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Learning Outcomes

• Building on 
– global properties: average degree, average clustering, 

ave path length
– local properties: some node centralities

• Understand the pairwise similarity of nodes 
based on position, role and structure:
– Structural equivalence
– Regular equivalence
– Automorphic equivalence

• Evaluate the correlation between pairs of nodes 
using structural equivalence 2



Similarity/equivalence

• In complex network, one can measure similarity
– Between vertices
– Between networks

• We consider the similarity between vertices in 
the same network.  

• Why and how can this similarity be quantified?
• Differentiating vertices helps tease apart the 

types and relationships of vertices
– Useful for “click here for pages/movies/books/modules similar 

to the current one”

• We determine similarities based on the network 
structure

3



Types of Similarity/equivalence

4
https://web.eecs.umich.edu/~dkoutra/tut/sdm14_part1a.pdf



Introduction

• Why care?  How do items get suggested to users? 
Based on the groups they belong to, depending on

• The behavior of the user
• The similarity of the users to eachother (similar attitude)
Hypothesis: similar nodes have similar outcomes.

• There are three types of similarities:
– Structural equivalence (such as Pearson Corr. Coeff)
– Regular equivalence
– Automorphic equivalence (automorphism classes)
Of these, "automorphic" has rarely been used in substantive work, 
it is more theoretical than the other ones (mostly studied in graph 
theory: groups and graphs).

5
http://faculty.ucr.edu/~hanneman/nettext/C12_Equivalence.html



Automorphic equivalence

Swapping same colored nodes and their 
neighbors maintains all of the distances among 
all the nodes in the graph

6
http://faculty.ucr.edu/~hanneman/nettext/C12_Equivalence.html https://web.eecs.umich.edu/~dkoutra/tut/sdm14_part1a.pdf



Structural equivalence

Two nodes of the same color are structurally 
equivalent if they have the same relationships to 
the other neighbors, i.e. they are substitutable

7
http://faculty.ucr.edu/~hanneman/nettext/C12_Equivalence.html



Regular equivalence

Two nodes are regularly equivalent if they have 
the same profile of ties with members of other 
sets of actors that are also regularly equivalent

8
http://faculty.ucr.edu/~hanneman/nettext/C12_Equivalence.html https://web.eecs.umich.edu/~dkoutra/tut/sdm14_part1a.pdf



Structural vs. Regular Equivalent nodes

• Defn: Two vertices are structurally equivalent if 
they share many neighbors.

• Defn: Two vertices are regularly equivalent if they 
have many neighbors that are also equivalent. 
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Such as two math students 𝑎 and 𝑏
that know the same professors, same 
topics, …, , i.e. substitutable in the field

Such as two Deans 𝑎 and 𝑏 that 
have similar ties to provost, president, 
department chairs, …

𝑎

𝑏𝑎

𝑏



Structural Equivalent

Excellence Through Knowledge



Structural Equivalent nodes

• Two vertices are structurally equivalent if they 
share many neighbors

• How can we measure this similarity?

11

𝑎 𝑏



Measuring 
Structural Equivalence
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Structural similarity ௜௝

1. Count of common neighbors ௜௝

௜௝ = ௜௞ ௞௝௞
ଶ

௜௝

2. Normalized common neighbors (divide by a constant):

– by the number of vertices: 
௡೔ೕ

|௏ሺீሻ|

– by the max number of common neighbors 
௡೔ೕ

௏ ீ ିଶ

– Jaccard similarity is the quotient of number of 
common to the union of all neighbors:

௜௝
௜௝

Fast to compute (thus popular) as it just counts neighbors
P. Jaccard, Bulletin de la Soci´et´e Vaudoise des Sciences
Naturelles 37, 547 (1901). 



Structural similarity (2)

3. Cosine similarity (divide by variable):
Let x be the row corresponding to vertex i in A, and
Let y be the column corresponding to vertex j in A:

𝒙 ·𝒚 
𝒙 ·|𝒚|

∑ ୟ೔ೖୟೖೕೖ

∑ ୟ೔ೖ
మ

ೖ · ∑ ୟೕೖ
మ

ೖ

= ?
?

simplifies to

=
௡೔ೕ

ୢୣ୥ ௜  ୢୣ୥ ௝
= ௡௨௠௕௘௥ ௢௙ ௖௢௠௠௢௡ ௡௘௜௚௛௕௢௥௦

ୢୣ୥ ௜  ୢୣ୥ ௝

Convention:  If deg i = 0 (denominator is 0), then cos = 0 
(orthogonal vectors). Range:  
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G. Salton, Automatic Text Processing: The Transformation, Analysis, and 
Retrieval of Information by Computer(Addison-Wesley, Reading, MA, 1989). 



