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Abstract 
Audio information retrieval is a difficult problem due to the 
highly unstructured nature of the data. A general labeling system 
for identifying audio patterns could unite research efforts in the 
field. This paper introduces 42 distinct labels, the “noisemes”, 
developed for the manual annotation of noise segments as they 
occur in audio streams of consumer captured and semi-
professionally produced videos. The labels describe distinct 
noise units based on audio concepts, independent of visual 
concepts as much as possible. We trained a recognition system 
using 5.6 hours of manually labeled data, and present recognition 
results.  
Index Terms: noise annotation, audio scene analysis, audio 
classification. 

1. Introduction 
Acoustic Scene Analysis (ASA) or Audio Event Detection 
(AED) is the task of identifying arbitrary acoustic events in a 
stream of audio data [1]. The retrieved information is already 
supporting multimedia information retrieval, robotic systems, 
and portable automatic speech recognition systems ([2], [3], [4]). 

Research found that environmental noise enhances human 
comprehension and vision perception [5], suggesting that adding 
non-speech audio material promotes people’s comprehension of 
visual languages and sceneries. Noise detection and filtering is a 
factor in increasing the robustness of automatic speech 
recognition systems [6]. More recent projects show that the 
detection of environmental noise provides helpful contributions 
in identifying and classifying events in consumer captured 
videos [2], and for summarizing what was detected [7]. 

The difficulties in general acoustic scene analysis can be 
broadly classified into two categories. The first difficulties are 
those related to technical complexity. High-quality, post-
processed audio tracks from commercial videos where 
environmental noise often comprises a sequence of pre-recorded 
sounds, speech and music are relatively easy to analyze 
computationally [8]. Foreground sounds are usually artificially 
emphasized, and thus easier to segment from the background 
noise. In the middle of the field we find corpora collected in 
prepared scenarios and predefined events for scientific purposes 
[9]. These collections provide near-real samples of noise for 
initial research, but still avoid the multiplicity of what can be 
found in the real world. At the other end of the spectrum are 
consumer-captured home videos filmed with dated video 
cameras and low quality microphones, resulting in distorted and 
clipped sound tracks. Noises frequently overlap and mix, making 
source separation extremely difficult. 

 The second class of difficulties is related to the infrastructure 
and resources of the research community. ASA can be performed 
in a multitude of different environments, and system 

development can be driven by a wide array of tasks. Simple 
speech-music separation requires only two labels, and training 
data is relatively easy to obtain. As a task requires more detailed 
analysis, however, the number of labels can increase and 
segmentation and separation become extremely difficult. What is 
needed is a general way of describing the events within an audio 
stream that can be applied to all environments in tasks for which 
we would like to build acoustic scene analysis systems.  

In this paper we propose a set of “noisemes”, fundamental 
atomic units of sound that attempt to capture objective properties 
of the acoustic signal independent of any other information 
source that may be available. In science, acoustic signals are 
typically quantified and analyzed using Mel-frequency cepstral 
coefficients, pitch, fundamental frequencies, and energy levels. 
On the other hand, humans typically describe the qualities of a 
particular sound by largely relying on complementary sensory 
input, i.e. information that is “out of band” for a system that is 
performing ASA using solely a digital representation of the 
signal. We find associative descriptions where noises are linked 
to emotions, objects or locations. We are also often influenced 
by an image of which environment a noise has been heard 
before. The SoundNet [10] database provides a comprehensive 
association network of words and sound experiences. 

Conceptually, our goal when developing the noisemes was to 
develop symbolic labels for quantitative properties of the signal. 
In this way, we hope to introduce acoustic concepts that are not 
biased by any information that cannot be directly obtained by 
observing the signal in both the time and frequency domains, but 
are still general enough to describe any acoustic pattern 
observed. We make the following contributions: We outline the 
noisemes, and review the methods used to develop the set of 
labels. We further motivate development of these labels in 
Section 2. We present occurrence statistics of the noisemes on a 
small collection of diverse videos extracted from the Internet. 
Finally, we demonstrate that the noisemes are recognizable by 
machine, and present classification results. 

2. Development of semantic audio labels 
We can motivate the development of the noisemes from two 
perspectives. From a machine learning perspective, we believe 
that establishing a general and objective collection of labels that 
can be applied to any type of audio data regardless of the source 
or content will better define the ASA task. The majority of 
machine learning tasks that have enjoyed considerable attention 
and developmental success over the past few years are those for 
which the problem is well defined, and for which hard metrics 
have been established by which researchers can objectively 
compare approaches and evaluate hypotheses. It is not 
immediately obvious how to concretely define the ASA task. 
Since settings vary widely it is difficult to drive progress forward 
because evaluation of different approaches is often done using 



very different criteria. For example, some projects may wish to 
simply segment speech and non-speech, while others may wish 
to classify the environment in which an audio track was recorded. 
It is not always immediately obvious how to apply techniques 
from one domain to another. Introduction of a consistent set of 
labels that can be applied to any type of data can help to remedy 
this situation by essentially establishing a lingua franca for 
researchers working in acoustic scene analysis. 

