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* Building on
— global properties: average degree, average clustering,
ave path length
— local properties: some node centralities
. ¢ Understand the pairwise similarity of nodes
| based on position, role and structure:

— Structural equivalence
M — Regular equivalence
— Automorphic equivalence

©: » Evaluate the correlation between pairs of nodes
gﬂ using structural equivalence 2

WWW.NPS.EDU
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POSTGRADUATE Similarity/equivalence

* In complex network, one can measure similarity
— Between vertices

— Between networks

~» We consider the similarity between vertices in

the same network.
 Why and how can this similarity be quantified?

» Differentiating vertices helps tease apart the
types and relationships of vertices

— Useftul for “click here for pages/movies/books/modules similar
to the current one”

* We determine similarities based on the network
structure WIWAPS EDU
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Equivalences

~

Regular

/ Deterministic Automorphic

Equivalences

e

Gy Probabilistic Stochastic

At

1 4
H https://web.eecs.umich.edu/~dkoutra/tut/sdm14 partla.pdf WWW.NPS.EDU
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A Introduction

 Why care? How do items get suggested to users?
Based on the groups they belong to, depending on

* The behavior of the user
e The similarity of the users to eachother (similar attitude)
Hypothesis: similar nodes have similar outcomes.

|+ There are three types of similarities:

— Structural equivalence (such as Pearson Corr. Coeff)
“ 4 — Regular equivalence

Ly

— Automorphic equivalence (automorphism classes)

Of these, "automorphic" has rarely been used in substantive work,
it 1s more theoretical than the other ones (mostly studied in graph
b5 theory: groups and graphs).
-

http://faculty.ucr.edu/~hanneman/nettext/C12_Equivalence. html

5
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Swapping same colored nodes and their
- neighbors maintains all of the distances among
all the nodes 1n the graph

R
o @

' http://faculty.ucr.edu/~hanneman/nettext/C12_Equivalence. html WWW.NPS.EDU https://web.eecs.umich.edu/~dkoutra/tut/sdm14_partla.pdf
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Two nodes of the same color are structurally
~equivalent 1f they have the same relationships to
the other neighbors, 1.¢. they are substitutable

E 23
E A ‘

' http://faculty.ucr.edu/~hanneman/nettext/C12_Equivalence. html WWW.NPS.EDU
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Two nodes are regularly equivalent if they have
 the same profile of ties with members of other
sets of actors that are also regularly equivalent

[ . ] President Motes

[ ’\Bj .’ (L .. ;Q” ] Faculty

[ & o o ¢ @ ] Graduate Students

H. n, Robert A. and Mark Riddle. 2005. Introduction to social network methods. Riverside, CA- University of
Cal ia, Riverside | published in digial form at hitp:/faculty.ucr.edu/~hanneman! )

R
b O

' http://faculty.ucr.edu/~hanneman/nettext/C12_Equivalence. html WWW.NPS.EDU https://web.eecs.umich.edu/~dkoutra/tut/sdm14_partla.pdf
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* Detn: Two vertices are structurally equivalent if
they share many neighbors.

L a b

: "'ﬁ_:".! Such as two math students a and b

o ‘ that know the same professors, same
g ‘ topics, ..., , 1.e. substitutable in the field
ax “+ Defn: Two vertices are regularly equivalent if they

&

‘1 have many neighbors that are also equivalent.

a b

Such as two Deans a and b that
have similar ties to provost, president,
department chairs, ...

WWW.NPS.EDU 9
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|
* Two vertices are structurally equivalent 1f they
‘ share many neighbors

a b

 How can we measure this similarity?

11
- WWW.NPS EDU
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Measuring
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1. Count of common neighbors n;;:

= |N[i[] N N[j]| = Xragax; = a%;
2. Normalized common neighbors (divide by a constant):

| e
— by the number of vertices: —=

V(©)

s . Ni:

. — by the max number of common neighbors - (Gl)]|—2

f% — Jaccard similarity 1s the quotient of number of

@ common to the union of all neighbors:

o J = IN@D) NNQG)| nij

i SO IN@U NG| NG U NG

Fa

P. Jaccard, Bulletin de la Soci”et”e Vaudoise des Sci WWW.NPS.EDU
Natur || s 37, 547 (1901).

K‘ Fast to compute (thus popular) as 1t just counts neighbors
&
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3. Cosine similarity (divide by variable):
Let X be the row corresponding to vertex I in A, and
Let y be the column corresponding to vertex | in A:

|
!
| Xy Dk AikaAkj

| Lk ik 2k Ak

TLij

=~ | =~

simplifies to

et __ number of common neighbors
o Jdegi /deg ) Jdegi \/deg j
= Convention: If deg 1= 0 (denominator is 0), then cos a =0

