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Abstract
Making sense of a neuroimaging literature that is growing in scope and complexity will require
increasingly sophisticated tools for synthesizing findings across studies. Meta-analysis of
neuroimaging studies fills a unique niche in this process: It can be used to evaluate the consistency
of findings across different laboratories and task variants, and it can be used to evaluate the
specificity of findings in brain regions or networks to particular task types. This review discusses
examples, implementation, and considerations when choosing meta-analytic techniques. It focuses
on the multilevel kernel density analysis (MKDA) framework, which has been used in recent
studies to evaluate consistency and specificity of regional activation, identify distributed
functional networks from patterns of co-activation, and test hypotheses about functional cortical-
subcortical pathways in healthy individuals and patients with mental disorders. Several tests of
consistency and specificity are described.
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Introduction
Recent years have seen a rapid increase in the number and variety of investigations of the
human brain using neuroimaging techniques. Studies using functional magnetic resonance
imaging (fMRI) or positron emission tomography (PET) have emerged as a major
methodology for investigating function in the intact and disordered human brain.
Psychological processes under investigation are as diverse as psychology itself, and nearly
every major domain of psychology is represented in this growing body of work. Many
popular domains–such as cognitive control, working memory, decision-making, language,
emotion, and disorders such as attention deficit disorder, schizophrenia, and depression–
have been the subject of a large number of neuroimaging studies, whose results can be
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synthesized and interpreted in the context of data from lesion studies, electrophysiology,
behavioral studies, and related methodologies.

This burgeoning literature places increasing demands on scientists to understand, integrate,
and evaluate the neuroimaging work that has been performed in each of these areas. One
important set of questions relates to the consistency, or replicability across laboratories,
scanners, and task variants, of activated regions1. Which brain regions are consistently
associated with domains such as working memory, decision-making, emotional experience,
and so on? And where are the boundaries between functional regions that identify studies
that do and do not replicate?

Another important set of questions relates to synthesis across areas of study, and in
particular the specificity of particular activation patterns for particular psychological
processes. Is a region typically related to working memory load unique to this domain, or is
it shared by a broader set of cognitive demands? For example, some brain regions, such as
the left inferior frontal gyrus, are characterized variously as “working memory regions,”
“language regions,” “emotion regulation regions,” or “decision making regions”, depending
on the functional domain being investigated. Before positing hypotheses about common
underlying functions, it is important to establish whether these different researchers are
discussing the same region, or whether nearby activations in different task domains can be
reliably discriminated.

Why use meta-analysis? Establishing activation consistency
Meta-analysis fills a unique role in the neuroimaging literature because many of the
important, fundamental questions posed above are difficult or impossible to address within
individual studies. Therefore, a major use for meta-analysis in imaging is to identify the
consistently activated regions across a set of studies. In Fig. 1A, for example, a number of
reported activation peaks from many studies (top panel) are summarized in a meta-analysis
of consistently reported regions (bottom panel).

Evaluating consistency is important because false positive rates in neuroimaging studies are
likely to be higher than in many fields (somewhere in the range of 10–40%; see below).
Thus, some of the reported activated locations shown in Fig. 1A are likely to be false
positives, and it is important to assess which findings have been replicated and have a higher
probability of being real activations.

Inflated false positive rates are a byproduct of the commonly used strategy of making
statistical brain maps composed of many tests (“voxel-wise” mapping), combined with the
use of small sample sizes (usually 8–25 participants) due to the considerable expense of
neuroimaging. Although there is a trend towards larger sample sizes and more rigorous
multiple comparisons correction, until recently most studies have not corrected for multiple
comparisons because they were too under-powered (Nichols and Hayasaka, 2003; Wager et
al., 2007a). Many studies that have used corrections used methods whose assumptions are
likely to be violated, or ad hoc methods that do not control the false positive rate at the
nominally specified level (Wager et al., 2007b). Gene arrays in genetic research have the
same problem, for the same reasons—though in both fields, the benefits of making whole-
brain or whole-genome maps make them preferred choices for many researchers.

1We use the term “region” here to refer loosely to an expanse of brain tissue typically considered to be a unit of analysis. What
constitutes a functional “region” may vary across disciplines, but the same questions about activation consistency and specificity
apply.
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Data that illustrate these issues are shown in Table 1, which summarizes the results of four
meta-analyses on a total of 415 studies involving 4,856 participants. The meta-analyses were
all performed using the same method, multi-level kernel density analysis (MKDA; Kober et
al., 2008; Wager et al., 2008; data from Wager and Smith, 2003, was also reanalyzed using
MKDA). The median sample size from the included studies range from N=10 to N=12
across studies of working memory, long-term memory, and emotion. A basic power
calculation (see Fig. 12 in Wager et al., in press) shows that with a standard effect size of
d=1 (Cohen's d, an effect divided by its standard deviation), approximately 45 participants
are required to achieve 80% power using Bonferroni correction in a typical whole brain,
voxel-wise analysis. Correction methods such as those based on Gaussian Random Field
Theory are often just as conservative, but nonparametric correction improves power
substantially (Nichols and Hayasaka, 2003). With nonparametric correction, approximately
only 30 participants are needed for 80% power (Wager et al., in press), though this sample
size is still larger than all but the largest studies in our samples2. Thus, performing proper
correction is impractical without relatively large sample sizes, but failing to make
appropriate corrections leads to increased false positive rates.

The MKDA results can also be used to provide a rough estimate of false positive rates. For
each meta-analysis in Table 1, we calculated the number and proportion of peaks reported
near (within 10 mm) one of the regions identified as consistently activated in the meta-
analysis. The proportion of peaks outside of the consensus regions provides a rough estimate
of false positive rates across studies. Table 1 shows an estimated false positive rate around
10% for the larger databases, and 20%–40% for the smaller meta-analyses, which may have
been underpowered and therefore failed to find more truly activated regions. Of course,
there are a number of reasons why this figure is imprecise; false-positives could contribute
to consistently-activated regions, and heterogeneity among studies could result in true
positives outside those regions found to be significant in meta-analyses. However, even if
imprecise, this figure provides a rough estimate of how big the false-positive problem may
be. Using another method based on examining the estimated search space, thresholds, and
image smoothness, we previously estimated a false positive rate of roughly 17% (Wager et
al., 2007a,b). In sum, there is a need to integrate and validate results across studies.

