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Abstract
The conventional Poisson-Nernst-Planck equations do not account for the finite size of ions
explicitly. This leads to solutions featuring unrealistically high ionic concentrations in the regions
subject to external potentials, in particular, near highly charged surfaces. A modified form of the
Poisson-Nernst-Planck equations accounts for steric effects and results in solutions with finite ion
concentrations. Here, we evaluate numerical methods for solving the modified Poisson-Nernst-
Planck equations by modeling electric field-driven transport of ions through a nanopore. We
describe a novel, robust finite element solver that combines the applications of the Newton's
method to the nonlinear Galerkin form of the equations, augmented with stabilization terms to
appropriately handle the drift-diffusion processes.

To make direct comparison with particle-based simulations possible, our method is specifically
designed to produce solutions under periodic boundary conditions and to conserve the number of
ions in the solution domain. We test our finite element solver on a set of challenging numerical
experiments that include calculations of the ion distribution in a volume confined between two
charged plates, calculations of the ionic current though a nanopore subject to an external electric
field, and modeling the effect of a DNA molecule on the ion concentration and nanopore current.

Keywords
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1 Introduction
Beginning with the experiments that revealed the microscopic mechanisms of nerve cell
excitation [1], measurements of ion currents through nanoscale channels and pores have
become the basis of many experimental techniques in biology and biotechnology. In
addition to permitting the study of the behavior of individual proteins that allow the passage
of ions into and out of cells [2], ion current measurements through nanopores have been
used to study the rupture of molecular bonds [3–5], to distinguish between similar molecules
[6], and to determine the properties and sequences of nucleic acid molecules [7–11].

©2014 Global-Science Press
*Corresponding author. jehanzeb@colostate.edu (J. H. Chaudhry), jeffcomer@gmail.com (J. Comer), aksiment@illinois.edu (A.
Aksimentiev), lukeo@illinois.edu (L. N. Olson).

NIH Public Access
Author Manuscript
Commun Comput Phys. Author manuscript; available in PMC 2015 January 01.

Published in final edited form as:
Commun Comput Phys. 2014 January ; 15(1): . doi:10.4208/cicp.101112.100413a.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



However, since direct experimental imaging of molecules within nano-pores is extremely
difficult, computation plays an important role in associating current with nanoscale
phenomenon [12–19] (see [20, 21] for recent reviews of the field).

Equilibrium and transport properties of ionic solutions can be simulated using explicit ion
methods such as all-atom molecular dynamics [16, 20] or Brownian dynamics [22–24], or
by using continuum models such as the Poisson-Boltzmann and Poisson-Nernst-Planck
equations [25, 26]. While the explicit ion methods provide the most accurate description of
the system's behavior, both in spatial and temporal domains, they are stochastic in nature
and thus require long, computationally expensive simulations to obtain average properties.
Furthermore, the application of an explicit ion method usually requires the system to be
described with the same resolution over the entire simulation domain. Often, this leads to a
situation where a majority of the computational effort is applied to simulate a nearly uniform
solution where quantities of interest exhibit little variation. In contrast, continuum methods
allow different regions of the same system to be described at varying levels of detail, and
thus focus the computational effort on regions that require a more precise description. In
addition to being more computationally efficient, continuum models more easily incorporate
certain types of boundary conditions that arise in physical systems, such as boundaries of
fixed concentration or electrostatic potential.

The traditional continuum approach to modeling ionic transport is based on the Poisson-
Nernst-Planck equations (PNPE). Although the PNPE have been applied successfully to
model the electro-diffusion phenomena [27, 28], the equations are not without drawbacks.
Within the PNPE approach, ions are modeled as mathematical points of negligible physical
dimension, thereby allowing for accumulation of ions at unrealistically high concentrations
in certain regions of the system. A modified formulation of the PNPE, called the modified
Poisson-Nernst-Planck equations (MPNPE) [29], explicitly takes the physical dimensions of
ions into consideration, which limits the maximum concentration that attained in the system.
The advantage of using MPNPE over PNPE becomes apparent in the systems that contain
regions subject to strong attractive potentials, for example, near charged surfaces.

In this work, we explore the MPNPE approach for modeling equilibrium and transport
properties of ionic solutions in realistic three-dimensional geometries subject to realistic
applied potentials. The finite difference method has been widely used to solve the Nernst-
Planck equations in one or three dimensions [27, 30–32]. Although the finite difference
method is straightforward to implement, applying this method to systems that have curved
boundaries and complicated geometries is challenging. In this respect, using a finite element
method is more appropriate as it naturally handles complex geometries, such as the
molecular surfaces of DNA molecules and ion channels. Finite element methods for solving
the three-dimensional PNPE have already been described [33, 34]. However, numerical
studies of the MPNPE have been limited to one-dimensional systems [29] or the three
dimensional spherical case [35] and have not been applied to simulate ion flow through a
solid-state nanopore, which is the main process considered in this work.

Here, we introduce a three-dimensional MPNPE solver for the simulation of ionic current
through nanopores, which can handle the complex geometry of the system and the realistic
microscopic potentials the ions are subject to. The nanopore system is illustrated in Fig. 2
and described in detail in Section 2. In contrast to the previous efforts, our finite element
method conserves ion concentration, takes into account the sharp repulsive potentials
present near the walls of an ion channel [13, 27], and is able to reproduce the results of
explicit ions simulations. The presence of a sharp, repulsive potential at the interface of fluid
and solid-state domains necessitates formulation of a new stable numerical method for
finding the solution of the PNPE and the MPNPE. Specifically, we found that, when applied
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to our nanopore systems, standard finite element methods become unstable and produce
spurious results such as negative concentrations. Fig. 1 gives an example of such behavior.
The sharp repulsive potential near the walls of a nanopore causes instability of the Galerkin
method, producing spurious negative concentration values (see Section 4, Experiment 3 for
more details). Below, we describe a numerical procedure that stabilizes the finite element
method in the presence of sharp repulsive potentials, which is one of the main results of this
works.

