Over the last eight years, Electoral Court has added voters' biometric data
as additional information on voter identification.

The TSE (Superior Electoral Court) website provides e-voting safety information
by describing the security layers of the software and the kinds of audits and safety
tests available [17]. However, security is the most controversial issue related to elec-
tronic voting. There are politicians, scholars, ICT practitioners and people of other
society segments pointing out failures in electronic voting security.

In the Brazilian system, the vote is only virtual, in other words, the vote is not
printed. This question is the most polemic in this matter because the Electoral Justice
has reiterated its position against the printed vote and a significant part of society has
demanded this change in order to increase the auditability of the e-voting. By manda-
tory determination of the new electoral law, the printed vote will be introduced in
sampling ways.

3.1 The voting process

Firstly, it is important to explain that the electronic ballot box is a microcomputer
customized for the electoral process. It is a standalone machine without any kind of
internet connection and it comprises two terminals connected with each other: the
voter’s terminal and the voting terminal. Both terminals have numerical keypads. The
machine has an internal battery that may be used in case of electricity problems. Its
processor (model 2016) is an Intel Atom Z510P 1.10 GHz and the motherboard is
Ubiqconn. The voting terminal has a 10.1” LCD display to enable the vote visualiza-
tion.

The e-voting process encompasses the following steps:

1. Voter identification — president of the poll station types the electoral ID num-
ber of the voter in the voter’s terminal or the voter places his/her finger on the
fingerprint reader in the same terminal;

2. Electronic ballot box identifies the voter’s record in the database machine;

3. Voter can vote typing his/her candidate’s number in the voting terminal in an
isolated environment (no one can see his/her vote);

4. The display shows candidates;

5. Voter presses the button CONFIRMA (confirm in Portuguese) and the vote is
done or press button CORRIGE (redress) in case of mistake and restarts again

Since the voting process finishes, the accounting process starts:
1. The president of the poll station finishes the voting process by typing a
password in the voter’s terminal;
2. The voting terminal prints a document with the poling results of that specific
electronic ballot box;
The data of poling results are encrypted and loaded in the USB stick.
The USB stick is sent to the Electoral Accounting Center;
5. The data is loaded to the Electoral Accounting Center and then transmitted to
the Electoral Court net;
6. Electoral Court displays the poling results.

bl

4 Criticisms Addressed to the Brazilian System

Notwithstanding the Brazilian Electoral Justice official speech about electronic voting
security, Brazilian electronic e-vote is not unanimous. The official position of the
Superior Electoral Court courts is expressed on its website: “The electronic voting
process has essential mechanisms to ensure your safety” [17].

By contrast, some scholars and Information Technology experts disagree with the
position of the Electoral Court, pointing out issues they consider as weaknesses of the
electronic system, such as: lack of Auditability — without material representation of
the vote (electronic ballot box doesn’t print the ballot) it is impossible to audit elec-
toral results [18, 19, 20, 21, 22, 23]; secrecy of the vote - the system would block any

2 According to Electoral Justice websites

attempt to identify the voter's ballot, but there are controversies about it; [18, 19, 21,
23]; costs — Brazilian people do not know the costs related to e-voting and in what
way e-voting expenditures can affect or impact important social programs such as, for
example, health programs [21, 22, 23, 24, 25, 26, 27]; market-driven approach rather
than socially-driven technology strategy [24, 26, 28, 29], lack of transparency [18, 19,
22], focus on blocking of external attack and lack of concern about risks of internal
attack [18] and; all Brazilian electronic ballot box use the same cryptographic key
[18].

5 Research Design

In order to describe the evolution, challenges, logistics, and security information is-
sues of the Brazilian electronic voting program we use a qualitative, inductive, and
exploratory approach, enabling a broad phenomenon analysis, often conflicting. We
aimed to face up e-voting weaknesses pointed by academic papers versus Electoral
Justice authorities’ interviews, providing innovative insights and results to the field
[30]. Brazil has one Superior Electoral Court and 27 Electoral Courts of the States.
We invited three people to be interviewed from one specific State Electoral Court
(TRE-Q): (1) the General Director (GD), (2) the CIO and (3) the Election’s Coordina-
tor (EC). The interviews were held on May 1%, 2017 (approximately 30 minutes) con-
ducted in an open view, without rigid scripts, and customized according to interview-
er’s profile.

6 Research Field and People Perception

Firstly, it is noteworthy to refer that statements by the interviewed resulted from their
own perceptions, which may be distinct from the Electoral Justice Court’s official's
view. The interviewers are the General-Director, GD, the Electoral Coordinator (EC)
and the of the TRE- Q.

6.1 Challenges

The General Director of TRE- Q explained how complex the Brazilian electoral legal
system is since the voter needs to choose a specific candidate between 200, 300 or
more candidates for the parliament instead of selecting only one candidate’s list or
party list, that is the most common worldwide electoral system. Furthermore, in na-
tional elections there are many mandatory choices: state deputy, federal deputy, gov-
ernor, senator, and president. For instance, according to the Superior Electoral Court’s
website, the numbers of candidates recorded in 2014 by TRE- Q was the following: 8
for President; 8 for Senator; 8 for Governor; 328 for Federal Deputy; and 731 for
State Deputy [31].

Returning to the beginnings of e-voting, the GD considered voter's training as the
biggest challenge in 1996 because before that voters used to write candidates’ names

instead of typing candidate’s numbers. He stated: “This was a great difficulty.” About
the difficulties in 1996, GD referred to the relationship between technology, educa-
tion, and e-voting as follows:

We had to add the technological issue to the situation of voters. The great majority
of Brazilian voters have a low level of education. Regarding the problems in 1996,
GD confirmed the occurrence of incidents mainly with older and illiterate people, but
added that the elections happened on good terms because the keyboard electronic
ballot box was like the phone keypad and people were used to making phone calls.
The manager explained that “the system is very friendly and simple” and added that
the number of invalid votes decreased with e-voting. About the decreasing, GD said
that in the old system it was more difficult for illiterate people, because they needed
to write the candidate’s name rather than type the numbers like on a phone call.”

Argentina, Ecuador, the Dominican Republic, and Mexico [17] have tested Brazili-
an electronic ballot boxes, but no one has adopted it. When asked about it, DG high-
lighted the singular features of the Brazilian system (vote in candidates, not list, nu-
merical interface, etc.) and the need of a customized machine to the reality of the
country.

6.2 Logistic

Firstly, some concepts presented in this study like, for instance, poll stations and vot-
ing places should be clarified. Polling stations are composed of four poll workers, one
president and three assistants working in it. A voting place is a building where one or
more poll stations are located and it’s usually a school or a public building.

According to the Electoral Coordinator, EC, TRE-Q manages almost 9,000,000
voters’ records, more than 170 electoral offices that deal with local elections, 150
electronic ballot box storages spread in more than 250,000 km? (total area of state €2),
30,000 electronic ballot boxs (5,000 for replacement), 25,000 poll stations, 8,000
voting places and 100,000 people working in the poll stations. 400 people work in
Electoral Offices (Electoral Justice manages the biggest national Brazilian register)
and a month before election day 900 people are hired to complement the workforce.
Besides, all the 30,000 electronic ballot boxes are tested four times a year; defective
machines are fixed by the technical team.

EC explained the proceedings around 30 days before election day, which take
place in October - first round on the first Sunday and second round on the last Sun-
day. In this period, Electoral Justice carries on three different tests on distinct dates: 1.
Hardware test; 2. Software test; 3. Tests of hardware, software, and overall proceed-
ings, simulating the election day.

The biggest challenge concerning logistics is electronic ballot boxes’ delivery and
collection. One day before election day, between 6a.m and midday, 80% of electronic
ballot boxes (20,000 machines) leave 130 storages rooms and are delivered in 7,200
voting places (the remaining 20% are delivered two days prior to the election). An
important detail: all machines must be delivered in a specific voting place because
each machine contains its own and unique voters’ records and in case of mistake, the
election in the poll station with the wrong machine would be impracticable. The Elec-

toral Coordinator added that the machines’ collection is even more difficult “because
all the machines are collected between Spm and 10pm on Sunday. Then, in five hours,
TRE-Q collects 25,000 electronic ballot boxes spread around the state, returning them
to these 150 places of storage”.

6.3 Security information issues

The CIO’s interview focused on controversial issues and questions about security of
the Brazilian electoral voting system. It’s important to highlight again that the CIO’s
positions are his own and might not represent the views of the Superior Electoral
Court. The following items contain the criticism presented by academics and some IT
practitioners and the CIO answers to those claims.

6.3.1 Focus on external attack / neglect with internal attacks. CIO — “In part, the
argument is correct.” On the other hand, he remarked that there are a lot of security
resources against internal attacks like electronic ballot box architecture and software
signed by a set of keys. These features would prevent the development internal team
from producing fake software and using it in frauds. The problem would be related
with the transparency strategy because the public security tests conducted by Superior
Electoral Court deal only with external attack and don’t show the actions against in-
ternal risks.

6.3.2 One Cryptographic key for all electronic ballot boxes. “It's partly true. In
2012 or 2014 was introduced the encryption of the file system, so if I try to install that
file system on a computer, it will be encrypted and only with the key I can decrypt it.
It is one key by state and the key has to be common in order to make contingency
possible.” Contingency is the procedure of changing the electronic ballot box dam-
aged with another one working during the voting time.

6.3.3 Electronic voting development without user participation. In accordance
with CIO declaration, the electronic ballot box has been changed in order to make the
necessary adjustment to the printed vote (Electoral Justice will test printed vote in
some poll stations) and public audiences have been promoted to discuss these modifi-
cations with audiences involving political parties, civil society, market people and
citizens in general.

6.3.4 Data modification during the transmission between Electoral Office to TRE
and TRE to TSE. The system uses advanced and expensive IT resources to encrypt
and sign the election results files. They are transmitted in a way that makes it virtually
impossible to change data during the transportation.”

6.3.5 Lack of transparency and source code verification. The CIO defended the
need of sharing 98% of the source code to the community and the remaining 2%,
related with security, would be analyzed by IT experts of political parties, civil socie-
ty, etc. in controlled environments. Spreading the source code to the community
would facilitate the work of experts (nowadays the audits are in controlled environ-
ments) and it would be less expensive. The CIO position is his own and it isn’t a con-
sensus nor a TSE decision. Regarding the source code deadline verification, the CIO
disagreed with the claims about short period. He admitted that the official period of
the verification ceremony is very short, but on other hand, the political parties’ ex-

perts, scientific community, and society in general may access the source code during
the six months previous to the ceremony.

6.3.6 Secrecy of the Vote. “The vote is secret. The electronic ballot box has two
mechanisms to protect the secrecy of the vote: 1. It shuffles the votes to make it im-
possible to identify it. 2. It does not record the voting order

6.3.7 Biometric Voter Registration. Electoral Justice included the fingerprint in
voter registration in the last ten years. The CIO advocated this procedure represents a
security factor in two aspects: reinforcing voter identification by checking his or her
fingerprint with the electoral records inserted in the electronic ballot box files and
improving the electoral records integrity.

6.3.8 Fraud proof. Right to the point, the CIO said: “No. There isn’t any proof of
fraud.” He referred to some claims of alleged frauds, but confirmed the inexistence of
proven e-voting frauds since 1996, when the Brazilian electronic voting was created.

6.4 Crossing Perceptions

The security of the Brazilian e-vote is detailed by the CIO in the previous part of this
study and he highlights the ways of checking the software and the features of the
hardware. He concludes his speech saying that “we guarantee that the poll results
correspond exactly to the vote of the voters.” EC ratifies CIO statements and he refers
the different ways to audit the system and the good level of security of the Brazilian
e-vote and its maturity. GD agrees with his colleagues and he takes up the constant
alternation of the parties in power and he repeats the argument about the auditability
of the e-vote. He notes that during the 21 years of Brazilian e-vote “there was not a
single case of proven fraud regarding the electronic ballot box.”

The argument of auditability is related to transparency and an important side of the
matter is about the perception of the ordinary people. About this specific question, the
respondents manifested a vision less favorable to e-voting. OC recognizes the prob-
lem with transparency but he highlights the advertising campaign of Electoral Justice
trying to explain the e-vote and he states that “the level of transparency is improving.”
CIO answered “no” to the question “is the Brazilian vote transparent to the ordinary
citizen.” He suggests increasing the number of audits with the printed vote to improve
people’s knowledge about the system.

Printed vote concerns Electoral Justice and diverse stakeholders. DG classified it as
a “philosophical aporia” because a printed vote audit needs a manual accounting pro-
ceeding, exactly the process that has led to fraud in the past. DG affirmed that a print-
ed vote would cause more problems because it aggregates a mechanical device (print-
er) and this could increase the chances of a electronic ballot box crash and harm its
security. Based on previous experiences, the Superior Electoral Court’s official posi-
tion [32] advocates that a printed vote doesn’t increase security and confirms DG’s
statement that instead it boosts technical failures in electronic ballot boxes. In con-
trast, a scholar stream supports the printed vote inclusion, because it “allows an inde-
pendent verification of the votes counted electronically [18], like Rezende that argues
in favor of printing a record of each vote, printed vote, because “the scientific re-
sources and technological tools available to computer security are insufficient to trust

10

the outcome of fully electronic secret ballots, at least to an extent consistent with the
spirit of democracy [23].”

CIO notes that Brazilian law establishes the printed vote in some electronic ballot
boxes in the next election despite the opposition of the Electoral Justice. CIO reports
that the electronic voting basic premise relies on virtual security without the need of
the physical vote record, the printed vote. It is the official statement of the Brazilian
Electoral Justice. Notwithstanding its position, the Electoral Justice has started the
change proceedings by hiring a consultancy team to help printed vote planning and
implementation.

OC advocates that the printed vote is necessary, but in sampling terms and he high-
lights the need of a correct implementation. Its adoption must be audited, verified in
order to “justify to the society that you adopted a procedure that is increasing the ex-
pense.”

The costs of Brazilian e-voting mentioned by OC are other contentious matters but
all the interviewers consider the system expensive. The CIO states that “it has a high
cost. It is a much more expensive process than if it were done in the traditional way”.
He adds that “we had a model in Brazil whereby there was fraud, so the implementa-
tion of an electronic voting model came to solve a problem that needed to be solved.”
The CIO argued that money can’t be the barrier to elections without frauds. He ex-
plains that electronic voting didn’t adopt a market driven approach given that it fo-
cused on democracy, governments and parliaments' legitimacy, a social good for the
country.

OC agrees with CIO but he assigns the high maintenance costs as the main cause
for the problem. In the same way, GD considers e-voting like an expensive process
and refers three main causes: hardware maintenance, software developing due to high
security demands and the costs of logistic in such a huge country (the logistics of
distributing more than 400,000 electronic ballot boxes in a territory of more than
8,500,000 square kilometers). According to financial sector, TRE-€Q spent 20,161,227
Reais (€ 53,771,855.93 - euro value on July, 07“‘, 2017) in maintenance, training,
personal and logistic’.

Regarding the vote by internet as another option of e-vote and the possibility of a
cheapest system, the respondents disagree with the proposal. DG emphasizes the issue
of requiring more security resources and the difficulties to get them in short-term. OC
discusses about the voter identification and asks: Who is voting? Is the person who
did the login and had voted the real owner of the electoral record? OC complements
his speech with the situation of the illiterate and poor people and the possibility of
vote buying by economic power representatives. CIO goes beyond and states: “We
have some communities where people are subject to groups of traffickers and criminal
militias who could force these people to vote for a particular candidate. Therefore, the
secrecy of the vote is so important by the Brazilian system. This type of vulnerability
is much stronger than in other countries.”

3 This amount does not include the ordinary costs of TRE-Q and the costs of software devel-
opment and hardware acquisition are managed by the Superior Electoral Court.

11

7 Concluding Remarks

Starting with a historical overview of democracy and electronic participation, this
study focused in electronic voting and specifically the Brazilian electronic voting
system. A literature review addressed the connection between electronic participation
and e-voting, highlighted the two e-vote manifestations (by internet or electronic bal-
lot boxes) and described the security issue involving the subject. The Brazilian con-
text was described in terms of legal-electoral systems, institutions, historical electoral
frauds, deployment, e-voting difficulties and biometric registry system. Managers of
the Electoral Court Q2 were interviewed in order to clarify the voting process and reply
to critical statements presented previously.

Statements by the DG presented huge challenges overcome by the Electoral Justice
like, for example, voters' training. The EC described the hard logistic of e-voting in
one of the 27 Brazilian states. Logistic, training, hardware, software, data transmis-
sion, people, short timelines were critical matters presented by the interviewees and
which apparently are handled by the Brazilian e-voting system.

Additionally, there are some concerns about auditability, security and costs, core of
the e-voting objections. About auditability and security, the source code verification
ceremony deserves mention because it doesn’t enable a perfect audit, although the
parties can do it during the six months before the election, but they don’t, according to
the CIO. His suggestion — sharing 98% of source code and the remaining 2% to audit
in controlled environment — could be a democratic way to disclosure the software.

The printed vote is the most controversial question related with Brazilian e-voting
and undoubtedly is a strong way of audit. It allows checking the electoral result by
counting each vote. Despite the Electoral Justice justifications for not using a printed
vote like, for instance, costs, increasing of mechanical failures and logistic issues, it
can be considered a good solution in terms of security.

Costs are the third main objection. This issue demands a question: what is the val-
ue of democracy? People working in the process, software development, hardware
acquisition, transportation etc. indicate that e-voting costs are high. It’s obvious. Con-
versely, frauded elections, governments without legitimacy, institutional instability
could cost more to the country and society. It’s necessary to rationalize the cost, but
governability is essential. Perhaps it lacks a clear guideline about an effective man-
agement of costs in terms of the electronic voting, a matter the electoral authorities
should pay more attention to. It is undoubtedly an important issue that demands a
professional approach of the managers.

The transparency related with ordinary people shows weakness so far, as the citi-
zen doesn’t understand the process beyond the vote. There is not an official guidance
about the matter and we can’t see any strategy related with it. The concerns to explain
the systems to the experts is very important but the authorities can’t forget the ordi-
nary citizen, the real owner of the state. It is necessary to create a strategy to deal with
this problem.