Cosine similarity

• Cosine similarity is an example of a technique 
used in 
– information retrieval, 
– text analysis, or 
– any comparison of to , where each of and 

can be vectorized based on their components 
• For example: To find the closest 

document(s)/website(s) to another document or 
a query… 

15
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Technique used in text analysis

• A collection of n documents (𝐷ଵ, 𝐷ଶ, … , 𝐷௡) can be represented 
in the vector space model by a term-document matrix.

• A list of t terms of interest: 𝑇ଵ, 𝑇ଶ, … , 𝑇௧
• An entry in the matrix corresponds to the “weight” of a term in 

the document; zero means the term has no significance in the 
document or it simply doesn’t exist in the document.

T1 T2 ….      Tt
D1 w11 w21 …      wt1
D2 w12 w22 …      wt2
: :      :               :
: :      :               :
Dn w1n w2n …      wtn

Source: Raymond J. Mooney, University of Texas at Austin
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Graphic Representation
Example: Given terms T2, T2, T2 

Documents D1, D1 and Query Q:
D1 = 2T1 + 3T2 + 5T3

D2 = 3T1 + 7T2 +   T3

Q = 0T1 + 0T2 +  2T3

T3

T1

T2

D1 = 2T1+ 3T2 + 5T3

D2 = 3T1 + 7T2 +  T3

Q = 0T1 + 0T2 + 2T3

7

32

5

• Is D1 or D2 more similar to Q?
• How to measure the degree of 

similarity? Distance? Angle? 
Projection?

Source: Raymond J. Mooney, University of Texas at Austin
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Cosine Similarity Measure

• Cosine similarity measures the cosine of 
the angle between two vectors.

• Inner product normalized by the vector 
lengths.

D1 = 2T1 + 3T2 + 5T3     CosSim(D1 , Q) = 10 / (4+9+25)(0+0+4) = 0.81
D2 = 3T1 + 7T2 + 1T3     CosSim(D2 , Q) =  2 / (9+49+1)(0+0+4) = 0.13
Q = 0T1 + 0T2 + 2T3



t3

t1

t2

D1

D2

Q



D1 is 6 times better than D2 using cosine similarity

CosSim(dj, q) =

Source: Raymond J. Mooney, University of Texas at Austin
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Illustration of 3 Nearest Neighbor for Text

query

It works the same with vectors
of the adjacency matrix, where
the terms are just the neighbors, 
and similarity is how many 
common neighbors there are

Source: Raymond J. Mooney, University of Texas at Austin



So far: Structural similarity ௜௝

1. Count of common neighbors:
௜௝ = ௜௞ ௞௝௞

ଶ
௜௝

2. Normalized common neighbors (divide by the):

number of vertices: 
௡೔ೕ

|௏ሺீሻ|
ୟమ

೔ೕ

|௏ሺீሻ|

max count of common neighbors possible 
௡೔ೕ

௏ ீ ିଶ
ୟమ

೔ೕ

௏ ீ ିଶ
exact count of common neighbors (Jaccard similarity)

𝐽௜௝ ൌ
௡೔ೕ

|ே ௜ ∪ ே ௝ |
ൌ

ୟమ
೔ೕ

|ே ௜ ∪ ே ௝ |

3. Cosine similarity:  
௡೔ೕ

ୢୣ୥ ௜ ୢୣ୥ ௝
ୟమ

೔ೕ

ୢୣ୥ ௜ ୢୣ୥ ௝
A new one!



(Degree) Pearson Correlation Coeff (1)

4. Degree Pearson Correlation Coefficient: compare 
to the expected value of common neighbors (i.e. to a 
network in which vertices choose their neighbors at 
random).  Here is the derivation:
• Let i and j be two vertices of deg i and deg j
• The probability of j to choose at random one of i’s 

neighbors is ௗ௘௚ ௜
௡ିଵ

(or ௗ௘௚ ௜
௡

if loops in G)

• Thus the probability that all of j’s neighbors are 
neighbors of i is   ௗ௘௚ ௜ · ୢୣ୥ ௝

௡ିଵ
21



Pearson Correlation Coeff (2)

