Chapter 11. Simulating the State-by-State Effects of Terrorist Attacks on Three Major U.S. Ports: Applying NIEMO (National Interstate Economic Model)

Jiyoung Park, Peter Gordon, James E. Moore II, and Harry W. Richardson

I. Introduction

The Department of Homeland Security recently issued Planning Scenarios (Howe, 2004) that included preliminary estimates of the losses from various hypothetical terrorist attacks on selected major targets. There are three problems with many of these estimates:

- The orders of magnitude are often much too vague to be useful, e.g., "millions of dollars," "up to billions of dollars."
- The range and types of targets are too limited: Many more than a dozen or so scenarios pose a serious economic risk.
- The geographical incidence of losses is not made clear, probably on purpose because of a policy decision not to identify specific target sites. "All politics are local" may be a slight exaggeration, but decision makers have a keen interest in the spatial incidence of possible losses.

Our research addresses all three of these problems. We have created what we believe to be the first operational interstate input-output (IO) model for the United States. The National Interstate Economic Model (NIEMO) provides results for 47 major industrial sectors for all fifty states, the District of Columbia, and a leakage region: "The Rest of the World." In the application reported here, we use NIEMO to estimate industry-level impacts from the short-term loss of the services of three major U.S. seaports - Los Angeles/Long Beach, New York/Newark, and Houston - on the economies of all fifty states and Washington, DC, as a consequence of hypothetical terrorist attacks. The seaports of Los Angeles and

Long Beach are treated as one complex, LA/LB. Seaports in New York and Newark are also treated as a single port, NY/NJ. We treat the attacks on the three port complexes as alternatives rather than as simultaneous events.

In pursuing our research goals, the choice of approaches involved difficult trade-offs. The use of linear economic models is justified by several factors, including the richness of the detailed results made possible at relatively low cost. NIEMO, for example, includes approximately 6-million input-output multipliers. The principal insight that drives our research is that, with some effort, it is possible to integrate data from the Minnesota IMPLAN Group (MIG), Inc.'s IMPLAN state-level input-output models with commodity flow data from the U.S. Department of Transportation's Commodity Flow Survey and with data from other related sources, making it possible to build an operational multi-regional input-output model.

In the sections that follow, we describe the steps involved in reconciling the information content in these data sources and making them compatible, integrating them to build NIEMO, and applying it to the problem at hand. The application also required the necessary multiplicands: What shares of local final demand do the temporary losses of port services involve? Finally, we discuss the nature of our results and some of the possible implications for homeland security policies.

II. Background to Multiregional IO Construction

Many economists and planners are interested in evaluating the socioeconomic impacts of business disruptions. Occasionally, they use geographically detailed input-output models. Isard (1951) demonstrated that traditional (national) I-O models are inadequate because they cannot capture the effects of linkages and interactions between regions. To examine the full, short-term impacts of unexpected events such as terrorist attacks or natural disasters on the U.S. economy, the economic links between states should be considered and accounted for. Multiregional input output models (MRIOs) include interregional trade tables and avoid some of the fallacies associated with aggregation (Robison, 1950).

Building an operational MRIO for all the states of the U.S., however, requires highly detailed interstate shipments data.

Although Chenery (1953) and Moses (1955) had formulated a relatively simplified MRIO framework in response to the earlier discussions by Isard (1951), data problems persisted, and have stymied most applications. The non-existence or rarity of useful interregional trade data is the most problematic issue. Intraregional and interregional data must be comparable and compatible to be useful in this context, yet the currently available shipments data between states are only sporadically available and difficult to use.

It is not surprising, then, that few MRIO models have been constructed or widely used. The best known are the 1963 U.S. data sets for 51 regions and 79 sectors published in Polenske (1980), and the 1977 U.S. data sets for 51 regions and 120 sectors released by Jack Faucett Associates (1983), then updated by various Boston College researchers and reported in 1988 (Miller and Shao, 1990).

More recently, there have been two attempts to estimate interregional trade flows using data from the 1997 Commodity Flow Survey (CFS). The U.S. Commodity Transportation Survey data on interregional trade flows have been available since 1977, but reporting was discontinued for some years. For the years since 1993, this data deficit can be met to some extent with the recent (CFS) data from the Bureau of Transportation Statistics (BTS), but these data are incomplete with respect to interstate flows. Based on the currently available CFS data, Jackson et al. (2004) used MIG, Inc.'s IMPLAN data to adjust the incomplete CFS reports by adopting gravity models constrained via distance and by making some additional adjustments.

Along similar lines and using the same basic data sources, we elaborate Park et al. (2004), who suggested a different estimation approach that relied on a doubly-constrained Fratar model (DFM). The Fratar model is an early transportation planning tool used to extrapolate trip interchange tables to reflect expected changes in trip ends. It is an intentionally naïve numerical method requiring a minimum of assumptions. To proceed in this way, it was
first necessary to create conversion tables to reconcile the CFS and IMPLAN (and other) economic sectors. This approach is elaborated in the sections that follow.

III. Data

The primary requirements for building an interstate model for the U.S. of the CheneryMoses type are two sets of data:

- regional coefficients tables, and
- trade coefficients tables (Miller and Blair, 1985).

Models of this type can be used to estimate interstate industrial effects as well as interindustry impacts on each state, based mainly on the two data sources:

- regional IO tables that provide intra-regional industry coefficients for each state, and
- interregional trade tables to provide analogous trade coefficients.

This implies the creation of three types of matrices

- intraregional inter-industry transaction matrices,
- the interregional commodity trade matrix, and
- the combined interregional, inter-industry matrix i.e., a special case of an MRIO matrix, the core of the NIEMO model.

Before creating these matrices, however, the data reconciliation problem has to be addressed.

The main steps involved in building and testing NIEMO are shown in Figure 1. We developed a set of 47 industries, we call them "the USC Sectors," into which many of the other economic sector classification systems can be converted. Figure 2 shows the state of our industrial code conversion matrix relative to the many data sources used in this study.

Table 1. Economic Data Sources and Associated Sector Classification Systems

	Economic Data Source					
Sector Classification System		$\begin{aligned} & \underset{i}{z} \\ & \underset{i}{0} \\ & \underset{-1}{\circ} \end{aligned}$				
Standard Classification of Transported Goods (SCTG)						
Bureau of Economic Analysis (BEA)						
2001 IMPLAN						
North American Industry Classification System (NAICS)						
Harmonized System (HS)						
Standard International Trade Classification (SITC)						
Standard International Trade Classification (SITCREV3-C)						
Waterborne Commerce of the U.S. (WCUS)						

The detailed conversion processes occasionally involved case-by-case reconciliations of economic sectors. Inevitably, some conversions involved mapping one sector into more than one and vice-versa. The light-gray cells in Figure 2 represent one-to-one and many-to-one allocations. The dark-gray cells denote mappings modified with plausible weights extracted from ancillary data sources on a case-by-case basis.