Asked about proven frauds, the CIO answer was “no”. Brazilian electronic voting
system started in 1996, 21 years ago, and until now there isn’t a single proven fraud.
The system can be improved and this paper gives a few suggestions in the direction of

12

a better management of costs. It is important to highlight the fact that the Brazilian e-
voting system has shown its strength in terms of security and delivery of correct elec-
toral results.

This study contribution aimed at promoting a better understanding about the Bra-
zilian e-voting system, its logistics and technology and at discussing its controversial
issues and possible solutions to some of the problems it faces. Although Electoral
Justice officials have contributed in this study, their critics have not yet. This weak-
ness must be considered in future studies. A future study should also present some
opposed positions in such a way that the Electoral Justice and its critics could help
generate a better understanding about the phenomena and new insights about the is-
sues, proposing new solutions to old problems.

REFERENCES

1. Castells, M.: Comunicacion y poder. Alianza, Madrid (2009).

2. Ober, J.: What the ancient Greeks can tell us about democracy. Annu. Rev. Polit. Sci. 11,
67-91 (2008).

3. Prandini, M., Sartori, L., Oostveen, A.: Why electronic voting? In: Skoric, M., Parycek, P.,
Sachs, M. (Eds.) CeDEM Asia 2014: Conference for E-Democracy and Open Government.
MV-Verlag, Miinster (2014).

4. De Reuver, M., Stein, S., Hampe, J.: From eParticipation to mobile participation: Design-
ing a service platform and business model for mobile participation. Information Polity,
18(1), 57-73 (2013).

5. Silverman, D.: Interpreting qualitative data: Methods for analyzing talk, text and interac-
tion. Sage, London (2006).

6. Braun, N.: E-voting and external voting. In: Ellis, A., Navarro, C., Morales, ., Gratschew,
M., Braun, N. (Eds.) VOTING FROM ABROAD: THE INTERNATIONAL IDEA
HANDBOOK. IDEA & IFE, Stockholm and Mexico (2007).

7. Grima, C., Insua, D.: A Generic System for Remote e-Voting Management. In: Rios, D.,
French, S. (Eds.) e-Democracy. Springer Netherlands, Dordrecht (2010).

8. Prosser, A., Kofler, R., Krimmer, R., Unger, M.: Security assets in e-voting. In: Prosser,
A., Krimmer, R. (Eds.) Electronic Voting in Europe Technology, Law, Politics and Socie-
ty, LNI, vol. P-47. Verlag, Bonn (2004).

9. Rezende, P.: Electronic elections: A balancing act. In: Chaum, D. et al. (Eds.) Towards
trustworthy elections. Springer-Verlag, Berlin (2010).

10. Prosser, A., Krimmer, R.: The dimensions of electronic voting technology, law, politics
and society. In: Prosser, A., Krimmer, R. (Eds.) Electronic Voting in Europe Technology,
Law, Politics and Society, LNI, vol. P-47. Verlag, Bonn (2004).

11. Barrat, J., Goldmith, B.: Compliance with International Standards: Norwegian E-Vote Pro-
ject. International Federation for Electoral systems - IFES, Arlington (2012).

12. Avgerou, C.: Explaining trust in IT-mediated elections: a case study of e-voting in Bra-
zil. Journal of the Association for Information Systems 14(8), 420-451 (2013).

13. Jones, F., Maurer, A., Barrat, J.: E-Voting Case Law: A Comparative Analysis. Ashgate
Publishing, Farnham (2015).

14. Oostveen, A., Van Den Besselaar, P.: Security as belief: user’s perceptions on the security
of electronic voting systems. Electronic voting in Europe: Technology, law, politics and
society 47, 73-82 (2004).

15. Camardo, P. César Bhering. O voto informatizado: Legitimidade democratica. Empresa
das Artes, Sao Paulo (1997).

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

13

Barbosa, P.: Avangos na tecnologia desenvolvida pela Justica Eleitoral no Brasil e seus
efeitos na contemporaneidade. Estudos Eleitorais 9 (3), 91-115 (2014).

Tribunal Regional Eleitoral Rio Grande do Sul: Voto Eletronico. Edigdo Comemorativa:
10 Anos da Urna Eletronica; 20 Anos do Recadastramento Eleitoral. TRE - RS / Centro de
Memobria da Justica Eleitoral, Porto Alegre (2006).

Aranha, D., Karam, M., De Miranda, A., Scarel, F.: (In)seguranc¢a do voto eletronico no
Brasil. Cadernos Adenauer XV (1), 117-133, (2014).

Brunazo Filho, A., Ortiz, M. A.: Fraudes e defesas no voto eletronico. All-Print Editora,
S&o Paulo (2006).

Brunazo Filho, A., Tavares A..: Legal Aspects of E-Voting in Brazil. In: Driza Maurer, A.,
Barrat, J. (Eds.) E-VOTING CASE LAW: A COMPARATIVE ANALYSIS, pp. 65-88.
Routledge, New York (2016).

De Oliveira, E.L.: Voto Eletronico-Processo Eleitoral Brasileiro. IP - Informatica Publica,
3(1), 17-28 (2001).

Dufloth, S., Freitas, D., Horta, C.: Sistema Brasileiro de Votacao Eletronica: aspectos do
contexto atual sob as perspectivas técnico-operacional e legal. Revista Uniabeu 7(17), 377-
392 (2014).

Rodrigues Filho, J.: E-Voting in Brazil — Reinforcing institutions while diminishing citi-
zenship. In: Krimmer, R., Grimm, R. (Eds.) 3rd international Conference on Electronic
Voting 2008. LNI, vol. P-131. Verlan, Bonn (2008).Tribunal Superior Eleitoral: Por dentro
da urna. Tribunal Superior Eleitoral, Brasilia (2010).

Hapsara, M., Imran, A., Turner, T.: E-Voting in Developing Countries. In: Krimmer, R. et
al. (Eds.) ELECTRONIC VOTING. E-VOTE-ID 2016, LNCS, vol. 10141. Springer,
Cham (2016).

Rodrigues Filho, J., Gomes, N.: Gastos com o E-Voting - Pesadelos dos Sonhos Eletroni-
cos. In: Proceedings of the 1° CONTECSI Congresso Internacional de Gestdo de Tecnolo-
gia e Sistemas de Informacdo, USP/Sao Paulo (2004).

Rodrigues Filho, J., Alexander, C., Batista, L.: E-voting in Brazil - the risks to democracy.
In: Krimmer, R. (Ed.) Electronic Voting, GI Lecture Notes in Informatics. Gesellschaft fiir
Informatik, Bonn (2006).

Rover, A.: O governo eletronico e a inclusdo digital: duas faces da mesma moeda chamada
democracia. Inclusdo digital e governo eletronico. Prensas Universitarias de Zaragoza, Za-
ragoza (2008).

Rodrigues Filho, J.: E-Voting and the Creation of Trust for the Socially Marginalized Citi-
zens in Brazil. Je(DEM-eJournal of eDemocracy and Open Government 2(2), 184-193
(2010).

Sxbg, 0., Rose, J., Flak, L.: The shape of eParticipation: Characterizing an emerging re-
search area. Government information quarterly 25(3), 400-428 (2008).

Tribunal Superior Eleitoral: Divulgagdo de Candidatura e Contas Eleitorais,
http://divulgacandcontas.tse.jus.br/divulga/#/2014, last accessed 2017/05/06.

Superior Electoral Court. The Court of Democracy, http://english.tse.jus.br/electronic-
voting/security, last accessed 2017/05/05

Trust

Trust Implications of DDoS Protection in Online
Elections

Chris Culnane', Mark Eldridge?, Aleksander Essex®, and Vanessa Teague®

! Department of Computer and Information Systems
University of Melbourne
christopher.culnane@unimelb.edu.au
2 School of Computer Science
University of Adelaide
mark.eldridge@student.adelaide.edu.au
3 Department of Electrical and Computer Engineering
University of Western Ontario
aessexQuwo.ca
4 Department of Computing and Information Systems
University of Melbourne
vjteagueQunimelb.edu.au

Abstract. Online elections make a natural target for distributed de-
nial of service attacks. Election agencies wary of disruptions to voting
may procure DDoS protection services from a cloud provider. However,
current DDoS detection and mitigation methods come at the cost of sig-
nificantly increased trust in the cloud provider. In this paper we examine
the security implications of denial-of-service prevention in the context of
the 2017 state election in Western Australia, revealing a complex interac-
tion between actors and infrastructure extending far beyond its borders.

Based on the publicly observable properties of this deployment, we out-
line several attack scenarios including one that could allow a nation state
to acquire the credentials necessary to man-in-the-middle a foreign elec-
tion in the context of an unrelated domestic law enforcement or national
security operation, and we argue that a fundamental tension currently
exists between trust and availability in online elections.

1 Introduction

Democratically elected governments may still aspire to the old principle of being
of the people, by the people, and for the people. But when it comes to contem-
porary deployments of internet voting, the technology underpinning how gov-
ernments are elected is a different story, and we are beginning to observe local
elections carrying an increasingly multi-national footprint.

In this paper we present an analysis of the 2017 state election of Western
Australia (WA) as one such case study. We found a complex interaction be-
tween jurisdictions extending far beyond WA’s borders. The election software
was created by a Spanish based company. The election servers were hosted in

the neighbouring state of New South Wales. Voters connected to the election
website via a U.S. based cloud provider. They were presented with a TLS certifi-
cate that was shared with dozens of unrelated websites in countries such as the
Philippines, Lithuania, and Argentina, and that was served out of data centers
in countries such as Japan, Poland, and China.

In particular this work focuses on the implications of cloud-based distributed
denial of service (DDoS) protection in an election setting, revealing the existence
of a tension between availability and authentication.

1.1 Background

The acceptance of an election result should not come down to trust, but it often
does. Some systems, such as fully scrutinised manual counting, Risk Limiting
Audits [13] and end-to-end verifiable cryptographic systems [3}, [5] [7], [16], [T}, [12],
allow voters and observers to derive evidence of an accurate election result, or
to detect an inaccurate result.

Australia’s iVote Internet voting system, implemented by third-party vendor
Scytl, does not provide a genuine protocol for verifying the accuracy of the
election outcome, relying instead on a collection of trusted and semi-trusted
authorities and auditors [I0]. At the time of writing, it is the largest continuing
Internet voting system in the world by number of votes Cast The Western
Australian run was, however, very small: about 2000 votes were received, out of
an electorate of 1.6 million. Election day was March 11th 2017, but iVote was
available during the early voting period starting on 20th February.

For recent elections conducted in the Australian states of Western Australia
and New South Wales, the iVote system was used in conjunction with Imperva
Incapsula, a global content delivery network which provides mitigation of Dis-
tributed Denial of Service (DDoS) attacks.

DDoS attacks involve using a large number of connections to flood a target
website, overloading systems and preventing legitimate users from logging in. It
was a DDoS attack which was blamed for the failure of the Australian Govern-
ment online eCensus system in August 2016 [14 [4]. To mitigate these attacks,
Incapsula’s systems act as a TLS proxy, intercepting secure connections between
the voter and the iVote servers and filtering malicious traffic.

Following our analysis of the unintended consequences of TLS proxying in the
Western Australian Election, a subsequent by-election in New South Wales used
Incapsula only for registrations and demonstration of iVote, not for the actual
voting process itself. However, valid TLS certificates for the Western Australian
and New South Wales election systems continue to be served by Incapsula servers
all over the world. This illustrates the difficulty of reversing a decision to out-
source trust.

® The largest as a fraction of the electorate is Estonia’s.

Contributions. Our contributions are threefold. Firstly, we provide an analysis
of the front-end iVote protocol, including the associated credential exchange and
key derivation.

Secondly, we analyse the implications of running an internet voting system
through a cloud based DDoS protection service acting as a non-transparent TLS
proxy. We provide the results of a global scan to assess the scale with which
Western Australian election related TLS certificates had been globally deployed.
We identify and discuss the misconfigurations we discovered in the case of the
Western Australian state election 2017, and analyse the feasibility of a malicious
TLS proxy performing a brute force attack on voter credentials.

Finally, we examine the injection of JavaScript performed by the DDoS pro-
tection service, and provide a proof of concept of how this could be utilised by
a malicious entity to compromise voter credentials and modify ballots. We dis-
closed our findings to the Western Australian Electoral Commission, both before
and during the election. They addressed the server misconfiguration, but con-
tinued to use the cloud based DDoS protection service for the duration of the
election.

Paper Organization. The rest of the paper is organized as follows. Section
describes the iVote protocol, and how a voter’s cryptographic credentials can
be recovered by a man-in-the-middle observing messages exchanged between the
client and iVote server. Section [3] describes technical findings of the cloud-based
DDoS protection service, focusing on their certificate management practices.
Based on these findings Section [d] proposes two attack scenarios that could al-
low the cloud provider (or a coercive entity) to man-in-the-middle an election.
Section [5] presents additional findings and Section [6] concludes.

2 The iVote Protocol

In this section we describe the iVote protocol. In particular we observed that
partial votes are sent—and stored on the server—encrypted by a symmetric key
which is only protected by a key derived from the voter’s ID and PIN. As we
shall discuss, this leads to the potential to recover votes via a brute force attack
of the iVoteID or PIN. When combined with the wider issue of using the same
TLS Proxy for registration as voting, the brute force attack becomes viable.

2.1 Key Findings

In iVote the secret keys used to construct an encrypted and digitally signed ballot
are cryptographically derived from two values: a voter’s ID and PIN. Knowledge
of these two values is sufficient information to allow an attacker to impersonate
a voter and cast a valid ballot on their behalf. iVote seemingly acknowledges the
sensitivity of these values

The key finding of this section is that the iterative hashing scheme used by
iVote to protect the ID / PIN pair can be brute forced in practice by a man-in-
the-middle observing messages exchanged between a voter’s client and the iVote
server. While transport layer security (TLS) protects these values from the view
of most network observers, as we explain in Section |3] the non end-to-end nature
of TLS in DDoS prevention exposes these values to the cloud provider.

2.2 Methodology

Publicly available technical documentation of the iVote system as deployed
in WA is limited. Significant information about the system and its configura-
tion, however, can be observed from its public internet-facing components via a
demonstration website set up by the Western Australian Electoral Commission
(WAEC) to allow voters to practice voting. To test the implementation we cre-
ated our own local server based on the publicly available JavaScript. There were,
however, two main limitations to this approach: (1) the practice website did not
include the registration step, and as such we were unable to observe network
messages exchanged during this phase, and (2) the responses by the practice
iVote server were mocked, and may not convey the full functionality of the live
election website. Following our initial analysis, we contacted the WEAC on Feb
17th, 2017 with a report of our findings, which WAEC acknowledged the same
day.

2.3 Voter Experience
An iVote election has three main phases:

1. Registration. A voter visits a registration website, enters her name, her
registered address and her date of birth. She may possibly be asked for
further identifiers such as a passport number. She then chooses and submits
a 6-digit PIN, which we will refer to as PIN. An 8-digit iVote ID number,
which we will refer to as iVoteID, is sent to her via an independent channel
such as by post or SMS.

2. Voting. The voter visits the voting website and enters her iVoteID and her
PIN. Her vote is encrypted in her browser using JavaScript downloaded over
TLS from the voting server. If she wishes, she may pause voting and resume
later—to facilitate this, a partially-completed vote is stored (encrypted) on
the server while she is voting. When she submits her vote, she receives a
12-digit receipt number.

3. Verification. All submitted votes are copied to a third-party verification
server. After voting, the voter may call this service, enter her iVoteID, PIN
and Receipt number, and then hear her vote read back to her.

2.4 Protocol Overview

A complete overview of the protocol is both beyond the scope of this paper, and
beyond what can be observed from the public-facing elements of the system. We

do, however, have sufficient information to outline how a brute force attack to
recover voter credentials could proceed. A high-level overview of login and ballot
casting is depicted in Figure [2.4], with additional details as follows.

Login. The voter first enters their iVoteID and PIN into the login page in the
browser. A cryptographic key derivation implementation in client-side JavaScript
then uses these values to derive a value, voterID, as follows. First a string is cre-
ated of the form iVoteID + "," + Base64(SHA256(PIN)) + "," + "voterid".
This string is used as the password input to the password-based key derivation
function PKCS#5 PBKDF2WithHmacSHA1l. The function uses the generated pass-
word along with a salt of 20 null bytes; it performs 8000 iterations and outputs
a key of length 16 bytes. The result is hex encoded before being posted to the
server as voterID.

The purpose for this seems to be to protect the iVoteID and PIN by not
sending them to the server directly. However, as we discuss in Section [2.6] this
protection is insufficient as it is computationally feasible to recover these values
from voterID through brute-force search.

Voter Credentials. If the voterID submitted to the server corresponds to a
registered voter, the server responds with a file credential. json. An outline of
this file is shown in Listing[I} The demo system uses an internal mocked response
for a sample user, however we conjecture the real election server simply stores a
database of voterId/credential. json pairs, and responds with the associated
credential. json whenever a valid voterID is presented.

The vad object contains a number of keys and certificates. The vk object rep-
resents a Scytl KeyStore, which combines a PKCS#12 keystore with a JSON
object of encrypted secrets. The underlying PKCS#12 keystore is protected by
what the code refers to as the long password. The first step to deriving the
long password is to derive an AES key to decrypt the password contained in
vkp. To do this a string is created similar to the one created during the lo-
gin phase. This string has the form: iVoteID + "," + Base64(SHA256(PIN))
+ "," + "passKS". The string differs from the one constructed at login time
using the suffix “passKS” instead of “voterid”.

This password string, along with the salt value in vkp, is passed to another
instance of PKCS#5 PBKDF2WithHmacSHA1 that performs 8000 iterations. The
result is a 16-byte key, which is then used to initialise an AES cipher, using
GCM (Galois/Counter Mode) with no padding. The GCM nonce length is 12
bytes and the tag length is 16 bytes. The nonce is the first 12 bytes of the
password value stored in vkp. The remaining value of vkp is decrypted to form
what the code calls the derived password.