The second advantage of developing a unified set of labels 
for ASA is from a data scientist’s or annotator’s perspective. It 
becomes much easier to develop high-quality ground truth 
resources for this task if all annotators speak a unified language, 
and can easily and objectively label segments of audio according 
to the quantifiable properties of the signal. E.g. rather than 
guessing that a certain noise is made from the engine of a car (a 
specific explanation that can only be confirmed or refuted by 
observing the source), an annotator would label the segment as 
“engine_light” or “engine_heavy”. 

2.1. Data 

We picked a small subset of data from the TRECVID MED 2011 
corpus [11]. This corpus consists of 1500 hours of video clips, 
mostly of the style consumer captured home video, but also 
including semi-professionally produced “How-to” videos. Parts 
of the videos were categorized as one of 18 events. An event is 
defined in [11] as “a complex activity occurring at a specific 
place and time, involving people interacting with other people 
and/or objects; it consists of a number of human actions, 
processes, and activities that are loosely or tightly organized and 
that have significant temporal and semantic relationships to the 
overarching activity; it is directly observable.” Examples for the 
18 events are: attempting a board trick, feeding an animal, 
changing a vehicle tire, making a sandwich, building a shelter, 
batting in a run, celebrating a birthday.   

To ensure a broad variety of environmental noise, we picked 
at least 10 videos of each event, a total of 190 videos, plus 26 
more video clips from a set of video clips that had not been 
categorized as one of the events. We only worked with the audio 
stream of the 216 videos, 5.6 hours of data, which we extracted 
as FLAC files with a sampling rate of 16 kHz from the provided 
MP4 AAC audio. We used PRAAT [12] as annotation tool.  

2.2. Labeling process 

Despite a large part of overlapping noises, we decided to label 
“monophone” noise, not polyphone noise mixes [13] by labeling 
noise on different tracks when it co-occurred with other noise. 
The human ear is fairly good in identifying sounds even if they 
are overlapped by other sounds.  

We started by listening and annotating many different audio 
streams, using open labeling. We then structured, cleaned, and 
combined these open labels and sorted them under different 
aspects, such as source, similar features, similar concepts, 
effects, and prominence. This process was repeated several 
times. The aspects that seemed to serve best were the semantic 
aspect of possible sound source, and the feature based aspect of 
acoustic properties similar to speech features: voiced or showing 
formants, fricative-like or showing fuzziness, plosive-like or 
showing single pulses.  

2.3. Noisemes 

Eventually, a set of 42 noise units sufficiently covered noises 
heard from the audio streams. We call these units “noisemes”, 
pronounced similar to /phoneme/, and also defined similar:  
the smallest segmental unit of sound employed to form 
meaningful contrasts between noises.  

Table 1 and Figure 1 show the two main aspects of the 
labels: Table 1 is organized in noise sources. Note that there is 
no confirmation of the actual source of a noise; the order serves 
as a meaningful way to memorize the noisemes. Figure 1 puts 
the labels in a space between formant-like, friction-like, and 
pulse-like acoustic features.  

Using Table 1 to introduce the labels in more detail, we 
basically have four possible sources of noise: noise that sounds 
as if produced by vocal folds of humans or animals, noise that 
can be caused by direct human impact or activity, mechanical 
noise, and natural noise.  

There is a general label for sounds produced by animals. For 
cases where the labeler recognizes a particular animal (e.g. a 
bird) a comment can be attached (e.g. “anim_bird”). The broad 
category Human_noise_s collects non-speech sounds produced 
by individual humans or animals. Speech_s contains speech 
produced by a single speaker. Speech is labeled as “speech” if it 
is understandable English, and is transcribed at the word level in 
an extra track. In other cases, speech is labeled as “ne_speech” if 
it is not English, and as “mumble” if it is not understandable. 
There is “singing” when one or several voices sing without 
accompanying music. Human_m describes vocal noise from 
multiple people. Specifically, we give the label “crowd” if it is 
overlapped and in disorder, and “cheer” if many voices repeat 
something in unison. A mixture of voice and music is labeled as 
“music_sing”. There is also “music” without singing. The music 
labels are used when music is prominent. Similar to this is the 
background noise “radio”, which refers to TV or radio, but is 
heard as weaker background noise.  

Noise caused by possible human activity is organized in two 
groups: the short noise_pulse and the longer noise_ongoing. The 
short pulses are probably the hardest to identify – for humans as 
well as for a system.  If heard without noise overlap and in fair 
quality, there is a perceivable difference between pulses that 
have a tonal aspect such as “bang”, pulses that are dampened 
such as “thud”, “clap” that sounds like an explosion, “click” 
which is very low energy, “knock” that has a light hollow tone, 
and “beep” which is tonal and longer than a typical pulse.   