Figure 1. NIEMO Data and Modeling Steps

Figure 2. Economic Sector Classification System Conversions (Current \$)

Sector System	USC	SCTG	BEA	NAICS	$\begin{aligned} & \text { IMPLAN } \\ & (2001) \end{aligned}$	SIC	HS	SITC	WCUS
USC									
SCTG	C, E								
BEA	C, E	C, E							
NAICS	C, E	C, E	A						
$\begin{gathered} \text { IMPLAN } \\ (2001) \\ \hline \end{gathered}$	C, E	C, E	A	A					
SIC	C, W	P	P	C, W	P				
HS	C, E	C, E	A	C, E	C, E	P			
SITC	C, W	C, W	P	P	P	P	C, w		
WCUS	C, W	C, W	P	P	P	P	C, W	C, E	

Notes: $\quad C$: Complete mapping
A: Available from other sources
P : Possible to create mapping
E: Mappings constructed without any weights (Bayesian allocations)
W: Mappings constructed with plausible weights informed by additional data sources

Sector Classification Systems:

USC: USC sectors newly created
SCTG : Standard Classification of Transported Goods (http://www.bts.gov/cfs/sctg/welcome.htm)
BEA: Bureau of Economic Analysis (http://www.bea.doc.gov)
NAICS : North American Industry Classification System
(http://www.census.gov/epcd/www/naics.html)
2001 IMPLAN: IMPLAN 509-sector codes
SIC : Standard Industrial Classification (http://www.osha.gov/oshstats/sicser.html)
HS : Harmonized System (http://www.statcan.ca/trade/htdocs/hsinfo.html)
SITC: Standard International Trade Classification available from WISERTrade (http://www.wisertrade.org/home/index.jsp)
WCUS: Waterborne Commerce of the United States (http://www.iwr.usace.army.mil/ndc/data/datacomm.htm)

III-1. Data for NIEMO Construction

The major problem in developing an interstate, inter-industrial model stems from the fact that it is difficult to obtain data describing trade flows between the states (Lahr, 1993). Since 1993, however, CFS data have been available for this purpose. Remaining problems
with these data include high sampling variability or values omitted to avoid disclosure of individual company status. The existence of many unreported values has required relying on other data sources to approximate completeness of the CFS. It is not surprising, therefore, that, there has been no comprehensive inventory of MRIO flows, since the work by Polenske (1980) and Faucett Associates (1983)

The 1997 CFS reports trade flows between states for 43 SCTG sectors while the IMPLAN Total Commodity Output data file includes their 509 sector values, available for all states. CFS includes the movement of foreign imports in its data as domestic movements. This means that all commodities coming into a U.S. port are listed as outbound from that port and inbound to the next destination. Likewise, all commodities flowing to a port from anywhere in the U.S. are outbound from the origin and inbound to the port. For these reasons, foreign imports in the 2001 IMPLAN data, which are available separately from domestic movements, are added to the IMPLAN Total Commodity Output tally.

NIEMO's inter-industry coefficient matrix is based on the commodity-by-industry version of the IMPLAN model. This is because the CFS trade matrix double- (or multiple-) counts commodities due to the movements of foreign imports to other states. We corrected these CFS multiple counts by using the IMPLAN separate foreign imports movements values for commodities to improve the marginal distribution of the CFS matrix, and then re-estimated CFS entries to eliminate double- and multiple-counts.

In the current application, the 1997 CFS data were used as a baseline and updated to estimated 2001 values using 2001 IMPLAN data. The recent release of 2002 CFS data, to be matched to 2002 IMPLAN data, will simplify this approach in the near future.

Differences between industry classification systems from different data sources make data reconciliation especially difficult in the absence of standardized and tested conversion procedures. The estimation of 2001 trade flows from 1997 CFS, therefore, required several intermediate conversion steps between the SCTG code systems used in the 1997 CFS and the IMPLAN system of sectors, not always one-to-one matched pairs.

Figure 3. Data Reconciliation Steps, SCTG and IMPLAN

Notes:

Bold: Used as Reconciliation Code
1: Sector type
2: One = One sector, Many = Multiple Sectors
3: Quality of Reconciled Data
4: Sources and Abbreviations:
IMPLAN
BEA: Bureau of Economic Analysis (http://www.bea.doc.gov)
SCTG : Standard Classification of Transported Goods (http://www.bts.gov/cfs/sctg/welcome.htm)
HS : Harmonized System (http://www.statcan.ca/trade/htdocs/hsinfo.html)

Figure 3 shows the data reconciliation steps enabling the aggregation of 509 IMPLAN sectors to 43 SCTG sectors. The steps involved in data reconciliation, the definition of USC sectors, and the quality of results are described in Appendix 1 (all appendices will be made available at the CREATE website).

III-2. Multiplicands and NIEMO Tests

After estimating all the values needed to invert the 2444-by-2444 matrix, NIEMO can be used to simulate the loss impacts from hypothetical attacks on any major U.S. target. In this research, we considered attacks on the three top U.S. ports: the combined ports of Los Angeles-Long Beach (LA/LB), the combined ports of New York/Newark (NY/NJ) and the port of Houston. Together, these three facilities account for 38.1 percent of all foreign goods exports and 48.5 percent for foreign goods imports (Table 2).

Table 2. Top Ten U.S. Ports: Foreign Exports and Imports (current \$Millions), 2001

2001 Rank	Ports	Exports	Ports	Imports
1	LOS ANGELES / LONG BEACH, CA	33,222	LOS ANGELES / LONG BEACH, CA	164,578
2	NEW YORK, NY / NEWARK, NJ	21,378	NEW YORK,NY / NEWARK, NJ	64,009
3	HOUSTON, TX	21,241	HOUSTON, TX	23,539
4	CHARLESTON, SC	12,836	SEATTLE, WA	23,209
5	NEW ORLEANS, LA	10,951	CHARLESTON, SC	20,876
6	NORFOLK, VA	10,892	OAKLAND, CA	16,021
7	OAKLAND, CA	9,194	BALTIMORE, D	15,686
9	SAVANNAH, GA FL	6,544	NORFOLK, VA	13,943
10	SEATTLE, WA	5,483	PHILADELPHIA, PA	11,877
7	TOP TEN U.S. PORTS	140,587	TOP-TEN PORTS	366,790
	ALL U.S. PORTS	198,841	ALL U.S. PORTS	519,607
	TOTAL U.S. GOODS TRADE	718,762	TOTAL U.S. GOODS TRADE	$1,145,927$

Sources: WISERTrade data for ports and Table 1277, 2002 Statistical Abstract of the United States for Total U.S. Goods Trade

The trade activities for the three ports, foreign and domestic by USC Sector had then to be estimated. WISERTrade processes and supplies data on foreign waterborne exports and imports for each U.S. port, based on raw Census data. They do not include information on domestic waterborne exports and imports. Because WISERTrade uses SITC codes for its seaport data, it was necessary to reconcile the USC Sectors and the SITC Sectors. A USCSITC conversion table was created on the basis of three other conversion tables: USCSCTG, SCTG-HS, and HS-SITC. The USC-HS conversion was easily accomplished because the USC-SCTG and SCTG-HS conversion tables were already available from the NIEMO construction process (see Figure 3 again). The process is shown in Appendix 4, where only the HS-SITC conversion is added. After obtaining a conversion table for 5digit SITCREV3_C codes and 6-digit HS codes from the Waterborne Commerce of the U.S. (WCUS), and modifying the SITCREV3_C codes to 4-digit SITC codes for each port, we created a new, weighted table converting 4-digit SITC codes to 6 -digit HS codes. This enabled us to complete and use the USC-SITC conversion table.