The simplest goal of a meta-analysis is to provide summaries of the consistency of regional
brain activation for a set of studies of a particular task type, providing a consensus about
which regions are likely to be truly activated by a given task. In addition, meta-analysis can
also be used to extend beyond regional activation to identify groups of consistently co-
activated regions that may form spatially distributed functional networks in the brain. We
have used this approach to identify distributed groups of functionally related brain regions in
emotion (Kober et al., 2008) and anxiety-related disorders (Etkin and Wager, 2007), and
other groups have used similar approaches to identifying large-scale functional networks
organized around particular cognitive processes (Neumann et al., 2005), or functional co-
activation with target brain structures across many tasks (Postuma and Dagher, 2006).
Identifying co-activated networks can provide the basis for testing them as units of analysis
in individual studies, and can lead to the development of testable hypotheses about
functional connectivity in specific tasks.

Why use meta-analysis? Evaluating functional specificity
In addition to establishing consistent activation in one task type, meta-analysis can be used
to evaluate the specificity of activation (in regions or ‘networks’) to one type of task among

2With d=2, 19 participants yield 80% power with Bonferroni correction, and about 12 participants might be expected to yield 80%
power with nonparametric correction. These sample sizes are more in line with those used, and indeed most reported effect sizes.
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a set of different tasks. For example, one might identify a set of regions consistently
activated by self-referential processes (Northoff et al., 2006), and then ask whether activity
in these regions is specific to self-referential processes—that is, that they are not activated
by other tasks that do not involve self-reference. This information is critical to using
measures of brain activity to predict psychological processes (i.e., making a “reverse
inference” that activity in some region implies the involvement of a given psychological
process; Poldrack, 2006; Sarter et al., 1996).

Specificity can only be examined across a range of tested alternative tasks: A region that is
specific for faces compared with houses may not be specific for faces compared with tools.
Likewise, a region that discriminates self-referential word judgments from non-self-
referential ones does not imply that the region discriminates self-referential processes from
retrieval of semantic knowledge from long-term memory. Unfortunately, different
psychological domains are usually studied in isolation, and it is virtually impossible
compare a wide range of tasks in a single study. However, meta-analysis provides tools for
doing exactly that: Activation patterns can be compared across the entire range of tasks
studied using neuroimaging techniques, providing a unique way to evaluate activation
specificity across functional domains.

The simplest kind of specificity analysis compares activation patterns among two or more
task types, such as positive vs. negative emotion (Phan et al., 2002; Wager et al., 2003),
high-conflict vs. low-conflict conditions in cognitive control tasks (Nee et al., 2007), or
various types of executive demand in working memory tasks (Wager and Smith, 2003).
Many more examples appear in the growing meta-analysis literature, some of which is
referenced in Table 2.

However, it is also possible to compare the results of meta-analysis from a number of
functional domains, such as the results across 5 different task types shown in Fig. 1. In a
recent chapter (Van Snellenberg and Wager, in press) we examined the overlap in meta-
analytic results among studies that isolated cognitive control processes (e.g. task switching
and speeded response selection) and studies that involved maintenance of information in
working memory (WM), including WM storage, the subtraction of [Executive WM–WM
storage], and long-term memory encoding and retrieval. Our working hypothesis was that
the more complex memory maintenance and manipulation tasks would involve task
switching and response selection, and so would activate a super-set of the areas involved in
more elementary cognitive control processes. The illustration in Fig. 1B supports this notion,
showing that the inferior frontal junction and pre-supplementary motor area are consistently
activated across studies within each task type, but that more rostral portions of the prefrontal
cortex were only consistently activated when WM was involved. The most anterior
prefrontal regions were activated only when manipulation of information in memory was
required.

Whereas the results in Fig. 1 present a qualitative comparison across five task types that
summarize commonalities and differences across types, quantitative analyses of specificity
can also be performed using several other methods discussed below. These methods include
χ2 (chi-square) and approximations to multinomial exact tests, analysis of reported peak
density differences, and pattern classifier systems. In each analysis, formal predictions can
be made about task types given patterns of brain activity. For example, in a particularly
interesting application using meta-analytic data, Gilbert et al. (2006) used classifier analyses
to identify regions within the medial and orbitofrontal cortices that discriminated different
cognitive functions of the anterior frontal cortex. This study is an example of how formal
predictions about psychological states can be tested across diverse kinds of studies using
meta-analysis.
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Coordinate-based meta-analysis and its many varieties
There are now a number of quantitative meta-analyses of neuroimaging data in the literature,
as evidenced by the partial list in Table 2. The vast majority use reported peak coordinates
from published studies, which are readily available in published papers and stored
electronically in databases such as Brainmap (http://brainmap.org/). We refer to this as the
“coordinate-based meta-analysis” approach. Alternatively, full statistic maps for each study
could be used and effect sizes aggregated at each voxel (Lewis, 2006). Though we consider
this to be a “gold standard” approach, and advocate its development in future meta-analytic
work, this approach is complicated by the lack of readily-available statistic images.

Collectively, the coordinate-based meta-analysis literature to date covers a cornucopia of
innovative techniques. Some meta-analyses evaluate consistency by combining effect size
data (Van Snellenberg et al., 2006) or analyzing the frequencies of reported peaks (Phan et
al., 2002) within anatomically defined regions of interest. Variants on this theme use
multiple logistic regression (Kosslyn and Thompson, 2003; Nee et al., 2007) or summarize
co-activations among regions (Etkin and Wager, 2007; Nielsen et al., 2004). A popular
approach to examining specificity has been to analyze the locations of coordinates in
stereotaxic space, testing for functional gradients or spatial distinctions (Gottfried and Zald,
2005; Joseph, 2001), and sometimes extending these analyses to perform space-based
classification of study types using MANOVA (Joseph, 2001; Wager et al., 2004) or cluster
analyses using χ2 tests (Nickel and Seitz, 2005; Northoff et al., 2006; Wager and Smith,
2003).

While the procedures above refer to analyses carried out on pre-defined anatomical areas,
the most popular approaches for summarizing reported coordinates from neuroimaging
studies involve so-called “voxel-wise” analyses, or the construction of statistical maps
summarizing peak coordinates in a neighborhood around each voxel in a standard brain
(Chein et al., 2002; Fox et al., 1999). At their heart, these kernel-based methods are related
to kernel-based methods for analyzing the multivariate distributions of sparse data, and
essentially summarize the evidence for activation in a local neighborhood around each voxel
in a standard atlas brain. They are popular because they provide ways of summarizing
activations across the brain without imposing rigid prior constraints based on anatomical
boundaries, which are currently difficult to specify precisely.