The long password is finally generated by a PBKDF2WithHmacSHA1 that per-
forms a single iteration on the derived password along with the salt value from vk,

5 This is an instance of a PKCS#5 PBKDF2WithHmacSHA1 function, with a salt consisting
of 20 null bytes, performing 8000 iterations, and generating a key of 16 bytes

Voter Browser Cloud iVote Server

[] [] [] []

8-digit iVote ID: ID, 6 digit PIN:PIN

voterID = PBKDF2(ID||SHA256 (PIN)||"voterid") _

voterID

credential. json

passKS = PBKDF2(ID||SHA256 (PIN) ||"passKS")
dk = PBKDF2(Decpassks (credential. json->vkp))
kp = Decy (credential. json->vk->secrets)
sk = Decpassks (credential. json->vk->store)
resp = credential.json->challenge_object|/nonce

resp ||signg (resp)

token. json

Partial Vote Preferences: Prefs

AESy, (Prefs)||Signature

Final Vote Preferences: Prefs

pk < token.json
ballot = Encpi(Prefs)

ballot [|Signg, (ballot)

Fig. 1. iVote Protocol. High-level overview of login and ballot casting protocol (n.b., some details omitted for brevity). The TLS
connection is not end-to-end between the browser and iVote server, exposing brute-forcible voter credentials to the cloud provider.

© o N o v A W N e

[
S}

Myt v,
"challenge_object": "Base64 Challenge Object",
"vad": {
"vk": "{
"salt": "Base64Encoded Salt",
"secrets": {
"symmetric": "Base64Encoded AES Key"
T,
"store": "Base64Encoded PKCS12 KeyStore"
>,
"vkp": "Base64Encoded salt and password for KeyStore",
"eeca": "Base64Encoded CA Certificate",

"svca": "Base64Encoded CA Certificate",

"azca": "Base64Encoded CA Certificate",

"ab": "Base64Encoded Certificate to Verify XML Signatures",
Fo
"cert": "Base64Encoded Client Certificate"

Listing 1: Voter Credential File Skeleton

yielding a 16 byte key. This value is used as both a password for the PKCS#12 key
store, and as an AES Key to decrypt the values in the secrets object. The keys in
the secrets object in vk are Base64Encoded ciphertexts. The long password is
used to initialize an AES Cipher using GCM with no padding. The GCM nonce
length is 12 bytes and the tag length is 16 bytes. The nonce is the first 12 bytes
of the value in the secrets object, with the remainder being the ciphertext that
is to be decrypted.

The final outcome of this intricate sequence of client-side key derivations and
decryptions is an AES symmetric key kp which is used by the browser to encrypt
partial votes, which we will continue in further detail in Section

Token. The credential.json file is further processed and the contents ex-
tracted, in addition the server’s signature on the received challenge is verified.
In response to a valid signature, the browser generates a random nonce, con-
catenates it with the server’s challenge, and returns this as a signed message.
The purpose of this check appears to be a means of confirming that a client has
successfully recovered their private signing key in the keystore.

The response is posted to vote-encoder/token/{voterKeysId}?v=1 where
v is taken from the configuration file, and voterKeysId comes from the voter
certificate common name, which contains the string “VoterAuth_” followed by
the votersKeysId. The voterKeysId value is important because it is used dur-
ing all subsequent posts, including voting and partial votes. It is unclear how
this value is derived or who generates it, but we suspect it is generated by the
registration server during the credential file generation.

vote-encoder/token/{voterKeysId}?v=1

o oA W N e

Finally, the server responds to the token post with token. json that contains
the public-key group parameters for encrypting ballot preferences, the Election
Markup Language for the various races, and any partial votes that have been
recorded. The specifics of the encryption and signature of voter ballot preferences
are outside the scope of this paper.

2.5 Partial Votes

When a voter completes a voting screen, either the Legislative Assembly (lower
house) or Legislative Council (upper house), a partial vote of all currently en-
tered preferences is created and sent to the server. The submission is sent to
vote-encoder/partial_vote/{voterKeysId}?v=1, with JSON object shown
in Listing The eo string is encrypted with the secret key contained in the

{

"token":"Base64 Copy of Token from Server",

"eo":"Base64 Encrypted String",

"signature":"Base64 Siganture of Vote",

"cert":"Base64 Encoded PEM Certificate of Voter Sign cert"
}

Listing 2: Partial Vote Skeleton

secrets object in credential. json, which was extracted as part of the cre-
dential file processing, discussed in the previous section. When a partial vote
is contained within the Token Response the same AES key contained in the
secrets object is used to decrypt its contents and restore the screen for the
user. The crucial consequence of this is that unlike the final vote which is sub-
mitted under the encryption of a randomly generated AES key, which is in turn
encrypted with the public key of the election, the partial vote is only protected
by the AES key stored in the credential file.

Given that the credential file itself is only protected by the an encryption key
derived from the iVoteID and PIN, if the iVoteID and PIN are susceptible to
brute force attacks, both the receiving server, and any TLS proxies in between,
would have the ability to recover votes. The attack is not mitigated by the fact
the final vote could be different, since the partial votes are always submitted as
the voter moves between the screens, and as such, the attacker need only look
for the last partial vote submission prior to final submission to be sure of the
contents of the final vote.

2.6 Brute Forcing Voter Credentials

One important question is how hard it would be for a man-in-the-middle to
recover a voter’s credentials from observed messages exchanged between the

vote-encoder/partial_vote/{voterKeysId}?v=1

browser and iVote server. Since WA opted to disable re-voting for their election,
a near real-time attack capability is needed in order to construct a valid (but
malicious) ballot and transparently swap it into the voter’s session before they
can cast. We now show that this requirement can feasibly be satisfied in practice.

As described in Section the voterId value sent by the browser at login
time is derived from the voter’s iVotelD and PIN, and knowledge of these
values would be sufficient to recover all the voter’s other cryptographic values
from credential. json and token. json files.

Recall the voterID value is essentially 8000 iterations of SHA1 applied to
tVotelD, an 8-digit system-assigned value concatenated with PIN, a 6-digit
user-chosen value. This implies a brute-force upper bound of

8.10%.108 - 108 ~ 290

operations. In other words, the voterID value provides 60 bits of security in the
best case.

This falls well below the minimum recommended NIST 112-bit security level [15].
As a comparison, at the time of writing the Bitcoin network was able to perform
262 SHA1 hashes per second[f]

In practice, however, the voterID space may not be uniformly distributed.
Only a few thousand iVotel Ds were actually used. Moreover since the regis-
tration server is also covered by the DDoS cloud provider, we may assume that
a man-in-the-middle would also be able to observe the set of iVotel Ds in the
context of the registration step and associate an ID with a unique IP address.
Under the assumption of a known iVotel D, the search space to recover the
voter’s credential would be

8-10%-10% ~ 233

hashes. This space could be searched nearly instantly using a moderately sized
GPU cluster. For example, contempoary bitcoin mining ASICs now achieve hash
rates in the tera-hash-per-second (i.e., > 29) range. Investment in expensive
and difficult to procure custom hardware, however, is not necessary. The rise
of inexpensive elastic cloud computing puts this attack within reach of nearly
any budget, and recent work has examined offering crypto brute forcing as a
service. Heninger et al. [18], for example, have deployed hundreds of concurrent
instances on Amazon EC2 in pursuit of factoring RSA moduli.

As a more immediate timing comparison demonstrating the real-world feas-
bility of this attack, we implemented our own program to brute force voterIDs in
a threaded Python program using the Hashlib implementation of PBKDF2 and
deployed it on Digital Ocean. Using a single 20-core droplet, our unoptimized
(non-GPU) implementation was able to recover a 6-digit PIN in approximately
7 minutes at a cost of USD $0.11. With 10 concurrent droplets (Digital Ocean’s
default account max) the time to recovery is less than 1 minute, which we be-
lieve would plausibly be less than the time taken by the average vote to read,

S https://blockchain.info/stats

https://blockchain.info/stats

mark and cast a ballot. Using a GPU-optimized hashing implementation (e.g.,
Hashcat), however, we expect this time can be reduced to the millisecond range
while retaining a comparable cost of pennies per recovered credential.

3 Distributed Denial of Service Protection

Imperva Incapsula is a US-based cloud application delivery company which pro-
vides numerous security services to websites including prevention and mitigation
of DDoS attacks. In this section we present a technical analysis of relevant as-
pects of their service as used by the Western Australian Electoral Commission
(WAEC) for the 2017 WA State Election.

3.1 Key Findings

Our key finding in regards to the DDoS prevention service deployed in the 2017
WA State Election are threefold:

1. Encryption is not end-to-end between the voter and the iVote server;

2. The cloud provider’s practice involves the bundling of dozens of unrelated
website domains into a single certificate’s subject alternate name (SAN) list;
and

3. An internet-wide scan we conducted found valid TLS certificates for the
election website being served by servers around the world.

Taken together we argue that this opens the possibility of a foreign nation being
able to obtain the private key necessary to man-in-the-middle WA voters through
an unrelated domestic law enforcement or national security operation. It also
risks compromising the election as a result of error or malfeasance by server
administrators all over the world.

Additionally, we discovered that the system initially deployed for the election
did not correctly protect against DDoS attacks, despite the presence of Incap-
sula’s DDoS mitigation service. Due to misconfiguration of the iVote server, we
were able to determine the true IP address for the WA iVote server via histori-
cal domain registrations for the NSW iVote system used in 2015, which was also
being used to host the WA iVote system.

Upon discovering this vulnerability we notified the WAEC, who reconfigured
the server to stop accepting connections that did not originate from Incapsula’s
systems.

3.2 Non End-to-End TLS

In a typical TLS handshake the server presents its certificate to the client. Com-
pleting a TLS handshake takes time, and saving the session state requires the
server allocate memory. This and other strategies allow attackers with with ac-
cess to numerous hosts to overwhelm a server by flooding it with connection

Voter Incapsula iVote

TLS Connection 1 TLS Connection 2
Certificate 1 Certificate 2
Issuer: GlobalSign Issuer: COMODO
Subject: incapsula.com Subject: *.elections.wa.gov.au
SAN: *.elections.wa.gov.au

Fig. 2. Non end-to-end TLS. Communication between a voter’s browser and the
iVote server pass through an Incapsula server and are decrypted, inspected, and re-
encrypted under a different key.

requests. When a DDoS mitigation service is involved, the TLS handshake is
slightly altered to allow the service to identify and filter malicious requests by
forcing incoming connections to be made through its infrastructure before being
forwarded on to the destination in a separate connection. The result is that the
service provider becomes an intermediary for all traffic to the iVote server.

Incapsula’s DDoS mitigation service operates by placing Incapsula servers
between the user and the destination website as a non-transparent TLS proxy,
intercepting all communications to and from the website in order to filter mali-
cious connections. For example, when connecting to the iVote Core Voting Sys-
tem (CVS) at https://ivote-cvs.elections.wa.gov.au, the voter’s connec-
tion first travels to a server owned by Incapsula where it is decrypted, scanned,
and then forwarded on to the iVote server managed by the WAEC. This inter-
action is shown in Figure [2|

Nominally, if the iVote server was correctly covered by DDoS prevention,
we should not have been able to observe its certificate, as the server would
ignore any connection originating from a non-Incapsula IP addressﬂ However,
a misconfiguration of the iVote server made it possible to identify its true IP
address, allowing us to request its TLS certificate directly. This issue is discussed
in more detail in Section

The interception of connections allows Incapsula to filter out malicious traf-
fic during DDoS attacks, but also allows Incapsula to see all traffic travelling
through their systems. This behaviour is by design: modern DDoS mitigation
methods rely on scanning the plaintext traffic being transmitted to the server
they are protecting [20, 2]. Without this ability, they would have a much harder
time determining the good connections from the bad ones. What it means, how-
ever, is that the voter’s interaction with the voting server exists as plaintext at
some point after leaving the voter’s computer, but before reaching the election
servers.

" https://www.incapsula.com/blog/make-website-invisible-direct-to-
origin-ddos-attacks.html

https://ivote-cvs.elections.wa.gov.au
https://www.incapsula.com/blog/make-website-invisible-direct-to-origin-ddos-attacks.html
https://www.incapsula.com/blog/make-website-invisible-direct-to-origin-ddos-attacks.html

incapsula.com, *.lstrongteam.com, *.absolutewatches.com.au, *.advancemotors.com.au,
.alconchirurgia.pl, *.amplex.com.au, *.bohemiocollection.com.au,

.cheapcaribbean.com, *.compareit4me.com, *.elections.wa.gov.au, *.everafterhigh.com,
.farmerslifeonline.com, *.floraandfauna.com.au, *.heypennyfabrics.com.au,
.homeaway.com.ph, *.jetblackespresso.com.au, *.lifemapco.com, *.lovemyearth.net,
.maklernetz.at, *.mobile-vertriebe.de, *.mobile.zurich.com.ar, *.monsterhigh.com,
.mycommunitystarter.co.uk, *.noosacivicshopping.com.au, *.oilsforlifeaustralia.com.au,
.planetparts.com.au, *.purina.lt, *.redsimaging.com.au, *.rlicorp.com,

.roundup.fr, *.sassykat.com.au, *.spendwellhealth.com, *.sublimation.com.au,
.uat.user.zurichpartnerzone.com, *.woodgrove.com.au, *.yamahamotor-webservice.com,
.zlaponline.com, *.zurich-personal.co.uk, *.zurich.ae, *.zurich.co.jp,

.zurich.es, *.zurich.jp, *.zurichlife.co.jp, *.zurichseguros.pt, lstrongteam.com,
absolutewatches.com.au, advancemotors.com.au, alconchirurgia.pl, amplex.com.au,
bohemiocollection.com.au, compareité4me.com, farmerslifeonline.com,
floraandfauna.com.au, heypennyfabrics.com.au, homeaway.com.ph, jetblackespresso.com.au,
lifemapco.com, lovemyearth.net, mycommunitystarter.co.uk, noosacivicshopping.com.au,
oilsforlifeaustralia.com.au, planetparts.com.au, purina.lt, redsimaging.com.au,
roundup.fr, sassykat.com.au, spendwellhealth.com, sublimation.com.au, woodgrove.com.au,
zurich.ae, zurich.es, zurich.jp, zurichlife.co.jp

* K K K K K X K K X X

Fig. 3. Subject alternate names in the Incapsula certificate. The same digital
certificate used to prove the identity of *.elections.wa.gov.au to WA voters is also
used to prove the identity of websites listed above. This list was transient and changed
several times in the month leading up to election day.

This fact is problematic since TLS authentication remains the only meaning-
ful form of server authentication in iVote, and using a cloud provider for DDoS
protection necessarily outsources this trust. Putting valid keys on a variety of
third-party servers throughout the world brings all of them into the set of trusted
parties, and increases the likelihood of a key leaking. Furthermore, ballot secrecy
in iVote depends critically on the assumption that a voter’s identity disclosed
during registration cannot be linked with a cast ballot making non end-to-end
encryption a concern in this matter as well.

3.3 Large-scale Certificate Sharing

DDoS protection need not require a customer to surrender its private keys to
the cloud provider [20] 2]. Instead, Incapsula outwardly presents their own cer-
tificate in the handshake, which includes the iVote server’s domain (ivote-cvs.
elections.wa.gov.au) in the Subject Alternate Name (SAN) extension of their
certificate. Specifically Incapsula includes the wildcard domain *.elections.
wa.gov.au in the SAN.

Obtaining this secondary certificate is a financial expense, and Incapsula
shares one certificate among numerous websites in order to reduce cost [20].
Specifically it lists itself as the certificate’s subject, and packs numerous domains
of its customers’ into a single certificate’s SAN. When a WA voter visits the iVote
website https://ivote-cvs.elections.wa.gov.au, their browser is presented
with a certificate with dozens of other unrelated domains in the SAN. A list
of these domains is given in Figure [3) and includes websites for widely varying
sectors and countries of origin.

ivote-cvs.elections.wa.gov.au
ivote-cvs.elections.wa.gov.au

Through a combination of collecting our own TLS handshakes with the iVote
server as well as Censys[9] data we observed this certificate over a two month
period prior to the election and found the SAN list changed several times, pre-
sumably as some clients joined and others left. For example, on Feb 1st the
SAN included several casinos (pandora-online-casino.com, caribiccasino.
com, regalo-casino.com,doublestarcasino.com), but they disappeared shortly
after. Importantly, visitors to any of these other websites are, in turn, presented
with the same certificate.

3.4 International Certificate Footprint

Incapsula’s global network consists of 32 data centres (Points of Presence, or
PoPs), located across the Americas, Europe, the Middle East, and the Asia Pa-
cific regionﬁ Due to the design of Incapsula’s network, TLS certificates hosted in
one PoP are propagated worldwide, so that users in any region served by Incap-
sula can have their connection proxied by the nearest PoP available. As stated by
Incapsulaﬂ “When using Incapsula, our servers become the intermediate for all
traffic to your website, including SSL traffic. To facilitate this, Incapsula needs
a valid SSL certificate for your domain installed on all its servers worldwide.”

We found Incapsula servers serving valid TLS certificates for *.elections.
wa.gov.aul from locations around the world, including Eastern and Western
Europe, China, North and South America, and various points in Australia.

These servers were identified through domain name look-ups for ivote-cvs.
elections.wa.gov.au originating from within each country, and subsequent
TLS connections, using a Virtual Private Network (VPN). Our timing analysis
strongly indicates that the TLS certificates were being served directly by these
servers, and not proxied from elsewhere.

Internet Scan. We conducted an internet wide scan of the IPv4 space on
election day (March 11, 2017), collecting all TLS certificates served over port 443
using zgrabE In total we found 153 distinct IPs serving certificates containing
x.elections.wa.gov.au in the subject alternate name. A traceroute and timing
analysis showed that these IPs were consistent with cities in which Incapsula
advertises data centers® We were able to identify points of presence serving
WA'’s certificate in Australia, Canada, China, France, Germany, Japan, Poland,
Singapore, Spain, Switzerland, United Kingdom, and throughout the United
States.

4 Man in the Middle Attack Scenarios

In this section we outline two scenarios in which a man-in-the-middle could
recover credentials necessary to be able to cast a valid ballot on a voter’s behalf.