Domestic seaborne exports and imports data are available from the WCUS files, which use their own classification code system based on SITCREV3_C codes. A limitation of the WCUS data is that the units reported are in short tons instead of dollars. We first changed the kilogram magnitudes in the WISERTrade data to short tons. Second, we created a conversion between WCUS and SITC using short ton values. Third, we created dollars-per-ton conversion tables for each port. We were then able to reconcile all the necessary seaborne trade data.

The results of these various reconciliations can be corroborated through foreign trade data comparisons between WCUS and WISERTrade. We found that foreign trade for each port to be almost the same for each USC sector, regardless of data source. The results of our efforts to document all goods trade for the three ports are shown in Tables 3-5. These are the bases for our final demand calculations for each port in Section V. In Section IV, we return to the construction of NIEMO

IV. Constructing NIEMO

As noted above, constructing NIEMO required two basic tables:

- tables of intraregional industrial commodity trade coefficients, and
- a table of regional inter-industry transaction coefficients, as shown in Figures 4 and 5 respectively.

While trade tables by industry are hard to create because of incompleteness or unavailability of data, inter-industry tables are relatively easy to identify because reliable data are available from IMPLAN at the state and industry levels. To estimate NIEMO, we used the 1997 CFS data plus missing value estimates (all updated to estimate 2001 values) that include interstate shipments data for the 43 SCTG commodity sectors; and the corresponding IMPLAN inter-industry coefficients tables for each state.

IV-1. Constructing Interstate Trade Flow Coefficients

Estimated 2001 commodity trade flows among all 50 states plus Washington, D.C. and the rest of the world were developed from the original 1997 CFS for 29 USC Commodity Sectors. We had to deal with the unfortunate fact that the 1997 CFS includes unreported values for a variety of commodities, including some marginal values such as total shipments originating in state i and total shipments destined for state j, and matrix cells representing commodity trade flows between pairs of states. The 2001 IMPLAN data report total origin and destination values by state. Hence, it follows that the 2001 commodity trade flows could be estimated with a Fratar model. However, the missing values in the 1997 CFS must be estimated first. Excel Visual Basic was used to develop the model to estimate these missing values and to execute the Fratar updates. The procedure used to estimate missing values reported in Appendix 5. In the future, we will develop an updated version of NIEMO based on CFS and IMPLAN data for the same year (2002).

Fratar models are useful for estimating updated commodity trade flows, the starting matrices include numerous estimated values for missing entries in the CFS data. However, the traditional Fratar model calibrates only off-diagonal interregional cells. However, in
this application, new diagonal values accounting for intrastate trade flows had also to be estimated.

We developed the doubly-constrained Fratar model (DFM), a new formulation that updates the diagonal values in the CFS matrix, and used the traditional Fratar model to estimate the off-diagonal values. Combining these two operations, the DFM iteratively estimates all the updated CFS values simultaneously and consistently. The estimated values for each USC sector are the base values for the next iterative step of the DFM.

Define $E T O_{i}$ and $E T D_{j}$ as the estimated values of $T O_{i}$, the Total Origin (Output) value for state i, and $T D_{j}$, the Total Destination (Input) values for state j respectively. These estimates are provided by the procedure used to estimate missing values in the 1997 CFS data. Define $I N D_{i i}$ be diagonal entries in a matrix consisting of IMPLAN's Net Domestic Products (NDP) plus Remaining IMPLAN Foreign Imports (RIFI, See Appendix 5) for each state i, the double subscript identifies diagonal entries.

$$
\begin{equation*}
I N D_{i i}=N D P_{i i}+R I F I_{i} \tag{1.}
\end{equation*}
$$

This makes it possible to define the variables shown in equations (2.1) through (5.2).

$$
\begin{align*}
{I N T O_{i}}= & I T O_{i}-I F E_{i} \tag{2.1}\\
& =\left(I N D_{i i}+I F E_{i}+I D E_{i}+\text { OIFI }_{i}\right)-I F E_{i} \tag{2.2}\\
& =N D P_{i i}+I D E_{i}+\text { RIFI }_{i}+O I F I_{i} \tag{2.3}\\
& =N D P_{i i}+I D E_{i}+A F I_{i} \tag{2.4}
\end{align*}
$$

where $\quad I N T O_{i}=2001$ IMPLAN Net Total (Outputs) Originating in state $i ;$
$I T O_{i}=2001$ IMPLAN Total(Outputs) Originating in state $i ;$
$I F E_{i}=2001$ IMPLAN Foreign Exports from state i;
$I D E_{i}=2001$ IMPLAN Domestic Exports from state $i ;$
OIFI $_{i}=2001$ Outbound IMPLAN Foreign Imports (Transhipped) from state
i; and

$$
A F I_{i}=2001 \text { IMPLAN Adjusted Foreign Imports to state } i .
$$

$$
\begin{align*}
I N T D_{j} & =I T D_{j}-\text { OIFI }_{j}, \tag{3.1}\\
& =\left(I N D_{i i}+I D I_{j}+I I F I_{j}\right)-I I F I_{j} \tag{3.2}\\
& =N D P_{i i}+I D I_{j}+\text { RIFI }_{j} \tag{3.3}
\end{align*}
$$

where

$$
\begin{aligned}
I N T D_{j} & =2001 \text { IMPLAN Net Total (Inputs) Destined for state } j ; \\
I T D_{j} & =2001 \text { IMPLAN Total (Inputs) Destined for state } j ; \\
I I F I_{j} & =2001 \text { Inbound IMPLAN Foreign Imports (Transhipped) to state } j ; \\
& \text { and } \\
I D I_{j} & =2001 \text { IMPLAN Domestic Imports to state } j .
\end{aligned}
$$

We did not account for foreign exports in the estimation of each trade flow in the definitions of $I N T O_{i}$ and $I N T D_{j}$. This is because the foreign exports data in IMPLAN identify foreign exports from each state. This presents two problems. First, it is not possible to separate out the quantities that go to the rest of the world from those that go first to the CFS "outbound" category and then on to the rest of the world. And second, foreign exports directly to the rest of the world are associated only with the industry "Transportation Services." Therefore, we assumed foreign exports are shipped directly from each state.
$N e t_{-} I N T O_{i}$ and Net_INTD exclude corresponding diagonal outputs $I N D_{i i}$ and $I N D_{i i}$..

$$
\begin{align*}
\text { Net_INTO }_{i} & =I N T O_{i}-I N D_{i i} \tag{4.1}\\
& =I D E_{i}+\text { OIFI }_{i} \tag{4.2}\\
& \tag{5.1}\\
{\text { Net_ } I N T D_{j}} & =I N T D_{j}-I N D_{j j} \tag{5.2}\\
& =I D I_{j}
\end{align*}
$$

Net_ETO ${ }_{i}$ and Net_ETD ${ }_{j}$ also exclude corresponding diagonal outputs $I N D_{i i}$ and $I N D_{i i}$. See Appendix 5 for definitions.

$$
\begin{align*}
& \text { Net_ETO }_{i}=E T O_{i}-I N D_{i i} \tag{6.}\\
& N e t _E T D_{j}=E T D_{j}-I N D_{j j} \tag{7.}
\end{align*}
$$

The growth factors for origin states i and destination states j, G_{i} and G_{j}, are calculated from equations (8.) and (9.),

$$
\begin{align*}
& G_{i}={N e t _I N T O_{i} / N_{-} _E T O_{i},}_{G_{j}}=N^{2} t_{-} I N T D_{j} / N e t _E T D_{j} . \tag{8.}
\end{align*}
$$

