
NMEC Verification for Laboratory Energy Projects

Presented By:

Jordan Sager, P.E. - Energy Manager, UC Santa Barbara

David Gilliland, P.E. - Director, kW Engineering

UCSB Case Study

- Chemistry + Physical Sciences North (Chem + PSBN) Building
- 4 floors, 2 wings, 3 energy sources each (electric, gas, chilled water)
- Chem wing has chiller that serves campus loop
- During implementation phase, new chiller installed in PSB-N wing

Major Mechanical Systems

Wing	Ventilation	Heating	Cooling	Zone Controls
Physical Sciences - North	CAV	Dedicated Boiler Plant	Campus Loop	Pneumatic
Chemistry	VAV	Dedicated Boiler Plant	Campus Loop	DDC

Physical Sciences - North

Chemistry

Early Project Concepts

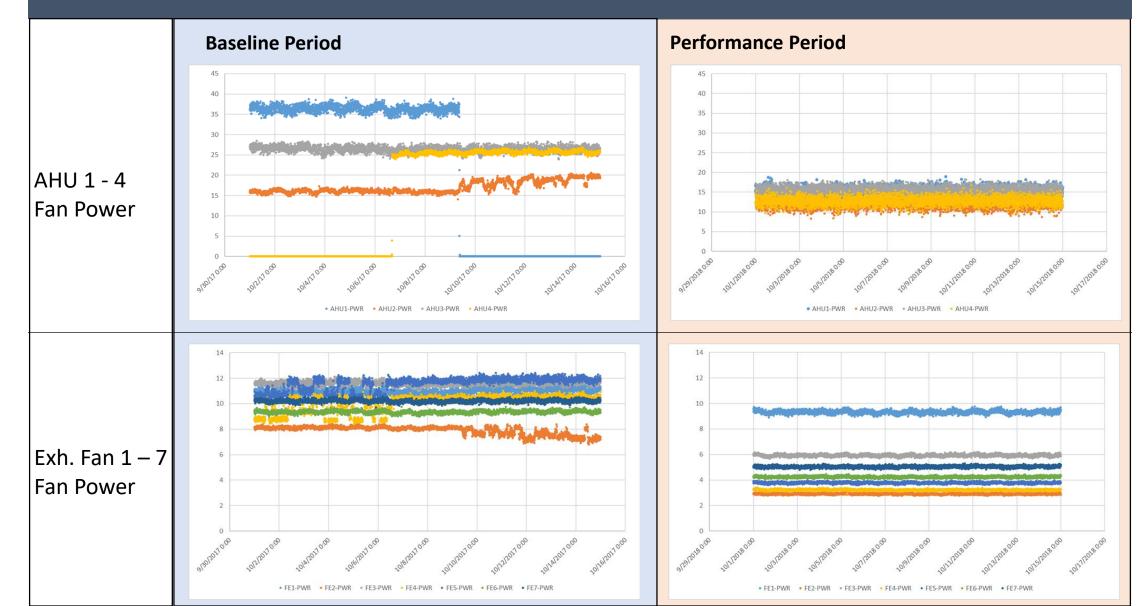
- Ventilation Rate Optimization
- Wireless Pneumatic Thermostats
- Night Heating Setback
- Lighting Retrofits

High Opportunity Project & Programs (HOPPs)

- SCE and SoCal Gas Co-Funded Investigation
- Goals:
 - 1. Confirm the potential for large energy savings (>10% on meter)
 - Conduct energy audit
 - Review trends
 - Calculate savings potential
 - 2. Verify energy savings using the Normalized Metered Energy Consumption (NMEC) approach.
 - Uses building-level metered energy data to verify savings
 - Well-established for office buildings. Viable in labs?