The remainder of the paper is organized as follows. Section 2 introduces the systems and the
governing equations. Our nonlinear finite element method for solving the MPNPE is
described in Section 3. Also in this section, we provide the Galerkin formulation for the
equations that do not have large drift terms, and a streamline-upwind-Petrov-Galerkin
(SUPG) method for the equations in which such terms are present. In Section 4 we describe
the results of several computational experiments that highlight the utility of the MPNPE and
the necessity of having a stabilized algorithm. The paper concludes with final remarks.

2 Problem description
In this section we give a brief overview of the problem and review the relevant equations.

2.1 Governing equations
We consider the Poisson-Nernst-Planck Equations (PNPE) for a 1:1 electrolyte solution
(referred to as solvent) described over a computational domain, denoted by ,
which includes both the solvent region, represented as Ωs, as well as a molecular or
membrane region, Ωm, which is void of solvent. The time dependent PNPE are given as [27]

(2.1)

(2.2)

where ϕ is the electrostatic potential and U is the potential due to other interactions (such as
van der Waals and solvation forces), which is assumed to be the same for both ionic species.
Hereafter, we will refer to potential U as a non-electrostatic potential, to differentiate it from
the explicit electrostatic potential ϕ. In the Nernst-Planck equation, (2.1), the concentration
of positive and negative ions are c+ and c–, respectively, kB is the Boltzmann's constant, T is
temperature, e is the charge on an electron and D± are the diffusivities of the positive and
negative ions, respectively. In the Poisson equation, (2.2), we assume a piecewise constant
dielectric coefficient ε that is defined in the two sub-domains, Ωs and Ωm. For simplicity, we
write the total potential energy experienced by an ion as V± =±eϕ+U.

The modified form of the PNPE (MPNPE) adds a nonlinear term to each of the two Nernst-
Planck equations in (2.1) to model the steric repulsion. The Poisson equation remains
unchanged, however the modified Nernst Planck equations are [29],

(2.3)

Here a is the size of the ion (assumed to be the same for both species). As a result, in this
model the maximum permitted concentration is bounded by 1/a3, which we refer to as the
steric limit. To simplify the presentation of the material that follows, we write the PNPE and
the MPNPE as
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(2.4)

where

(2.5)

2.2 Description of the model system
A primary focus of this paper is the application of MPNPE solver to nanopores, wherein we
compute the ionic current through a pore in a solid-state membrane. The domain we
consider is depicted in Fig. 2(a). Here, solution reservoirs above and below the membrane
are connected through a nanopore, allowing positive and negative ions to pass from one side
of the membrane to the other. We also consider a system where a DNA molecule is present
inside the pore. Thus, the membrane (and the DNA, if present) comprise the domain Ωm,
whereas the ionic solution, which consists of the solution reservoirs above and below the
membranes and the nanopore, comprise the domain Ωs.

With the concentration profiles of (2.4), one important quantity is the ionic current J through
a surface G with normal n (see Fig. 2(b)), which is defined as

(2.6)

For example, in the 2D cross-section of the problem domain shown in Fig. 2(b), we measure
the ionic current through the plane in the middle of the pore, denoted by a dotted line.

The Poisson portion of the PNPE in (2.2) is solved with Dirichlet boundary conditions
specified by ϕt and ϕb at the top and the bottom of the domain, and periodic boundary
conditions along the other four sides. Further, the (unmodified and modified) Nernst-Planck
equations in (2.1) and (2.3) use blocking boundary conditions on the interface of the
membrane and the ionic solution, which is denoted ∂Ωs,n and is displayed with a dotted line
in Fig. 2(b), while periodic boundary conditions are set at the remaining boundaries.
Specifically, we consider blocking boundary conditions of the form

(2.7)

where n is the unit normal on the surface ∂Ωs,n. One consequence of the blocking boundary
conditions is that the integral of the concentration remains constant. That is, the total number
of ions of each ion species is conserved:

(2.8)

Additionally, the number of ions in the domain is also conserved in the case of a partially
periodic boundary. Moreover, we note that the numerical methods we develop are equally
applicable for other boundary conditions, like Dirichlet boundary conditions for the
concentrations.
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3 Numerical methods
In this section we describe a numerical approach to solving the MPNPE. For the modified
Nernst-Planck equations, we use the finite element method for spatial discretization, and
backward Euler for time discretization due to the stiff nature of the solutions. Similarly, we
also use a finite element discretization for solving the Poisson's equation. Our approach is
used to solve for both the transient and steady state solutions. If the goal of the simulation is
the steady state, then we evolve the solution until the measured temporal change reaches a
desired tolerance.

We have slightly different schemes for the transient and steady state solutions. For the
transient solution, where accuracy at each time step is important, we solve the (2.3) and the
(2.2) in a self-consistent manner, employing a Gummel iteration. That is, at each time step,
given some initial concentrations c± and electrostatic potential ϕ, we solve (2.3) using the
finite element method. The updated values of the concentrations are then used to solve (2.2),
and this process is repeated until convergence. Then we move on to the next time step. This
is illustrated in Fig. 3.

For the steady state method, at each time step, we solve the (2.3), with the updated values of
the concentration used in the solution of (2.2). However, further iteration is not needed and
the updated value of the electric potential is immediately used as input to (2.3) for the next
time step. The steady state method corresponds to employing one iteration in the Gummel
iteration — i.e., we do not iterate to convergence at each time step. This process works well
in practice since the primary purpose of the steady state solution are the final concentrations
and is similar to previous strategies in the setting of the PNPE and MPNPE [28, 35, 36].
However, our scheme has two distinct features: 1) it uses a stabilized method, and 2) it
accounts for the conservation of ions. We now proceed to describe our method in more
detail (the approach is implemented in the finite element package Dolfin [37]). In the
following we devise two finite element methods: one for the case in which there is only an
electric field, and one in which a non-electric potential is also applied. We seek to highlight
the benefits of incorporating the steric effects into the modified Nernst-Planck equations.
Hence we derive our finite element method for both PNPE and MPNPE, highlighting
several important differences. Themethodswe propose are used further when we devise a
method for solving the MPNPE in the presence of an applied non-electrostatic potential.