These growth factors are substituted into equations (10.) and (11.).to obtain balance factors L_{i} and L_{j}, which are used to update off-diagonal CFS entries iteratively.

$$
\begin{align*}
L_{i} & =\frac{N e t_{_} E T O_{i}}{\sum_{j}\left(M V_{i j}^{*} \times G_{j}\right)} . \tag{10.}\\
L_{j} & =\frac{N e t_{-} E T D_{j}}{\sum_{i}\left(M V_{i j}{ }^{*} \times G_{i}\right)} . \tag{11.}
\end{align*}
$$

The observed and estimated cell values $M V_{i j}{ }^{*}$ for the 1997 CFS data are the starting values to estimate the 2001 CFS off-diagonal flows $i j, F V_{i j}{ }^{1}$. This is a standard application of the traditional Fratar model that relies on the calibrated factors provided by equations (8.) to (11.).

$$
\begin{equation*}
F V_{i j}^{1}=M V_{i j}^{*} \times G_{i} \times G_{j} \times\left\{\frac{\left(L_{i}+L_{j}\right)}{2}\right\} \quad \text { for all } i \neq j \tag{12.}
\end{equation*}
$$

Equations (13.) to (14.) define $D G_{i}$ and $D G_{j}$, diagonal entry growth factors for origin states i and destination states j.

$$
\begin{align*}
& D G_{i}=I T O_{i} / E T O_{i} \tag{13.}\\
& D G_{j}=I T D_{j} / E T D_{j} \tag{14.}
\end{align*}
$$

Equations (15.) and (16.) define $D L_{i}$ and $D L_{j}$, the diagonal entry balance factors used to update the diagonal (intrastate) entries of the CFS matrix iteratively.

$$
\begin{align*}
& D L_{i}=\frac{E T O_{i}}{\sum_{j}\left(M V_{i j}^{*} \times D G_{j}\right)} . \tag{15.}\\
& D L_{j}=\frac{E T D_{j}}{\sum_{i}\left(M V_{i j}^{*} \times D G_{i}\right)} . \tag{16.}
\end{align*}
$$

Estimated Diagonal Values $\left(D V_{i i}^{1}\right)$ are calculated via equation (17), which defines a second Fratar model estimating trade flows within each state i. These results also account for new foreign imports remaining within each state.

$$
\begin{equation*}
D V_{i i}^{1}=M V_{i i}^{*} \times D G_{i} \times D G_{j} \times\left\{\frac{\left(D L_{i}+D L_{j}\right)}{2}\right\}, \quad \text { for all } i=j \tag{17.}
\end{equation*}
$$

These initial estimates of the updated diagonal values, $D V_{i i}{ }^{1}$, the diagonal entry growth factors, $D G_{i}$ and $D G_{j}$, and the Diagonal entry balance factors, $D L_{i}$ and $D L_{j}$, are all updated iteratively until they converge to consistent values across equations (13.) to (17.).

$$
\begin{equation*}
D V_{i j}^{T}=D V_{i j}^{T-1} \times D G_{i}^{T-1} \times D G_{j}^{T-1} \times\left\{\frac{\left(D L_{i}^{T-1}+D L_{j}^{T-1}\right)}{2}\right\} \quad \text { for all } i=j \tag{18.}
\end{equation*}
$$

$D V_{i i}{ }^{T}$ replaces $I N D_{i i}$ if and only if $D V_{i i}{ }^{T}>I N D_{i i}$. The final values $D V_{i i}$ replace the diagonal values $I N D_{i i}$ in the CFS matrix if and only if $D V_{i i}{ }^{*}>I N D_{i i}$. The 2001 CFS totals for states i
and j are reduced by the difference between the corresponding values $D V_{i i}$ and the original diagonal values $I N D_{i i}$

These initial estimates of the updated off-diagonal CFS flows, $F V_{i j}{ }^{1}$, the growth factors for origin states i and destination states j, G_{i} and G_{j}, and the balance factors, L_{i} and L_{j}, are all updated iteratively until they converge to consistent values across equations (8.) to (12.).

$$
\begin{equation*}
F V_{i j}^{T}=F V_{i j}^{T-1} \times G_{i}^{T-1} \times G_{j}^{T-1} \times\left\{\frac{\left(L_{i}^{T-1}+L_{j}^{T-1}\right)}{2}\right\} \quad \text { for all } i \neq j \tag{19.}
\end{equation*}
$$

The stopping rule to identify the optimal values of $F V_{i j}{ }^{T}$ from equations (18.) and (19.) is shown in equation (20.). The stopping condition is met by maximizing

$$
\begin{equation*}
\sum_{i} \sum_{j} F V_{i j}^{T} \tag{20.}
\end{equation*}
$$

subject to

$$
\begin{align*}
& 0.999<\left(\sum_{i} N e t_{-} I T O_{i} / \sum_{i} \sum_{j} F V_{i j}^{T}\right)<1.001, \text { and } \tag{21.1}\\
& 0.999<\left(\sum_{i} N e t_{-} I T D_{j} / \sum_{i} \sum_{j} F V_{i j}^{T}\right)<1.001 ; \text { or, alternatively, } \tag{21.2}\\
& \left.0.999<\sum_{i} \sum_{j} F V_{i j}^{T-1} / \sum_{i} \sum_{j} F V_{i j}^{T}\right)<1.001 . \tag{22.}
\end{align*}
$$

There is only limited information available about interstate trade in services. The 1977 MRIO interregional flow data set on service sectors is reported to be problematic (Miller and Shao, 1990, p.1652). Consequently, trade in services between states was assumed to be negligible. Further, given our focus on seaports, we also neglect foreign trade in services. The first step in constructing a NIEMO-type MIRO matrix is to create a set of 29 , 52-State-by-52-State trade matrices, one for each of the various commodity sectors; and define 18, 52-State-by-52-State identity matrices, one for each of the various service sectors. These 47 final estimated trade flow matrices are combined into the MRIO format
as shown in Figure 4. These trade values are producer values. To compare these matrices of estimated trade results with the original CFS trade tables, these producer values must be converted to purchaser values using the appropriate price ratios given in Appendix 1b.

Figure 4. Interregional Trade Coefficients Based on Commodity Trade Flows

Note: 1. White cells identify zero values
2. Service sectors have no trade coefficients: Diagonal entries are 1.

Denote the interstate flows appearing in the 1997 CDS data as $V_{i j}$. Denote the unreported value of total output originating in state i as $T O_{i}$, and the unreported value of total output destined for state j as $T O_{j}$. For each state for which 1997 CFS data have been estimated, the ratios, $\sum_{i} V_{i j} / T O_{i}$ (or $\sum_{j} V_{i j} / T D_{j}$), are close to unity. Also, referring to the DFM estimates, the state sums of updated trade flows between states $\left(\sum_{i} F V_{i j}^{T}\right.$ or $\left.\sum_{j} F V_{i j}^{T}\right)$ and the IMPLAN total values $\left(I N T O_{i}\right.$ or $\left.I N T D_{j}\right)$ are also very close to unity. These comparisons provide a basic quality check for the estimates presented here: All these
estimates are plausible (Park et al, 2004). Detailed trade flow estimates by USC sectors are available upon request.