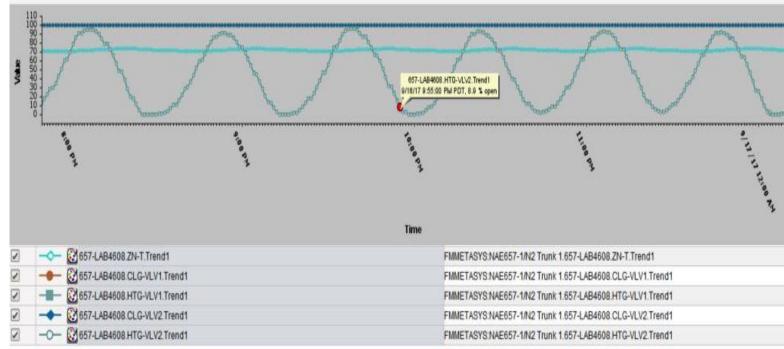
EEMs Installed

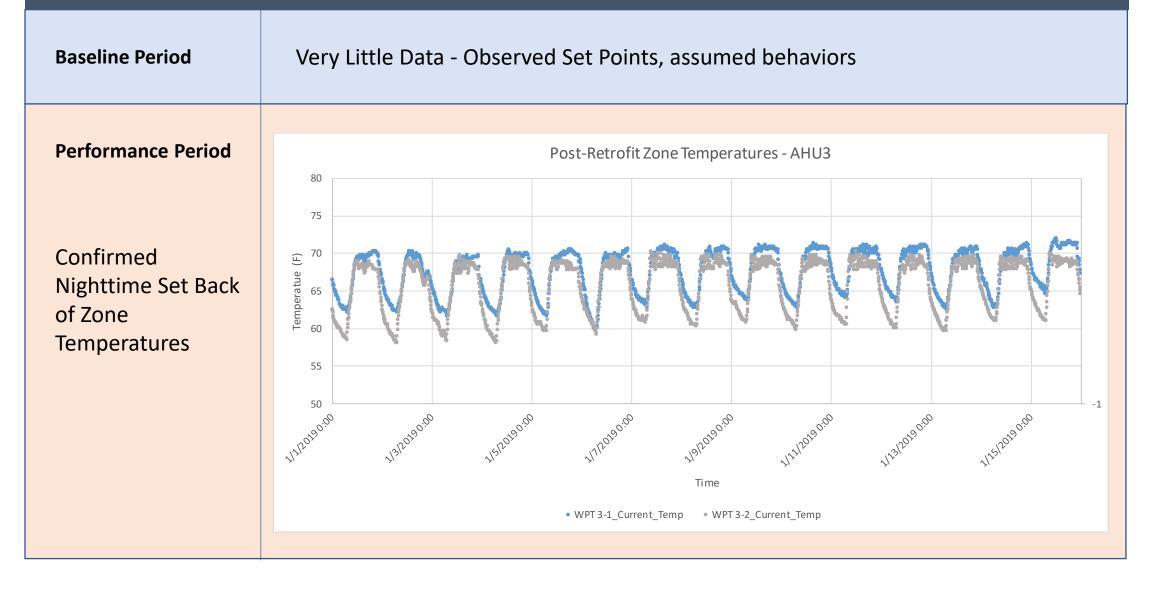
- RCx-1: Re-Balance Constant Volume Hood Airflow
 - Re-balancing the supply and exhaust fans in PSB-N to maintain 100 fpm across 18" sashes
- CIM-1: Install Wireless Pneumatic Thermostats
- RCx-2: Implement Supply Air Temperature Reset
- RCx-3: Implement Heating Hot Water Temperature Reset
- RCx-4: Implement Nighttime Space Temperature Setbacks
- CIM-2: Replace HID Fixtures with Low Power LEDs in Chemistry Machine Shop
- CIM-3: Replace Linear Fluorescent Lamps with LED Ballast Bypass Lamps
- CIM-4: Install Occupancy Sensors for Lab, Office, and Lecture Hall Lighting
- CIM-6: Supplement Backup Generator Block Heaters with Heat Pumps