T{’..’..E\ (orthogonal vectors). Range: 0 < cosa<1

2 .:f';
v

M, .
E A

! G. Salton, Automatic Text Processing: The Transformation, Analysis, and WWW.
m Retrieval of Information by Computer(Addison-Wesley, Reading, MA, 1989). :NPS.EDU
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* Cosine similarity 1s an example of a technique
used 1n

— information retrieval,
— text analysis, or

— any comparison of x to y, where each of x and y
i can be vectorized based on their components

-+« For example: To find the closest
document(s)/website(s) to another document or

. aquery...

i 15
. WWW.NPS.EDU
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oo Technique used in text analysis

A collection of n documents (D4, D,, ..., D,;) can be represented
in the vector space model by a term-document matrix.

A list of t terms of interest: Ty, T, ..., T}

e An entry in the matrix corresponds to the “weight” of a term 1n
e the document; zero means the term has no significance in the
x document or it simply doesn’t exist in the document.

&

\ /‘ \
T, T, ... T,

KR Dy Wy Wy oo Wy

L';L-g_‘w

L35 D, Wy Wy ... Wy

R . . .

KL

rg'ﬁ_“j\ Dn Win Wa, Wi,

'.T (.‘%'.i \

|
h Source: Raymond J. Mooney, University of Texas at Austin WWW.NPS.EDU
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R Graphic Representation

Example: Giventerms T, T, T,
Documents D, D, and Query Q:

- D, =2T, + 3T, + 5T, t o
D,=3T,+7T,+ T, >
- Q=0T,+0T,+ 2T, ]
Ry ~ A
D, =2T,+3T,+5T, |

Q=0T,+0T, + 2T,

»
»

2 3
T Tl

D,=3T,+7T,+ T e .
2 . 2 3 * Is D; or D, more similar to Q?

* How to measure the degree of

'5_"'..'..!1 T, similarity? Distance? Angle?
B o Projection?
ek
17
Source: Raymond J. Mooney, University of Texas at Austin WWW.NPS.EDU
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e (Cosine Similarity Measure

* (Cosine similarity measures the cosine of s
the angle between two vectors.

* Inner product normalized by the vector
lengths.

CosSim(d, @)= =T = ——

D, = 2T, + 3T, + 5T, CosSim(D; , Q) = 10/ V({@+9+25)(0+0+4) = 0.81
D,=3T, + 7T, + 1T, CosSim(D,, Q)= 2/ \(9+49+1)(0+0+4) = 0.13
Q =0T, + 0T, + 2T,

?.;‘_“..'..h D, is 6 times better than D, using cosine similarity

h Source: Raymond J. Mooney, University of Texas at Austin WWW.NPS.EDU
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w7 Illustration of 3 Nearest Neighbor for Text

It works the same with vectors
of the adjacency matrix, where
the terms are just the neighbors,
and similarity 1s how many
common neighbors there are

query

=4
v

19

Source: Raymond J. Mooney, University of Texas at Austin WWW.NPS.EDU
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1. Count of common neighbors:
n;; = |N[i] N N[j]| = Xraiax; = a’y;

2. Normalized common neighbors (divide by the):

- ) 2.
o .. Ny a~ij
- number of vertices: =
- Vi@l [V(G)]
. : ij a~ij
| max count of common neighbors possible =
¥R vG)|-2 |V(G)|-2
Bk, : C
.. exact count of common neighbors (Jaccard similarity)
e
“'H J = ng; _ a2 iy
YOO IN@OUNG) IN@DU NG|

2
nij d ij

[ Jdeg) degi Jdeg)

WWW.NPS.EDU

143, Cosine similarity: 7
=

" A new one!
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oavout: (Degree) Pearson Correlation Coett (1)

4. Degree Pearson Correlation Coefficient: compare
to the expected value of common neighbors (1.e. to a
network 1 which vertices choose their neighbors at

random). Here is the derivation:

“ae Letiand jbe two vertices of deg I and deg |

~* The probability of | to choose at random one of I’s

. . deg d
i d neighbors 1s ne l (or °9¢ if loops 1n G)
,w‘
» Thus the probability that all of J’s neighbors are
) degi-degj

2 neighbors of 1 is 5

21
o WWW.NPS.EDU
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:4 Degree Pearson Correlation Coefficient 1s the
number of common ne1ghb0rs minus the expected

——A<a;>n <a;>
Since the mean of the
th _ Lk 3ik

n s <a;>=
=1 < ai >< aj > """ Tow 18 -

Since ), 1 =nas

— < al > a] >] <a; ><a; >are
£ constants with respect
— < a; >|lajp— < a; >] tok
<—T

§ FOIL and simplify using ), < a;> aj, =n<a; ><a;>= Y <a;> ay 22

WWW.NPS.EDU
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4. Degree Pearson Correlation Coefficient 1s the
actual number of common neighbors minus the
expected common neighbors (from previous page):

|
N cov(a;, a;) = Ty apa —

o it is <a.>= M
Intel'pl'etatlon: the mean of the i*" row is <a; -

-

degidegj
n _Zk

lair — < a; >][ajr— < a; >]

ry.

&%
I"
o

degidegj

* Yraikdji — = (0 1f the # of common neighbors is what 1s

n
expected by chance

g,;;{gf degidegj
G0 LAk~

m < 0 1f the # of common neighbors is less

than what is expected by chance
degidegj

Yk Akdix — > (0 1f the # of common neighbors 1s more
k 4ik9jk n

- than what 1s expected by chance

iy WWW.NPS.EDU
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4, Degree Pearson Correlation Coefficient 1s the actual

number of common neighbors minus the expected common
neighbors (normalized by row a; and aj):

. . Yra;
the mean of the i*" row is <a;>= kT’k

cov(ajaj)  cov(a;aj) 2rlaik—<ai>][ajr— <aj>]
var(a;)? var(a;)var(a;) \/Zk[aik_<ai>]2\/Zk[ajk_<aj>]2

. rij = 0 1f the # of common neighbors 1s what 1s expected by chance

o
S . 3 Wi
H"

L* —1<r; <0ifthe # of common neighbors 1s less than what is
& expected by chance

W. 0<1; j < 1 1f the # of common neighbors 1s more than what is
expected by chance

.* 17; shows more/less neighbor similarity in a network,

..' ’
_l m

Ki compared to vertices expected to be neighbors at random
i

WWW.NPS.EDU
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 There are more measures for structural

__: ﬁl_
L

I_'_ — .‘|
. ‘

&5

equivalences, these are the basic ones.

e The Pearson Correlation Coefticient 1s
commonly used

e Another one 1s Euclidean distance which 1s the
cardinality of the symmetric difference
between the neighbors of I and neighbors of |

d;j = z(aik —aj) (@ —ag) = Z(aik —aj)*
X X

All these are measures of structural equivalence of a
network: they measure different ways of counting

common neighbors 2

WWW.NPS.EDU
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rosemount:— (Jverview updated: Structural similarity

1. Count of common neighbors:
- ny = N[ N N[j]| = X aga; = a%;

2. Normalized common neighbors (divide by the):

2
Tlij . aij

V(&) V(G

number of vertices:
Tlij ’” nij
v(&)|-2 |[V(G)|-2

max count of common neighbors possible

exact count of common neighbors (Jaccard similarity)

]ij = INDUN()|  INGUNQG)|

2
nl-j d ij

2
nij a ij

k38 3 Cosine similarity: —
e M Jdegi /degj degi \/degj

i . . .

= 4, Degree Pearson Correlation Coefficient (coded in NetworkX) :

ot \1 __cov(ajaj) _ cov(ajaj) Yrlaik—<a;>] [ajk— <aj>]
:i"'_: "~ Dartan? var(a:)var(a;) ) )
' ;;;r; >>> G=nx.path_graph(4) Zk[aik_<ai>] Zk[ajk_<aj>]

| A2

sn  >>> r=nx.degree_pearson_correlation_coefficient(G)
>>> print("%3.1F"%r)

05 WWW.NPS.EDU

https://networkx.github.io/documentation/networkx-1.9/reference/generated/networkx.algorithms.assortativity.degree_pearson_correlation_coefficient.html
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v tructural vs. Regular Equivalent nodes

* Detn: Two vertices are structurally equivalent if
they share many neighbors.

|-°.\'

_ a b

e

‘ Such as two math Students a and b
o ‘ that know the same professors
'i“?"