8 https://www.incapsula.com/incapsula-global-network-map.html
9 https://www.incapsula.com/blog/incapsula-ssl-support-features.html
10 https://github.com/zmap/zgrab

*.elections.wa.gov.au
*.elections.wa.gov.au
ivote-cvs.elections.wa.gov.au
ivote-cvs.elections.wa.gov.au
https://www.incapsula.com/incapsula-global-network-map.html
https://www.incapsula.com/blog/incapsula-ssl-support-features.html
https://github.com/zmap/zgrab

4.1 Modify the Scripts the DDoS Provider is Already Injecting

Overview and Significance. In this first scenario, a malicious cloud provider
injects Javascript into the voter’s client with the aim of capturing their creden-
tials. Since the cloud provider sits between the voter and iVote server, injecting
a malicious script is an obvious but risky approach for the cloud provider if both
the presence the script and its malicious purpose were detected. The significance
of our particular attack scenario, however, makes use of the following observa-
tions: (1) the cloud provider is already rewriting server content to injecting their
own JavaScript as part of their DDoS profiling functionality, and (2) the script
payloads are already being obfuscated.

We created a proof-of-concept vote-stealing script that leaks the voter’s ID
and PIN in the tracking cookie, and incorporated it into the script already being
injected by the cloud provider at no increased file size.

Script Injection for System Profiling. When a voter connects to the iVote
WA Core Voting System using the address https://ivote-cvs.elections.wa.
gov.au, the connection is proxied through Incapsula’s servers using an Incapsula-
controlled TLS certificate. The initial response to a voter’s connection sets a
number of Incapsula cookies.

In addition the response is modified by Incapsula to include JavaScript code
at the end of the HTML response. The included code inserts a <script> element
to cause the browser to load an additional JavaScript file, the contents of which
are obfuscated as a string of hex values. The included code is designed to perform
fingerprinting of the voter’s system. The HTTP responses for the resource files
do not contain x-cdn or x-iinfo headers, strongly suggesting they are served by
the Incapsula proxy (as would be expected), rather than by the iVote server.

When expanded into a more readable format, the injected JavaScript code is
revealed as a tracking function. The code is designed to probe various parts of the
voter’s computer, including: the web browser they are using; any browser plugins
they have installed; the operating system being used; their CPU type; and other
information designed to fingerprint individual user connections. Additionally,
this cookie calculates a digest of all other cookies set on the page, including
those set by the server.

This information is written into a profile cookie that is temporarily stored on
the voter’s computer. This profile cookie has an extremely short life of just 20
seconds, after which it will be deleted. Due to this being loaded during the page
load the remaining requests within the page will send this cookie to the server
before it disappears from the voter machine. As such, unless spotted within the
20 second period, or all requests/responses are being logged by the voter, it will
be difficult for a voter to detect that this profiling cookie was ever set or sent to
the server. The cookie is named __utmvc, which is similar to a Google Analytics
cookie (__utmv), however, it does not appear to be related. The Google __utmv
cookie is a persistent cookie used to store custom variables. The reason for the
choice of naming is not immediately clear.

https://ivote-cvs.elections.wa.gov.au
https://ivote-cvs.elections.wa.gov.au

Cookies and Voting While the concept of profiling and tracking cookies may
seem invasive, there is nothing overtly malicious about this behaviour. Indeed,
the entire web advertising industry is built to perform similar tasks, in order to
track individual users across websites and better serve advertisements.

For Incapsula, the tracking cookie most likely forms part of the DDoS mit-
igation process: Incapsula can determine which requests are likely to be from
legitimate users. Combined with the profiling cookie, Incapsula can perform an
analysis of the requesting device and alter its behaviour accordingly.

In the context of iVote, however, this behaviour poses a significant risk for
voter security. As discussed in the introduction to this article, the iVote system
is designed with the assumption that the encryption and authentication covering
the communication between voter and server (Transport Layer Security, or TLS)
is secure. If a third party has the ability to intercept this communication and
inject malicious JavaScript into server responses, it would be possible to hijack
the entire voting process.

The JavaScript we have witnessed being injected into server responses is non-
malicious, however, there remains the potential for this to not always be the
case. For example, a rogue Incapsula employee or a foreign intelligence service
with access to Incapsula’s systems could alter the injected JavaScript. If this
occurred, it would be possible to steal the iVoteID and PIN from the voter, and
subsequently modify their ballot, with a very low chance of detection by either
the voter or the iVote server itself.

Furthermore, with Incapsula’s cookies already being used to identify voters
between both the registration server and voting server, it would also be trivial
for such an attacker to link voters with their vote, removing the secrecy of their
ballot and opening voters to the risk of vote-buying or coercion.

The device fingerprinting behaviour of the injected JavaScript may also allow
these attacks to be performed in a selective fashion. Recent research by Cao
et al. [0] has shown that these fingerprinting methods can be used to identify
users with a high degree of confidence, even across different browsers on the
same device. This may provide an attacker with the ability to selectively target
individual voters or electoral divisions, and to avoid targeting voters who may
notice changes to the injected JavaScript (such as security researchers).

Proof of Concept. We developed a short script that would leak the iVoteID
and PIN by setting it in the profiling cookie. As such, the information would be
leaked without need for any additional requests, making detection extremely dif-
ficult. Furthermore, due to the original injected script from Incapsula not being
minimised, we were able to construct a malicious injection script that maintained
all the functionality of the original, along with our additional malicious code,
while still maintaining exactly the same length.

To achieve this we added two onChange listeners to the iVoteID and PIN
input boxes. We use these onChange listeners to take a copy of the values entered
and set them inside the profiling cookie. The advantage of this is that we are

not adding any additional cookies, or requests, in order to leak the information,
but instead using an existing side channel.

In order to facilitate this we had to extend the lifetime of the profiling cookie.
During testing we extended it to 1 hour, but realistically it only needs to be
extended by a few minutes, the only requirement is that the cookie exists at the
point the iVoteID and PIN is entered by the voter.

4.2 Foreign Access to TLS Private Keys

In this attack scenario a cloud provider uses the brute force attack described in
Section [2.6]to recover the iVoteID and PIN from the passively observed voterID
value sent by the browser at login time. In comparison to the script injection
attack above, this approach is completely passive and has the benefit of being un-
detectable at the cost of increased computational resources. Any cloud provider,
therefore, must be trusted not to pursue such an attack unless the combined
ID/PIN space was made cryptographically strong.

A more interesting scenario is one in which the cloud provider (a multi-
national company operating in many jurisdictions) must inadvertantly grant a
foreign power the ability to man-in-the-middle an election through the course of
prosecuting an otherwise lawful national security request.

As discussed in Section [3.4] valid TLS certificates for [*.elections.wa.gov.
au are served by Incapsula servers worldwide, with the associated TLS private
keys also stored on these servers. The TLS certificates served by Incapsula’s
servers are multi-use certificates covering a number of domains, as described in
Section This design has significant implications for the security of the TLS
private keys associated with these certificates.

For example: a foreign government, as part of a legitimate domestic surveil-
lance operation, may request that Incapsula provide access to the TLS private
key for the domain [*.example. com served by a PoP located in the foreign coun-
try. If this domain is contained in the same TLS certificate as *.elections.wa.
gov.au, obtaining this private key would also provide the foreign government
with the ability to perform man-in-the-middle attacks on voters using iVote.

5 Additional Findings

5.1 Verifiability

The iVote system incorporates a telephone verification service [I], which allows
a voter to dial a provided number and connect with an interactive voice response
(IVR) system.

The telephone verification service requires the voter’s iVoteID, PIN, and the
receipt number provided by the iVote server after a vote has been successfully
cast. After these three numbers have been provided, the telephone verification
service reads back the list of candidates, in preference order, chosen by the voter
in their completed ballot.

*.elections.wa.gov.au
*.elections.wa.gov.au
*.example.com
*.elections.wa.gov.au
*.elections.wa.gov.au

During the 2015 New South Wales state election, which also used the iVote
system, Halderman and Teague identified several potential attacks against this
telephone verification system [10]. These attacks could allow an attacker who had
manipulated iVote ballots to avoid detection by voters who were attempting to
verify that their vote was cast as intended.

One of these attacks is known as a “clash attack,” and is designed to trick
voters by manipulating the registration and vote confirmation pages to provide
the iVoteID, PIN, and receipt number of a previous like-minded voter with the
same candidate preferences. The previous voter’s ballot has been allowed to
be recorded unmodified, and is then used as verification evidence for multiple
voters. The actual votes of these voters can then be manipulated at-will with
little chance of detection.

Crucially, the clash attack relies on accurate prediction of how a voter will
vote prior to registration, so that they can be provided with the iVoteID and
PIN of a like-minded voter who has submitted an unmodified ballot. In addition,
the attack relies upon providing voters with a PIN rather than allowing them
to choose one. This may raise the suspicions of voters who are aware that the
iVote system is supposed to allow them to choose their own PIN.

For the 2017 WA State Election, the clash attack could be significantly im-
proved as a consequence of Incapsula being used to proxy all voter connections to
both the registration and voting servers. An attacker with access to Incapsula’s
systems could directly link each voter’s registration details with their completed
ballot, provided that the voter registers and votes using the same browser (and
potentially across browsers as well [6]).

Due to Incapsula’s position as a DDoS mitigation service for a number of
other online services, such an attacker would also have the ability to identify
voters (and their likely voting preferences) with significantly more accuracy than
if they only had access to the iVote system itself. This would allow for more
accurate clash attacks to be performed.

5.2 Bypassing DDoS Mitigation

It is assumed that the use of Incapsula’s service to proxy iVote connections was
an attempt to protect the iVote system from potential Distributed Denial of
Service (DDoS) attacks during the 2017 WA state election.

DDoS mitigation services such as Incapsula operate by intercepting connec-
tions to a service (in this case, iVote), thereby hiding the true public IP Ad-
dress of the service. If this protection is applied correctly, any attacker wishing
to attack the iVote system will be forced to do so via Incapsula’s systems—
thereby allowing Incapsula’s robust infrastructure to withstand the attack and
filter legitimate connections through to the iVote system. For this protection to
be effective, the true IP address of the service must be properly hidden from
attackers [19].

During the first several days of voting in the 2017 WA State Election, it was
possible to identify the public IP address of the server hosting the iVote Core
Voting System (CVS) for the WA election (https://ivote-cvs.elections.

https://ivote-cvs.elections.wa.gov.au

wa.gov.au)), through specific requests to known iVote infrastructure in Sydney,
NSW. This infrastructure could be publicly identified through DNS queries and
other methods requiring little sophistication on the part of an attacker. With
knowledge of this address, it would have been possible for an attacker to perform
DDoS attacks against the iVote system directly, rendering Incapsula’s protection
ineffective.

Recommended practice for the use of DDoS mitigation services such as In-
capsula is to prevent the identification of the true IP address of the service being
protected, through techniques such as blocking all traffic from sources other than
Incapsula itself [8, [I7]. These protections were not correctly implemented for the
WA state election until we noticed the problem, several days after the opening
of iVote, and notified the WAEC.

6 Conclusion

We have shown that utilizing cloud based DDoS protection servers can have
a significant impact on the trust model of an internet based election. Further-
more, we have analysed the increased risks of tracking and interception asso-
ciated with such services, and provided a proof of concept demonstrating how
malicious JavaScript could be injected into a voting client in order to read or
alter completed ballots.

At the time of writing, more than two months after the election, the Western
Australian Electoral Commission has published neither the raw voting data for
iVote, nor the verification success and failure statistics. Even if the votes were
broadly similar to those cast on paper, and the verification failure rate was
small, that would not constitute genuine evidence that the votes were accurately
recorded. A lack of transparency in the process is simply no longer acceptable.
In light of the trusted nature of cloud providers, their single point of failure, and
the remote nature of potential attackers, the need for evidence-based election
outcomes is greater than ever.

Acknowledgements

The authors thank the Western Australian Election Commission for quick ac-
knowledgement and response to our disclosure. Thanks also to Yuval Yarom and
the anonymous reviewers for helpful feedback.

References

[1] How to use iVote. https://www.elections.wa.gov.au/ivote/how-use-
ivote, accessed: 2017-05-15

[2] SSL FAQ, http://support.cloudflare.com/hc/en-us/articles/
204144518-SSL-FAQ

https://ivote-cvs.elections.wa.gov.au
https://ivote-cvs.elections.wa.gov.au
https://www.elections.wa.gov.au/ivote/how-use-ivote
https://www.elections.wa.gov.au/ivote/how-use-ivote
http://support.cloudflare.com/hc/en-us/articles/204144518-SSL-FAQ
http://support.cloudflare.com/hc/en-us/articles/204144518-SSL-FAQ

[3]
[4]

Adida, B.: Helios: web-based open-audit voting. In: USENIX Security Sym-
posium. pp. 335-348 (2008)

Australian Senate: Economics References Committee: 2016 Census: is-
sues of trust. text (Nov 2016), http://www.aph.gov.au/Parliamentary_
Business/Committees/Senate/Economics/2016Census/Report

Bell, S., Benaloh, J., Byrne, M.D., Debeauvoir, D., Eakin, B., Kortum, P.,
McBurnett, N., Pereira, O., Stark, P.B., Wallach, D.S., Fisher, G., Montoya,
J., Parker, M., Winn, M.: Star-vote: A secure, transparent, auditable, and
reliable voting system. In: Electronic Voting Technology Workshop/Work-
shop on Trustworthy Elections (EVT/WOTE 13) (2013)

Cao, Y., Li, S., Wijmans, E.: (cross-)browser fingerprinting via os and hard-
ware level features. In: Proc. of Network & Distributed System Security
Symposium (NDSS) (2017)

Chaum, D., Carback, R., Clark, J., Essex, A., Popoveniuc, S., Rivest, R.L.,
Ryan, P.Y., Shen, E., Sherman, A.T.: Scantegrity ii: End-to-end verifiability
for optical scan election systems using invisible ink confirmation codes. EVT
8, 1-13 (2008)

Cohen, E.: How to Make Your Website Invisible to Direct-to-Origin DDoS
Attacks. https://www.incapsula.com/blog/make-website-invisible-
direct-to-origin-ddos-attacks.html| accessed: 2017-05-15
Durumeric, Z., Adrian, D., Mirian, A., Bailey, M., Halderman, J.A.: A
search engine backed by Internet-wide scanning. In: Proceedings of the 22nd
ACM Conference on Computer and Communications Security (2015)
Halderman, J.A., Teague, V.: The new south wales ivote system: Security
failures and verification flaws in a live online election. In: International
Conference on E-Voting and Identity. pp. 35-53. Springer (2015)
Jonathan (Yoni) Ben-Nun, Rosen, A., Ta-shma, A., Riva, B.: Wombat vot-
ing system (2012), https://wombat.factcenter.org

Kiayias, A., Zacharias, T., Zhang, B.: Demos-2: scalable e2e verifiable elec-
tions without random oracles. In: Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. pp. 352-363. ACM
(2015)

Lindeman, M., Stark, P.B.: A gentle introduction to risk-limiting audits.
IEEE Security & Privacy 10(5), 42-49 (2012)

MacGibbon, A.: Review of the events surrounding the 2016 eCensus. Text
(Nov 2016), http://apo.org.au/node/70705

National Institute of Standards and Technology (NIST): NIST Special Pub-
lication 800-57, Part 1, Revision 4. Recommendation for Key Management.
Part 1: General (2016)

Ryan, P.Y., Bismark, D., Heather, J., Schneider, S., Xia, Z.: Prét a voter: a
voter-verifiable voting system. IEEE transactions on information forensics
and security 4(4), 662-673 (2009)

Sullivan, N.: DDoS Prevention: Protecting The Origin. https://blog.
cloudflare.com/ddos-prevention-protecting-the-origin/, accessed:
2017-05-15

http://www.aph.gov.au/Parliamentary_Business/Committees/Senate/Economics/2016Census/Report
http://www.aph.gov.au/Parliamentary_Business/Committees/Senate/Economics/2016Census/Report
https://www.incapsula.com/blog/make-website-invisible-direct-to-origin-ddos-attacks.html
https://www.incapsula.com/blog/make-website-invisible-direct-to-origin-ddos-attacks.html
https://wombat.factcenter.org
http://apo.org.au/node/70705
https://blog.cloudflare.com/ddos-prevention-protecting-the-origin/
https://blog.cloudflare.com/ddos-prevention-protecting-the-origin/

[18]

[19]

[20]

Valenta, L., Cohney, S., Liao, A., Fried, J., Bodduluri, S., Heninger, N.:
Factoring as a service. Cryptology ePrint Archive, Report 2015/1000 (2015),
http://eprint.iacr.org/2015/1000

Vissers, T., Van Goethem, T., Joosen, W., Nikiforakis, N.: Maneuvering
around clouds: Bypassing cloud-based security providers. In: Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications
Security. pp. 1530-1541. ACM (2015)

Zeifman, I.: The Bits and Bytes of Incapsula SSL Support. https://
www.incapsula.com/blog/incapsula-ssl-support-features.html) ac-
cessed: 2017-05-15

http://eprint.iacr.org/2015/1000
https://www.incapsula.com/blog/incapsula-ssl-support-features.html
https://www.incapsula.com/blog/incapsula-ssl-support-features.html

Cast-as-Intended Mechanism with
Return Codes Based on PET'Ss

Achim Brelle and Tomasz Truderung

Polyas GmbH
a.brelle@polyas.de, t.truderung@polyas.de

Abstract. We propose a method providing cast-as-intended verifiability
for remote electronic voting. The method is based on plaintext equivalence
tests (PETs), used to match the cast ballots against the pre-generated
encrypted code tables.

Our solution provides an attractive balance of security and functional
properties. It is based on well-known cryptographic building blocks and
relies on standard cryptographic assumptions, which allows for relatively
simple security analysis. Our scheme is designed with a built-in fine-
grained distributed trust mechanism based on threshold decryption. It,
finally, imposes only very little additional computational burden on the
voting platform, which is especially important when voters use devices of
restricted computational power such as mobile phones. At the same time,
the computational cost on the server side is very reasonable and scales
well with the increasing ballot size.