Project Energy Savings Expectations

					Annual Energy & Cost Savings				Financial Metrics					
ECM	Measure Description		Wing	Peak Savings (kW)	Electricity Savings (kWh/yr)	Gas Savings (therms/yr)		otal Cost Savings	Measure Cost		PPs ntives		easure ost	Simple Payback (years)
RCx-1	Re-Balance Constsant Vo	Re-Balance Constsant Volume Hood Airflow PSBN		91.9	579,086	11,573	\$	72,379	\$ 31,000	\$	116,804	\$	(85,804)) (1.2)
CIM-1	Install Wireless Pneumatic Thermostats PSBN		PSBN	-	-	11,183	\$	8,387	\$ 160,000	\$	27,958	\$	132,042	15.7
RCx-2	Implement Supply Air Temperature Reset Chem & - PBSN -		59,116	34,268	\$	32,20	Utility Incentives:) (1.8)				
RCx-3	Implement HHWT Reset	Electric Sav	ings:		-	3,123	\$	2,34:	• •				93	1.8
RCx-4	Implement Nighttime Spa				4,156	23,672	\$	18,21	Covered almost 70% of Project Cost) (2.1)	
CIM-2	Replace HID Fixtures wit Machine Shop	PSBN – 25%	/ D	-	18,060	-	\$	1,987			5,57 1	ψ	7,529	3.7
CIM-3	Replace Linear Fluoresco Ballast Bypass Lamps				557,456	-	\$	61,320	\$ 287,500	\$	79,622	\$	207,878	3.4
CIM-4	Install Occupancy Senso Lecture Hall Lighting	Chem – 289			122,017	-	\$	13,422	\$ 125,400	\$	14,642	\$	110,758	8.3
CIM-5	Replace HHWP Motors, I Balancing Valves	PSBN – 36%			6,452	-	\$	710	\$ 30,200	\$	922	\$	29,278	41.3
CIM-6	Supplement Backup Gen Heat Pumps		PBSN		24,872	-	\$	2,736	\$ 23,100	\$	2,985	\$	20,115	7.4
LCM-1	Install Time Clocks on DHW Pumps Chem & - PBSN			1,435	\$	1,077	\$ 4,600	\$	3,589	\$	1,011	0.9		
		WB-20125 TOTALS		161.6	1,242,745	85,254	3	200,643	\$ 585,100	\$	394,578	\$	190,522	0.9

• RCx-1 Rebalance Fume Hoods


Building #	Room	Hood#	Old Flow Rate (Sash Heigt 24 - 30")	New Flow Rate (Sash Height 18")
657	1612	1	102	113
657	1612	2	120	105
657	1612	3	108	111
657	1612	4	121	102
657	1612	5	115	105
657	1612	6	108	123
657	1612	7	103	141
657	1612	8	109	107
657	1612	9	132	150
657	1622	1	114	144
657	1622	2	125	105
657	1622	3	92	122
657	1622	4	168	113
657	1622	5	96	113



• CIM-1 Wireless Pneumatic Thermostats

Normalized Metered Energy Consumption (NMEC)

- Utilize building-level meter data from before and after the project to verify savings
 - Building Electric & Gas Meters
 - Chilled Water & Hot Water BTU meters
- Develop statistical model of variables above based on independent variables (outside temperature & schedule – typ.)
 - LBNL TTOW Model
- Normalized to standard weather data to provide apples-to-apples comparison
 - Account for variation in annual weather patterns
- Quantify the Uncertainty
 - R-squared, CV(RMSE), NDBE, ASHRAE Guideline 14

Baseline Period

1. Project Pre-Screening

- Facility condition
- Savings potential (e.g. deep savings)
- 'Predictable' energy use patterns
- Non-routine events (NREs)

2. Develop Energy Audit / Energy Management Plan

- Document baseline equipment and conditions
- List of measures, savings, costs, measure life

3

12/2/22

Δ

A12123

5/1/13

6/1/13

Install

3. M&V Plan

30,000

25,000

20,000

15,000

10,000

5,000

- Define baseline period
- List data to be collected

Baseline

MAN Mar March

- Describe analysis procedures
 - incl. NRE treatment
- Savings reporting & frequency

Installation Period

5

10/1/13

12/2/23

2/1/23

2/2/20

12120

9/1/123

6

4. Measure Verification

1st Performance Period

8/1/13

- Document installation & proper operation
 - Inspection
 - Functional testing
 - Trend analysis