3.1 Non-linear finite element method for modified Nernst-Planck equations
For the (modified) Nernst-Planck equations, we seek a solution in H1(Ωs) × H1(Ωs) for c±,
where H1 is a Sobolev space with standard notation [38]. The weak form of (2.4) (which
represents both (2.1) and (2.3)) is found by integrating against a test function v± = (v+,v–) ∈
[H1(Ωs)]2 : find c± ∈ [H1(Ωs)]2 such that

(3.1a)

(3.1b)

for all v±in[H1(Ωs)]2. Note that we used integration by parts along with the blocking and
periodic boundary conditions to derive (3.1b) from (3.1a). From this, we apply the backward
Euler method in time to (3.1b) and multiply by Dt to arrive at
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(3.2)

for all v± ∈ [H1(Ωs)]2. Here,  are the concentrations at time step k, while Δt is the length of
the time step.

For the PNPE, (3.2) is a pair of uncoupled equations, linear in the unknown variables c±. For
the MPNPE, (3.2) is a pair of coupled non-linear equations, and hence result in a more
complicated form than PNPE. To address the nonlinearity, we use a straightforward
application of Newton's method to find the concentrations c± for the MPNPE. Specifically,

we define the form in (3.2) as :

(3.3)

Here we again use the α notation to write the weak form for both the NP and MNP
equations.

The MNPE in (3.3) are nonlinear in c± and linear in v±. The first step in a Newton's method
is to linearize this form with respect to c±, to arrive at a bilinear form in w± and v±. This is

accomplished by taking a variational derivative of  with respect to ,

(3.4)

where

(3.5)

As a consequence, with α=0 for PNPE, the derivative DN0 is absent from (3.4).

With the derivative defined, we arrive at Newton's method, which first computes w± by
solving

(3.6)

followed by the estimate of  with

(3.7)
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Solving the weak problem in (3.6) reduces to a linear system of the form Aw = f , where

stiffness matrix A is formed by , the force vector f by

, and where w represents the unknown coefficients for the function w±.

In the case of the NP equations, with α = 0, the form DFα in (3.6) does not depend on ,
and the Newton's method converges in one iteration (as we expect for linear problems). For
simplicity, we drop the arguments to the forms DFα and Fα. Then DF0 and DF1 represent
the forms in (3.4). Similarly F0 and F1 are the forms for NP and MMP in (3.3). The
relationship between these forms is expressed as,

(3.8)

(3.9)

which allows us to view the Newton step for MNP as,

(3.10)

From this equation, we notice that the Newton step for the MPNPE is exactly the Newton
step for the PNPE with the addition of stabilizing terms DN1(c±) and N1(c±)·∇v±.

3.2 A stabilized finite element method for the modified Nernst Planck equations
The discretization scheme we have developed so far works well if there is no strong
electrostatic potential (represented as ϕ) or applied non-electrostatic potential (i.e. U = 0).
However, in the presence of a strong electorstatic potential or non-electrostatic applied
potential, the Nernst-Planck equations have a large drift term, which is a challenge to
standard Galerkin methods. Using the standard Galerkin approach results in a solution with
spurious values [39] — e.g. the concentration becomes negative in portions of the domain,
as illustrated earlier in Fig. 1 for the nanopore system. We see that the concentration
becomes negative in parts of the domain. One remedy is to augment the Galerkin weak form
by adding artificial dissipative terms to stabilize the method. To this end, we use a variant of
streamline upwind Petrov-Galerkin method (SUPG) for stabilizing our scheme in presence
of steep gradients in ϕ or U [40, 41].

We develop stabilized schemes for both the PNPE and the MPNPE. We develop two such
schemes for the MPNPE. One arises from a standard application of SUPG to the MPNPE,
whereas the other is developed by adding the nonlinear terms of the MPNPE to the SUPG
scheme for the PNPE. The latter scheme, which we call “Fast SUPG” improves on the
former, called the “Full SUPG” scheme, by increasing its computational efficiency, as we
explain later. We use the “Fast SUPG” method in this paper, unless noted. The relationship
between different SUPG schemes is shown in Fig. 4.

To simplify the presentation of our SUPG scheme, we introduce some notation. The
differential operator is given as

(3.11)

which consists of a flow field governed by the applied potential V± and denoted by
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(3.12)

We also isolate the Péclet number Pe with a stability parameter of the form

(3.13)

where hτ denotes the diameter of the element τ, and with

(3.14)

The Péclet number of element τ, denoted as Peτ is an indication of the strength of advection.
Specifically, a Péclet number greater than 1.0 indicates that advection is dominating the flow
and that stabilization may be necessary, and we use the values developed in [39, 42].

Using the above notation, we write (3.1a) as,

(3.15)

From this, we define the SUPG weak form using integration-by-parts similar to the
derivation in (3.1a), to arrive

(3.16)

where the test functions in stabilized form are

(3.17)

For the PNPE, (3.16) is solved as a pair of uncoupled equations. However, for the MPNPE,
we use a nonlinear solver, as discussed in the previous section. The nonlinear SUPG scheme
is similar to the approach taken in [43] for use with nonlinear Navier-Stokes equations. The
convergence rate of the L2 error for the SUPG scheme is typically half an order less than the

Galerkin method [44]. That is, the convergence rate of the L2 error is  for the

SUPG scheme, and  for the Galerkin method, where k refers to the polynomial
degree of the approximating space. However, the benefit of the SUPG method lies in its
stability properties. The stability of the SUPG method yields a physically meaningful
solution as compared to the Galerkin method, even for coarse meshes.

A faster SUPG scheme for MPNPE—The SUPG method arising from (3.16) stabilizes
the MPNPE, however it is costly to implement. This cost arises because of the presence of
the strong form of the operator  in the “stabilization” part of (3.16) — i.e., we do not use
integration by parts. Thus, one of the terms in the weak form 〈F1,supg(c±),v±〉 is ∇·N1(c±),
which is lengthy, and is costly to evaluate. Moreover, in Newton's method, the variational
derivative of this term is needed, which makes the implementation even costlier. By
considering a Newton's method for the SUPG method for NPE we are able to derive a more
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efficient scheme for the modified form of the equations. To further motivate this, consider
the Newton step for the Galerkin method for MPNPE, as given in (3.10). We observe that
the Newton step for MPNPE in (3.10) is the Newton step for PNPE along with additional
stabilization terms. Thus, we take a similar view in designing the faster SUPG method for
MPNPE: first we form the Newton step for the SUPG method for the PNPE followed by the
addition of stabilization terms. As before, to formtheNewton step for NPE,we take the
variational derivative of the form F0,supg to arrive at the form 〈DF0,supg(c±),w±,v±〉. The
Newton iteration for the SUPG method for the NPE is then to find functions w±[H1(Ωs)]2

such that

(3.18)

From w±, we then update using (3.7): .