IV-2. Constructing Inter-Industry Trade Flow Coefficients

The 47 USC Sector inter-industry input-output tables were created from the 509 -sector 2001 IMPLAN inter-industry table, and then recombined as shown in Figure 5. These estimates required some intermediate to steps process the IMPLAN data, and are described in Appendix 6.

Figure 5. Inter-Industry Technology Coefficients for 47 USC Sectors Based on IMPLAN

		STATE1						$\begin{array}{\|l\|} \hline \ldots \\ \hline \ldots \\ \hline \end{array}$	STATE51						FOREIGN					
		11	...	12	13	...	14		11	...	12	13	...	14	11	...	12	13	...	14
	11							\ldots												
												
岂	12							\ldots												
$\stackrel{\boxed{6}}{6}$	13							...												
	...							\ldots												
	14																			
:	\ldots
	11							\ldots												
												
㞻	12							...												
$\mid \stackrel{k}{6}$	13							\ldots												
	...							\ldots												
	14																			
	11							\cdots												
	...							\ldots												
은	12							...												
\|씅	13							\ldots												
												
	14							...												

Note1. White cells identify zero values

IV-3. Assembling NIEMO

The NIEMO version of an MRIO coefficient matrix is created by taking the product of the two matrices in Figures 4 and 5. The model includes no inter-industry data for trade between foreign countries, so the off-diagonal cells representing trade between locations in
the rest of the world are necessarily zero. The coefficients for diagonal cells in the foreign-to-foreign region are equal to unity.

The NIEMO inverse matrix can be computed from this product as a special case the Leontief inverse matrix $\left(=(I-C A)^{-1}\right)$, as shown in equation (23). The structure of this inverse matrix is shown in Figure 6. In our applications, we used equation (28.) to consider the impact of final demand changes, denoted as Y, occurring in any given state.

Figure 6. Final Interregional Inter-Industry Coefficients: Inverse Matrix (I-CA) ${ }^{-1}$

		STATE1						...	STATE51							FOREIGN					
		11	...	12	13	...	14	...		1	...	12	13	...	14	11	...	12	13	...	14
	11							...													
													
	12							...													
	13																				
	...																				
	14																				
:	...	\ldots	
	11							...													
													
	12							...													
	I3																				
	...																				
	14																				
	11							...								1.0					
									1.0				
	12							...										1.0			
	13																		1.0		
	...																			1.0	
	14																				1.0

Note: 1. White cells identify zero values

$$
\begin{equation*}
X=(I-C A)^{-1} Y, \tag{23.}
\end{equation*}
$$

where $X \quad=$ the output vector,
$Y \quad=$ the final demand vector in a particular state,
A = the matrix of inter-industry technology coefficients, and

$$
C \quad=\text { the matrix of interstate trade flows. }
$$

NIEMO accounts for the commodity effects of changes in trade within one region on services consumed only within other regions. Therefore, the darker colored cells in Figure 6 are the only ones that are nonzero.

Because A, C and Y are known, X can be calculated via NIEMO, the vector Y captures projected changes in final demand. For this study, we consider the direct impacts resulting from hypothetical attacks on three major U.S. seaports. The Leontief inverse matrix will consist of $(52 * 47)^{2}=5,973,136$ cells. Given Y^{*}, hypothesized perturbations defined by interruptions in port services, new outputs X^{*} are estimated from equation (23.). All of the required calculations were conducted using the MATLAB ${ }^{\text {TM }}$ program.

V. Seaport Final Demand Estimates

The trade activities by USC Sector for the Los Angeles/Long Beach, New York/Newark, and Houston seaports are shown in Tables 3. These figures are based on the reconciled data from section III-2. In the simulations reported here, we assumed that terrorist attacks would close the ports for one month. Because our data are for one year, we created onemonth losses by dividing the elements of the sum column by twelve. The hypothesized one-month final demand (direct) losses are shown in the fifth (FD LOSS) column. As expected, the LA/LB ports would experience the largest final demand losses ($\$ 18.3$ billion), while the ports of NY/NJ and Houston incur $\$ 11.4$ billion and $\$ 6.3$ billion of direct losses respectively. NIEMO is a linear model and extrapolations to other time periods are straightforward. The caveat is that as the periods studied become longer, the assumption of constant, fixed coefficients becomes more problematic.

Table 3. Final Demand Estimates for Three Ports (\$Millions)

USC Sectors	Final Demand Losses for Export		
	LA/LB	Houston	NY/NW
USC1	110.624	21.030	11.381
USC2	159.524	107.081	21.710
USC3	167.088	10.684	30.129
USC4	9.808	6.059	5.297
USC5	83.475	74.997	31.179
USC6	17.957	1.186	1.584
USC7	28.533	0.020	1.372
USC8	12.280	4.839	26.128
USC9	5.535	2.312	2.503
USC10	444.812	431.543	1388.771
USC11	217.227	581.027	138.793
USC12	42.581	17.722	32.541
USC13	2.205	3.137	0.886
USC14	237.746	383.748	366.643
USC15	288.688	188.017	132.205
USC16	75.518	14.911	124.903
USC17	50.345	13.302	38.216
USC18	64.813	11.630	112.296
USC19	138.581	28.803	110.335
USC20	214.835	65.322	178.686
USC21	47.451	28.101	54.134
USC22	94.798	83.030	117.701
USC23	438.116	458.650	322.004
USC24	329.556	113.974	344.952
USC25	206.774	71.162	183.343
USC26	110.942	22.128	183.762
USC27	193.418	63.437	359.330
USC28	60.535	21.956	111.678
USC29	260.899	311.011	261.775
Export Total	4114.665	3140.819	4694.239
USC Sectors	Final Demand Losses for Import		
	LA LB	Houston	NY NW
USC1	288.754	13.098	111.216
USC2	70.167	20.270	114.113
USC3	25.924	5.003	36.580
USC4	18.155	2.366	33.683
USC5	94.350	66.335	283.289
USC6	48.996	32.410	154.150
USC7	5.495	0.052	1.616
USC8	3.413	6.170	15.853
USC9	0.719	2.164	3.176
USC10	517.640	1131.517	1057.081
USC11	227.362	448.906	266.429
USC12	13.060	12.166	86.791
USC13	0.318	4.397	0.491
USC14	209.201	153.954	345.002
USC15	553.886	44.776	187.790
USC16	150.895	30.173	65.337
USC17	74.408	10.020	57.535
USC18	86.941	9.965	73.560
USC19	2904.049	43.955	918.190
USC20	216.420	38.831	140.534
USC21	145.305	154.038	91.427
USC22	538.601	148.629	147.485
USC23	1054.568	202.517	493.051
USC24	3438.119	170.468	352.015
USC25	1504.472	135.470	878.226
USC26	49.591	16.342	118.430
USC27	346.843	47.903	224.694
USC28	660.672	27.757	195.007
USC29	973.274	239.684	247.142
Import Total	14221.599	3219.337	6699.895

As inputs into the NIEMO simulations, FD LOSS data $\left(Y^{*}\right)$ for each port were used as follows: Export losses are presumed to have the standard demand-driven multiplier effects. Import losses are less likely to have such effects and only their direct impacts are included in total effects. It could be argued that the loss of intermediate imports can initiate demanddriven multiplier effects, and that there could be substitutions from other domestic sources. Given the multiple assumptions underpinning this research, we prefer on this point to err on the conservative side. All the results are discussed in Section VI.