“« Defn: Two vertices are regularly equivalent if they

«H have many neighbors that are also equivalent.

a b

Such as two Deans a and b that
have similar ties:

provost, president, department chairs
(some could actually be common)

n . WWW.NPS.EDU 28
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Regular Equivalence (cont’'d)

Based solely on the social roles of neighbors

Interested in

- Which nodes fall in which social roles?

- How do social roles relate to each other?

Hard partitioning of the graph into social roles

A given graph can have more than one valid
regular equivalence set

Exact regular equivalences can be rare in large
graphs

D. Koutra & T. Eliassi-Rad & C. Faloutsos 30

Pn SDM"14 Tutorial
h https://web.eecs.umich.edu/~dkoutra/tut/sdm14_partla.pdf WWW.NPS.EDU
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Defn. Two nodes are regularly equivalent if
- they are equally related to equivalent nodes
~ (L.e. their neighbors need to be equivalent as well).

 We capture equivalence through color pattern adjacencies.

To have similar roles, these nodes need different colors because of their adjacencies

b
. .'\_‘ = I|I - ",I - i L - .’ \._\
! A 4
T “ | \\,' \'\ \‘\ .\.. o
.!:‘:"\ \‘. & _‘ -,\. I. o , "\.\. Il - .
o R | “~ | - - - S g { :-\.1 4(-"-‘-
ml. P {”f \ - -‘: I -\"x "} . - -’-‘h"\ // ‘ " i -:\. 1 .\".
- ' Y 4 \ . \
!‘1 ‘.mll
blf ,.ih
AN
&) fﬁq

30

' White and Reitz, 1983; Everette and Borgatti, 1991 WWW.NPS.EDU
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Structural: Nodes adjacent to a set of nodes (substitutable based on the access to info)
Vs.
Regular: Nodes adjacent to similar roles in the network (similar positions in the network).

@ structural equivalence

" a

http://www.stats.ox.ac.uk/~snijders/Equivalences.pdf
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* Regular equivalences: nodes don’t have to be adjacent to
be regular equivalent

 REGE and CUTREGE - original algorithms developed
| by Borgatti and Everett to discover regular
~ equivalences. Newman says “but the operations are very
involved and 1t 1s not easy to interpret”
« We’ll explore newer methods: develop o;; that 1s high 1f

the neighbors k and [ of I and Li?¥sethgr§g;&l@gfly) equivalent

1; O:.: = o 2:.32:10 the counts of common neighbors &
'“i tj Z kl Stk “JI=kl their neighbors’ regular similarity oy,

' A recurrence relation in terms of o, much like eigenvector.

33

'_' S. P. Borgatti and M. G. Everett, Social Networks 15, 361 (1993). WWW.NPS.EDU
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O0jj = (& E dirdj1Oki
Kl
Is equivalent to
) o = aAdA,

‘ Where, oy 1s the regular similarity of k & [, a 1s the leading eigenvalue of A,
« and o 1s the eigenvector.

But:
- * It may not give high self-similarity o;; as it heavily
iﬁ depends on the similarity of k & [, the neighbors of i
It doesn’t give high similarity to pairs of vertices with

W lots of common neighbors (because 1t looks at values
ro ofk & I, including k # [)
»| Needs to be altered, and wettlrsee two methods next.

34
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| MEHTOD 1: O;; = « Zkl aikajlgkl_l_ 6ij

Is equivalent to
o = aAcA + 1, M

1,if i =]
0,ifi #j.
g  Calculate by starting with the 1nitial values:

B o= =g AlA+T =1,

with regular similarity (=% = 0, §;; ={

';ﬁ o= = qAIA+1 = ,

o o3 = qA( YA+ 1= o? A* + ad? + 1,
=) . .

sl Note: 0; j 1s a weighted some of the even powers of A
Fa

5 (walks of even length), but we want all the lengths...

iy WWW.NPS.EDU
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| METHOD 2: define o;; to be high if vertex /
has a neighbor & that is similar to / | :