4. Degree Pearson Correlation Coefficient is the 
number of common neighbors minus the expected 
common neighbors (that we will normalize):

௜௞ ௝௞
ୢୣ୥ ௜ ୢୣ୥ ௝

௡௞ = ௜௞ ௝௞௞
ଵ
௡ ௜௞ ௝௟௟௞

= ௜௞ ௝௞௞
ଵ
௡ ௜ ௝

= ௜௞ ௝௞௞ ௜ ௝
௡
௞ୀଵ

= ௜௞ ௝௞௞ ௜ ௝ ] 
= ௜௞௞ ௜ ௝௞ ௝ ]

22

Since the mean of the 
𝑖௧௛ row is <a௜> = ∑ ୟ೔ೖೖ

௡

FOIL and simplify using ∑ ൏ a௜൐ a௝௞ ൌ௞ 𝑛 ൏ a௜ ൐൏ a௝൐ ൌ ∑ ൏ a௝൐ a௜௞௞

Since ∑ 1௞ ൌ 𝑛 𝑎𝑠
൏ a௜ ൐൏ a௝ ൐ are 
constants with respect 
to k



Pearson Correlation Coeff (3)

4. Degree Pearson Correlation Coefficient is the 
actual number of common neighbors minus the 
expected common neighbors (from previous page):
𝒄𝒐𝒗 𝒂𝒊, 𝒂𝒋 ൌ  ∑ 𝒂𝒊𝒌𝒂𝒋𝒌 െ 𝐝𝐞𝐠 𝒊 𝐝𝐞𝐠 𝒋

𝒏𝒌 =∑ ሾ𝒂𝒊𝒌 െ𝒌 ൏ 𝒂𝒊 ൐ሿሾ𝒂𝒋𝒌െ ൏ 𝒂𝒋 ൐]

Interpretation:

• ∑ a௜௞a௝௞ െ ୢୣ୥ ௜ ୢୣ୥ ௝
௡௞ = 0 if the # of common neighbors is what is 

expected by chance

• ∑ a௜௞a௝௞ െ ୢୣ୥ ௜ ୢୣ୥ ௝
௡௞ < 0 if the # of common neighbors is less

than what is expected by chance

• ∑ a௜௞a௝௞ െ ୢୣ୥ ௜ ୢୣ୥ ௝
௡௞ > 0 if the # of common neighbors is more 

than what is expected by chance

the mean of the 𝑖௧௛ row is <a௜> = ∑ ୟ೔ೖೖ
௡



Pearson Correlation Coeff (4)

4. Degree Pearson Correlation Coefficient is the actual 
number of common neighbors minus the expected common 
neighbors (normalized by row ௜ and ௝):

௜௝=
௖௢௩ሺୟ೔,ୟೕሻ
௩௔௥ሺୟ೔ሻమ 

௖௢௩ሺୟ೔,ୟೕሻ
௩௔௥ ୟ೔ ௩௔௥ሺୟ೔ሻ

= 
∑ ሾୟ೔ೖିೖ ழୟ೔வሿሾୟೕೖି ழୟೕவ]

∑ ሾୟ೔ೖିೖ ழୟ೔வሿమ ∑ ሾୟೕೖିೖ ழୟೕவሿమ

• 𝑟௜௝ = 0 if the # of common neighbors is what is expected by chance
• െ1 ൏ 𝑟௜௝ < 0 if the # of common neighbors is less than what is 

expected by chance
• 0 ൏ 𝑟௜௝ < 1 if the # of common neighbors is more than what is 

expected by chance

௜௝ shows more/less neighbor similarity in a network, 
compared to vertices expected to be neighbors at random

the mean of the 𝑖௧௛ row is <a௜> = ∑ ୟ೔ೖೖ
௡



More measures

• There are more measures for structural 
equivalences, these are the basic ones.  