As in the previous case, for the unmodified form of the NPE, Newton's method reduces to
one iteration. For the MNPE however, we add additional terms present in Newton's method
for the Galerkin method in (3.10), namely DN1(c±) and N1(c±)·∇v±, to (3.18). As a result,
the SUPG method for the MNPE is defined by the following Newton's step,

(3.19)

We use the SUPG form in (3.19) in our numerical tests in Section 4.

3.3 Galerkin method for Poisson equation
A stabilized scheme is unnecessary for the Poisson portion of the PNPE in (2.2). Thus, we
use a standard Galerkin finite element method which is stated as the following: find

 such that,

(3.20)

for all  and where ϕd is a function satisfying Dirichlet boundary conditions.

The situation is more complicated in the presence of a biomolecule, such as a DNA
molecule. In this case, we have an additional region, Ωmol which contains a biomolecule
inside the pore, as illustrated in Fig. 17(b). The solvent-ions are excluded from the region
Ωmol. The biomolecule contains a distribution of singular charges,

(3.21)

Here ρf denotes the charge distribution, δ(x–xi) is the Dirac delta function based at the
location xi representing a charge qi. Consequently, we modify the Poisson's equation (2.2)
as,

(3.22)

where χs is the characteristic function of the solvent domain, Ωs, that is, χs = 1 inside Ωs and
χs = 0 everywhere else. The presence of singular charge distribution ρf makes the design of a
convergent finite element method for the Poisson's equation a challenge, as the source term

is no longer in H–1(Ω), the dual space of . To rectify this, two term and three term
decompositions of the potential have been proposed [34,45–50]. We use the three term
decomposition, which is numerically more accurate [49, 50]. In this formulation, potential ϕ
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in (3.22) is written as sum of a singular component ϕs, a harmonic component ϕh and a
regular component ϕr as,

(3.23)

The singular component, ϕs, is the solution to,

(3.24)

where εmol is the dielectric coefficient for the molecular region. We observe that ϕs is the
Green's function for the Laplace operator, and is computed analytically. The harmonic
component ϕh is defined by,

(3.25)

(3.26)

where ∂Ωmol is the boundary of the region Ωmol. Substituting (3.23) in (3.22) leads to the
following equation for the regularized potential,

(3.27)

(3.28)

Here n is the unit normal at the molecular surface ∂Ωmol and [[·]] denotes the jump across
the molecular surface,

(3.29)

In our numerical simulations, we precompute (3.25), and then use (3.27) at each time step
for computing the potential ϕ. Similar to (3.20), our new weak form of the Poisson equation
is,

(3.30)

where

(3.31)

4 Numerical experiments
In this section we illustrate the use of our finite element method through five numerical
experiments. The first experiment examines the steric effects in an electrolyte solution
confined between two charged plates. Then, we apply our method to compute the ionic
current through a nanopore in a solid-state membrane in the absence of a nonelectrostatic
potential and a DNA molecule. We follow with a third experiment in which we introduce a
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non-electrostatic potential into the ionic current calculations, mimicking the effect of a
realistic nanopore surface or a biomolecule. This system highlights the significant difference
between MPNPE and PNPE calculations. Finally, in Experiments 4 and 5, we examine the
steric effects in the nanopore system when a DNA molecule is present in the nanopore. As
the process of DNA translocation occurs much slower then ion transport, one can assume
DNA to remain at the same location in the pore during the calculation of the ionic current
[20].

We employ continuous piecewise linear functions to represent the concentrations, c+ and c–,
and the potential, ϕ, in all our numerical experiments. The piecewise linear functions are
available in all common finite element packages (e.g. [37]) and are computationally less
expensive than higher degree polynomial spaces.

For the steady state experiments, we evolve an initial uniform concentration until the
temporal change in the concentration is less than a fixed tolerance. More specifically, the
temporal change is measured as

(4.1)

where N is the number of nodes in the mesh, and n refers to the temporal time step. For
example, in the case of the nanopore in Experiments 2, 3, 4 and 5, a tolerance of θ =10–2 is
used. With a tolerance of 10–2, the computations remain generally static and are
representative of the final steady state. Higher concentrations demand increased resolution
and thus require more time steps, as shown in Table 1.

One of the goals of our numerical experiments is to highlight the utility of using the
modified form of the equations. To this end, we present the sum of concentrations — i.e. c =
c++c– — to illustrate the behavior of the solutions with respect to the steric limit of the
problem.

Choice of the effective ion size parameter a
Finding an optimal value for the effective ion size parameter a is not the focus of this work.
Interested readers are directed to a detailed discussion of the subject [35, 51]. In this work,
we used several values of parameter a to demonstrate the robustness of our finite element
solver. Thus, in computational Experiment 1, we use a = 0.66 nm for both K+ and Cl– ions
[51]. In computational Experiments 2, and 3, we use a=0.3 nm to achieve the best
quantitative agreement with the results of Brownian dynamics simulations [24] (see also
Section A.1). In computational Experiments 4 and 5, we set parameter a to 0.5 and 0.55 nm
to describe nanopore systems containing a charged sphere (Experiment 4) and a double helix
of DNA (Experiment 5), respectively, matching the ion size to the closest distance between
the object and the wall of the nanopore. It is important to note that our numerical methods
for MPNPE are valid for a range of (realistic) ion sizes, and the specific selection of
effective ion size is not the focus of our method nor necessary for its analysis.

Validation of the fast SUPG scheme
First, we verify that our fast SUPG scheme (3.19) results in solutions similar to that of the
full SUPG scheme (3.16). Toward this end, we perform computational experiments on a box
domain of dimensions 1 nm × 1 nm × 2 nm subject to a non-electrostatic potential U. The
cross-section of the box domain is shown in Fig. 5(a). The profile of this potential U along
the z-axis is shown in Fig. 5(b). Since no external electrostatic potential is applied, the
system converges rapidly to a steady state. Using a tolerance of 10–5 for the temporal change

Chaudhry et al. Page 11

Commun Comput Phys. Author manuscript; available in PMC 2015 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



of concentration, these numerical experiments generally required fewer than 10 iterations to
converge to a steady state.