Our goal in the remainder of this paper is to describe recent advances and applications using
this kernel-based approach. We focus in particular on MKDA, a recently developed
extension of voxel-wise meta-analysis approaches, for example activation likelihood
estimation (ALE; Laird et al., 2005; Turkeltaub et al., 2002) and kernel density analysis
(KDA; Wager et al., 2007b). The essence of the approach is to reconstruct a map of
significant regions for each study (or statistical contrast map within study), and analyze the
consistency and specificity across studies in the neighborhood of each voxel.

In Section 1, we describe how MKDA can be used to evaluate the consistency of activations.
We consider issues of level of analysis (peak vs. study contrast map), weighting,
thresholding, and multiple comparisons, and show the results of simulations comparing
ALE, KDA, and MKDA methods. We also show how this approach lends itself to the
construction of analogues to some meta-analysis plots in the traditional meta-analytic
literature, in particular logistic funnel plots. In Section 2, we consider how MKDA can be
used to analyze specificity. We consider a) density difference maps to compare activations
in two types of studies, and b) A multinomial permutation test–an alternative to the χ2 test
with several desirable properties–for comparing two or more study types. Finally, in Section
3, we describe extensions of the MKDA approach to analyze co-activations across regions,
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including clustering and mediation analysis on co-activation data to develop models of
functional pathways.

Methods
Section I. The MKDA approach

The MKDA method analyzes the distribution of peak coordinates from published studies
across the brain. The technique, used in several recent published analyses (Etkin and Wager,
2007; Kober et al., 2008; Wager et al., 2008, 2007b) is summarized in Fig. 2. Essentially,
the reported x (left–right), y (posterior–anterior), and z (inferior–superior) coordinates in a
standard stereotaxic space (i.e., Montreal Neurological Institute space) are treated as a sparse
representation of activated locations. In the literature, peak coordinates are reported in
reference to a particular statistical contrast map (SCM); for example, a study might compare
high memory load vs. low memory load. Studies may report results from multiple contrast
maps (e.g., load effects for verbal stimuli and load effects for object stimuli), so we refer to
the maps as SCMs rather than as study maps.

To integrate peaks across space, the peaks obtained from each SCM are convolved with a
spherical kernel of radius r, which is user-defined, and thresholded at a maximum value of 1
so that multiple nearby peaks are not counted as multiple activations (left side of Fig. 2).
Formally, this amounts to the construction of an indicator map for each SCM, where a voxel
value of 1 indicates a peak in the neighborhood, while 0 indicates the absence of a peak, i.e.
for each voxel k:

(1)

where  is the  triplet in mm for voxel k's location in MNI space, and x̄ is the [x, y,
z] triplet for the nearest reported peak. The choice of r is somewhat arbitrary, but should be
related to the degree of consistency found across studies. Better inter-study consistency
would allow for meaningful neighborhood summaries using smaller values of r and would
thus allow for higher-resolution meta-analytic results. In practice, r=10 mm is commonly
used, which provides a good balance between sensitivity and spatial resolution (Wager et al.,
2004).

A weighted average of the resulting indicator maps provides a summary map with an
interpretable metric: The (weighted) number of nominally independent SCM indicator maps
that activate in the neighborhood of each voxel. The weights relate to measures of study
quality and are described below. The convenient interpretation of the statistic (an SCM
activation count) motivates the use of the spherical kernel, though in principle other kernels
(such as a Gaussian kernel) could be used. Information about the extent and shape of the
activation summarized by each peak could be incorporated as well, but in practice,
inconsistency in reporting this information across studies has prevented it from being used.

The final step is to establish a statistical threshold for determining what constitutes a
significant number of activating SCMs in a local area. The threshold is determined using a
Monte Carlo procedure, and a natural null hypothesis is that the ‘activated’ regions in the
SCM indicator maps are not spatially consistent; that is, they are distributed randomly
throughout the brain. The procedure is described in detail below.

Thus, in MKDA, the peak locations are not analyzed directly. Rather, indicator maps for
each SCM are constructed, and the SCM is treated as the unit of analysis. Thus, the metric
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used to summarize consistency is not directly related to how many peaks were reported near
a voxel–after all, the peaks could all have come from one study–but rather, is related to how
many SCMs activated near a voxel.

This is the primary difference between MKDA and previously used “voxel-wise”
approaches, including KDA and ALE (Fox et al., 1998; Laird et al., 2005; Nielsen et al.,
2005; Wager et al., 2003, 2004). The latter methods also summarize peak coordinates using
a kernel-based approach, but they do not take into account which SCM or study the peaks
came from. Thus, the KDA an ALE measures do not summarize consistency across studies;
rather, they summarize consistencies across peak coordinates. Interpreting these methods as
reflecting consistency across studies requires the implicit assumption that there are no true
inter-study differences in number and location of peaks, smoothness, false positive rates, and
statistical power. This assumption is clearly violated in most meta-analyses that integrate
data from many laboratories, and the consequence is that a significant KDA or ALE ‘meta-
analytic’ result can be driven by a single study. Thus, one cannot conclude from a significant
KDA/ALE p-value that a new study on the same topic would be likely to activate similar
regions. This issue is analogous to the fixed versus random-effects model issue in individual
functional imaging studies, in which fixed-effects models treat observations (time points) as
the unit of analysis and ignore inter-subject variability, while random-effects models
account for this variability by treating subjects as the unit of analysis. The fixed-effects issue
has also received considerable discussion in the traditional meta-analysis literature, and
Monte Carlo simulations have demonstrated that when there is true between-study
variability, fixed-effects models have inflated Type I error rates, particularly for meta-
analysis of a small number of studies (Hedges and Vevea, 1998).

An analogy to a standard clinical study may help clarify this point. Not modeling SCM as a
level of analysis is akin to ignoring the fact that different observations in a clinical study
came from different participants; thus, the analysis and inference procedures would be
identical whether the observations came from a group of participants or only a single
participant. For example, examine the peaks in Fig. 2A, which are 3 representative contrast
maps from a set of 437 used in recent meta-analyses of emotion (Kober et al., 2008; Wager
et al., 2008). Imagine that we performed a meta-analysis only on the plotted peaks from
these three studies. Because study is ignored in the ALE/KDA analysis, information about
which study contributed each of the peaks is not preserved, and all the peaks are combined.
Contrast 1 contributes 26 peaks, many of them very close together, whereas Contrast 2
contributes only two. When the KDA map is generated and thresholded in this example,
three peaks within 10 mm are required to achieve significance in the meta-analysis. Study 1
has enough peaks near the amygdala to generate significant results by itself. This is quite a
plausible scenario due to differences in scanning, analysis, and reporting procedures across
studies; and, in fact, the data shown are real.