Performance Period

- 5. Savings Performance Check
 - Periodically during performance period
 - QA check that savings are accruing
 - Detect presence of NREs

6. Savings Reporting

Per M&V Plan

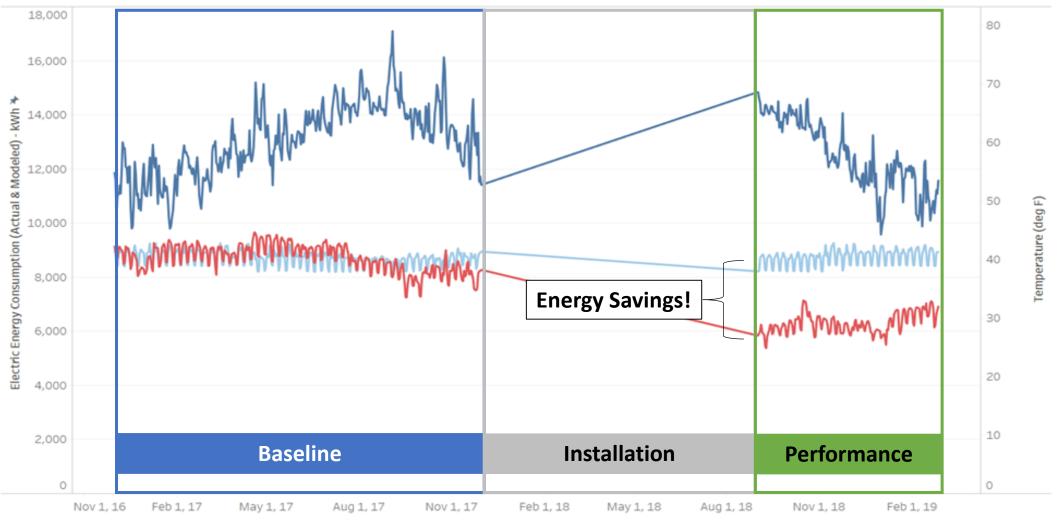
2nd Performance Period

8/1/14

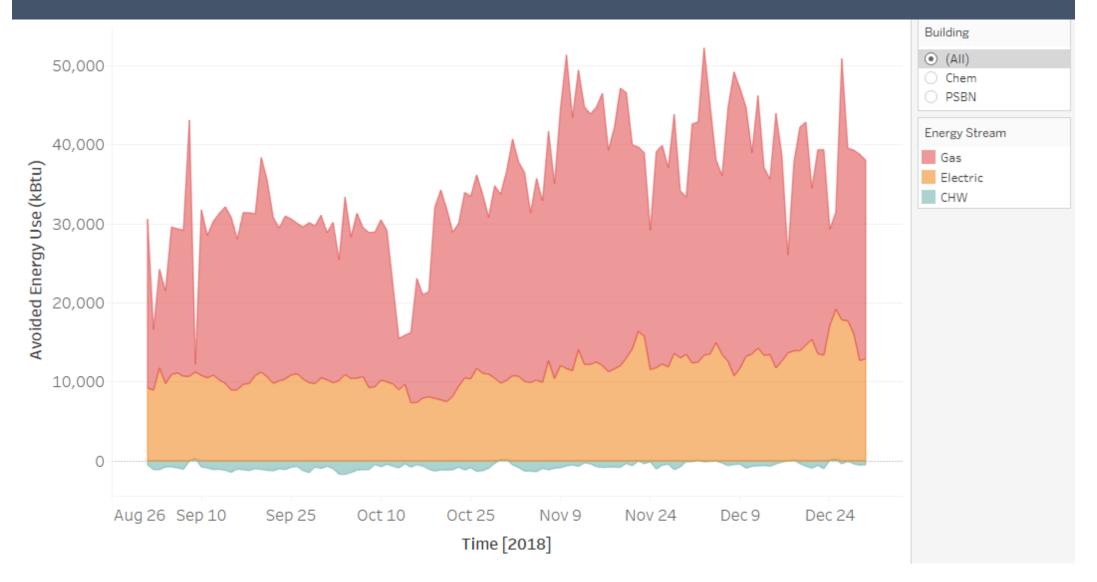
0/1/12

2012/12

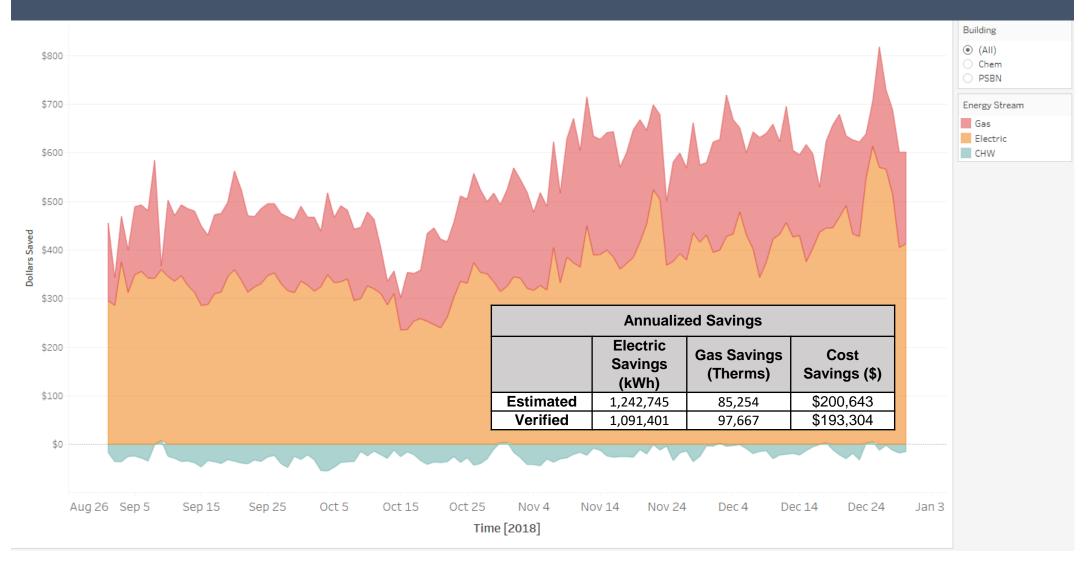
22/2/24


212/20

• A to Z report on savings


5

- Raw data to final savings
- NRE impacts included


NMEC Results – PSBN Avoided Energy Use

NMEC Data – Combined Results

NMEC Data – Combined Results

NMEC Data – Combined Results

Wing	Energy Source	Analysis Time Interval	Normalized Savings	Normalized Savings %	Uncertainty (at 90% confidence)	
Chemistry	Electric (kWh)	Daily	299,878	10%	15.0%	
Chemistry	Natural Gas (therms)	Daily	17,158	21%	15.5%	
PSBN	Electric (kWh)	Daily	862,924	27%	7.7%	
PSBN	Natural Gas (therms)	Daily	80,509	46%	10.6%	
PSBN	Chilled Water (kWh)	Daily	-71,401	-20%	20.5%	