In Fig. 6, we plot the average concentration of positively-charged ions along the z-axis of the
box domain computed using the standard Galerkin, full SUPG, and our fast SUPG schemes.
The overall concentration of ions in the box domain was equivalent to having 3 ions of each
species. For these calculations, we use a mesh fine enough to ensure that the standard
Galerkin method results in accurate solution. For a more realistic computational domain, this
resolution presents a significant limitation as it considerably decreases the computational
efficiency of the continuum model. The close agreement between the profiles indicates that
our fast SUPG scheme computes the concentrations to the same accuracy as the more
computationally expensive methods. Hence, we use our fast SUPG scheme for all
calculations reported in the remainder of the paper.

Next, we demonstrate that using our fast SUPG scheme results in significant savings of the
computational effort. Table 2 lists the speedup of the fast scheme in comparison with the full
scheme when applied to the box and nanopore domains (the nanopore domain is described
in Experiment 2 later in the text). Using the fast scheme speeds up the solution process more
than twofold in the case of the nanopore domain, and by more than a factor of 4 in the case
of the box domain.

Experiment 1: Ionic solution between two charged plates
In this experiment, we consider a 1 nm×1 nm×4 nm parallelepiped domain placed between
two charged plates, as shown in Fig. 7. At the beginning of the numerical experiments, the
concentration of ions is uniform in the solvent domain. We solve the PNPE and the MPNPE
for the concentration of ions in the presence of an electrostatic potential difference between
the plates. Specifically, the upper plate is set at a potential of –800 mV and the lower plate at
+800mv, leading to a total potential difference of –1600 mV (see Fig. 7). In these
calculations, we use blocking boundary conditions for the ionic concentrations throughout
the domain.

The parameters used for this numerical experiment are listed in Table 3. Specifically, an ion
size parameter a of 0.66 nm was used as an effective diameter of K+ or Cl+ ions, which is
larger than the actual ion size. Such an approximation was previously shown to work
specifically well in the case of high charge densities [51].

From Figs. 8(a) and 8(b), which show 2-D cross-sections of the concentration after 149
times steps of the simulation, we see that the steric limit is violated in the case of PNPE
(colored red in the figure), but that the concentration remains appropriately bounded in the
case of MPNPE (Fig. 8(c)), even after 700 iterations. Furthermore, Fig. 9 shows that the
local sum of the concentrations along the z-axis of the domain is unrealistically high in the
case of the PNPE, whereas the sum for the MPNPE remains bounded and within steric limit.
Computationally, we also observe that consecutive approximations to the PNPE are
increasingly difficult to compute as the simulation progresses due to the sharp gradients,
whereas approximations to solutions of the MPNPE maintain a more subtle profile.

Experiment 2: Ionic current through a nanopore in the membrane
In this experiment, our aim is to accurately compute the current through a nanopore in a
membrane. The system setup is shown in Fig. 2(b). A three-dimensional view of the solvent
domain Ωs is given in Fig. 10, where the dimensions of the full domain,  are 4 nm ×
4 nm × 7.2 nm, whereas the length of the pore (modeled as a cylinder) is 4 nm with a radius
of 0.9 nm. We summarize additional parameters for this experiment in Table 4.
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Periodic boundary conditions are applied in all directions for the concentrations, except for
the boundary of the pore, ∂Ws,n (see Fig. 2(b)), where blocking conditions are applied. For
the potential, we enforce periodic conditions in the x and y directions, along with the
Dirichlet conditions at the top and bottom of the domain. That is, the top of the domain is set
at a potential of –90 mV and the bottom at +90 mV.

The ion size is taken to be the approximate size of the K+ or Cl– ions in the bulk [51]. In this
setting, the PNPE do not exhibit steric effects. Consequently, we expect to see similar results
for PNPE and MPNPE, which we examine by computing steady state concentration profiles
and by computing the ionic currents. The difference between the steady state concentrations
for the positively charged ions for a uniform initial concentration of 1.623 M computed by
PNPE and MPNPE is shown in Fig. 11. The figure shows that both MPNPE and PNPE
result in similar concentration profiles, with the majority of the differences appearing near
the channel edges where the gradient is the largest.

For the calculation of the electric current (2.6), we consider a circular slice through the
center of the channel which has a unit-normal vector pointing in the z-coordinate direction.
The resulting ionic current values are computed using both MPNPE and PNPE and are listed
in Table 5. As expected for ion concentrations below the steric limit, the ionic currents
calculated by MPNPE closely match those of PNPE.

Experiment 3: Ionic current through a nanopore in the presence of a non-electrostatic
potential

Next, we consider calculation of the ionic current through the nanopore domain described in
Figs. 2(b) and 10. In this experiment we apply a non-electrostatic potential at the boundary
of the membrane and the solvent domains denoted ∂Ωs,n. The dimensions of the domain and
parameters for the experiment are the same as specified in Table 4 for Experiment 2, with
the exception of the diffusivities D+ and D–, which are used for the computation of the ionic
currents. The diffusivities are obtained from the BD simulations with the same setup [24],
and are listed in Table 6.

Fig. 12(a) illustrates the variation of the non-electrostatic potential U across the nanopore
wall, which is located around z = 2 nm in this plot. The non-electrostatic potential applied
here was designed as model of a silica surface and was designed to mimic the free energy of
the ions as function of distance from the surface observed in molecular dynamics (MD)
simulations [24]. It has the essential features of van der Waals interaction: an attractive well
and a repulsive wall. Such external potentials have been used in MD simulations to represent
such synthetic surfaces [24, 52]. The sharp gradient of the potentials near the wall makes the
traditional Galerkin method unstable, so we have to apply our stabilized SUPG method to
arrive at the solution. To illustrate the instability in the Galerkin method, the variation of the
element-wise Péclet number (defined in Section 3.2) across the nanopore wall is shown in
Fig. 12(b). Near the pore surface, the Péclet number surpasses a value of 1.0, indicating
likely instabilities in the Galerkin method (see Section 3.2).