• The Pearson Correlation Coefficient is 
commonly used

• Another one is Euclidean distance which is the 
cardinality of the symmetric difference 
between the neighbors of i and neighbors of j

𝑑௜௝ ൌ ෍ሺa௜௞  െ a௝௞ሻሺa௝௞  െ a௜௞ሻ
௞

ൌ  ෍ሺa௜௞  െ a௝௞ሻଶ 
௞

All these are measures of structural equivalence of a 
network: they measure different ways of counting 
common neighbors 25



Overview updated: Structural similarity

1. Count of common neighbors:
𝑛௜௝ ൌ |𝑁ሾ𝑖ሿ ∩ 𝑁ሾ𝑗ሿ| = ∑ a௜௞a௞௝ ൌ௞  aଶ

௜௝

2. Normalized common neighbors (divide by the):

number of vertices: 
௡೔ೕ

|௏ሺீሻ|
ൌ ୟమ

೔ೕ

|௏ሺீሻ|

max count of common neighbors possible 
௡೔ೕ

௏ ீ ିଶ
ൌ ௡೔ೕ

௏ ீ ିଶ

exact count of common neighbors (Jaccard similarity)

𝐽௜௝ ൌ ௡೔ೕ

|ே ௜ ∪ ே ௝ |
ൌ ୟమ

೔ೕ

|ே ௜ ∪ ே ௝ |

3. Cosine similarity:  
௡೔ೕ

ୢୣ୥ ௜  ୢୣ୥ ௝
ൌ ୟమ

೔ೕ

ୢୣ୥ ௜  ୢୣ୥ ௝

4. Degree Pearson Correlation Coefficient (coded in NetworkX) :

𝑟௜௝= 
௖௢௩ሺୟ೔,ୟೕሻ
௩௔௥ሺୟ೔ሻమ 

ൌ ௖௢௩ሺୟ೔,ୟೕሻ
௩௔௥ ୟ೔ ௩௔௥ሺୟ೔ሻ

= 
∑ ሾୟ೔ೖିೖ ழୟ೔வሿሾୟೕೖି ழୟೕவ]

∑ ሾୟ೔ೖିೖ ழୟ೔வሿమ ∑ ሾୟೕೖିೖ ழୟೕவሿమ

https://networkx.github.io/documentation/networkx-1.9/reference/generated/networkx.algorithms.assortativity.degree_pearson_correlation_coefficient.html



Regular Equivalent

Excellence Through Knowledge



Structural vs. Regular Equivalent nodes

• Defn: Two vertices are structurally equivalent if 
they share many neighbors.

• Defn: Two vertices are regularly equivalent if they 
have many neighbors that are also equivalent. 

28

Such as two math Students 𝑎 and 𝑏
that know the same professors

Such as two Deans 𝑎 and 𝑏 that 
have similar ties:
provost, president, department chairs 
(some could actually be common)

𝑎 𝑏

𝑏𝑎



Why?

https://web.eecs.umich.edu/~dkoutra/tut/sdm14_part1a.pdf



Defn of regular Equivalence

30

Defn.  Two nodes are regularly equivalent if 
they are equally related to equivalent nodes

(i.e. their neighbors need to be equivalent as well).

We capture equivalence through color pattern adjacencies.

White and Reitz, 1983; Everette and Borgatti, 1991

To have similar roles, these nodes need different colors because of their adjacencies 



The Borgatti-Everett Network

31

Structural: Nodes adjacent to a set of nodes (substitutable based on the access to info) 
vs.  
Regular: Nodes adjacent to similar roles in the network (similar positions in the network).

http://www.stats.ox.ac.uk/~snijders/Equivalences.pdf



Algorithm for 
Regular Equivalence
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Regular Equivalence (1)

• Regular equivalences: nodes don’t have to be adjacent to 
be regular equivalent

• REGE and CUTREGE – original algorithms developed 
by Borgatti and Everett to discover regular 
equivalences. Newman says “but the operations are very 
involved and it is not easy to interpret”  

• We’ll explore newer methods: develop ௜௝ that is high if 
the neighbors k and of i and j are (regularly) equivalent 

௜௝ ௜௞ ௝௟ ௞௟௞௟

A recurrence relation in terms of , much like eigenvector.
33

σ௜௝ is the product of 
the counts of common neighbors & 
their neighbors’ regular similarity σ௞௟

S. P. Borgatti and M. G. Everett, Social Networks 15, 361 (1993).



Regular Equivalence (2)

௜௝ ௜௞ ௝௟ ௞௟
௞௟

Is equivalent to 

Where, σ௞௟ is the regular similarity of 𝑘 & 𝑙, α is the leading eigenvalue of A, 
and σ is the eigenvector.