This example illustrates some of the advantages to treating SCM or study, rather than peak,
as the unit of analysis. A study may report peaks either very densely or sparsely, depending
on reporting standards and the smoothness of statistical images. Smaller studies tend to
produce rougher (less smooth) statistic images, because they average over fewer subjects.
Rougher statistic images produce a topography consisting of many local peaks; thus, there is
a tendency for smaller studies to report more local peaks! Clearly, it is disadvantageous to
consider each peak as an independent observation.

In summary, the MKDA procedure has several important advantages over previously used
voxel-wise meta-analysis approaches. First, other approaches have typically analyzed the
peak locations from a set of studies, ignoring the nesting of peaks within contrasts. MKDA
takes account of the multi-level nature of the data. Second, the MKDA statistic has a
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straightforward interpretation: the proportion of contrasts (P) activating within r mm of each
voxel. Third, contrast maps are weighted based on sample size and study quality. And
finally, the procedure controls the family-wise error rate (FWE), or the chance of observing
a false positive anywhere in a meta-analytic brain map, and so each significant MKDA
result can be interpreted. We elaborate on these latter points of comparison below.

Weighting of study contrast maps and peaks
Weighting by sample size and/or study quality is typical in meta-analysis across fields
(DerSimonian and Laird, 1986), and incorporating sample size into the meta-analysis is a
key feature of standard meta-analytic methods, because the precision of a study's estimates
(1/standard error) are proportional to the square root of the study's sample size. Weighting in
meta-analysis ensures that larger and more rigorously performed studies exert more
influence on the meta-analytic results. However, there are several choices to be made in
deciding how to weight activation peaks from neuroimaging studies. One choice is whether
to weight individual peaks by their reliability (i.e., Z-scores), individual SCMs, or both.
Weighting peaks by their Z-scores may seem like a good idea at first glance, but there are
significant disadvantages. First, Z-scores from different studies may not be comparable
because of the different analysis methods used. For example, some (mostly older) studies
treat subjects as a fixed effect, whereas others treat it as a random effect. “Fixed effects”
analyses do not appropriately model inter-subject variance and therefore do not allow for
inferences about a population—a critical part of scientific inference. Z-scores from fixed-
effects studies are systematically higher than those from random-effects studies. Second, the
massive multiple testing framework employed in most neuroimaging studies creates a
situation in which peaks with the highest Z-scores may have occurred by chance. For an
analogy, consider the survivors from the Titanic. On average, those who survived were
better swimmers, but another major component was luck. Here, reported significant voxels
in a study are the “survivors.” This situation causes the well-known phenomenon of
regression to the mean: Z-scores corresponding to these peaks regress toward their true
values in a replication. Thus, it may not be safe to assume that Z-scores from a group of
studies are comparable.

Rather than weighting Z-scores, the current version of MKDA weights by the square root of
the sample size for each SCM. In addition, we down-weight studies using fixed effects
analyses by a factor of 0.75, an arbitrary value that reduces the impact of fixed-effects
studies. These factors are combined into the following weighting equation:

(2)

where P is the weighted proportion of activated comparisons (SCM indicators), c indexes
comparison maps I, δ is the fixed effects discounting factor, and N is the sample size. This
approach could potentially be expanded to weight peaks within study by their relative
activation strength within the study, and thereafter weight studies in proportion to their
sample size. In addition, this weighting scheme could be used to weight by other study
quality measures developed by the analyst, such as diagnostic criteria or sample-matching
procedures employed in studies of psychiatric or medical populations. While the precise
weight values assigned for various study characteristics are necessarily somewhat arbitrary,
assigning higher weights to higher-quality studies is generally preferable to ignoring
differences in study quality or excluding some studies altogether. However, because
weighting by study quality involves choices by the analyst that can be somewhat arbitrary, it
is common in the traditional meta-analysis literature to additionally report the results of an
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unweighted analysis (Rosenthal and DiMatteo, 2001) so that the influence of the weighting
procedure on the results can be assessed.

Thresholding and multiple comparisons
The null hypothesis in MKDA, like KDA and ALE analyses, is a “global” null hypothesis
stating that there is no coherent spatial consistency across SCMs (or reported peaks, for
KDA and ALE). Rejecting the null technically implies that there are one or more
neighborhoods (regions) with consistent reports. However, the test still provides a test with
strong control of FWE, in the sense that under the null hypothesis, the chances of a false
positive anywhere in the brain is α (e.g., p<.05, corrected for search across the brain).
Considering an alternative null conditional on one or more consistent regions, it can be
shown that the required density to achieve FWE control for remaining regions is lower than
the required density for the global null. Thus, the test is over-conservative, and KDA
analysis incorporated a step-down test (Wager et al., 2004) that has not yet been
implemented in MKDA.

In practice, MKDA uses a threshold derived from Monte Carlo simulation of the global null.
Contiguous clusters of activated voxels are identified for each SCM, and the cluster centers
are randomized within gray-matter (plus an 8 mm border) in the standard brain. For each
iteration (although results typically stabilize after about 2000 iterations, we typically use
10,000), the maximum MKDA statistic (P in Eq. (2)) over the whole brain is saved. As with
other nonparametric FWE correction methods, the (1–α)th percentile of the distribution of
maxima provides a critical statistic value.

An advantage to randomizing cluster locations, rather than peak locations, is that the density
of peaks in a particular study will not have an undue influence on the null hypothesis values
in the Monte Carlo simulation. Even if peaks are reported very densely, the MKDA Monte
Carlo threshold will not be influenced as long as peaks are reported within the same
activated area. This is not true for peak-coordinate based Monte Carlo simulations (i.e.,
KDA and ALE), and thus dense peak reporting will lead to higher thresholds for reporting
significant meta-analytic results and less power.

In addition, in MKDA an ‘extent-based’ thresholding can be used (Wager et al., 2008),
paralleling methods available in the popular Statistical Parametric Mapping software
(Friston et al., 1996). In our MKDA implementation, we have established primary
thresholds at the average uncorrected (1–α)th percentile of the MKDA statistic across the
brain (with permuted blobs, i.e., under null hypothesis conditions), where α is by default .
001, .01, and .05. The maximum extent of contiguous voxels at this threshold is saved for
each iteration of the Monte Carlo simulation, and the critical number of contiguous voxels is
calculated from the resulting distribution of maximum null-hypothesis spatial extents. For
example, the yellow regions in Figs. 1A and 2 are significant at p<.05 MKDA-height
corrected, whereas orange and pink regions are significant at p<.05 cluster-extent corrected
with primary thresholds of .001 and .01, respectively.