For the computation of the ionic current through the nanopore, we use systems containing 60
and 100 ions, which correspond to the uniform initial concentrations of 1623.26 and 2705.43
mM for each ion species. Fig. 13 shows representative concentration profiles of positively-
charged ions, c+, for the steady-state solutions of PNPE and MPNPE. Because the MPNPE
formulation takes into account steric interactions between the ions, the MPNPE solution
generally shows lower ion concentration in the regions of large potential gradients when
compared to the PNPE solution.
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Furthermore, Table 7 show that the ionic currents computed using PNPE and MPNPE are
lower in the case of MPNPE. It is important to note that the current calculations are
insensitive to small variations in the concentration since the form of the current calculation
is an integral. Thus, while the difference in the PNPE and MPNPE current calculations are
only around 2%, this represents a significant deviation in the concentration (see Fig. 13).
The ionic currents predicted by both PNPE and MPNPE are in reasonable agreement with
the results of the BD simulations.

Experiment 4: A nanopore containing a charged, spherical biomolecule
In this computational experiment, we model the presence of a biomolecule in a nanopore
using a uniformly charged sphere (see Fig. 14). A charge of 8 electron units is assigned to
reside in the center of the sphere. The volume occupied by the sphere is excluded from the
solvent domain and the non-electrostatic potential U is set to zero throughout the system.
Periodic boundary conditions are applied in all directions for the concentrations, except for
the boundary of the pore (∂Ωs,n) and the molecular surface (∂Ωmol), where blocking
conditions are applied. For the potential, we enforce periodic conditions in the x and y
directions, along with Dirichlet conditions at the top and bottom of the domain. That is, the
top of the domain was set at a potential of -90 mV and the bottom at +90 mV.

In our experiments, we compare the concentration profiles obtained from the Galerkin and
SUPG method for the PNPE and the SUPG solution for the MPNPE. The charge inside the
biomolecule is handled numerically as described in Section 3.3.

In these experiments, we consider a system containing 10 positively-charged ions, and 18
negatively-charged ions, which correspond to uniform initial concentrations of 0.102 and
0.184 M respectively, leading to an electrically neutral system. The relative permittivity of
the spherical molecule, the solvent, and the membrane are εmol =2, εs =78 and εm = 4. The
diffusivities of the ions are set to be D+ = D– = 2.27×10–9 m2/s, which are typical values
associated with a nanopore system. Finally, a potential drop of 180 mV is applied across the
system in the z direction, and the ion size parameter, a, is chosen to be 0.5 nm, which is the
nearest distance between the surface of the biomolecule and the surface of the nanopore.

Figs. 15 and 16 show the resulting steady-state concentration profiles obtained by using the
standard Galerkin method for the PNPE, the SUPG method for the PNPE and the SUPG
method for MPNPE. Fig. 15 illustrates the local concentration of negatively-charged ions
near the charged sphere. The PNPE solution exhibits very high local concentrations of ions
near the surface of the sphere (a maximum of 27.9 M), whereas the maximum concentration
within the MPNPE solution is considerably less (a maximum of 9.3 M). Fig. 16 illustrates
the local concentration of positively-charged ions. The Galerkin solution of the PNPE
features negative concentration values (a minimum of –0.0003 M), whereas the SUPG
solutions for both PNPE and MPNPE do not have this artifact.

Experiment 5: Ionic current through a nanopore containing a 12-basepair DNA duplex
In our final experiment, we demonstrate the capability of our solver by considering a
nanopore system that contains a 12-basepair DNA molecule. The atomic-resolution structure
of a double-helical dodecamer in the canonical B-DNA form [53] is obtained from the
Protein Data Bank [54] (PDBID: 1BNA), see Fig. 17(a). The partial charges on the DNA
atoms are obtained by converting the PDB file to the PQR format using PDB2PQR [55,56].
This PQR file is also used to generate the surface mesh using GAMer [57] followed by the
full volumetric mesh through Gmsh [58]. The point charges inside the biomolecule are
handled numerically as described in Section 3.3.
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First, we discuss our results for a system containing 343 negatively-charged ions, which
corresponds to a uniform initial concentration of 0.813 M. In our experiments with the DNA
dodecamer, we always add 22 additional positively-charged ions to maintain
electroneutrality (which corresponds an increase in the uniform initial concentration of
0.052 M). As in Experiment 4, we use the following parameters: εmol=2, εs=78 and εm=4,
and D+=D–=2.27×10–9 m2/s. A potential drop of 180 mV is applied across the system along
the z axis. The ion size parameter, a, is chosen to be 0.55 nm, which the smallest distance
between the surface of the DNA and the surface of the nanopore. The volume occupied by
the DNA was excluded from the solvent domain and the non-electrostatic potential U was
set to zero throughout the system. Periodic boundary conditions were applied in all
directions for all concentrations, except at the boundary of the pore (∂Ωs,n) and the
molecular surface (∂Ωmol), where blocking conditions were applied. For the potential, we
enforced periodic conditions in the x and y directions, along with the Dirichlet conditions at
the top and bottom of the domain. That is, the top of the domain was set at a potential of –90
mV and the bottom at +90 mV.

Fig. 18 shows 2D cross-sections of the total ion concentration, c=c++c–, in the steady-state
solutions to the PNPE and MPNPE. In these calculations, we do not use the stabilized
method as neither PNPE nor MPNPE develop solutions that feature negative concentration
values. If compared to the MPNPE solution, the PNPE solution exhibits higher ion
concentrations near the DNA surface. However, we do not observe a significant difference
between the ionic currents: 3622.81 pA for PNPE and 3560.6 pA for MPNPE. This not
uncommon since the current is an integral over a nanopore cross-section, so the difference in
the local ion concentration near the DNA surface does not considerably alter the total
current.

Finally, we compute the current through the nanopore in the presence and absence of the
DNA molecule for several values of the ion concentration. Specifically, we perform four
experiments using 10, 43, 140, 200, 260 and 343 negatively-charged ions, which correspond
to the uniform initial concentration of 0.024, 0.102, 0.339, 0.474, 0.616 and 0.813 M,
respectively. In the absence of the DNA molecule, the number of positively-charged ions
equals that of the negatively-charged ions.