Because the New York-Newark ports straddle two states, we also tested an alternate 49State NIEMO model that combines New York and New Jersey. We conducted simulations that compared the results generated by the two versions of NIEMO, with and without the two states combined. The outputs, shown in Appendix 7, demonstrate that the results are approximately the same. This suggests that NIEMO accurately accounts for state-to-state commodity flows, even in circumstances in which flows are as difficult to separate as in the case of NY/NJ.

VI. Terrorist Attack Simulation Results

Based on the export final demand losses shown in Tables 3, the state-by-state indirect impacts from attacks on the three ports were estimated and are summarized in Table 4. Aggregate effects vary in direct proportion to port activity. The indirect effects are shown for each state. Direct as well as indirect effects are shown for the states directly impacted. We also include the direct effects of import losses for the states where the attack takes place. Examined from this perspective, multipliers summed across all states range from 1.24 (Los Angeles/Long Beach) to 1.98 (Houston). The differences are accounted for by the fact that LA/LB has the largest value of imports.

A one-month loss of the services of the Los Angeles/Long Beach port costs the U.S. economy approximately $\$ 22.8$ billion. Corresponding impacts for the ports of New YorkNew Jersey and Houston are $\$ 16.2$ billion and $\$ 9.7$ billion, respectively. If ports are unusable for longer periods, these losses would grow, although strict proportionality would

Table 4. Sum of Intra- and Interstate Effects: Three Ports, Shutdowns One-Month (\$Millions)

State	LA/LB	NY/NJ	Houston
AL	26.96	19.97	28.25
AK	3.08	13.65	1.05
AZ	53.69	7.86	19.53
AR	25.52	11.39	24.38
CA	2,641.24	115.76	146.24
Direct_Impact_EXPORT	4,114.66	--	--
Direct_Impact_IM PORT	14,221.60	--	--
CO	31.40	12.35	21.87
CT	16.04	47.97	8.79
DE	5.08	6.85	2.58
DC	0.63	1.64	0.28
FL	31.23	36.37	24.32
G A	25.92	35.00	23.61
HI	5.40	7.99	0.94
ID	12.31	12.16	3.51
IL	70.84	48.25	53.94
IN	53.17	36.55	44.96
IA	36.06	28.55	12.81
KS	31.99	9.26	17.80
K Y	29.16	55.69	25.42
LA	77.95	105.94	96.59
ME	5.39	26.76	2.33
MD	11.43	42.75	6.87
M A	21.80	54.06	11.93
M I	54.99	95.82	40.50
MN	33.80	22.97	16.69
M S	14.68	12.14	28.79
M O	35.92	47.13	24.45
M T	16.27	5.72	3.34
NE	25.32	5.88	5.63
NV	13.08	2.33	1.68
NH	7.22	9.76	3.36
NJ	42.33	--	21.52
NM	6.62	4.68	21.85
NY	54.85	--	43.53
NY+NJ	--	2,753.40	--
Direct_Impact_EXPORT	--	4,694.24	--
Direct_Impact_IM PORT	--	6,699.90	--
NC	33.14	45.19	22.98
ND	4.87	20.34	1.71
OH	76.85	165.07	58.15
OK	26.99	24.61	70.97
OR	50.39	24.07	11.05
PA	61.80	247.67	44.13
RI	4.85	4.88	3.35
SC	16.76	33.23	14.49
SD	6.72	8.36	3.44
TN	33.69	28.18	25.43
TX	391.97	345.30	2,233.28
Direct_Impact_EXPORT	--	--	3,140.82
Direct_Impact_IM PORT	--	--	3,219.34
UT	31.76	5.74	11.08
VM	2.41	11.75	1.64
VA	16.98	33.36	15.72
W A	79.50	16.21	17.98
W V	10.58	60.16	13.12
W I	52.77	65.68	28.46
W Y	6.52	3.77	7.46
US Total	22,766.18	16,234.29	9,733.92
Rest of W orld	492.02	589.97	316.02
W orld Total	23,258.21	16,824.25	10,049.93

be an overstatement of the impact because substitution options become more feasible and important as time passes. As expected, the overall state-by-state impacts are, in general, a function of state size and distance from the terrorist attack.

Similar results are available from NIEMO simulations for all 29 USC commodity sectors. For the sake of brevity, specific results of sectoral effects for only the five largest sectors in terms of total U.S. output (See Appendix 1f.) are shown in Table 5.

VII. Conclusions

Several caveats must be attached to our results. We have several reasons to expect that they include both overestimates and underestimates. First, as already mentioned, linear, demand-driven models are more relevant to short-term-impact analysis. In the longer run, markets drive a variety of substitutions and price adjustments that the version of the model adopted here cannot account for. Second, it is questionable that a cessation of imports would have demand-driven effects as large as would a cessation of exports. In Section VI., we focused on the full effects of export losses. Only the direct impacts of import losses were included. Third, our analysis omits induced effects transmitted via the household sector. In the short run, households do not adjust their labor force participation rates across state lines. Nevertheless, we believe that we have advanced the state of the art by identifying the approximate orders of magnitude of losses from these types of events.

Also, it is widely accepted that in a federal system, local decision makers would benefit from information that includes the spatial incidence of losses from various terrorist attacks. Our model has made it possible to estimate these on a state-by-state basis, but for disaggregated intraregional impacts there are advantages in applying a much more spatially disaggregated (3,191-zone) model like the one we have developed for Southern California, SCPM (Southern California Planning Model). Few models with simlar degrees of spatial disaggregation have been developed for other metropolitan regions.

NIEMO results have important political implications because the simulations show that the terrorist attacks in one state have significant economic impacts in other states. In the

Congress, especially in the Senate where political power is evenly distributed among states, this conclusion could help to garner nationwide support for prevention measures in specific locations, often distant from the states where the terrorist threats are more probable.

References

Bureau of Transportation Statistics and U.S. Census Bureau, 1999, 1997 Commodity Flow Survey: United States, Washington, DC
Bureau of Transportation Statistics and U.S. Census Bureau, 2000, Commodity Flow Survey 1997: CD-EC97-CFS, Washington, DC
Bureau of Transportation Statistics and U.S. Census Bureau, 2003, 2002 Commodity Flow Survey: United States (Preliminary), Washington, DC
Chenery, H.B., 1953, Regional Analysis, in The Structure and Growth of the Italian Economy, edited by H.B. Chenery, P.G. Clark and V.C. Pinna, U.S. Mutual Security Agency, Rome: 98-139

Howe, D., 2004, Planning Scenarios
(http://132.160.230.113:8080/revize/repository/CSSPrototype/simplelist/Planning_Scenari os__Exec_Summary_.pdf)

Isard, W., 1951, Interregional and Regional Input-Output Analysis: A Model of a Space Economy, Review of Economics and Statistics, 33: 318-328

Jack Faucett Associates, INC, 1983, The Multiregional Input-Output Accounts, 1977: Introduction and Summary, Vol. I (Final Report), prepared for the U.S. Department of Health and Human Services, Washington

Lahr, M.L., 1993, A Review of the Literature Supporting the Hybrid Approach to Constructing Regional Input-Output Models, Economic Systems Research, 5: 277-293

Miller, R.E. and P. D. Blair, 1985, Input-Output Analysis: Foundations and Extensions, New Jersey: Prentice-Hall
Moses, L.N., 1955, The Stability of Interregional Trading Patterns and Input-Output Analysis, American Economic Review, 45: 803-832

Polenske, K.R., 1980, The U.S. Multiregional Input-Output Accounts and Model, DC Health, Lexington, MA
U.S. Bureau of the Census, Current Business Reports, Series BW/96-RV, 1997, Annual Benchmark Report for Wholesale Trade: January 1987 Through February 1997, Washington, DC

Robison, W.S., 1950, Ecological Correlations and the Behavior of Individuals, American Sociological Review 15: 351-357.