1 Introduction

Modern electronic voting systems are expected to provide a combination of
security guarantees which includes, most importantly, ballot secrecy and end-
to-end verifiability. For the latter, one crucial part is so-called cast-as-intended
verifiability which means that a voter has means to make sure that the ballot
cast on his or her behalf by the voting client application and recorded by the
voting server contains the intended voting option, as chosen by the voter. This
property must be guaranteed without assuming that the voter platform is honest.
Indeed, such assumption would be unjustified especially in the context of remote
voting, where voting client programs (typically HTML/JS applications) run on
voters’ devices. One cannot reasonably assume that such devices are properly
maintained, patched and free of malware. Moreover, as often the code of the
voting client application is served by the voting server, such trust assumption
would have to be extended to such servers as well.

The problem of providing adequate and usable solutions for cast-as-intended
verifiability has recently attracted significant attention. In particular, various
solutions based on the idea of return codes have been proposed [2], [§], [15], [9],
[6], [TOVTT], where different solutions provide different balance of security and
usability features. Notably, solutions based on return codes [S[9JT7] were used in
Norway in legally binding municipal and county council elections in 2011 and

2013, [6] was used in 2015 in binding elections in the Swiss canton of Neuchétel,
while [I0], as stated in the paper, is planned to be used as a part of the electronic
voting system for the State of Geneva (Switzerland) [I1].

The above mentioned solutions share the following underlying idea. In the
registration phase, each voter obtains over a trusted channel a ballot sheet, where
pre-generated return codes (typically short random alpha-numeric sequences) are
printed next to each voting choice. Then, in the voting phase, after the voter has
selected her voting choices and the voting client application has submitted an en-
crypted vote to the remote voting server, the voting authorities compute/retrieve
(in some way dependent on the specific solution) return codes which are meant
to correspond to the choices made by the voter. These codes are sent back to the
voter (possibly using an independent channel) who compares them with the codes
printed on her ballot sheet next to the selected choices. The idea here is that
when this match succeeds, the voter can be sure that the submitted (encrypted)
vote indeed contains her intended choices (as otherwise the voter would not have
obtained the matching codes). The voter may then finalize the ballot casting
process (by, for instance, submitting some kind of finalization code) or, if the
match does not succeed, she may undertake different steps (for instance, vote
from another device or use a completely different voting method).

Our Contribution. In this paper we propose a new cast-as-intended mechanism
based on return codes. Our solution provides an attractive balance of security
and functional properties:

1. It is based on well-known cryptographic building blocks and relies on standard
cryptographic assumptions, which allows for relatively simple security analysis.
In fact, our analysis is modular in that it does not depend on the details of
the underlying voting protocol to which our return code scheme is added.

2. Our scheme is designed with distributed trust in mind: the computations
carried out to retrieve/compute return codes are distributed in their nature,
such that a threshold of trustees must be corrupted in order to carry out a
successful attack and fool the voter.

3. Our solution imposes only very little additional computational burden on
the voting platform, which is especially important if voters use devices of
restricted computational power such as mobile phones. The computational
cost on the server side is very reasonable and scales well with the increasing
ballot size (it is, up to ballots of fairly big size, essentially constant).

Our scheme is meant to provide cast as intended verifiability even if the voting
platform is controlled by the adversary under the following assumptions. First,
we assume that not more than ¢ — 1 tellers are corrupted (i.e. controlled by the
adversary), where ¢ is the threshold of the used threshold-decryption scheme.
Second, we assume that the printing facility and the ballot delivery channel are
not corrupted. Under these assumptions, if the voter, during the voting process,
obtains the expected return codes (that is the codes printed on her ballot sheet
next to her intended choices), then the cast ballot is guaranteed to contain the
intended voter’s choice.

‘We note that the second assumption is shared with other return code solutions.
It is a strong assumption and requires special measures in order to be justified
in specific deployments. The same assumption (in addition to the standard
assumptions that the voter platform is honest and that at most ¢ — 1 tellers
are corrupted) is necessary for wvoters’ privacy. Finally, note that our scheme
(similarly to most of the return code solutions; see below for more discussion) is
not meant to provide receipt freeness.

On the technical level, our scheme is inspired by the PGD system [16/13]
which however does not implement the idea of returns codes, but instead the
one of voting codes (where a voter submits codes corresponding to her choice).
Sharing some similarities with this construction, our system differs substantially
from PGD in many aspects.

As an additional contribution of this paper, we demonstrate an attack on a
return code scheme recently proposed in [I0/T1] which was planned to be used in
the context of the Geneva Internet voting project (see below for more details).

Related Work. As already mentioned, our scheme is inspired by the PGD sys-
tem [I6J13] and, on the technical level, uses some similar ideas: it uses distributed
PETs (plaintext equivalence tests) to match the submitted ballots against a
pre-published encrypted code table. Our scheme, however, differs from PGD in
some significant ways. Our scheme scales better with increasing ballot complexity
(PGP performs one PET for every entry in the voter’s code table; we perform only
one PET per voter even for relatively complex ballots). On the technical level we
avoid the use of encrypted permutations (onions). Finally, PGD uses the idea of
voting codes, where a voter submits codes corresponding to the chosen candidates
(although the authors also suggest the possibility of using return codes). We note
here that the use of voting codes (as in PGD) results in stronger ballot secrecy
(the voting client does not get to learn how the voter’s choice and hence it does
not have to be trusted for ballot secrecy). As a trade-off, using voting codes tends
to be less convinient for the voters.

In a series of results including [2IT589], related to the Norwegian Internet
voting projects (eValg2011 and eValg2013) [17], the underlying, shared idea is
as follows. The code for a voting option v (which is cast in an encrypted form
Encp (v)) is deterministically derived from v using a per-voter secret s (it typically
is v®). This derivation process is carried out by two servers (playing fixed, specific
roles) in such a way that if only one of them is corrupted, the security goal
of the return codes is not subverted. In order to make this idea work for more
complex ballots, [8/9] uses a technique of combining codes, which however requires
some non-standard cryptographic assumption (hardness of the SGSP problem,
where SGSP stands for Subgroup Generated by Small Primes). These schemes (as
opposed to ours) do not allow for more fine-grained distribution of trust: there
are exactly two parties with specific roles, one of which must be honest.

The above idea was further transformed in a scheme proposed for the voting
system in the canton of Neuchatel in Switzerland [6], with the main technical
difference that in this system a voter holds one part of the secret used for

code generation (which causes some usability issues which were addressed by
introducing of a so-called usability layer, which unfortunately weakens security
guarantees). Security of this construction relies on the same non-standard security
assumption as [89] do and, similarly, there is no built-in fine grained mechanism
for distributed trust. Compared to our system, this system requires much more
complex computations on the voting platform, but less computations for the
election authorities (although in both cases the ballot processing time on the
server side is essentially constant independently of the number of voting options).

Recently, an interesting solution has been proposed in the context of the
Geneva Internet voting project [TOJII]. This solution is based on oblivious transfer,
where, intuitively, the security of the mechanism is provided by the fact that
the authorities (even although they may know all the codes) do not know which
codes are actually transfered to the voter. This provides some level of protection
against vote buying schemes which otherwise could be very easily mounted by a
dishonest authority (if a voter was willing to disclose her ballot sheet). To our
knowledge, this is the only return-codes scheme with this property.

As a downside, in this protocol, codes cannot be transfered using an indepen-
dent channel (they must be transfered via the voter’s platform), which rules out
the use of this protocol in elections where re-voting is allowed. Furthermore, this
protocol, again, uses the same non-standard cryptographic assumption as [8l/9].

Finally, as already mentioned, we have discovered a serious flaw in this con-
struction, described in detail in Appendix [A] Our attack violates the cast-as-
intended property of the scheme (the voter cannot be sure that the cast ballot
represents her intended choice even if she receives the expected return codes) and
can be mounted by an attacker who only controls the voting platform. In short,
we show that such an attacker (which is exactly the kind of attacker the system
is meant to defend against) can cast invalid ballots and still provide the voters
with valid return codes. These invalid ballots are accepted by the voting server,
tallied, and only discovered and rejected after tallying, when the link between
the ballot and the voter has been hidden. Note that even if the protocol could
be augmented with a mechanism enabling us to trace the malformed decrypted
ballots back to the voters, it would only point to dishonest voters’ devices which
cannot be held accountable.

While there is a natural countermeasure for this attack (adding appropriate
zero-knowledge proofs of well-formedness of the ballot), it comes with significant
degradation of performance: it works, roughly, in quadratic time with respect to
the number of voting options, which renders this solution impractical for bigger
ballots [

Structure of the paper. After introducing some preliminary definitions (Sec-
tion [2)) and providing an overview of the election process (Section [3]), we describe
in Section [4] a simple variant our scheme, applicable only for ballots with one
binary choice. The general variant is described in Section |5} after which the secu-

1 'We contacted the authors who confirmed the flaw and are working on a more efficient
countermeasure for the attack which is described in [12].

rity analysis is presented in Section [6] The mentioned attack on [10] is described
in the appendix. More details are available in the extended version of this paper
4.

2 Preliminaries

Our return code scheme uses the well-known ElGamal cryptosystem over a
cyclic group G of quadratic residues modulo a safe prime p = 2¢ + 1. This
cryptosystem is multiplicatively homomorphic (that is Encyy (m)-Enc,i(m') results
in an encryption Encyy(m-m’) if m and m’ are elements of the underlying group).
A distributed key generation protocol for the ElGamal cryptosystem (where
n tellers jointly generate a secret key and the corresponding public key, and
pre-determined threshold ¢ < n out of n tellers is necessary for decryption) is
proposed, for instance, in [7].

A plaintext-equivalence test [14] is a zero-knowledge protocol that allows the
(threshold of) tellers to verifiably check if two ciphertexts ¢ and ¢’ contain the
same plaintext, i.e. to check if Decgg(c) = Decgi(c’), but nothing more about the
plaintexts of ¢ and ¢’.

Our return codes solution can be added to any voting system with encrypted
ballot of a form which is compatible with our scheme in the following sense:
(1) ElGamal cryptosystem with threshold decryption, as introduced above, is
used to encrypt voters’ choices and (2) ballots contain zero-knowledge proofs of
knowledge of the encrypted choices (which is a very common case); additionally,
for the general case, we require that (3) voters’ choices are encoded in a specific
way (see Section |5) before encryption. We do not fix details of the authentication
mechanism nor those of the tallying process. In fact, our security analysis works
independently of these details. Examples of voting systems compatible with
our scheme are Helios [I] and Belenios [5] with mix-net-based tallying and, for
the simple variant, also with homomorphic tallying (so our cast-as-intended
mechanism can be used in addition to or instead of the ballot audit procedure
used in Helios and Belenios).

3 Overview of the Election Process

In this section we present an overview of the voting process. Because our scheme

(like other return codes solutions) is aimed at providing cast-as-intended veri-

fiability even when the voting platform is potentially corrupted, we make the

distinction between wvoters and their voting platform, that is devices, including

the software potentially served by the voting server, voters use to cast ballots.
The election process is run by the set of authorities including:

— Tellers who jointly generate the public election key pk, key and share the
corresponding decryption key in a threshold manner. They also, similarly,
jointly generate the public code key pk. which will be used to encrypt codes
in code tables and an auxiliary public key pk, for which the corresponding

secret key is known to every teller (here we do not need threshold decryption
and use any CCA2-secure cryptosystem). The tellers take part in code table
generation and generation of additional codes for voters (authentication,
finalisation and confirmation codes). They may also carry out additional
steps (such as ballots shuffling), as specified by the underlying protocol.

— Secure bulletin boards which, traditionally for e-voting systems, are used by
voting authorities to publish results of various steps of the election procedure,
including the final election result. Secure bulletin boards provide append-only
storage, where records can be published (appended) but never changed or
removed.

— Voting server which is responsible for voters’ authentication and ballot record-
ing (where a ballot is published on a designated secure bulletin board).

— Printing facility, including the ballot sheets delivery, used to print ballot
sheets in a trusted way and to deliver ballot sheets to eligible voters. The
printing facility, in the setup phase generates its private/public encryption
key pair and publishes the public key pk,,.

Our return code schemes supports the following, general ballot structure:
a ballot may contain a number of voting options (candidates), where a voter can
independently select each of these options (or, put differently, provide ‘yes’/‘no’
choice independently for each voting option). Further restrictions can be imposed
(such as for example, that exactly k or at most k options are selected) and checked
after the ballots are decrypted. Note that with this ballot structure we can encode
different types of ballots, such as for instance, ballots where each candidate can
get more than one vote.

The election process consists of the following voting phases:

In the setup phase the tellers and the printing facility generate keys and codes,
as described above. In the registration phase every eligible voter obtains (via
a trusted channel) a ballot sheet. The ballot sheet contains an authentication
code (used as a authentication measure; we abstract here from the details of the
authentication mechanism and simply assume that a mechanism with sufficient
security level is used), a finalization code, a confirmation code, and a list of voting
options (candidates) with printed next to each of them two return codes: one for
the ‘no’ choice and one for the ‘yes’ choice.

In the voting phase, the voter, using her voting platform and the authentication
code, authenticates to the voting server and selects her choices. The voting
platform creates a ballot with the selected choices and submits it to the voting
server. The ballot is then processed by the voting authorities who send back
to the voter (via the voting platform or via some other, independent channel)
sequence of return codes that correspond to the cast (encrypted) choices. The
voter compares the obtained codes with the ones printed on her ballot sheet to
make sure that they indeed correspond to her intended choices. If this is the
case, the voter provides the voting platform with the finalization code which is
forwarded to the voting server. Given this finalization code, the voting server
sends the confirmation code to the voter and completes the ballot casting process
by adding the ballot to the ballot box. If something does not work as expected (the

voter does not get the expected return codes or does not obtain the confirmation
code after providing her finalisation code), the voter can undertake special steps,
as prescribed by the election procedure (use, for instance, another device or the
conventional voting method).

Finally, in the tallying phase, the ballots published on the ballot box are
tallied and the result is computed.

4 The Variant with one Binary Choice

In this section, we present a simple variant of our scheme, where the ballot
contains only one binary choice (two candidate races or ‘yes’/‘no’ elections). This
variant, while avoiding the technical details of the general variant, demonstrates
the main ideas of the scheme.

Code table and ballot sheet. As shortly mentioned before, in the setup phase, the
voting authorities generate for every voter an encrypted code table. We will now
only describe the expected result of the code generation procedure, without going
into the detail. Such details will be given in Section [5.2] where the general case
is covered (which subsumes the simple case discussed in this section). We only
mention here that code tables are generated in fully verifiable way.

The code generation procedure generates, for every voter, two random codes
co and cq, corresponding to the ‘no’ and ‘yes’ choice, and a random bit b, called
a flip bit. It also generates for every voter a random finalization code and a
confirmation code. Additionally, we assume that some kind of authentication
codes for voters may be generated by this procedure as well, but we abstract away
from the details of the authentication mechanism, as the presented construction
does not depend on them.

The ballot sheet (delivered to the voter over a trusted channel) contains the
authentication, finalization, and confirmation codes, the return codes ¢y and
¢y printed in clear next to, respectively, the ‘no’ and the ‘yes’ voting choice,
and the flip bit b. For usability reasons, the flip bit can be integrated into the
authentication code, so that the voter does not have to enter it separately.

The code table associated with the voter, published on a bulletin board, is of
the form

Cfiny €confs (607 d0)7 (ela dl)
where c¢g, is a commitment to the finalization code, eqp is encryption of the
confirmation code under pk, and

eo = Encyi_(b), do = Encyi_(cp), €1 =Encyr (1 —0), do=Ency (c1-p).

Note that the this record contains the pair of ciphertexts corresponding to the
‘no’ choice (encrypted 0 and encrypted code ¢p) and the pair of ciphertexts
corresponding to the ‘yes’ choice (encrypted 1 and encrypted code ¢;). The order

in which these two pairs are placed depends on the flip bit (if the flip bit is 1 the
order is ﬂipped)ﬂ

Ballot casting. The voter provides her voting application with her authentication
code, the flip bit b, and her voting choice v € {0,1}. The voting application
produces a ballot containing

w = Encpy,_ (v), Encpku(g), ™

where b = v @b and 7 is a zero-knowledge proof of knowledge of the plaintext
in the ciphertext w (E is encrypted in order to hide it from an external observer;
the tellers will decrypt this value in the next step).

The voting authorities check the zero-knowledge proof 7, decrypt b, select €
from the voter’s table and perform the PET of this ciphertext with the ciphertext
w submitted by the voter’s platform. It is expected that this PET succeeds (which
is the case if the voting platform follows the protocol and the ballot sheet and the
code table are correctly generated). If this is the case, the corresponding encrypted
code dj is decrypted (which should result in ¢,) and delivered to the voter. The
voter makes sure that, indeed, the return code is ¢,, i.e. it corresponds to the
voting choice v, before she provides her finalization code (in order to finalize the
ballot casting process). The voting authorities check that the provided finalization
code is a valid opening for the commitment cg,. If this is the case, they finalise
the ballot casting process: they jointly decrypt the confirmation code, send it to
the voter, and add the voter’s ballot to the ballot box.

Tallying. Finally, after the voting phase is over, ballots collected in the ballot
box are tallied. We abstract here from the details of the tallying procedure.
Importantly, our security results work regardless of the details of this procedure.

The intuition behind security of this scheme is as follows. Because, of the correct-
ness of the code table and PET operations (which is ensured by zero-knowledge
proofs), if the PET succeeds, then the decrypted code must be the return code
corresponding to the actual plaintext in the encrypted ballot. To fool the voter,
an adversary would have to send him the code contained in the second ciphertext
which has not been decrypted. But the best the adversary can do—not being
able to break the used encryption scheme—is blindly guess this code, which gives
him very small probability of success.

Remark 1. For this simple variant, we do not really need to include the flip bit
in the ballot sheet: the ciphertext w could be matched, using the PET protocol,
against both ey and eq, one of which should succeed, which would determine b.
Including the flip bits in the ballot sheets is however crucial for efficiency of the
general variant.

2 Note that the plaintext are first mapped into G before being encrypted; for an
appropriate choice of the mapping, we obtain a system which coincides with the
general variant with £ = 1 and, furthermore, allows for homomorphic tallying.