We characterize the outcome of these experiments by computing the conductance blockade
ΔG = (JnoDNA –JDNA)/Δϕ, where JnoDNA is the current measured in the absence of DNA,
JDNA is the current measured in the presence of DNA, and Δϕ is the total potential drop in
the system, which is 180 mV. We measure the current across a circular cross-section of the
nanopore within the xy plane at z = –2.8 nm (denoted as G in Fig. 17(b)). The results for the
MPNPE calculations are plotted in Fig. 19, where we plot bulk concentration against the
conductance blockade. We identify the bulk concentration with the value of the steady state
concentration of the negative ions at the top of the domain. The conductance blockade
changes its sign (from positive to negative) as the ion concentration increases, which is a
hallmark of the DNA translocation experiments (cf. Fig. 4(a) of [59]).

5 Conclusions
The modified Poisson-Nernst-Planck equations account for steric effects and lead to
physically realistic results. In this paper we develop a finite element method for the MPNPE,
with a focus on computing steady state concentrations. We achieve this by evolving the
system forward in time, thus ensuring that the number of ions in the system remains
conserved. The presence of a high potential gradient near the wall of the membrane causes
instabilities in the Galerkin finite element method, which is indicated by high Péclet number.
In response, we stabilize the solution by employing a SUPG-type finite element method.
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Initially our SUPG method augments the Galerkin weak form with a strong form residual.
However, this strong form residual is expensive to evaluate for the MPNPE. Thus, we
design a new SUPG method for the MPNPE which is derived from the relationship between
the weak Galerkin forms of the PNPE and the MPNPE. We highlight our finite element
solver for a variety of experiments, first showing the utility of MPNPE in the case of flow
between two oppositely charged plates. We then consider the flow of ions through a
nanopore, where we determine the ion size using BD simulations. Finally, we explore the
flow of ions around a DNA molecule. Our results indicate that the MPNPE account for
steric effects, and yield more physically meaningful solutions.
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Appendix A: Brownian dynamics
As we use Brownian Dynamics (BD) [22] to provide reference particle-based simulations,
we briefly describe this method here. A detailed description of our BD simulation model can
be found in Refs. [23, 24].

The interaction between each pair of ions consists of a short-range portion, which is
computed from all-atom molecular dynamics simulations, and a long-range Coulomb
portion. The Coulomb portion is calculated using a uniform dielectric constant of 92 for the
solvent, which is close the bulk value of the TIP3P water model used in the molecular
dynamics simulations [60].

The short-range portion of the interaction is calculated by the weighted histogram analysis
method [61] using the results of many umbrella sampling molecular dynamics simulations.
The umbrella sampling molecular dynamics simulations are performed using NAMD [62]
and the protocols that have been described previously [24], including a 1 fs timestep,
particle-mesh Ewald electrostatics, and a Langevin thermostat with a damping constant of
0.2 ps–1. Interactions between the atoms of the systems (TIP3P water and ions) are
calculated using the CHARMM force field [63], which includes the ions parameters for K+

and Cl– described in [64]. The simulation systems consist of a periodic box of water that
measures 5.8×5.8×5.9 nm3 after equilibration at 1 atm of pressure.

From the position distributions of the ions in these simulations, the weighted histogram
analysis method [61] yields radial potentials for K+–K+, K+–Cl–, and Cl+–Cl+ having 0.01
nm resolutions. These potentials include water-mediated effects and have a form similar to
those used in [13]. The potentials are shifted to match the Coulomb energies at an ion
separation of 1.4 nm. Beyond 1.4 nm, the Coulomb energies are used. To make comparison
between the results of the BD simulations and continuum calculations easier, we did not
explicitly consider the effect of induced charge at the interface of the membrane material
and electrolyte [24, 65].

In the Brownian dynamics simulations, the stochastic equation of motion is integrated using
a 10 fs timestep [13]. The interaction between all pairs of ions is computed by cubic
interpolation of the potentials constructed above, and the diffusivities are the same as those
used in the continuum models. The potential energy due to the pore U is imparted by cubic
interpolation from a uniform grid having a 0.03 nm resolution [66]. The exact shape of the
potential used to model the pore wall is shown in Fig. 12(a).
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A.1 The effect of ion size
Here, we compare the results of our continuum calculations for the box domain described in
Section 4 with the BD simulations of this system, which explicitly captures the effects of
ion-ion interactions. The steady state concentrations obtained from BD, PNPE, and MPNPE
are illustrated in Fig. 20, for the system containing 3 K+ and 3 Cl– ions. When using the ion
size parameter a = 0.3 nm, the MPNPE concentration profile accurately matches the BD
solution. As a comparison, we also plot the MPNPE profile obtained using a = 0.36 nm and
a PNPE profile. Using a larger ion parameter in MPNPE lowers the concentration peak,
whereas in PNPE, which ignores steric effects, the concentration peak is higher than in BD.

We repeat the same experiment using 4 and 5 ions of each K+ and Cl–. Similarly, the results
shown in Fig. 21 demonstrate that an ion size of 0.3 nm captures the concentration profile
from the corresponding BD simulations.
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Figure 1.
Concentration of negatively-charged ions in a nanopore system obtained as a solution of the
PNP equations using the standard Galerkin method. The concentration attains unphysical
negative values near the surface of the nanopore because of the sharp repulsive potential. A
detailed description of this calculation is provided in Section 4 (Experiment 3). The average
ion concentration in the solvent domain of the system is 1.623 M.
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Figure 2.
Description of the problem domain. The 3D domain is approximately 7.2 nm in length and 4
nm in width. The pore has a radius of 0.9 nm and a height of 4 nm. Dashed lines in the
figure on the right represent a blocking boundary, while solid lines represent a periodic
boundary for Nernst-Planck equations, and Dirichlet boundary at the top and bottom for the
Poisson equation.
(a) All-atom model of a nanopore system. The nanopore is shown as a smooth semi-
transparent surface, the explicit ions are shown as spheres and the entire solvent domain is
shown as a cut-away semi-transparent molecular surface.
(b) Schematic of the cross-section of the 3D domain considered in the continuum description
of the nanopore system.
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Figure 3.
Overview of the numerical scheme. At each time step, we iterate between the solves for the
modified Nernst-Planck equations and the Poisson equation.
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Figure 4.
Relationship between SUPG methods.
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Figure 5.
Cross-section of the box domain (left) and the profile of non-electrostatic potential (right).
(a) Cross-section of the box domain.
(b) Profile of the non-electrostatic potential U (kT units) along the z-axis.
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Figure 6.
Profile of steady-state concentration c+ for di erent numerical schemes for MPNPE for the
box domain.
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Figure 7.
Cross-section of the parallel plates domain considered in Experiment 1.