Meta-analysis diagnostic plots
Traditional meta-analyses often make extensive use of diagnostic plots to illustrate the
sensibility (or lack thereof) of results across a group of studies. For example, the Galbraith
plot shows the relationship between effect size (e.g., Z-scores, y-axis) and study precision (x-
axis) (Egger et al., 1997). Precision is equal to 1/standard error for each study, which is
related to the residual standard deviation and square root of the study sample size (N).
Simple regression is used to analyze the relationship between precision and effect size. A
reliable non-zero effect across studies should have a positive slope in the Galbraith plot,
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because the more precise studies (with lower standard errors) should have higher Z-scores.
This plot can be used to detect bias of several types. If there is no bias, the intercept of the
plot should pass through the origin: With a precision of zero (e.g., zero sample size), the
predicted effect size should be zero. A positive intercept indicates small-sample bias.

An example is shown in Fig. 3. Panel A shows an adapted Galbraith plot; √N is plotted on
the x-axis for studies of executive working memory, as the full standard error is not
generally available from published neuroimaging papers. The slope will thus be different
from the standard Galbraith plot, but the expected intercept is still zero in the absence of
bias. Z-scores from the subset of available studies within the significant regions in the
MKDA analysis for [Executive WM–Storage] (Fig. 1) are shown. As Fig. 3A shows, Z-
scores for fixed-effects studies (light-colored triangles) pass through the intercept (unfilled
diamond), but those from random-effects studies (dark squares) do not. Thus, there is
evidence for bias in the random-effects studies. One plausible type of bias is the well-known
“file drawer” problem. Smaller studies that did not find effects in these regions may be
unpublished, and thus Z-scores from published studies with small sample sizes would be
inflated relative to the true effect size across all studies. This problem is exacerbated because
small-sample studies have very little power in a random-effects framework, and thus those
that end up being published are those that happen to have particularly large Z-scores (either
by chance or because of some real difference in effect magnitude). Fixed-effects studies do
not show apparent bias, perhaps because these studies tend to be older and were publishable
even with relatively low effect sizes. In addition, fixed-effects analysis is substantially more
liberal than random-effects analysis, resulting in higher Z-scores overall, and thus studies
using fixed-effects analyses are more likely to yield Z-scores high enough to meet
publication standards even with small samples. One issue with these plots is that Z-score
values are not independent from one another, and thus the statistical significance of the
Galbraith plot regression is difficult to interpret.

Fig. 3B shows an analogous plot, but shows the probability of a nominally independent
SCM activating (y-axis) vs. N (x-axis). Individual studies are plotted with y-axis values of
either 1 (active) or 0 (non-active), and logistic regression is used to create a best-fit
prediction (solid black lines) of the probability of activation (P(active)) as a function of N.
The gray circles show smoothed averages of P (active) vs. N estimated using loess
smoothing, and can be used to assess the logistic regression model fit. As with the standard
Galbraith plot, if a region is truly activated by the task (executive WM in Fig. 4) and there is
no bias, P(active) should increase with increasing sample size and should pass through the
origin (P(active)=0 when N=0). Bias in small-sample studies is indicated by a non-zero
intercept. Finally, a negative regression slope would indicate that an effect is driven
predominantly by the small studies, and that P(active) converges on zero as N increases;
thus, it is evidence that a region does not respond to the task studied. Plots are shown for
two regions of contiguous voxels that were significant in the MKDA analysis shown in Fig.
1. The first, a region in the left parietal cortex commonly activated in executive WM tasks,
which shows evidence for both a positive slope and a non-zero intercept, indicating a true
effect and a tendency to over-report by small studies. This bias could be related to the use of
lowered thresholds, or other factors discussed above. The second region, a small region in
white matter in the lateral frontal cortex, shows evidence for a null result: The consistent
activation is produced exclusively by the small-sample studies, resulting in a negative
regression slope. (We are not arguing here against a role of lateral prefrontal cortex in
executive WM: Other lateral prefrontal regions showed more well-behaved data). These
results illustrate the usefulness of meta-analytic plots, above and beyond localizing
significant regions using MKDA or a similar analysis.
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Section II: Analyzing activation specificity
Meta-analysis is perhaps the only way to compare neuroimaging results across a wide
variety of tasks, as shown in the example in Fig. 1B Van Snellenberg and Wager (in press).
This unique advantage can be captured quantitatively in analyses that examine the
specificity of regional activation to particular task types.

The most basic type of between-task comparison is between two conditions (e.g., positive
and negative emotion, or executive WM vs. simple storage). An early approach counted the
number of peaks or studies activating within a pre-specified anatomical area, and used a χ2

test to determine whether the proportions of peaks inside vs. outside the area differed by task
type (Phan et al., 2002; Wager et al., 2003; Wager and Smith, 2003). This analysis controls
for the marginal counts of overall peaks within the area and overall frequency of peaks for
each task type, and is valid for comparisons of two or more task types. However, it has
several drawbacks. First, anatomical boundaries currently cannot be precisely specified.
Second, counting peaks suffers from the same fixed-effects issues discussed above, thereby
limiting generalizability, but study counts are often too low to perform a valid χ2 test on
studies or SCMs. This is because the χ2 test is a large-sample approximation and is not valid
if expected counts in any cell in the contingency table fall below 5 or so. Therefore, large
numbers of studies and large regions are needed.

In addition, it is important to note one other consideration. The Phan et al. χ2 test provides
estimates of relative activation frequency: if one area is very dense with peak/study
activations, it will influence the overall marginal frequencies of peaks used in tests in every
other region. We return to this issue in more detail below.

In recent work, we have employed an alternative to the χ2 test, a multinomial permutation
test (MPT), which addresses some of these issues. The MPT is very similar in principle to
the χ2 test, and in fact uses the χ2 statistic as a summary statistic; however, it is a
permutation-based procedure that approximates the multinomial exact test (Agresti, 2002).
Like the χ2 test, it can be used to make whole-brain maps of areas showing task-type
differences in each local neighborhood around the brain. For the local area around each
voxel, a “yes/no” by task type contingency table is constructed, where “yes” and “no” refers
to whether the SCM activated within r mm of the voxel. Exact p-values can be obtained for
2×2 tables using Fisher's exact test or for larger tables using the multinomial exact test
(MET), but both of these are extremely computationally demanding, and the MET for even a
single voxel of a moderately sized meta-analysis (e.g., 80 maps) is not feasible with current
commonly available computing resources. However, permutation methods can be used to
approximate the MET with much lower computational cost. We permute the “yes/no”
activation indicator, providing a sample from the set of null-hypothesis tables with the same
marginal distributions of activation counts and task-type counts, as suggested in Agresti
(2002, p. 98). We use the χ2 statistic as a convenient summary of asymmetries between
activation and task type, and threshold the distribution of χ2 statistics from permuted tables
at 1-α. In practice, 5000 permutations at each voxel provides stable results, is
computationally feasible (2–3 days for a whole-brain map with a large sample of >400
SCMs), and is substantially faster than Fisher's exact test for large (i.e., 80 or more) numbers
of SCMs.