We can note that the additional computational cost of this scheme added to the
voting platform is only one encryption. The computational cost incurred by this
scheme on the server side (per one voter) is one additional decryption to decrypt
b, one verifiable PET, and one distributed decryption to decrypt the return code.

As we will see in a moment, the general variant of our scheme (with & inde-
pendent choices) can be seen as a combination of k simple cases as described here
with some optimisations. Interestingly, with these optimisations, the additional
computational cost incurred by our scheme—if the size of the ballot does not
grow too much—remains essentially the same.

5 The General Variant

In this section we present the general variant of our code voting scheme, where
ballots can contain some number £ of independent binary choices, one for each
voting option. This variant is expressive enough to handle wide variety of complex
ballots. Despite some technical details used for optimisation, this variant shares
the same underlying idea, illustrated by the simple variant.

We assume some encoding «y of the voting options 1,..., k as elements of the
group G such that the voter’s choice, which is now a subset of individual voting
options, can be encoded as the multiplication of the encodings of these individual
options. Of course, we assume that the individual voting options can be later
efficiently retrieved from such an encoding. As an example of such encoding we
can use the technique used for instance in [6/10], where the voting options are
encodes as small prime numbers which belong to the group G.

Similarly, we assume a family of efficient encodings d; (i € {1,...,k}) from
the set of return codes to the group G, such that individual codes ¢y, ..., c; can
be efficiently extracted from the product d1(cy) -« - - - 0k (cr). An example of such

an encoding is given in the full version of this paper [4].

5.1 Ballot Structure and Voting Procedure

Code table and ballot sheets. The code generation procedure is described in
details in Section 5.2l In addition to finalisation and confirmation codes which
are generated as previously, this procedure generates, for every voter and every
voting option i € {1,...,k}, two random codes ¢ and c} corresponding to,
respectively, the ‘no’ and ‘yes’ choice. It then generates a random sequence of flip
bits b = by, ..., by, where b; € {0,1}.

The ballot sheet sent to the voter contains now, besides the authentication,
finalisation, and confirmation codes, return codes (9, ¢1),..., (¢}, cl) printed in
clear next to corresponding voting options and marked as, respectively the ‘no’
and the ’yes’ choice. It also contains the flip bits b (as before, this vector can be
integrated in the authentication code).

The published code table associated with the voter contains, as before cgp,
€cont aNd

(ufuf) g = (7 7)1y

where
t? = (Encpr, (1), Encpkc(&-(cg)) and t} = (Encpk, (7(i)), Encpkc(&-(c})).

Note that tY corresponds to the ‘no’ choice (it contains an encryption of 1 and
the encoded code for ‘no’) and ¢} corresponds to the ‘yes’ choice (it contains an
encryption of the encoded option ¢ and the encoded code for ‘yes’). Note also
that u?* = ¢0 and u} " =t}

Ballot casting. The voter provides her voting application with her voting choice
v1,...,0 € {0,1} and the bit sequence b. The voting application computes
v = [[;ey 7(i), where we define V' as the set {j : 1 < j < k, v; = 1}, and
produces a ballot containing

w = Encyy_(v), Encpy, (b), =

where 7 is, as before, a zero-knowledge proof of knowledge of the plaintext of w
andl;:l;l,...,l;kwithIN)i:biEBvi.)

The voting authorities decrypt b and select the values w; = u?i, for i €
{1,...,k}. Note that if the voter has not chosen the i-th election option, then
w; = ul' =19, by the definition of u. Otherwise, w; = u} " = t}.

The voting authorities multiply wq, ..., w (component-wise) obtaining the
pair (e*,c¢*), where e* should be (if the voter platform followed the protocol)
encryption of v = [,y 7(¢). The voting authorities perform the PET of e* with
the encrypted choice w from the ballot. If this PET fails, the casting procedure
is canceled. Otherwise, the decryption tellers jointly decrypt ¢*. Observe that, by
the properties of the published code table, this decrypted value is the product
of §; (c;}j), i.e. it is the product of the codes corresponding to the choices made
by the voter. This value is decomposed into individual codes c*,...¢;* and sent
to the voter (via the voting platform or an independent channel). As before,
the voter makes sure that the received codes correspond to her choices before
providing the finalisation code.

Note that the ballot processing on the server side only requires one verifiable
PET, one decryption and one threshold decryption, independently of the number
k of the voting options, plus some number of multiplications and divisions (which
depends on k), as long as k codes can be efficiently represented as one element of
the group G which is in detail discussed in the full version of this paper [4].

5.2 Code Table Generation

The code table generation presented below is fully verifiable. Note that we could
also consider a version without zero-knowledge proofs, but with partial checking
instead, where a bigger number of records is produced and the some of them
(randomly selected) are open for audit.

We will assume that the code generation procedure is carried out by the
tellers, but it can by carried out by any set of independent parties, as it does not

10

require possession of any secret keys. We will present here a version, where, for
the same voting option, distinct voters obtain distinct codes, although different
variants are also possible (and may be useful if the number of voters is very big).

The set of codes is Codes = {1,...,m} with m > 2n, where n is the number
of voters (reasonable values for m, that is values corresponding to desired security
levels, can be determined using the result below).

For simplicity of presentation, in the following, we will leave out handling of
the authentication, finalization and confirmation codes. The procedure consists
of the following steps.

1. For every voting option j, the tellers deterministically compute
Encpi, (6;(1)), Encprk, (1),...,Encpr_(d;(m)), Encpk, (m).

where all the ciphertext are obtained using the pre-agreed randomness 1.
2. The tellers shuffle the above sequence of ciphertexts using a verifiable mix
net obtaining a sequence of the form

Encyr, (d;(c1)), Encpr, (€1), - .., Encpk_ (35(cm)), EnCpr, (Cm),

where ¢; = 7(4) for some permutation 7 and the ciphertext are re-randomized.
Note that for this we need to use a version of verifiable mixing which applies
the same permutation (but independent re-randomization factors) to pairs of
ciphertexts. Such generalizations of know verifiable shuffling algorithms are
possibleE|

3. The tellers take the consecutive encrypted codes produced in the previous
step and organize them into the records of the following form, one for each
voter 4:

{ Ency, (0), Encyr, (}), Encyr, (1), Encyr, (<),

Encpr, (1), Encpr, (35 (c;)), Encpk, (7(7)), Encpr, (6, (C;l)) }je{l,..‘,k}

where the ciphertext with (encoded) choices are generated deterministically
with the randomness 1.

4. The tellers perform, one after another, series of micro-mixes for every such
a record: Each teller, for the input record R = (a1, b1, as, ba, al, b}, ah, b))
(which is the output of the previous teller or, for the first teller, the record
produced in the previous step) picks a random bit. If this bit is 0, then it
only re-encrypts all the elements R. If the flip bit is 1, then, in addition,
it accordingly flips the elements of the record and outputs a re-encryption
of R = (ag,bs,a1,b1,ab,by,a),b)). The teller produces a zero-knowledge
proof of correctness of this operation (such step can be implemented as a
verifiable mixing operation; it can be also realized using disjunctive Chaum-
Pedersen zero-knowledge proofs of the fact that the resulting record is either
a re-encryption of R or R’).

3 In particular, it is straightforward to generalize the shuffle protocol of [3] to provide
such functionality.

11

)

5. The parts of the records encrypted with pk. and pk, are published in voters
code tables. The parts encrypted with pk, are given to the printing facility
which decrypts the records. The decrypted content contains the return codes
and (implicitly, via the order of plaintexts) the flip bit sequence b.

Note that, in the above procedure, all the steps are fully deterministic or
come with appropriate zero-knowledge proofs. This design is meant to provide
the following correctness guarantees:

The code generation procedure produces correctly linked ballot sheets and
encrypted code tables with overwhelming probability. Moreover, unless the
threshold of trustees are dishonest, only the printing facility learns how
codes are distributed amongst voters.

6 Security Analysis

As noted in the introduction, coercion resistance and receipt-freeness are not the
goals of our scheme. In fact, the use of return codes, as in many similar solutions,
specifically makes the scheme prone to vote selling if dishonest authorities are
involved in the malicious behaviour.

The results presented in this section are stated for the case where re-voting is
not allowed. For the case with re-voting (casting multiple ballots, of which, say,
the last is counted), we expect that the privacy result holds, while only a weaker
form of cast-as-intended verifiability than the one presented in Section [6.2] can
be guaranteed: namely, we have to assume that an independent channel is used
to send return codes to voters and that both the tellers (who see the sent return
codes) and this channel are honest.

6.1 Ballot Secrecy

Ballot secrecy means, informally, that it is impossible (for an adversary) to obtain
more information about the choices of individual honest voters (that is voters
following the protocol), than can be inferred from the explicit election result.
Our code voting scheme is designed to provide voters privacy under the following
assumptions:

P1. The voting platform is not corrupted.
P2. At most t — 1 tellers are corrupted, where ¢ is the threshold for decryption.
P3. The printing facility and the ballot sheet delivery channel are not corrupted.

The first two assumptions are standard and for voters’ privacy and shared by
many e-voting protocols (using and not using return codes). The third assumption
is also shared by any code voting scheme (where codes need to be printed and
delivered to the voter). Therefore, in this sense, these are the minimal assumptions
for electronic voting with return codes.

12

Note also, that the informal definition of privacy given above only protect
honest voters who, in particular, do not reveal their ballot sheet to another parties,
excluding voters who want to sell their ballots.

We formalize the above notion of privacy using the following game between
the adversary and the system P representing the honest components of the e-
voting system, where the adversary gets to control all but two (honest) voters.
For simplicity of presentation, we consider here the simple case where voters have
only one yes/no choice. We will consider two variants of P: variant Py, where
the first of the honest voters votes for the ‘no’ option and the second honest
voters chooses the ‘yes’ option, and variant P;, where the choices of the honest
voters are swapped. With these definitions, we express the notion of privacy by
requiring that there is no polynomially bounded adversary A which can detect if
he is interacting with Py or P; (up to some negligible probability), that is:

Prob[P || A — 1] =neq Prob[Py || A — 1] (1)

where P; || A — 1 denotes the event that in the run of the system composed of P;
and A, the adversary outputs 1 (accepts the run). We assume that the adversary
can interact with the system in the following way: it interacts with the honest
tellers playing the role of the dishonest tellers (in all the protocol stages). It also
casts ballots of the dishonest voters and, at some chosen time, triggers the honest
voters to cast their ballots.

We will now formulate our privacy result in a modular way, independently of
many details of the underlying voting system to which our return code scheme
is added. We only assume that the system has the structure which allows for
the described above game and which uses ballot encoding ‘compatible’ with our
construction, as described in Section [2} Under these assumptions, our code voting
scheme is meant to satisfy the following property:

Let U be the underlying voting protocol and let P denote the protocol
obtained from U by adding our return code scheme. If U provides ballot
secrecy, as expressed by , then P provides secrecy as well.

A sketch of the proof of this statement is given in the full version of the paper
[4] where we show that all the additional elements of P (related to codes) can be
simulated by a simulator which has only black-box access to U.

6.2 Cast-as-intended Verifiability

Cast-as-intended verifiability means that an honest voter can, with high proba-
bility, make sure that the ballot cast on her behalf by her voting platform and
recorded in the ballot box by the voting server contains her intended choice. Our
scheme provides cast-as-intended verifiability under one of the following cases:
(1) The voter client is honest. (2) The following trust assumptions are satisfied:

V1. At most ¢t — 1 tellers are corrupted.
V2. The printing facility and the ballot sheet delivery channel are not corrupted.

13

The first case is trivial (note that the very purpose of code voting is to provide
cast-as-intended verifiability in the case the voter client is not honest). We only
need to assume that the voting client has means to check that the cast ballot has
been in fact added to the ballot box and that there is a mechanism preventing
any party from removing or modifying this ballot (which is the case if we assume
that the ballot box is an instance of a secure bulletin board).

In the following, we analyse the second case. We claim that the following
result holds for our system.

Under the assumption V1 and V2, for any given honest voter (possibly
using a dishonest voting platform) and for any of the k voting options,
the probability that the voter obtains the expected code (that is the code
printed next to voter’s choices), while the recorded ballot contains different
choices for this voting option is not bigger than m (plus a negligible
value), where m is the number of generated codes, n is the total number
of voters, and n' < n is the number of corrupted voters.

This result, similarly to the privacy result, does not depend on the details of
the authentication mechanism nor on the details of the tallying phase.

The intuition behind this statement is that everything that the adversary can
learn about code distribution is, essentially (up to cases of a negligible probability),
what is explicitly given to him, that is (a) n codes that have been decrypted by
the tellers (b) n’ remaining codes of dishonest voters (because the adversary gets
to see all the codes of these voters). So, if the adversary wants to come up with
the code corresponding to the opposite choice (for the considered voting option)
of the honest voter in order to fool her, the best he can do is pick one of the
remaining m — n — n’ codes at random.

In order to prove this statement, similarly to the privacy result, one can use
the ideal (honest) code generation procedure and replace PETSs by the appropriate
ideal functionality. In this setting we argue that the following is true.

Because the code table is correct (correctly corresponds to the printed ballot
sheets) and the results of PETSs is correct too (as we are using the ideal function-
ality), it follows that the decrypted codes correspond to the actual voting options
in the encrypted ballots. One can then show that, if the adversary had a strategy
of guessing an unencrypted code of an honest voter with better probability than
given by the blind guess as described above (where the adversary picks one of
the possible codes at random), this would break the IND-CPA property of the
underlying encryption scheme.

References

1. Ben Adida. Helios: Web-based Open-Audit Voting. In Paul C. van Oorschot, editor,
Proceedings of the 17th USENIX Security Symposium, pages 335-348. USENIX
Association, 2008.

2. Jordi Puiggali Allepuz and Sandra Guasch Castelld. Internet voting system with cast
as intended verification. In E-Voting and Identity - Third International Conference,

14

10.

11.

12.

13.

14.

15.

16.

VotelD 2011, Tallinn, Estonia, September 28-30, 2011, Revised Selected Papers,
pages 36-52, 2011.

Stephanie Bayer and Jens Groth. Efficient Zero-Knowledge Argument for Correct-
ness of a Shuffle. In David Pointcheval and Thomas Johansson, editors, Advances
in Cryptology - EUROCRYPT 2012 - 81st Annual International Conference on the
Theory and Applications of Cryptographic Techniques, volume 7237 of Lecture Notes
in Computer Science, pages 263—280. Springer, 2012.

Achim Brelle and Tomasz Truderung. Cast-as-Intended Mechanism with Return
Codes Based on PETs. Extended Version. Technical Report arXiv:1707.03632, 2017.
Available at |https://arxiv.org/abs/1707.03632!

Véronique Cortier, David Galindo, Stéphane Glondu, and Malika Izabachéne. Elec-
tion verifiability for helios under weaker trust assumptions. In Computer Security
- ESORICS 2014 - 19th European Symposium on Research in Computer Security,
Wroclaw, Poland, September 7-11, 2014. Proceedings, Part 11, pages 327-344, 2014.
David Galindo, Sandra Guasch, and Jordi Puiggali. 2015 Neuchéatel’s Cast-as-
Intended Verification Mechanism. In E-Voting and Identity - 5th International
Conference, VotelD 2015, Bern, Switzerland, September 2-4, 2015, Proceedings,
pages 3-18, 2015.

R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure Distributed Key
Generation for Discrete-Log Based Cryptosystems. J. Cryptology, 20(1):51-83,
2007.

Kristian Gjgsteen. The norwegian internet voting protocol. In E-Voting and Identity
- Third International Conference, VoteID 2011, Tallinn, Estonia, September 28-30,
2011, Revised Selected Papers, pages 1-18, 2011.

Kristian Gjgsteen. The norwegian internet voting protocol. IACR Cryptology ePrint
Archive, 2013:473, 2013.

Rolf Haenni, Reto E. Koenig, and Eric Dubuis. Cast-as-Intended Verification in
Electronic Elections Based on Oblivious Transfer. In Electronic Voting - First
International Joint Conference, E-Vote-ID 2016, Bregenz, Austria, October 18-21,
2016, Proceedings, pages 73-91, 2016.

Rolf Haenni, Reto E. Koenig, Philipp Locher, and Eric Dubuis. CHVote system
specification. TACR Cryptology ePrint Archive, 2017, 2017.

Rolf Haenni, Reto E. Koenig, Philipp Locher, and Eric Dubuis. CHVote System
Specification. Cryptology ePrint Archive, Report 2017/325, 2017. |http://eprint
iacr.org/2017/325.

James Heather, Peter Y. A. Ryan, and Vanessa Teague. Pretty Good Democracy
for More Expressive Voting Schemes. In Dimitris Gritzalis, Bart Preneel, and Mari-
anthi Theoharidou, editors, Computer Security - ESORICS 2010, 15th European
Symposium on Research in Computer Security, volume 6345 of Lecture Notes in
Computer Science, pages 405-423. Springer, 2010.

M. Jakobsson and A. Juels. Mix and Match: Secure Function Evaluation via
Ciphertexts (Extended Abstract). In Advances in cryptology-ASIACRYPT 2000,
page 162. Springer Verlag, 2000.

Jordi Puigalli and Sandra Guasch. Cast-as-intended verification in norway. In 5th
International Conference on Electronic Voting 2012, (EVOTE 2012), Co-organized
by the Council of Europe, Gesellschaft fir Informatik and E-Voting. CC, July 11-14,
2012, Castle Hofen, Bregenz, Austria, pages 4963, 2012.

P.Y.A. Ryan and V. Teague. Pretty Good Democracy. In Proceedings of the 17th
International Workshop on Security Protocols 2009, 2009.

15

https://arxiv.org/abs/1707.03632
http://eprint.iacr.org/2017/325
http://eprint.iacr.org/2017/325

17. Ida Sofie Gebhardt Stenerud and Christian Bull. When reality comes knocking
norwegian experiences with verifiable electronic voting. In 5th International Con-
ference on Electronic Voting 2012, (EVOTE 2012), Co-organized by the Council
of Furope, Gesellschaft fir Informatik and E-Voting. CC, July 11-14, 2012, Castle
Hofen, Bregenz, Austria, pages 21-33, 2012.