- Ojj = O Xy @ik Ot dj;
\ Is equivalent to A

r L} n n
| , _ 1,if 1 =]
o — (t—O) - 00 — g

o o Ao + I, with o ,8U 10,ifi £

il

™= oY =qA0+ T =1,

t oD =qdl+] = ,

o(t=3) = qA( )+ 1= a?A* +ad + 1,

31"..’.,?1 e 0;; 1s a weighted (a’) count of all walks between i
£

2 and ], (with a <1 so longer paths weigh less)

Leicht, Elizabeth A., Petter Holme, and Mark EJ Newman. "Vertex similarity in networks." Physical Review E 73.2 (2006): 026120.
' WWW.NPS.EDU
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FOSTORADUATE Regular Equivalence (5)

: METHOD 2: define o;; to be high if vertex /
has a neighbor 4 that is similar to /

Ojj = O Xy a0t 0;;
Is equivalent to
o0 = ado + I, with 6(t=9) = (

* This looks a lot like Katz centrality
(recall x;= a ) ;a;jx; + B, where [ is a constant initial weight

i given to each vertex so that its out degree matters)

11 Katz centrality of vertex I is the sum of o; i'VJeEN (i)

37
- WWW.NPS.EDU
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* The regular equivalence o;; tends to be high

for vertices of high degree (more chances of
| their neighbors being similar)

 However, some low degree vertices could be

. similar as well, so the formula can be modified
. similar to PageRank if desired:
B Oij = g7 2k AikOkjT O

-\ which is equivalent to
£ o = aD Ao +1,

'- WWW.NPS.EDU
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* Recall that the regular equivalence o;; is a

weighted count of all walks between | and |, 1.€:
o= =qd(aA+D+1= a? A>+ad +1,

|« Recall that the structural equivalence 7;; counts

A
-y .
.f:.-r"i{.j

the # of common neighbors of 1 and | in
different ways

£

& » What is the correlation
. between the number of
. common neighbors of

f{‘-"-fé‘ 4 and 5, and paths of

ii length 2 between 4 and 5? o ’ j!
]

H
[

WWW.NPS.EDu
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'« Recall that the regular equivalence o;; 1s a

weighted count of all walks between | and |, I.e
o= =qd(aA+D+1= a? A>+ad +1,

* Recall that the structural equivalence 7;; counts

the # of common neighbors of 1 and | in
different ways

, (rl j counts just paths of length 2)

B e

41
2 WWW.NPS EDu
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* Backup slides
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Equivalences

Regular

Deterministic Automorphic

Structural

Equivalences

‘_

Probabilistic Stochastic

SDM'14 Tutorial D. Koutra & T. Eliassi-Bad & C. Faloutsos 372

https://web.eecs.umich.edu/~dkoutra/tut/sdm14_partla.pdf WWW.NPS.EDU
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Stochastic Equivalence

» [Holland, et al. 1983;
Wasserman & Anderson, 1987]

« Two nodes are stochastically A
equivalent if they are /CJ\

“exchangeable” w.r.t. Pia.u Py

bability distributi S
| a probability distribution PaoZPar
A » Similar to structural ey

Piu.b) Piy.b)

P equivalence but
L probabilistic \@»/

,! " SDM'14 Tutorial D. Koutra & T. Eliassi-Rad & C. Faloutsos 33

https://web.eecs.umich.edu/~dkoutra/tut/sdm14_partla.pdf WWW.NPS.EDU
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' X Stochastic Equivalence:
| Algorithms

« Many algorithms exist here

« Most recent approaches are generative
[Airoldi, et al 2008]

« Some choice points

- Single [Kemp, et al 2006] vs.

i mixed-membership [Koutsourelakis & Eliassi-
Rad, 2008] equivalences (a.k.a. “positions”)

- Parametric vs. non-parametric models

ol

B )

E A

B SDM'14 Tutorial D. Koutra & T. Eliassi-Rad & C. Faloutsos 34

eecs.umich.edu/~dkoutra/tut/sdm14_partla.pdf WWW.NPS.EDU
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Stochastic Equivalence

The stochastic block model is a kind of

Latent Structure Analysis (LSA).

The basic idea of LSA, proposed by Lazarsfeld & Henry (1968),
‘ s that there exist latent (i.e. unobserved) variables such that

the observations are conditionally independent
given the latent structure (= latent variables).
The structural model then specifies the latent variables

and the measurement model specifies how the observations

depend on the latent variables.

Ml
h http://www.stats.ox.ac.uk/~snijders/Equivalences.pdf WWW.NPS.EDU