Chaudhry et al. Page 27

Commun Comput Phys. Author manuscript; available in PMC 2015 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 8.
The sum of concentrations c= c++c– for the PNPE and the MPNPE in Experiment 1.
(a) PNPE: 149 steps
(b) MPNPE: 149 steps
(c) MPNPE: 700 steps

Chaudhry et al. Page 28

Commun Comput Phys. Author manuscript; available in PMC 2015 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 9.
Comparison of the solutions of PNPE and MPNPE for the parallel plates domain system in
Experiment 1. The local sum of positive and negative ion concentrations is plotted along the
z-axis. A red hue indicates a violation of the steric limit.
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Figure 10.
Three-dimensional solvent domain, Ωs, and an example of domain's tessellation. This
domain is used in Experiments 2 and 3.
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Figure 11.
Di erence in approximating c+ for PNPE and MPNPE in Experiment 2.
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Figure 12.
Profiles of the non-electrostatic potential U (left) and the Péclet number (right) for the
system investigated in Experiment 3. The schematics of the system is shown in Fig. 2(b).
Both profiles were computed along a line parallel to the z-axis and passing through x = y =
1.5 nm. In these profiles, the surface of the nanopore, which separates the solvent region
from the membrane, is located at z = 2 nm. The sharp repulsive gradients in the potential U
cause spurious modes in the Galerkin approximation.
(a) Profile of U (kT units)
(b) Péclet number
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Figure 13.
Concentration of positively charged ions (c+) along the x-axis (at y, z = 0 nm) in the
nanopore system (Fig. 2(b)) computed in the presence of the non-electric potential
(Experiment 3). The overall ion concentration is equivalent to the presence of 100 ions in
the solvent domain.
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Figure 14.
Setup of Experiment 4. A spherical, charged biomolecule is placed inside a nanopore. The
radius of the sphere is 0.5 nm. The figure shows a 2D cross-section of the 3D domain.
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Figure 15.
Comparison of numerical solutions for a charged sphere/nanopore system (Experiment 4).
The 2D density plots show the local concentration of negatively-charged ions near a
spherical biomolecule (within the yz plane, see Fig. 14).
(a) Galerkin for PNPE
(b) SUPG for PNPE
(c) SUPG for MPNPE
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Figure 16.
Comparison of numerical solutions for a charged sphere/nanopore system (Experiment 4).
The 2D density plots show the local concentration of positively-charged ions within the yz
plane of the system.
(a) Galerkin for PNPE
(b) SUPG for PNPE
(c) SUPG for MPNPE
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Figure 17.
Structure (a), setup (b) and mesh (c) of the DNA dodecamer system used in Experiment 5.
The ionic current is measured across the circular cross-section of the nanopore denoted as G
in panel (b). Note the fine mesh representing the atomic features of the DNA molecule in
panel (c).
(a) The atomic-resolution structure of the DNA molecule (PDBID: 1BNA)
(b) Schematics of the computational domain in Experiment 5
(c) Tessellation of the computational domain
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Figure 18.
The sum of ionic concentrations, c=c++c– near the DNA surface (Experiment 5). The 2D
plot of ion concentration (in molar) is computed along the xz plane at y=0.8 nm, see Fig.
17(b).
(a) PNPE
(b) MPNPE
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Figure 19.
The conductance blockade amplitude DG (nS) versus the bulk concentration (M) in the
nanopore system (Experiment 5). The solid line is a linear least-squares fit of the data.
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Figure 20.
Profile of concentration c+ for BD, PNPE, and MPNPE for the box domain (Experiment 1).
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Figure 21.
Profile of concentration c+ for BD and MPNPE with the ion size parameter a=0.3 nm for the
box domain (Experiment 1).
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Table 1

Number of temporal iterations to reach steady state. Experiments 2 and 3 examine the flow of ions through a
nanopore.

Experiment: #2 #3

Concentration (c+): 0.1082M 1.623M 2.705M 1.623M 2.705M

PNPE 17 50 125 74 149

MPNPE 17 50 116 120 155
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Table 2

Speedup of the fast SUPG scheme versus the full SUPG scheme

System Box - 3 ions Box - 4 ions Nanopore - 60 ions

Speedup 4.47 4.40 2.26
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Table 3

Summary of parameters used in Experiment 1.

Name Symbol Value

Time step Δ t 10–13 s

Diffusivity for positive ions D + 2.27×10–9 m2/s

Diffusivity for negative ions D – 2.27×10–9 m2/s

Relative permittivity ε 92

Ion diameter a 0.66 nm

Initial concentration c init 1 M

Potential drop ϕtop – ϕbottom –1600 mV

Steric limit ψ 5.776 M
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Table 4

Summary of parameters used in Experiment 2.

Name Symbol Value

Diffusivity for positive ions D + 2.27×10–9 m2/s

Diffusivity for negative ions D – 2.41×10–9 m2/s

Relative permittivity of membrane ε m 92

Relative permittivity of solvent ε s 92

Ion diameter a 0.3 nm

Potential drop ϕtop – ϕbottom −180 mV

Temperature T 295 K
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Table 5

Nanopore ionic currents computed by solving PNPE and MPNPE.

Concentration (M) PNPE Current (pA) MPNPE Current (pA)

0.1082 198.10 198.00

1.623 2592.78 2590.12

2.705 4275.77 4272.34
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Table 6

Diffusivities used for the calculations of ionic current values reported in Table 7.

Atoms D+ (m2/s) D– (m2/s)

60 1.90584 1.96144

100 1.71593 1.72708
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Table 7

Nanopore ionic currents computed using BD, PNPE and MPNPE.

Atoms Concentration (M) BD Current (pA) PNPE Current (pA) MPNPE Current (pA)

60 1.623 2170±9 2421.54 2396.30

100 2.705 2960±18 3575.12 3514.29
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