A Attack on [10]

In order to understand the attack presented below, it may be useful for the reader
to first consult the original paper [10]. It is worth noting that this attack scenario
does not undermine the underlying (k out of n)-OT scheme. It only utilizes the
fact that a dishonest receiver in this scheme can obtain up to & (but not more)
values even if it does not follow the protocol. We describe here an attack for the
case with n =k = 2.

The intended run of the protocol is as follows. For the voter’s choice s =
(s1,82), the voting platform (VP) prepares an OT query

a = (ai,as), where a; =1I(s;)-y",
for random r;, where y is the public election key. It also computes b = g™ "2,
Let a denote the product of elements of a that is a1 - as. Note that ¢ = (b,a) is an
ElGamal ciphertext (which, although not explicitly sent, will be considered to be
the ciphertext cast by the voter) encrypting the plaintext p = I'(s1) - I'(s2) with
randomness r = 11 + ro. The VP sends a and b along with a ZKP of knowledge
of r and p.

From the OT response, the VP can now compute the codes for s; and sg
which are shown to the voter who provides the confirmation code and the protocol
goes on. Here are the details of how the codes are retrieved. The OT response
contains:

a?? ag) ya7
C1 @H(F(Sl)a), C2 @H(F(Sg)a),

for some random «, where ¢; and ¢, are the codes corresponding to choices s;
and sy. Knowing r; and 2, the VP can compute I'(s1)® and I'(s2)* and, in turn,
the codes ¢y, cs.

The dishonest run goes, for example, like this: For the voter’s choice s =
(s1,82) as before, the VP prepares the OT query

a = (a1,a2), where as= F(51)7 -I(sq)-y™

and sends a along with b and a ZKP of knowledge of r and the plaintext p, which
is now I'(s1)® - I'(s2). Jumping ahead, this plaintext will be rejected as invalid,
but only after (mixing) and final decryption, when there is no visible link between
the decrypted ballot and the voter.

Nevertheless, from the OT response, the VT can easily compute the codes
for 51 and so and make the protocol proceed as if the intended, valid ballot was

16

cast. To see this, we can notice that, given the OT response, the VT can compute
values I'(s1)® and (I'(s1)7 - I'(s2))®, from which it is easy to compute I'(s)*
and the same codes ¢; and ¢ as in the honest run. These codes are delivered to
the voter who then continues the procedure.

A straightforward countermeasure for this attack would be adding appropriate
zero-knowledge proofs of correctness of each a;, which however adds a significant
computational overhead (it works in time O(k - n)).

17

Return Code Schemes
for Electronic Voting Systems

Shahram Khazaei! and Douglas Wikstrém?

! Sharif University of Technology, shahram.khazaei@sharif.ir
2 KTH Royal Institute of Technology, dog@kth.se

Abstract. We describe several return code schemes for secure vote sub-
mission in electronic voting systems. We consider a unified treatment
where a return code is generated as a multiparty computation of a se-
cure MAC tag applied on an encrypted message submitted by a voter.
Our proposals enjoy a great level of flexibility with respect to various
usability, security, and performance tradeoffs.

1 Introduction

Electronic voting systems have the potential of achieving end-to-end verifiability.
This is obtained through different verification mechanisms throughout all the
stages of the entire voting process, known as cast-as-intended, recorded-as-cast
and counted-as-recorded [2].

Cast-as-intended verification assures each individual voter that his vote has
been cast according to his intention. Mechanisms that ensures the cast votes
have been correctly received and stored are called recorded-as-cast. Counted-as-
recorded verification allows any third party observer, such as voters and auditors,
to verify that the result of the tally corresponds to the received votes.

In some electronic voting systems, the voter casts his encrypted vote using
some voting device which might either belong to the election authorities, e.g.,
a computer with a touch screen in a furnished voting booth, or to the voter
himself, when the risk of coercion is limited. A malicious voting device (due to
malware or hostile hardware) may change a voter’s intended choice. Cast-as-
intended verifiability detects such attacks on voting devices.

There are two basic approaches to verifying that a vote was cast as in-
tended: (a) verify that the right choice was encrypted and that the ciphertext
was recorded, and (b) verify that the ciphertext decrypts to the intended choice.

The most straightforward solution to the first problem is to simply perform
the encryption independently on a different device and compare the results as is
done in Estonia [17].

Another approach is continuous blackbox testing as proposed by Benaloh [5],
and adopted in Helios [1], Wombat [23], and VoteBox [25]. Here the device
provides a ciphertext and the voter can choose to either use it, or to challenge
the device to prove that it was formed correctly. Note that the latter choice
amounts to normal blackbox testing. The key insight of Benaloh is that we can

not only interlace testing with normal use (which is often done in safety critical
software), we can let the voters control when and where testing takes place to
provide maximum individual assurance. The importance of this observation lies
in part in that concerned voters can run more tests, so the testing seamlessly
aligns with the level of assurance needed by individual voters.

Depending on trust assumptions, i.e., who performs the verification of out-
puts that have been challenged (an electronic device, jointly with a human, or
third parties), Benaloh’s approach is more or less practical and gives different
types of assurances.

The reader may object that the encryption device must commit to its output
before the choice to verify it is made or not, but this is no different from many
other types of testing done on software. Benaloh’s approach is often confused
with cut-and-choose zero knowledge proofs due to the choice given to the voter
between two choices, but is better described as a have-or-eat protocol: you can’t
have your cake and eat it too (to see that the cake is not poisonous).

So called return codes have received a considerable amount of attention par-
ticularly due to their usability properties. We refer the reader to [4,12,18,3,
19,22, 14| for several proposals. This approach has been used in nation-wide
elections in Norway [12,22,13] and Switzerland [10].

The idea of return codes is that each possible choice of the voter is associated
with a random code that is returned upon submission of the encrypted vote as
an acknowledgement that the ciphertext received encrypts the intended choice.
To ensure privacy, the random codes of different voters are chosen independently.
In other words, individual codes reveal nothing about the vote itself.

Note that at its core this is classical code book encryption, i.e., the parties
receiving a vote in encrypted form send back the vote in encoded form to the
voter. However, we only use the return codes for acknowledgement, so there is
no need for the codes to uniquely identify the choices. Thus, for each voter we
need a fairly regular random map from the set of choices to a set of codes, i.e.,
a message authentication code (MAC) with a guaranteed privacy property.

For coherent integration with electronic voting systems, the following prop-
erties must be taken into account:

1. Secure printing. It must be possible to generate and secretly transmit
return codes for all voting options to a trusted printer.

2. Distributed evaluation. It must be possible to compute the return codes
in a distributed way such that no knowledge is leaked about the selected
voting option by the voter.

The first property can be achieved as follows. Let E,;(m) be a ciphertext en-
crypted using a homomorphic cryptosystem. The secret key, unknown to printer,
is verifiably secret shared among some parties. For printing m, the trusted
printer, chooses a random one-time pad a and hands Epi(c) to the parties
who will then execute a distributed decryption protocol for E,;(a)Epr(m) =
E,i(aom). When am is received back, the random pad is removed and m is
printed.

Remark 1 (Code voting). One potentially serious privacy drawback with any
system where votes are encrypted even in a relatively well protected environment
is that it is hard to guarantee that no information about votes is leaked through
malicious hardware, software, or any form of side channel.

Chaum’s code voting idea [7] addresses this problem by letting the voters
use code book encryption to submit their votes, i.e., each voter is given a list of
codes along with their plaintext meanings who will then enter the code as is into
a device. The Prét a Voter[8, 24] system can be viewed as a code voting scheme
that uses a public key cryptosystem to prepare the code book and decode in a
distributed way using a mix-net.

Motivation and contribution. We provide several proposals achieving the
second property with different trust assumptions and trade-offs. Some allow a
single vote to be submitted and some do not have such a restriction. Some
are safe to use with write-ins and some are not. In some schemes, for each
individual voter some value must be verifiably secret shared (making them less
practical); whereas in other schemes, the verifiably secret shared values are not
voter dependent. Some schemes demand that the tallying servers be online during
the vote collecting phase, which is not desirable from a security point of view;
some others allow online servers to collect the votes without any help from the
tallying servers. The latter property is highly desirable since the tallying servers
can decrypt the votes off-line behind an airwall.

We think it is important to provide a tool box to practitioners that allow them
to choose the best trade-off between security properties, how trust is distributed,
and practical and cost considerations for the given setting, since the requirements
differ substantially in different election schemes and cultural contexts.

Most of our schemes work with any homomorphic public key cryptosystem,
however, we concentrate on the El Gamal cryptosystem for concreteness.

2 Notation

We assume that the reader is familiar with standard definitions of public key
cryptosystems, message authentication codes (MAC), zero-knowledge proofs and
the random oracle model. The reader is referred to [15,16] for the required
background.

El Gamal cryptosystem. Recall that the El Gamal public key cryptosystem
is defined over a group Gy of prime order ¢ with generator g over which the
Decisional Diffie-Hellman assumption holds. The secret key is a random z € Z,
and the corresponding public key is y = g*. The encryption of a message m € G,
is E,(m) = Ey(m,r) = (¢",my"), where the randomness r € Z, is chosen
randomly.

The encryption of a ciphertext (u,v) € G4 x Gy is then defined by Dy (u,v) =
vu~®. El Gamal is homomorphic, which means that for every two encryptions
(u1,v1) = Ey(ma,r1) and (ug, ve) = E,(ma,72), the product ciphertext (uqu1,v1v2)

is an encryption of mims with randomness r; 4+ r2. Consequently, a ciphertext
(u,v) = Ey(m) can be re-encrypted to produce a fresh re-encryption of m. This
can be done without knowing the secret key, by simply multiplying the cipher-
text with an encryption of identity to compute RE, (u,v) = (ug”,vh"), for some
randomness 7.

Verifiable secret sharing and distributed key generation of El Gamal.
Sometimes we require that a number of M parties jointly generate a public key.
The corresponding secret key is wverifiably secret shared among them such that
it can be recovered by any subset of size at least A of the parties, but it remains
hidden to any coalition of size at most A — 1. Feldman’s verifiable secret sharing
protocol [9] is an efficient way for distributed key generation for El Gamal.

In Feldman’s method, parties jointly produce a random tuple (yo,...,yr—1) =
(g™,...,g™1) where 2; € Zy, j € [A]. The parties do not know z;’s; rather,
A—1

each party ¢ € [M] receives a share sy = f(¢), where f(z) = >/ 2;2". This can
be viewed as sharing a secret key x = xy using the Shamir’s [26] method, but
parties also compute a public key y = 1o and receive the Feldman commitment
g°¢ to the share of ¢th party. The same idea can be extended to Pedersen’s
perfectly-hiding commitment scheme [21], when verifiably sharing a secret is a
preliminary goal; details are omitted.

Distributed exponentiation. Suppose an El Gamal secret key z is shared
among the M parties and, given u € G4, they wish to jointly compute u”.
This can be done using the following procedure [11]. Each party ¢, publishes
fe = u®* along with a zero-knowledge proof of discrete logarithm equality. From
any subset A C [M] of size A of published shares, parties then compute u* =
[Lrcn fi*, where s are Lagrange coefficients defined as ¢, = [[;c o4y 1/(i—).
The method can be modified to work with Pedersen’s verifiable secret sharing [21]
as well.

Distributed decryption of El Gamal ciphertexts. When an El Gamal
secret key is shared among some parties, distributed decryption of a given ci-
phertext (u,v) is also possible, without recovering the secret key itself. The
parties first go through a distributed exponentiation protocol and compute u”.
The plaintext is then simply recovered as m = v/u®.

Mix-nets. Mix-net, first introduced by Chaum [6], is an important crypto-
graphic protocol which lies at the heart of several electronic voting systems and
has other applications as well. It is executed by N voters and M mix-servers.
In a re-encryption mix-net [20], mix-servers jointly generate a public key for
a homomorphic cryptosystem and keep shares of the corresponding secret key.
Each voter ¢ € [N] submits a ciphertext along with a zero-knowledge proof of
knowledge. When write-ins is not allowed, we assume that the voters have to
choose among a set {m;};¢[q of pre-defined voting options. In this case, a zero-
knowledge proof must guarantee that the submitted ciphertext decrypts to one
of the pre-defined choices.

When all encrypted votes have been received, the mix-net takes the list of
all valid submitted ciphertexts and produces a mixed list of the decrypted plain-
texts. More precisely, mix-servers take turns and re-encrypt each ciphertext.
A permuted list of ciphertexts is then published along with a so called zero-
knowledge proof of shuffle. The output list of the last mix-server is then jointly
decrypted to determine the permuted list of submitted plaintexts. Any coalition
of size less than A mix-servers cannot obtain any knowledge about the corre-
spondence between input ciphertexts and output plaintexts.

3 Online Tallying Servers

In this section we consider four return code schemes, including a few variations.
All are practical but the drawback is that the tallying servers must be online dur-
ing the online voting stage. The main differences between the proposed schemes
come from the choice of the underlying MAC scheme Mac. Tallying servers run
the mixnet and in a setup phase they jointly generate a public key y while shares
of the corresponding secret key are kept private.

We assume that each voter is allowed to vote for one of a pre-defined set of
choices {m;} e[s- In all schemes, the ith voter submits a ciphertext E, (m), where
m is either one of the pre-defined choices or some random (known or unknown)
representation of the designated choice. A corresponding zero-knowledge proof
will also be submitted. The voter then receives a MAC tag Macy, (m) as his
return code, through the execution of a secure multipary computation. Here, k;
is some (possibly) voter-dependent symmetric key shared between online vote
collecting parties. Computation of such return codes are only possible by online
participation of tallying servers.

In some schemes, we need to assign to each voter i a secret random value
B; and/or choice-dependent secret random values f3; ; for every j € [s]. This is
done by assigning random encryptions E,(5;) and E,x(5; ;) to the corresponding
voter. In practice the ciphertexts can be defined as the output of a random
oracle applied to the voter’s identifier (along with that of voting alternative, if
required, and other session identifiers). Thus, there is no need for the mix-servers
to generate and communicate the ciphertexts to the voter.

Remark 2. We use the term “message authentication code” loosely in the sense
that the schemes may not satisfy the standard definition of MACs for general
purpose and the security level may also be much lower, since this suffices in our
context.

3.1 TUniversal Hash Functions Used as MACs

Consider the ensemble of functions F' = {fa,b}(a,b)ezga where fop(z) = ax +
b mod ¢. This is the canonical example of a universal, hash function. It is well
known that this is an unconditionally secure one-time MAC scheme if ¢ is prime
and large enough.

The function f, is linear, so it can be computed over homomorphic en-
cryptions, i.e., given a ciphertext E,(¢%) we can compute E,(g%)?E,(¢?) =
Ey(gfavb(‘”)), which can then be decrypted in a distributed way. Any element
m € G4 can be represented as ¢g” for a unique z € Z, since G, is cyclic, so we
can express the same relation as E, (m)?E, (8) = E,(g/+*®), where m = ¢* and
B=g"

Thus, we can trivially compute a MAC tag for any individual party that
submits a ciphertext as long as we do not do it more than once. More precisely,
in a voting system we generate for the ith voter a verifiably secret shared a; €
Z4 and an encryption E,(3;) for a randomly chosen 5; € G,. When the voter
submits a ciphertext E, (m;) along with a zero-knowledge proof indicating that
indeed one the pre-defined choices has been encrypted, he receives back the
return code mj' ;. Therefore, the underline MAC function is Mac,, g, (m) =
m® B; for the ith voter. Return codes can be computed online using protocols for
distributed exponentiation and decryption as explained in Section 2. In the setup
phase, only distributed exponentiation is performed for every pre-defined voting
option. The resulting ciphertexts are then communicated to a trusted third party
to be securely printed, e.g., using the method described in the introduction.
Furthermore, by construction the MAC tag is randomly distributed, so it can be
truncated directly.

The security follows directly from the underlying MAC scheme. In addition
to the danger of tallying servers being online, the drawback is that it only allows
a single vote to be submitted and we need to generate a verifiably secret shared
value for each voter.

3.2 One-time Pad and Random Choice Representatives

Consider the MAC function Macg(m) = fm where key and message spaces are
both G,. The tag is a one-time pad symmetric encryption of the message and
clearly not a secure MAC scheme. Indeed, an adversary can guess m and compute
Bm’ /m for another message m’ to attempt to construct a valid MAC tag for m/'.
However, it is a one-time secure MAC for a random choice of plaintext unknown
to the adversary.

A simple way to make sure that this is the case is to assign unique rep-
resentatives of the choices for each voter, i.e., for the ith voter we generate
random elements ; ; € G, for j € [s], but in encrypted form as ciphertexts
w; ; = Ey(Bi ;). We can now provide the ciphertexts w;1,...,w; s to the ith
voter. The voter then chooses the encryption of its choice, re-encrypts it, and
proves in zero-knowledge that it is a re-encryption of one of its designated ci-
phertexts. This is a small constant factor more expensive than the corresponding
proof for public choice representatives.

In the setup phase, for each voting option all representatives are shuffled,
but they are published in encrypted form. More precisely, for each j € [s], the
ciphertext list wy j, ..., wy ; is shuffled without decrypting and the re-encrypted
list is made public.

The return code corresponding to the jth alternative of ith voter is then
Bi,; 8 where again f3; is a random secret value known in encrypted form E, (5;).

When all votes have been submitted and return codes have been received,
the ciphertexts are mixed and the random elements encrypted by voters are
published in permuted order. To be able to decode the actual voters’ choices,
the shuffled lists of representatives are also decrypted for every voting option. It is
of course important that the shuffled random representatives are only decrypted
after all votes have been collected.

The advantage of this system is that there is no need for verifiably secret
shared exponents and re-voting is allowed. But zero-knowledge proofs are slightly
more costly.

3.3 One-time Pad and Standard MAC Schemes

Another way to resolve the problem encountered by solely using one-time pad is
to construct a MAC scheme Mac’ by combining it with a standard MAC scheme
Mac [27]. More precisely, a key consists of a pair (3, k), where 8 € G, is chosen
randomly, and k is a randomly chosen key for Mac. The combined scheme Mac’
is then defined by Macj ;. (m) = Macg(3m).