Miller, R.E. and G. Shao, 1990, Spatial and Sectoral Aggregation in the Commodity-Industry Multiregional Input-Output Model, Environment and Planning A 22: 1637-1656.

Jackson, R.W., W.R. Schwarm, Y. Okuyama, and S. Islam, 2004, A Method for Constructing Commodity by Industry Flow Matrices, Paper presented at the 2004 Southern Regional Science Association Conference, New Orleans, LA

Park, J., P. Gordon, J.E. Moore II, and H.W. Richardson, 2004, Construction of a U.S. Multiregional Input-Output Model Using IMPLAN, Paper presented at 2004 National IMPLAN User's Conference, Eastern Management Development Center, Shepherdstown, West Virginia

Statistical Abstract of the United States, Table 1277. U.S. International Trade Goods and Services (http://www.census.gov/prod/2003pubs/02statab/foreign.pdf)

Table5a. USC24 Sectoral Effects (Electronic and Other Electrical Equipment): Three Ports, Shutdowns One-Month (\$Millions)

USC24	LA/LB	NY/NJ	Houston
AL	0.69	0.80	0.74
AK	0.07	0.05	0.03
AZ	2.57	1.44	0.82
AR	0.46	0.37	0.40
CA	142.07	24.52	14.34
Direct_Impact_EXPORT	329.56	--	--
Direct_Impact_IMPORT	3,438.12	--	--
CO	5.14	1.43	1.47
CT	0.99	5.40	0.45
DE	0.28	0.29	0.12
DC	0.04	0.05	0.01
FL	2.62	4.16	2.06
GA	2.13	2.17	1.31
HI	0.10	0.24	0.02
ID	0.40	0.40	0.16
IL	3.04	3.23	2.65
IN	1.28	1.20	1.49
IA	0.67	0.82	0.51
KS	0.72	0.41	0.42
KY	1.19	0.98	0.49
LA	0.33	0.55	0.58
ME	0.12	0.51	0.07
MD	1.91	1.65	0.44
MA	5.05	6.58	1.86
MI	1.83	1.69	1.86
MN	2.29	2.69	0.94
MS	0.38	0.46	0.70
MO	1.29	1.36	0.75
MT	0.13	0.11	0.02
NE	0.50	0.30	0.15
NV	0.41	0.12	0.08
NH	1.50	1.29	0.31
NJ	2.04	--	0.73
NM	0.35	0.23	0.20
NY	6.75	--	3.20
NY+NJ	--	135.10	--
Direct_Impact_EXPORT	--	344.95	--
Direct_Impact_IMPORT	--	352.01	--
NC	2.71	5.66	1.39
ND	0.07	0.17	0.04
OH	2.67	3.95	2.82
OK	1.16	0.29	0.77
OR	1.86	1.23	0.46
PA	2.56	7.56	2.60
RI	0.35	0.37	0.16
SC	0.94	0.78	0.63
SD	0.41	0.27	0.21
TN	1.34	1.25	0.90
TX	10.33	5.41	73.55
Direct_Impact_EXPORT	--	--	113.97
Direct_Impact_IMPORT	--	--	170.47
UT	1.34	0.35	0.60
VM	0.31	0.91	0.14
VA	1.65	2.23	1.01
WA	10.49	2.91	3.73
WV	0.09	0.38	0.08
WI	1.81	1.48	0.86
WY	0.09	0.04	0.04
US Total	3,997.24	932.83	413.84
Rest of W orld	54.91	79.94	34.73
W orld Total	4,052.14	1,012.77	448.57

Table 5b. USC25 Sectoral Effects (Motorized Vehicles, Including Parts): Three Ports, Shutdowns One-Month (\$Millions)

USC 25	LA/LB	NY/NJ	Houston
A L	0.69	0.30	0.23
AK	0.01	0.02	0.00
A Z	0.24	0.15	0.12
A R	0.16	0.13	0.14
C A	25.10	1.03	1.17
Direct_Impact_EXPORT	206.77	--	--
Direct_Impact_IMPORT	1,504.47	--	--
CO	0.24	0.13	0.12
C T	0.20	0.37	0.03
D E	0.70	0.39	0.04
D C	0.08	0.00	0.00
FL	0.44	0.36	0.15
G A	0.80	0.89	0.36
H I	0.07	0.01	0.03
ID	0.20	0.04	0.02
IL	1.95	0.81	0.54
IN	1.99	2.33	1.67
IA	0.32	0.22	0.17
K S	0.69	0.19	0.24
K Y	2.54	1.39	0.69
L A	0.46	0.34	0.26
M E	0.05	0.06	0.02
M D	0.14	0.20	0.08
M A	0.10	0.29	0.09
M I	12.55	9.55	8.46
M N	0.90	0.46	0.55
M S	0.20	0.14	0.15
M O	4.21	1.03	1.00
M T	0.05	0.02	0.02
N E	0.22	0.19	0.13
N V	0.24	0.03	0.01
N H	0.03	0.03	0.01
N J	0.23	--	0.19
N M	0.04	0.06	0.06
N Y	0.47	--	0.34
N Y + N J	--	22.31	--
Direct_Impact_EXPORT	--	183.34	--
Direct_Impact_IMPORT	--	878.23	--
N C	0.50	0.68	0.30
N D	0.07	0.09	0.03
OH	2.89	5.23	1.60
O K	0.76	0.43	0.68
OR	0.55	0.18	0.18
PA	0.46	1.64	0.26
R I	0.04	0.01	0.02
SC	0.74	0.63	0.34
SD	0.04	0.06	0.03
TN	1.12	1.01	0.97
TX	1.96	1.06	12.34
Direct_Impact_EXPORT	--	--	71.16
Direct_Impact_IMPORT	--	--	135.47
U T	0.49	0.08	0.04
VM	0.02	0.03	0.01
V A	0.50	0.57	0.16
W A	0.44	0.18	0.18
W V	0.05	0.19	0.04
W I	0.89	0.72	0.38
W Y	0.01	0.01	0.01
US Total	1,779.09	1,117.82	241.29
Rest of W orld	27.17	22.93	13.15
W orld Total	1,806.26	1,140.75	254.44

Table 5c. USC10 Sectoral Effects (Coal and Petrolium Products): Three Ports, Shutdowns One-Month (\$Millions)