In this way, the other problematic issues raised above are addressed as well. To avoid
ambiguities with imprecisely defined ROIs, we perform the test voxel-by-voxel over the
whole brain (or a volume of interest). To avoid the complications related to making
inferences about peaks without considering which study they came from, SCMs rather than
individual peaks are counted and analyzed. This test is different from the χ2 test described
above in another way as well: It analyzes only the distribution of activating vs. non-
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activating SCMs within a given brain region. Therefore, it provides a direct test of
differences among tasks in the probability of activating a single region, independent of
activation frequencies in other regions. This test is implemented in the current version of the
MKDA software.

Comparing two task types using MKDA
Another means of comparing two conditions uses voxel-wise analysis within the ALE/KDA/
MKDA framework. In this approach, separate maps are constructed for each of two task
types and subtracted to yield difference maps. The same procedure is employed in the course
of the Monte Carlo randomization: The locations of contiguous activation blobs (peaks in
ALE/KDA) are randomized, providing simulated null-hypothesis conditions from which we
establish a threshold for significant differences.

Like the Phan et al. χ2 test, the Monte Carlo ALE/KDA/MKDA difference maps test the
relative frequency of activating in a given region, compared with the overall frequencies in
the rest of the brain. Thus, a very reliable concentration of peaks in one area for one task
type will shift (increase) the marginal activation frequencies for that task, which will affect
the null-hypothesis difference in the Monte Carlo simulations. Thus, for task types with
relatively few peaks, there need not be a greater absolute probability of activating a region to
achieve a significant density for that region relative to other task types. Consider the
following example: Studies of positive and negative emotion activate the ventral medial
prefrontal cortex (vmPFC) with about equal frequencies. The MPT test would reveal no
differences. However, negative emotions more reliably activate the amygdala and many
other regions (Wager et al., 2008), resulting in a greater frequency of activation across the
brain. With enough studies, either the Phan et al. χ2 test or density-difference analyses will
produce a significant positive > negative effect in vmPFC, even though the absolute
proportion of activating studies is roughly equal for positive and negative emotion. This is
not necessarily a flaw, as a relative concentration of activity in a condition that produces few
activations in general can convey meaningful information. For example, vmPFC activity
may indeed be diagnostic of positive emotion. However, it is important to keep these issues
in mind when interpreting results from these analyses.

Section III: Testing connectivity
Meta-analysis can also be used to reveal patterns of co-activated regions. If two regions are
co-activated, studies that activate one region are more likely to activate the other region as
well. Co-activation is thus a meta-analytic analogue to functional connectivity analyses in
individual neuroimaging studies, and can provide converging evidence on functionally
connected regions and hypotheses that can be tested in subsequent studies.

As with summaries of consistency, a natural level of analysis is the SCM (Etkin and Wager,
2007; Kober et al., 2008). In the MKDA-based approach, the data is an n×v indicator matrix
of which of the n SCMs activated in the neighborhood of each of the v voxels in the brain.
The resulting connectivity profiles across voxels can be simplified into connectivity among
a smaller set of structurally or functionally defined regions (groups of voxels). Hypothesis
tests can be performed on connectivity, and relationships among multiple regions can be
summarized and visualized.

There are several potential measures of association for bivariate, binomial data, including
Kruskal's Gamma, Kendall's Tau, Fisher's exact test, and other recent measures of
association for binomial data developed within the neuroimaging literature (Neumann et al.,
2005; Patel et al., 2006; Postuma and Dagher, 2006). We have used Kendall's Tau-b (τ)
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because it is appropriate for binomial data and has a clearly interpretable metric (Gibbons,
1993; Gibbons et al., 2003).

Co-activation measures can be used for a number of purposes. First, they can be used to test
for specific relationships among brain areas of interest. For example, we used a database of
437 SCMs from emotion tasks to test which frontal regions were co-activated with the
amygdala, periaqueductal gray (PAG), and hypothalamus, three key subcortical nuclear
complexes involved in emotion (Kober et al., 2008). Only four specific frontal areas showed
positive co-activation with these areas (see Fig. 4). They included several specific regions in
the medial prefrontal cortex (mPFC)–including pregenual anterior cingulate, rostral dorsal
cingulate, and dorsomedial prefrontal cortex– and one area in the right frontal operculum.
These results reveal a relatively specific pattern of frontal connectivity with these important
subcortical regions. They correspond well with animal studies showing direct projections to
amygdala and PAG mainly from the MPFC (An et al., 1998; McDonald et al., 1996). In
addition, the homologies between rat or primate and human mPFC are not currently well
understood, and this kind of information in humans helps to establish homologous regions.

Another use for co-activation measures is in functional parcellation of the brain (Flandin et
al., 2002; Thirion et al., 2006), or the establishment of groups of contiguous voxels that
show similar functional characteristics and may be treated as units of analysis in future
studies. In the Kober et al. study, it would have been computationally unwieldy to examine
co-activation between thousands of voxels in the frontal cortex and thousands of voxels in
subcortical regions of interest. Instead, we calculated co-activation among parcels: We first
used singular value decomposition on a 437 (SCMs)×18,489 (voxels) matrix of significant
voxels from the MKDA analysis and identified groups of contiguous voxels that loaded
most highly on the same component. These regions were taken as parcels, and a new SCM
indicator for each parcel was constructed, which indicated whether each SCM activated in
the neighborhood of the parcel. These parcels corresponded well in many cases with the
locations of known anatomical regions. For example, in Fig. 4, sub-regions of the amygdala
derived from parcellation of the meta-analysis are shown in comparison with those derived
from cytoarchitectural analysis of post-mortem brains (Eickhoff et al., 2005).

The parcel indicators were subjected to two iterations of non-metric multidimensional
scaling and clustering to identify functional regions and large-scale networks. The details of
this procedure are beyond the scope of this brief discussion, but the end result is that parcels
of functionally related brain activity, and networks of co-activated regions at several spatial
scales, can be identified and used to guide interpretation and a priori testing in future
studies.