This can be distributed in the generic way between M servers, each holding a
secret key kg, by replacing the application of Macy, by an array that is compressed
with a collision resistant hash function H, i.e., we can define

I\/Iac,&K(m) = H((Mackz(ﬁm))ée[M]) ’

where K = (ki,...,kn). It may seem that this does not suffice to satisfy our
requirements for secure printing in electronic voting systems, since apparently
the printer must send Sm to the servers. However, the MAC keys kq,...,kyp
can be shared with the trusted party to print the pre-computed return codes
without loss of security.

In an electronic voting system a ciphertext E,(5;) is generated for the ith
voter and the MAC key for that voter is (3;, K) = (584, k1,...,ka). The mix-
servers simply take an input ciphertext E,(m) submitted by the ith voter, de-
crypt E,(5:)E,(m) = E,(8;m), and output H((Mack[(ﬁim))ge[M]).

The advantage of this system is that there is no need for mix-servers to gen-
erate a secret shared value for each individual voter and re-voting is also allowed.
The disadvantage is that it is not robust. If a server is down, the return code
cannot be computed. One way to resolve this problem is to let each server veri-
fiably secret share his symmetric key between other servers. But this guarantees
security only against semi-honest adversaries and malicious servers cannot be
detected.

3.4 Diffie-Hellman MAC Schemes

Recall that the Diffie-Hellman assumption states that no efficient algorithm can
compute g% given ¢g¢ and ¢° as input, where a,b € Z, are randomly chosen.

Furthermore, a standard hybrid argument shows that it is also hard to compute
any g%% given g% and g% fori € [N] and j € [s] for some N and s, where a;,b; €
Z4 are randomly chosen. If we accept the decisional Diffie-Hellman assumption,
then this is strengthened to the claim that ¢%% is indistinguishable from a
randomly chosen element in Gj.

This immediately gives two MAC schemes that are compatible with mix-nets
based on the El Gamal cryptosystem. Both schemes use random representations
of voting options. The first variant is voter independent while the second is not.
In both cases hashing the MAC tag allows truncation for any underlying group.

3.5 First Variant

We encode the jth choice by a randomly chosen element v; € G, where in
contrast to Section 3.2, v1,...,7s may be public and known at the beginning.
Let the mix-servers generate a verifiably secret shared MAC key a; for the ith
voter. Then, computing the MAC of the plaintext «; provided in encrypted
form E,(v;) is done by simply computing ;" by distributed exponentiation and
decryption. Note that v; = g% for some b; € Zg, so the result is g%, To
summarize, the underlying MAC scheme is defined by Mac,, (m) = m® for the
ith voter. This can be computed under encryption, which means that we can
also provide the result in one-time pad encrypted form to a third party. This
system remains secure when re-voting is allowed.

3.6 Second Variant

The first variant is somewhat impractical in that the mix-servers must generate a
secret shared exponent a; € Z for each individual voter. We can switch the roles
of randomly chosen representatives of choices and verifiably distributed secret
exponents. More precisely, random elements 3; ; in encrypted form as ciphertexts
E,(B;,;) are generated for every i € [N] and j € [s]. The preparation phase and
encryption procedure is exactly like that of Section 3.2, but now a single verifiably
secret shared value a is generated and the same function Mac,(m) = m® is used
for all voters.

The advantage of this scheme is that the MAC function can be evaluated
in batches on submitted ciphertexts and in contrast to the construction in Sec-
tion 3.2 the representatives may be shuffled and decrypted before all ciphertexts
have been received. Re-voting is still allowed.

4 Offline Tallying Servers

In this section, we propose two schemes to resolve the online-server danger of
presented schemes of Section 3. This is achieved without a considerable amount
of performance loss or organizational overhead. The main idea is to use two inde-
pendent public keys with shared secret keys. More precisely, in the setup phase,
the tallying servers generate a public key y and keep shares of the corresponding

secret key. Additionally, the vote collecting servers produce a public key z in the
same manner.

In the online voting phase, ith voter submits a pair of ciphertexts (v;, w;),
along with some scheme-dependent zero-knowledge proof. Here, v; and w; are
ciphertexts encrypted under public keys y and z, respectively. The first cipher-
text, v;, is used to decode voter’s choice after mixing. The second ciphertext, w;,
is an encryption of a random value, so it basically contains no information about
the voter’s choice. To compute the return code, w; is simply decrypted by online
servers who collect the encrypted votes. Therefore, the shares of y are never
exposed during the online voting phase. Even if the secret key of z is revealed,
no knowledge is leaked about the voter’s choice which is encrypted under y.

When all ciphertexts have been collected, the ciphertexts list vy,...,vy5 is
shuffled. Then, they are decrypted, and if necessary decoded, to obtain the cast
votes. Since tallying can be performed behind an airwall, this approach ensures
a high level of privacy for the voters.

As an alternative approach to print the pre-computed return codes, the online
servers can simply share their secret key with the trusted party without loss of
security.

The main requirement to be satisfied is that the two submitted ciphertexts
are constructed such that they cannot be split. Below, we propose two such
constructions. In addition to enhanced privacy due to airwalling, the advantage of
these systems is that there is no need for voter-dependent verifiably secret shared
values and re-voting is also allowed. The drawback is that the zero-knowledge
proofs are more costly compared with the schemes of Section 3.

4.1 First variant

In setup phase, for every i € [N] and j € [s], servers generate secret random pairs
of elements (¢ j, 8;,;) in encrypted form as random ciphertext pairs (v; ;, w; ;) =
(Ey(a,;J), EZ(B,;J)) As it was explained in Section 3, such ciphertexts can be
simply interpreted as the output of a random oracle. To vote for jth choice, the
ith voter computes v; and w; as respective re-encryptions of v; ; and w; ;. The
pair (v;,w;) is then submitted along with a zero-knowledge proof.

In the setup phase, for each voting option j all representatives vy j,...,vnN,;
are mixed and a permutation of the decrypted list aq j,...,an,; is published.
When every voter ¢ has submitted a ciphertext pair (v;,w;), the first elements
are shuffled, decrypted and decoded.

4.2 Second variant

In the second variant, for every ¢ € [N] and j € [s], the pre-computed random
values w; ; = E,(fB; ;) are prepared as before. To vote for jth choice, the ith voter
computes v; as an encryption E, (m;) and w; as a re-encryptions of w; ;. The pair
(vi,w;) is then submitted along with a zero-knowledge proof. Computation of
return codes and tallying is straightforward. Zero-knowledge proofs are slightly
less costly compared with the the first variant.

5 About Write-in Candidates

Some of the systems can be adapted to allow write-ins in the sense that voters
simply encrypt a representation of one of the pre-determined choices, or an ar-
bitrary message. The zero knowledge proof of knowledge would then not impose
any additional structure. Naturally, return codes can not be provided in printed
form for a relatively small number of messages, so to have a chance to verify a
return code for an arbitrary message the voter needs the shared MAC key.

The scheme of Section 3.1 is based on an unconditionally secure one-time
MAC scheme, so it remains as secure for any message. The scheme of Section 3.2
does provide some security, but for reasons discussed in that section only if
write-in votes are rare and unpredictible. Finally, the scheme of Section 3.5 also
works for write-ins, but under a strong non-standard DDH-assumption with some
care. We must assume that §%¢ is indistinguishable from a random element even
when the message § strictly speaking is not randomly chosen. One way to make
this a more plausible assumption is to pad a message with random bits before
interpreting it as a group element, but it remains a non-standard assumption
that is fragile in a complex system where slight changes may render it difficult
to defend.

6 Conclusion

We present several return code systems for electronic voting applications, some of
which overlaps or encompasses schemes previously proposed as separate schemes.
We are unable to single out one scheme that is superior to all the other schemes
in every way.

Instead our view is that all the schemes are simple combinations of crypto-
graphic constructions that are well understood and that they together give a
powerful toolbox to construct return codes for many types of elections. Table 1
summarizes different features of proposed schemes.

References

1. Ben Adida. Helios: Web-based open-audit voting. In Proceedings of the 17th
USENIX Security Symposium, July 28-August 1, 2008, San Jose, CA, USA, pages
335-348, 2008.

2. Ben Adida and C. Andrew Neff. Ballot casting assurance. In 2006
USENIX/ACCURATE Electronic Voting Technology Workshop, EVT’ 06, Vancou-
ver, BC, Canada, August 1, 2006, 2006.

3. Jordi Puiggali Allepuz and Sandra Guasch Castell6. Internet voting system with
cast as intended verification. In E-Voting and Identity - Third International Con-
ference, VotelD 2011, Tallinn, Estonia, September 28-30, 2011, Revised Selected
Papers, pages 36-52, 2011.

4. Arne Ansper, Sven Heiberg, Helger Lipmaa, Tom André @verland, and Filip van
Laenen. Security and trust for the norwegian e-voting pilot project F-valg 2011.
In Identity and Privacy in the Internet Age, 14th Nordic Conference on Secure

10

’Section‘ Pre-computed ‘Submitted‘ Return code |Global MAC key‘Re—voting‘Write—ins‘

3.1 Ey(8:) Ey(m;) m?ﬁz - - v

3.2 B, (8:) RE, (w;,;) Bi,;Bi ve v partly
wi; = Ey(Bi;)

3.3 Ey(B8:) Ey(m;) [Macg,,kx(m;) - v -

35 i Ey(7;) 5 - v partly

3.6 |wi; = Ey(Bi;)| REy(wi;) B v v -

aq |Vii = Eelais)| REy(vij) Bis v v ,
wi,; = Ey(Bi,5)| RE: (wi,5)

4.2 |wi; = E.(Bij) Ey(ms) Bi.; ve v -

Table 1. Summary of: what is pre-computed by the tallying servers, the form of
ciphertexts submitted by the ith voter to vote for the jth choice, the form of the
corresponding return codes for different features of proposed schemes. Furthermore,
for each scheme it is indicated if: a single global MAC key is used or if a separate key
must be secret shared for each individual voter, if multiple votes can be submitted,
and if the scheme matches well with write-in votes (for which the voter can not receive
any pre-computed return codes in advance of course).

10.

11.

IT Systems, NordSec 2009, Oslo, Norway, 14-16 October 2009. Proceedings, pages
207-222, 2009.

. Josh Benaloh. Simple verifiable elections. In 2006 USENIX/ACCURATE Elec-

tronic Voting Technology Workshop, EVT’06, Vancouver, BC, Canada, August 1,
2006, 2006.

David Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM, 24(2):84-88, 1981.

David Chaum. Surevote: technical overview. In Proceedings of the workshop on
trustworthy elections (WOTE’01), 2001.

David Chaum, Peter Y. A. Ryan, and Steve A. Schneider. A practical voter-
verifiable election scheme. In Computer Security - ESORICS 2005, 10th Euro-
pean Symposium on Research in Computer Security, Milan, Italy, September 12-14,
2005, Proceedings, pages 118-139, 2005.

Paul Feldman. A practical scheme for non-interactive verifiable secret sharing.
In 28th Annual Symposium on Foundations of Computer Science, Los Angeles,
California, USA, 27-29 October 1987, pages 427-437, 1987.

David Galindo, Sandra Guasch, and Jordi Puiggali. 2015 neuchéatel’s cast-as-
intended verification mechanism. In E-Voting and Identity - 5th International
Conference, VoteID 2015, Bern, Switzerland, September 2-4, 2015, Proceedings,
pages 3-18, 2015.

Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure
distributed key generation for discrete-log based cryptosystems. J. Cryptology,
20(1):51-83, 2007.

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

Kristian Gjgsteen. Analysis of an internet voting protocol. IACR Cryptology ePrint
Archive, 2010:380, 2010.

Kristian Gjgsteen. The norwegian internet voting protocol. IACR Cryptology
ePrint Archive, 2013:473, 2013.

Kristian Gjgsteen and Anders Smedstuen Lund. The norwegian internet voting
protocol: A new instantiation. JACR Cryptology ePrint Archive, 2015:503, 2015.
Oded Goldreich. The Foundations of Cryptography - Volume 1, Basic Techniques.
Cambridge University Press, 2001.

Oded Goldreich. The Foundations of Cryptography - Volume 2, Basic Applications.
Cambridge University Press, 2004.

Sven Heiberg, Peeter Laud, and Jan Willemson. The application of i-voting for
estonian parliamentary elections of 2011. In E-Voting and Identity - Third Interna-
tional Conference, VotelD 2011, Tallinn, Estonia, September 28-30, 2011, Revised
Selected Papers, pages 208-223, 2011.

Sven Heiberg, Helger Lipmaa, and Filip van Laenen. On e-vote integrity in the case
of malicious voter computers. In Computer Security - ESORICS 2010, 15th Eu-
ropean Symposium on Research in Computer Security, Athens, Greece, September
20-22, 2010. Proceedings, pages 373-388, 2010.

Helger Lipmaa. Two simple code-verification voting protocols. TACR Cryptology
ePrint Archive, 2011:317, 2011.

Choonsik Park, Kazutomo Itoh, and Kaoru Kurosawa. Efficient anonymous chan-
nel and all/nothing election scheme. In Advances in Cryptology - EUROCRYPT
’93, Workshop on the Theory and Application of of Cryptographic Techniques,
Lofthus, Norway, May 23-27, 1993, Proceedings, pages 248-259, 1993.

Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable
secret sharing. In Advances in Cryptology - CRYPTO ’91, 11th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 11-15,
1991, Proceedings, pages 129-140, 1991.

Jordi Puigalli and Sandra Guasch. Cast-as-intended verification in norway. In 5th
International Conference on Electronic Voting 2012, (EVOTE 2012), Co-organized
by the Council of Europe, Gesellschaft fir Informatik and E-Voting. CC, July 11-14,
2012, Castle Hofen, Bregenz, Austria, pages 49-63, 2012.

Alon Rosen, Amnon Ta-shma, and Ben Riva. Jonathan (yoni) ben-nun. 2012.
wombat voting system.(2012).

Peter Y. A. Ryan and Steve A. Schneider. Prét & voter with re-encryption mixes.
In Computer Security - ESORICS 2006, 11th Furopean Symposium on Research
in Computer Security, Hamburg, Germany, September 18-20, 2006, Proceedings,
pages 313-326, 2006.

Daniel Sandler, Kyle Derr, and Dan S. Wallach. Votebox: A tamper-evident, veri-
fiable electronic voting system. In Proceedings of the 17th USENIX Security Sym-
posium, July 28-August 1, 2008, San Jose, CA, USA, pages 349-364, 2008.

Adi Shamir. How to share a secret. Commun. ACM, 22(11):612-613, 1979.
Douglas Wikstrom. Proposed during rump session of evote ’15.

12

Public Evidence from Secret Ballots*

Matthew Bernhard®, Josh Benaloh®, J. Alex Halderman®, Ronald L. Rivest®,
Peter Y. A. Ryan®, Philip B. Stark®, Vanessa Teague”, Poorvi L. Vora®, Dan S. Wallach*

YMicrosoft Research “University of Michigan °University of Luxembourg
#University of California at Berkeley *Rice University “University of Melbourne
"The George Washington University ~®Massachusetts Institute of Technology

Abstract. Elections seem simple—aren’t they just about counting? But they have
a unique, challenging combination of security and privacy requirements. The
stakes are high; the context is adversarial; the electorate needs to be convinced
that the results are correct; and the secrecy of the ballot must be ensured. They
also have practical constraints: time is of the essence, and voting systems need to
be affordable and maintainable, as well as usable by voters, election officials, and
pollworkers. It is thus not surprising that voting is a rich research area spanning
theory, applied cryptography, practical systems analysis, usable security, and
statistics. Election integrity involves two key concepts: convincing evidence that
outcomes are correct and privacy, which amounts to convincing assurance that
there is no evidence about how any given person voted. These are obviously in
tension. We examine how current systems walk this tightrope.

1 Introduction: What is the evidence?

It is not enough for an election to produce the correct outcome. The electorate must
also be convinced that the announced result reflects the will of the people. For a rational
person to be convinced, evidence is required.

Modern technology—computer and communications systems—is fragile and vulner-
able to programming errors and undetectable manipulation. No current system that relies
on electronic technology alone to capture and tally votes can provide convincing evi-
dence that election results are accurate without endangering or sacrificing the anonymity
of votes.!

Paper ballots, on the other hand, have some very helpful security properties: they are
readable (and countable, and re-countable) by humans; they are relatively durable; and
they are tamper-evident. Votes cast on paper can be counted using electronic technologys;
then the accuracy of the count can be checked manually to ensure that the technology
functioned adequately. Statistical methods allow the accuracy of the count to be assessed
by examining only a fraction of the ballots manually, often a very small fraction. If
there is also convincing evidence that the collection of ballots has been conserved (no
ballots added, lost, or modified) then this combination—voter-verifiable paper ballots,
a mechanized count, and a manual check of the accuracy of that count—can provide
convincing evidence that announced electoral outcomes are correct.

* A more in-depth version of this paper can be found at https://arxiv.org/abs/1707.08619
I Moreover, the systems that come closest are not readily usable by a typical voter.

https://arxiv.org/abs/1707.08619

Conversely, absent convincing evidence that the paper trail has been conserved, a
manual double-check of electronic results against the paper trail will not be convincing.
If the paper trail has been conserved adequately, then a full manual tally of the ballots
can correct the electronic count if the electronic count is incorrect.

These considerations have led many election integrity advocates to push for a voter-
verifiable paper audit trail (VVPAT?) in the absence of paper ballots.

In the 2016 U.S. presidential election, about three quarters of Americans voted using
systems that generated voter-verifiable paper records. The aftermath of the election
proved that even if 100% of voters had used such systems, it would not have sufficed to
provide convincing evidence that the reported results are accurate.

— No state has laws or regulations to ensure that the paper trail is conserved adequately,
and that evidence to that effect is provided.

— No state had laws or regulations that ensured adequate manual scrutiny of the paper
to determine that the electronically-generated results were correct.

— Many states that have a paper trail also have laws that make it hard for anyone
to check the results using the paper trail—even candidates with war chests for
litigation. Not only can other candidates fight attempts to check the results, the states
themselves can fight