USC 10	L A/L B	N Y/N J	Houston
AL	0.40	1.53	0.52
A K	0.27	8.69	0.20
A Z	1.99	0.36	1.18
AR	0.38	0.25	0.50
C A	272.93	21.87	23.27
Direct_Impact_EXPORT	444.81	--	--
Direct_Impact_IMPORT	517.64	--	--
CO	1.13	1.34	4.34
C T	0.07	2.54	0.05
D E	0.13	0.40	0.14
D C	0.02	0.59	0.02
FL	0.30	1.74	0.31
G A	0.24	0.76	0.29
H I	0.19	5.31	0.11
ID	0.05	2.53	0.02
IL	2.29	4.92	3.68
IN	1.41	1.51	1.12
IA	0.17	8.83	0.11
K S	2.88	1.08	1.18
K Y	0.69	24.96	0.73
LA	36.38	66.11	35.88
M E	0.02	4.88	0.01
M D	0.06	12.58	0.05
M A	0.11	3.30	0.09
M I	0.37	27.67	0.29
M N	0.41	1.03	0.27
M S	1.95	2.55	10.45
M O	0.22	15.60	0.24
M T	3.18	2.80	0.33
NE	0.30	0.09	0.11
N V	0.42	0.41	0.03
NH	0.02	0.32	0.02
N J	1.09	--	2.84
NM	0.96	1.55	4.97
N Y	0.31	--	0.24
N Y + N J	--	387.85	--
Direct_Impact_EXPORT	--	1,388.77	--
Direct_Impact_IMPORT	--	1,057.08	--
N C	0.16	0.48	0.15
N D	0.16	12.63	0.08
OH	1.05	46.29	1.17
O K	5.17	11.84	25.44
OR	0.17	7.73	0.05
PA	1.42	75.70	1.21
R I	0.02	0.05	0.02
SC	0.07	7.04	0.07
S D	0.02	2.25	0.02
TN	0.25	0.48	0.22
TX	171.80	203.62	300.27
Direct_Impact_EXPORT	--	--	431.54
Direct_Impact_IMPORT	--	--	1,131.52
U T	3.99	1.01	3.19
VM	0.01	1.74	0.00
V A	0.25	1.72	0.26
W A	1.72	1.42	0.33
W V	0.71	28.68	0.87
W I	0.24	17.42	0.13
W Y	1.05	1.72	3.64
US Total	1,482.07	3,483.59	1,993.76
Rest of W orld	156.04	259.47	80.11
W orld Total	1,638.11	3,743.06	2,073.87

Table 5d. USC29 Sectoral Effects (Miscellaneous Manufactured Products,): Three Ports, Shutdowns

One-Month (\$Millions)			
USC29	LA/L B	N Y/N J	Houston
A L	0.30	0.45	0.40
A K	0.06	0.03	0.04
A Z	3.70	0.12	0.90
A R	0.16	0.34	0.46
C A	34.43	2.36	3.34
D irect_Impact_EXPORT	260.90	--	--
Direct_Impact_IMPORT	973.27	--	--
C O	4.09	0.15	0.58
C T	0.18	1.01	0.13
D E	0.02	0.27	0.02
D C	0.08	0.04	0.05
F L	0.65	0.94	0.62
G A	0.32	1.66	0.42
H I	0.06	0.04	0.04
ID	0.05	0.32	0.03
IL	1.72	2.27	1.13
IN	1.62	0.49	1.02
IA	1.79	0.14	0.16
K S	0.56	0.16	0.16
K Y	0.30	0.31	0.35
L A	1.45	0.17	0.76
M E	0.03	0.89	0.03
M D	0.14	0.72	0.15
M A	0.22	4.29	0.17
M I	0.56	0.68	0.41
M N	0.26	0.23	0.26
M S	0.13	0.10	0.27
M O	1.51	0.21	0.30
M T	0.47	0.02	0.02
N E	0.20	0.04	0.04
N V	0.32	0.03	0.09
N H	0.06	0.17	0.03
N J	5.10	--	0.25
N M	0.14	0.08	1.92
N Y	1.19	--	5.37
N Y + N J	--	19.75	--
D irect_Impact_EXPORT	--	261.77	--
D irect_Impact_IM PORT	--	247.14	--
N C	2.06	0.34	0.24
N D	0.22	0.06	0.10
O H	1.65	1.24	1.08
O K	1.33	0.10	1.22
OR	0.47	0.27	2.24
P A	0.92	3.79	0.60
R I	0.05	0.12	0.03
S C	0.20	0.37	0.14
S D	0.03	0.04	0.08
T N	0.64	1.42	0.59
T X	3.56	2.40	23.43
D irect_Impact_EXPORT	--	--	311.01
Direct_Impact_IM PORT	--	--	239.68
U T	1.29	0.07	0.53
V M	0.02	0.62	0.02
V A	0.26	0.75	3.12
W A	2.65	0.14	1.19
W V	0.08	0.21	0.10
W I	0.42	1.01	0.40
W Y	0.04	0.01	0.02
U S Total	1,311.92	560.33	605.73
Rest of W orld	30.48	22.01	22.10
W orld Total	1,342.40	582.35	627.83

Table 5e. USC23 Sectoral Effects (Machinary): Three Ports, Shutdowns One-Month (\$Millions)

USC23	L A/L B	N Y/N J	Houston
A L	0.72	0.61	0.87
A K	0.01	0.02	0.13
A Z	2.00	0.67	1.00
A R	1.58	0.65	1.07
C A	54.44	2.97	6.96
Direct_Impact_EXPORT	438.12	--	--
Direct_Impact_IMPORT	1,054.57	--	--
C O	1.19	0.21	0.50
C T	1.68	3.55	1.32
D E	0.32	0.18	0.01
D C	0.01	0.03	0.01
FL	3.08	1.99	1.29
G A	1.66	1.10	1.01
H I	0.16	0.01	0.01
ID	0.19	0.18	0.04
IL	5.16	3.10	3.78
IN	3.10	2.46	5.21
IA	1.80	1.51	1.33
K S	0.72	0.46	0.83
K Y	1.04	1.34	0.79
L A	0.33	0.56	0.77
M E	0.12	0.19	0.13
M D	0.34	0.89	0.18
M A	1.91	2.34	0.80
M I	2.49	3.28	2.49
M N	2.00	1.26	1.95
M S	0.58	0.39	0.74
M O	1.29	0.99	0.87
M T	0.16	0.10	0.10
N E	0.35	0.29	0.30
N V	0.42	0.11	0.12
N H	0.46	0.51	0.16
N J	1.28	--	0.58
N M	0.21	0.14	0.21
N Y	1.92	--	2.22
N Y + N J	--	38.84	--
Direct_Impact_EXPORT	--	322.00	--
Direct_Impact_IMPORT	--	493.05	--
N C	1.51	2.69	1.42
N D	0.10	0.22	0.04
OH	7.36	6.36	3.65
O K	1.09	0.81	4.67
OR	1.83	0.47	0.26
P A	2.47	7.91	2.29
R I	0.27	0.16	0.17
S C	1.65	1.16	0.94
S D	0.25	0.23	0.10
T N	1.68	1.52	1.67
T X	4.76	3.36	30.55
Direct_Impact_EXPORT	--	--	458.65
D irect_Impact_IMPORT	--	--	202.52
U T	1.18	0.33	0.28
V M	0.15	0.18	0.04
V A	0.99	1.30	1.10
W A	2.53	0.50	0.64
W V	0.20	0.59	0.11
W I	3.55	2.83	2.97
W Y	0.07	0.02	0.09
US Total	1,617.07	916.60	749.99
Rest of W orld	31.99	28.71	26.27
W orld Total	1,649.05	945.31	776.26