Co-activation measures can also be used to characterize differences among groups of
individuals, including those with psychiatric and neurological disorders. For example, Etkin
and Wager (2007), compared frontal-amygdala and frontal-insula co-activation in studies of
three types of anxiety-related disorders: Post-traumatic stress disorder, social anxiety
disorder, and specific phobias. We tested the hypothesis that medial frontal increases would
be consistently associated with a lower incidence of amygdala and insula activity across
studies. Co-activation analyses supported this view (See Fig. 4), and we found that this co-
activation was driven by studies of PTSD specifically. This is one example of how meta-
analysis can be used to test the consistency of functional relationships among brain regions,
and also compare functional relationships across different functional domains (in this case,
anxiety-related disorders).
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Section IV: Future directions
There is tremendous potential for development of meta-analytic techniques and applications
to advance the cumulative science of brain imaging. One avenue for development involves
increasing integration of meta-analysis results with brain atlases and databases (Dickson,
Drury, and Van Essen, 2001; Van Essen et al., 2001) so that consensus results will be
immediately available to researchers. Another is the aggregation and analysis of full
summary statistic images from each study, rather than analysis of the reported peaks. This
would allow effect-size based meta-analyses with full information across the brain, and
would greatly enhance the value of meta-analytic maps.

Whether full statistic images or reported coordinates are analyzed, there is ample room for
the development and application of both new and traditional meta-analysis techniques. Here
we have presented an initial use of graphical meta-analysis plots, which could be very useful
in detecting and quantifying bias in future meta-analyses. New applications of techniques for
parcellating and evaluating co-activation based on data across studies can provide
increasingly precise maps of large-scale functional regions, which can in turn inform
increasingly precise anatomical hypotheses in new studies.

In addition, other avenues require development: One is how to model SCMs, which are
currently treated as independent, but which are often nested within studies, and whose
cohorts sometimes share individuals even if they come from different studies. Another is the
application of logistic regression techniques appropriate for low-frequency responses, to
analyze task specificity while controlling for confounding variables. The tests for specificity
described above analyze activation frequencies as a function of a single psychological
variable (e.g., spatial vs. verbal vs. object WM). However, such variables may be correlated
with other confounding variables: for example, PET vs. fMRI studies, storage and
manipulation vs. pure storage in WM, or other factors may be asymmetrically distributed
across levels of WM Content Type. This raises the potential for multi-colinearity and, in
some cases, for Simpson's Paradox to occur. For example, spatial WM may activate more
frequently that object WM overall, but the reverse may be true when comparing within
categories of PET and fMRI studies. Only a few meta-analyses have used logistic regression
to control for confounding variables because coverage of the possible combinations of
variables is too sparse. This approach will become more feasible as the number of studies
increases and samples of studies can be collected that are relatively balanced across levels of
potentially confounding factors.

Finally, developing meta-analysis based applications of classifier techniques is a particularly
important future direction, as meta-analysis affords a unique opportunity to make
quantitative brainpsychology inferences across many task domains. This approach can be
extended beyond simple classification to testing functional ontologies. Because many
different kinds of task labeling schemes can be applied to study contrasts, meta-analysis
provides the means to pit alternative psychological categorization schemes against one
another and ask which maps most cleanly onto brain activity. This approach may turn out to
be a unique and valuable way of establishing links between psychological and biological
levels of analysis.
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Fig. 1.
Examples of results from multilevel kernel density analysis (MKDA). (A) Top panel: Peak
activation coordinates from 437 study comparison maps (SCMs; from 163 studies) plotted
on medial and subcortical brain surfaces (Wager et al., 2008). Peak locations within 12 mm
from the SCM are averaged. Bottom panel: Summary of consistently activated regions
across SCMs in the MKDA analysis. Yellow indicates a significant density of SCMs in a
local neighborhood, and orange and pink indicate significant density using extent-based
thresholding at primary thresholds of 0.001 and 0.01, respectively (see text for details). All
results are family-wise error rate corrected at p<.05 for search across brain voxels. (B)
MKDA results from five published meta-analyses of executive function mapped onto the
PALS-B12 atlas (Van Essen, 2005) using Caret software, and the overlap in activations
across the five types of executive function, from Van Snellenberg and Wager (in press). The
results illustrate how meta-analysis can inform about common and differential activations
across a variety of psychological processes.
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Fig 2.
Example procedures for multilevel kernel density analysis (MKDA). (Adapted from Wager
et al. (2007), Fig. 3). (A) Peak coordinates of three of the 437 comparison maps included in
a meta-analysis of emotion. Peak coordinates of each map are separately convolved with the
kernel, generating (B) indicator maps for each study contrast map (SCM). (C) The weighted
average of the indicator maps is compared with (D) the maximum proportion of activated
comparison maps expected under the null hypothesis in a Monte Carlo simulation and (E)
thresholded to produce a map of significant results. Color key is as in Fig. 1.
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Fig. 3.
Adapted Galbraith plots illustrating application to meta-analysis. (A) Plot of Z-scores from
available peaks from the executive working-memory (WM) vs. WM storage comparison of a
published meta-analysis (Wager and Smith, 2003). Z-scores within significant regions in the
multilevel kernel density analysis (MKDA; y-axis) are plotted against the square root of
sample size (x-axis). In the absence of bias, the regression line should pass through the
intercept (unfilled diamond). This condition holds for fixed-effects studies (light gray
triangles), but not for random-effects studies (dark gray squares), indicating small-sample
bias in the random-effects studies. See text for additional details. (B) Adapted Galbraith-
style graph plotting activations for each study contrast map (SCM; y-axis) as a function of
sample size (x-axis) within regions of interest from the MKDA analysis. Individual SCMs
are plotted as points (1=active, 0=not active), and the solid regression line shows logistic
regression fits for the proportion of activated SCMs (P(active), y-axis) as a function of
sample size. The gray circles show estimates of P(active) using loess smoothing (λ=.75) and
can be used to assess the quality of logistic regression fits. In the absence of bias, the logistic
fit should pass through the intercept (see text). The upper plot shows results from a parietal
region indicating some small-sample bias. The lower plot shows a small white-matter region
in the frontal cortex. Activation was significantly consistent in the MKDA analysis, but the
plot shows that it was driven entirely by the small-sample studies, suggesting a lack of true
responses to executive WM in this region.
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Fig. 4.
Example of co-activation analyses from a recent meta-analysis of emotion Adapted from
Kober et al. (2008), Figs. 8–9). Co-activated regions show a significant tendency to be
activated in the same study contrast maps (SCMs), as assessed with Kendall's tau-b. Arrows
show significant co-activation. (A) Frontal regions (yellow/orange) co-activated with
amygdala subregions (blue/purple) are a surprisingly circumscribed set of regions limited to
the medial prefrontal cortex (mPFC) and the right ventrolateral PFC/frontal operculum. The
inset shows regions from the SPM Anatomy Toolbox (V15; (Eickhoff, Heim, Zilles, and
Amunts, 2006; Eickhoff et al., 2005). Amy, amygdala; BL, basolateral complex; CM,
centromedial complex; dmPFC, dorsomedial prefrontal cortex; pgACC, pregenual anterior
cingulate; rdACC, rostral dorsal anterior cingulate; rfrOp, right frontal operculum; SF,
superficial amygdala. (B) Frontal regions co-activated with midbrain periaqueductal gray
(red, shown including a contiguous region in the thalamus) include a subset of the same
frontal regions. (C) The only frontal region co-activated with hypothalamus (red) was the
dmPFC. These results suggest locations for functional frontal-limbic and frontal-brainstem
pathways related to emotional experience that can be tested in future neuroimaging and
lesion studies.