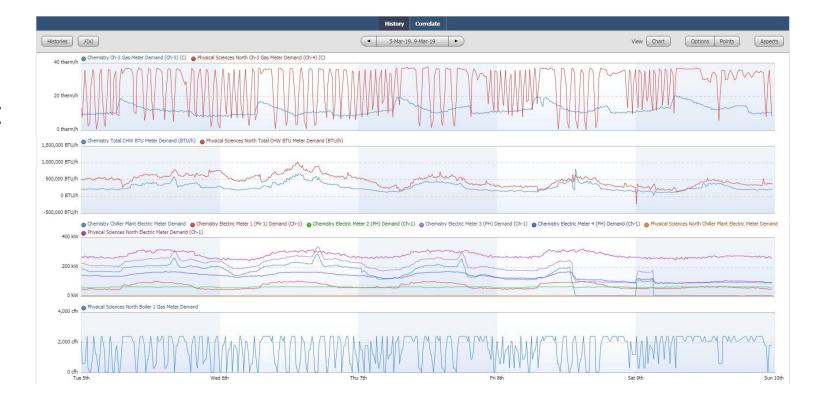
Study Conclusions

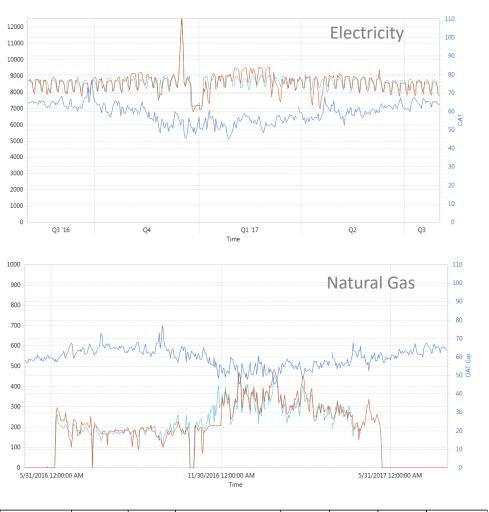
- Significant (>10% on-meter) savings are achievable in lab buildings
 - Perhaps even more so than in standard buildings!
- The NMEC approach is viable for labs, under the right conditions
 - Bio labs, chem labs, etc... good!
 - Particle accelerators... not so good. 😒
- The following potential barriers to NMEC still remain
 - Proper sub-metering on all energy streams
 - Complexity of laboratory energy streams
 - M&V time commitment

Who Cares?

- Facilities Staff / Building Operators
 - Helps target investigation of issues
- Energy Managers
 - Mechanism to ensure persistence of savings
- Financial Decision-Makers
 - Direct link between metered energy savings and on-bill cost savings
- Utilities
 - Enables AB802 incentive programs
 - Pay for performance