But:
• It may not give high self-similarity ௜௜ as it heavily 

depends on the similarity of & , the neighbors of 
• It doesn’t give high similarity to pairs of vertices with 

lots of common neighbors (because it looks at values 
of & , including )

Needs to be altered, and we’ll see two methods next.
34



Regular Equivalence (3)

௜௝ ௜௞ ௝௟ ௞௟௞௟ + δ௜௝
Is equivalent to 

with regular similarity ሺ௧ୀ଴ሻ , δ௜௝ =

• Calculate by starting with the initial values:
ሺ௧ୀଵሻ ,
ሺ௧ୀଶሻ ଶ

ሺ௧ୀଷሻ ଶ ଶ ସ ଶ

Note: ௜௝ is a weighted some of the even powers of A 
(walks of even length), but we want all the lengths…



Regular Equivalence (4)

௜௝

௜௝ ௜௞ ௞௝௞ + δ௜௝
Is equivalent to 

with ሺ௧ୀ଴ሻ , δ௜௝ =

σሺ௧ୀଵሻ ൌ α 𝐴0 ൅ 𝐼 ൌ 𝐼,
σሺ௧ୀଶሻ ൌ α 𝐴𝐼 ൅ 𝐼 ൌ  α 𝐴 ൅ 𝐼, 
σሺ௧ୀଷሻ ൌ α𝐴 α 𝐴 ൅ 𝐼 ൅ 𝐼 ൌ  αଶ 𝐴ଶ ൅ α𝐴 ൅ 𝐼, 

௜௝ is a weighted ( ?) count of all walks between i
and j, (with < 1 so longer paths weigh less)

36
Leicht, Elizabeth A., Petter Holme, and Mark EJ Newman. "Vertex similarity in networks." Physical Review E 73.2 (2006): 026120.

j𝑖

k



Regular Equivalence (5)

METHOD 2 ௜௝

௜௝ ௜௞ ௞௝௞ + δ௜௝
Is equivalent to 

with ሺ௧ୀ଴ሻ

• This looks a lot like Katz centrality 
(recall 𝑥௜ൌ α ∑ a௜௝𝑥௝௝ + β, where β is a constant initial weight 
given to each vertex so that its out degree matters)

Katz centrality of vertex i is the sum of ௜௝ , 

37



Regular Equivalence (6)

• The regular equivalence ௜௝ tends to be high 
for vertices of high degree (more chances of 
their neighbors being similar)

• However, some low degree vertices could be 
similar as well, so the formula can be modified 
similar to PageRank if desired:

௜௝
஑

𝐝𝐞𝐠 𝒊 ௜௞ ௞௝௞ + δ௜௝

which is equivalent to 
ିଵ

38



The connection between
Regular and Structural Equivalence
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Equivalence (1)

• R ௜௝ is a 
weighted count of all walks between i and j, i.e:

σሺ௧ୀଷሻ ൌ α𝐴 α 𝐴 ൅ 𝐼 ൅ 𝐼 ൌ  αଶ 𝐴ଶ ൅ α𝐴 ൅ 𝐼, 

• Recall that the structural equivalence ௜௝ counts 
the # of common neighbors of   i and j in 
different ways

• What is the correlation 
between the number of 
common neighbors of 
4 and 5, and paths of 
length 2 between 4 and 5? 40



Equivalence (2)

• R ௜௝ is a 
weighted count of all walks between i and j, i.e:

σሺ௧ୀଷሻ ൌ α𝐴 α 𝐴 ൅ 𝐼 ൅ 𝐼 ൌ  αଶ 𝐴ଶ ൅ α𝐴 ൅ 𝐼, 

• Recall that the structural equivalence ௜௝ counts 
the # of common neighbors of   i and j in 
different ways

So the regular equivalence 
௜௝ is a generalization of 

structural equivalence ௜௝
(𝑟௜௝ counts just paths of length 2)

41



References

• Newman, Mark. Networks: An introduction. Oxford university 
press, 2010.

• Everett, Martin G., and Steve Borgatti. "Role colouring a graph." 
Mathematical Social Sciences 21.2 (1991): 183-188.

• White, Douglas R., and Karl P. Reitz. "Graph and semigroup 
homomorphisms on networks of relations." Social Networks 5.2 
(1983): 193-234.

• Leicht, Elizabeth A., Petter Holme, and Mark EJ Newman. 
"Vertex similarity in networks." Physical Review E 73.2 (2006): 
026120.

• https://www.cs.utexas.edu/~mooney/
• http://www.stats.ox.ac.uk/~snijders/Equivalences.pdf
• http://faculty.ucr.edu/~hanneman/nettext/C12_Equivalence.html
• https://web.eecs.umich.edu/~dkoutra/tut/sdm14_part1a.pdf 42



• Backup slides
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