Wager et al. Page 22

Neuroimage. Author manuscript; available in PMC 2012 April 4.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Wager et al. Page 23

Ta
bl

e 
1

D
at

ab
as

e
St

ud
ie

s
Sa

m
pl

e 
si

ze
 (N

)
R

ep
or

te
d 

pe
ak

s

T
ot

al
M

ed
ia

n
M

in
M

ax
T

ot
al

In
O

ut
%

 “
re

pl
ic

at
ed

”

W
M

 st
or

ag
e

26
30

5
12

5
21

37
7

22
5

15
2

60

Ex
ec

ut
iv

e 
W

M
60

66
4

10
5

28
10

86
86

7
21

9
80

Em
ot

io
n

16
3

20
10

11
4

40
24

78
21

98
28

0
89

Lo
ng

 te
rm

 m
em

or
y

16
6

18
77

11
5

33
32

65
29

50
31

5
90

“I
n”

 re
fe

rs
 to

 p
ea

ks
 w

ith
in

 1
0 

m
m

 o
f t

he
 si

gn
ifi

ca
nt

 m
et

a-
an

al
ys

is
 a

re
a,

 a
nd

 “
O

ut
” 

re
fe

rs
 to

 p
ea

ks
 fu

rth
er

 th
an

 1
0 

m
m

 fr
om

 th
e 

si
gn

ifi
ca

nt
 m

et
a-

an
al

ys
is

 a
re

a.
 W

M
: W

or
ki

ng
 m

em
or

y 
“R

ep
lic

at
ed

” 
pe

ak
s a

re
w

ith
in

 a
 c

on
si

st
en

tly
 a

ct
iv

at
ed

 a
re

a 
in

 th
e 

m
et

a-
an

al
ys

is
.

Neuroimage. Author manuscript; available in PMC 2012 April 4.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Wager et al. Page 24

Table 2

A sampling of neuroimaging meta analyses

Authors Year Method Psychological focus

Cognitive control/executive function

Chein et al. 2002 Density (Gaussian) Verbal working memory

Wager et al. 2003 Clustering of peaks, chi-square Working memory

Wager et al. 2004 KDA, spatial MANOVA Attention/task switching

Buchsbaum et al. 2005 ALE Wisconsin card sorting

Chein and Schneider 2005 Density (Gaussian) Practice effects in cognitive control

Laird et al. 2005 ALE Stroop interference

Neumann et al. 2005 ALE, co-activation “replicator dynamics” Stroop interference

Costafreda et al. 2006 Spatial location Verbal fluency in left IFG

Gilbert et al. 2006 Spatial location/Chi-square/classifier Episodic memory, multitasking mentalizing in
BA 10

Nee et al. 2007 KDA, logistic regression Cognitive control/interference

Van Snellenberg and Wager in pressa MKDA/KDA Cognitive control and memory

Emotion and motivation

Phan et al. 2002 Chi-square within regions Emotion

Murphy et al. 2003 Spatial location (K–S test) Emotion

Wager et al. 2003 KDA, Chi-square Emotion

Kringelbach and Rolls 2004 Spatial location Reinforcers in OFC

Phan et al. 2004 Qualitative Emotion

Baas et al. 2004 Chi-square Amygdala lateralization

Northoff et al. 2006 Clustering of peaks Self-referential processes

Krain et al. 2006 ALE Decision-making

Wager et al. 2008 MKDA, Chi-square Emotion

Kober et al. 2008a MKDA, co-activation Emotion

Disorder

Zakzanis et al. 2000 Effect sizes Schizophrenia

Zakzanis et al. 2003 Effect sizes Alzheimer's disease

Whiteside et al. 2004 Effect sizes Obsessive–compulsive disorder

Glahn et al. 2005 ALE Working memory in schizophrenia

Fitzgerald et al. 2006 ALE Depression, DLPFC

Dickstein et al. 2006 ALE ADHD

Van Snellenberg et al. 2006 Effect sizes Schizophrenia and working memory

Steele et al. 2007 Spatial location (“unwarped”) Depression, frontal cortex

Valera et al. 2007 Effect sizes Brain structure in ADHD

Etkin and Wager 2007 MKDA, Co-activation Anxiety disorder

Hoekert et al. 2007 Effect sizes Emotional prosody in schizophrenia

Language

Turkeltaub et al. 2002 ALE Single-word reading

Jobard et al. 2003 Clustering of peaks Word reading
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Authors Year Method Psychological focus

Brown et al. 2005 ALE Speech production

Vigneau et al. 2006 Clustering peaks Language, left cortical hemisphere

Ferstl et al. 2008 ALE, Co-activation “replicator dynamics” Text comprehension

Others

Joseph 2001 Spatial location Object recognition: category specificity

Grèzes and Decety 2001 Qualitative Action

Kosslyn and Thompson 2003 Logistic regression Visual imagery

Nielsen et al. 2004 Kernel density/multivariate Cognitive function

Gottfried and Zald 2005 Spatial location Olfaction in OFC

Nickel and Seitz 2005 Clustering of peaks Parietal cortex

Petacchi et al. 2005 ALE Auditory function, cerebellum

Lewis 2006 Average maps in CARET Tool use

Postuma and Dagher 2006 Co-activation Basal ganglia

Zacks 2008 Mental rotation

A sample of published neuroimaging meta-analyses. See text for abbreviations.

a
Results discussed in relative detail in this paper.
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