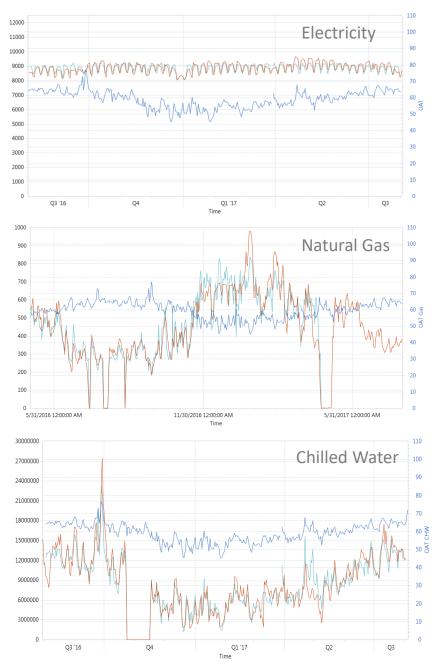
Appendices

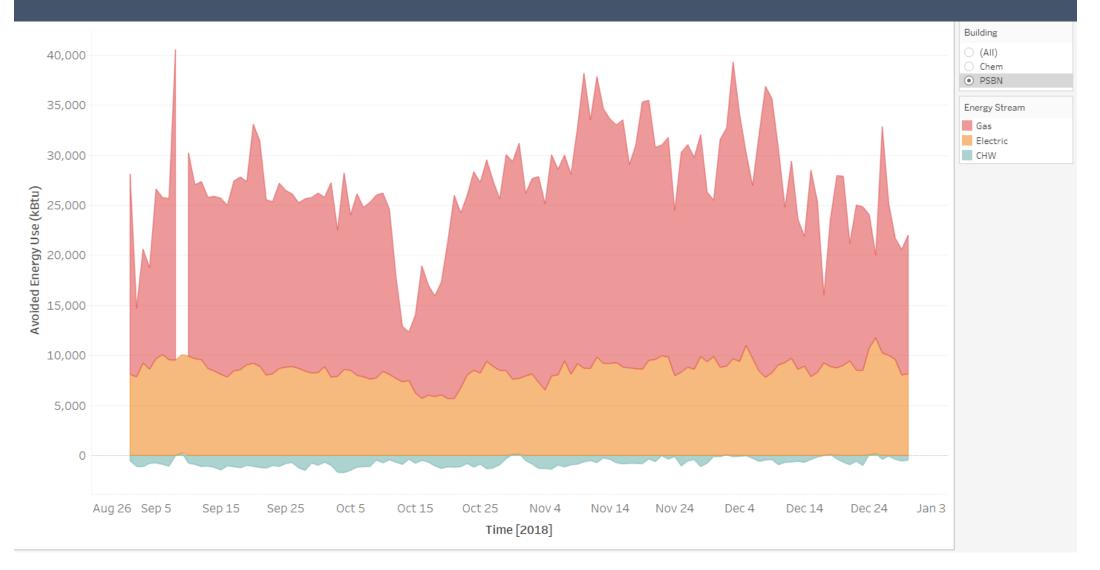




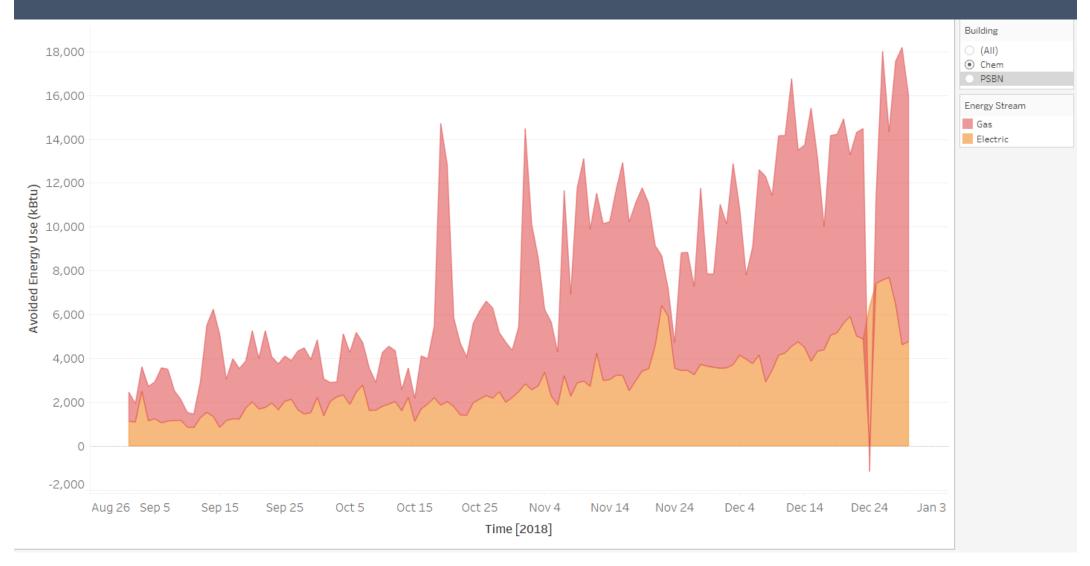
- Safety Measures
- Occupant Buy-In

- Safety Measures
- Occupant Buy-In
- Data Management


Baseline Period -Pre-Screening


Chemistry

		Analysis					U (15%
	Building	Time					savings est.,
Model	Wing	interval	Baseline Period	R ²	CV(RMSE)	NDBE	90% CI)
Electric, kWh	Chemistry	Day	8/1/2016 - 7/31/2017	65%	4%	0.00%	4%
Electric, kWh	PSB-N	Day	8/1/2016 - 7/31/2017	54%	3%	0.00%	4%
Gas, therms	Chemistry	Day	6/4/2016 - 5/21/2017	90%	16%	0.00%	23%
Gas, therms	PSB-N	Day	5/1/2016 - 4/30/2017	90%	14%	0.00%	25%
Chilled Water, B	PSB-N	Day	8/1/2016 - 7/31/2017	88%	19%	0.00%	24%


PSB-N

NMEC Data – PSB-N Results

NMEC Data – Chem Results