The ongoing noises are either a series of regular pulses and 
/or friction: “hammer”, “scratch”, and “washboard”. 
“Washboard” seems like a visual object but nowadays is often 
used as a percussion instrument producing a very distinct 
staccato friction sound. “Applause”, “rustle” and “clatter” are 
irregular sequences of pulses and friction. Tonal noise either 
caused by human activity, or by machine is “ring”, “siren”, 
“whistle”, “squeak”, or just “tone”, differentiated by melody or 
frequency. For engine noise we use categories such as 
“engine_light”, “engine_heavy”, “engine_quiet” and “power-
tool” to avoid the difficulty of finding thresholds between low, 
mid and high frequencies. Gusty, frictional noise is labeled as 
“wind”, splashes are labeled as “water”, and direct airflow into a 
microphone is labeled as “micro_blow”. Any type of non-
identifiable ongoing friction noise is called “white_noise”. To 
account for unusual sounds that do not match any noiseme, we 
defined a “catch all” open label next to “animal”, and called it 



“other”. Since there is no visual during the labeling process, a 
labeler is instructed to use a label that is close to the sound. This 
blind labeling sometimes creates surprising discoveries, e.g. an 
audio track labeled with short segments of light engine noise 
turned out to be the snoring of three dogs.  

 

 
Figure 1: Acoustic features: a noiseme is either formant-like, 

friction-like, pulse-like, or a mix of these features. 
 

Table 1: Noisemes, grouped in broader categories, with 
description for each noiseme. 

broad Noiseme sounds like … 

animal not identifiable animal 
anim 

anim_... identified anim_dog, anim_bird ..  
cry crying 
human_noise vocal noise: cough, sneeze, throat.. 
laugh laughter 
scream screaming 

human_ 
noise_s 

child child/baby coos, animal coos 
mumble non-intelligible, single voice 
speech intelligible speech English speech_

s 
speech_ne intelligible speech not English 

singing singing only voice, a capella  
cheer intelligible speech, multiple voices human_

m crowd non-intelligible, multiple voices 
music_sing music with singing 

music 
music only music 
knock hits wood, cardboard, dry wall  
thud hits floor, dirt, carpet, damped 
clap hands, gun, shot-like, explosion 
click quiet, mechanical click 
bang hits metal, glass, tone-ish 

noise_ 
pulse 

beep very short beeps, computer 
clatter bangs, knocks, pulses, irregular 
rustle scratching, hiss, rustling, irregular 
scratch short friction segments, regular 
hammer bangs, knocks, pulses, regular 
washboard fast pulses with rubbing, friction, regular 

noise_ 
ongoing 

applause very fast claps comb. with friction,  
engine_quiet rattle, sewing machine, video camera 
engine_light high-freq. machine noise, drill-like 

engine 

power_tool mid-freq. machine noise, race car 

 engine_heavy low-freq. machine noise, truck, tractor 
phone classical telephone ring, ringing 
whistle high-freq. tone 
squeak tire squeak, friction squeak, high freq. 
tone steady tone, horn, alarm 

noise_ 
tone 

sirene oscillating sound waves 
water dubbing, splashing 
micro_blow wind or breath hits microphone 

noise_ 
backgr_ 
nat wind gusts, flag clatter, pulses, and scratch  

radio radio/TV in background noise_ 
backgr white_noise fuzzy signal, air cond., waterfall, hum 

other other_creak open for unseen noises 

2.4. Observations 

The segmenting and labeling of the audio tracks of the 216 
videos resulted in a total of 6.8 hours of labeled noise duration in 
1462 noise segments. 21% of the 5.6 hours of used audio streams 
contains label overlap. We additionally segmented and labeled if 
the original audio was substituted by post-processed audio, or if 
there was overlapping audio that was added later; 31% of the 5.6 
hours of total duration was labeled as post-processed (complete 
new track or overlapping with original).  

47% of the 5.6 hours contains speech (including mumble and 
non-English, articulated and crowd noise), 55% of this is 
understandable English speech, transcribed on word level. 33.8% 
of the 5.6 hours have music or music with singing. Most of it is 
part of the post-processed audio. Animal noise was only found at 
1.7% of the total duration. However, animal noise turned out to 
be significant in categorizing two of the events, Animal_feeding 
and Animal_grooming. The short pulse-like noisemes take only 
2.7% of the 5.6 hours of data, but they comprise 20% of the 
number of segments.  

3. Automatic noiseme classification 
We think the noiseme labels will be useful for detailed 
summaries of videos, providing evidences for a detection 
decision. For example, rather than only outputting a 
categorization decision as “this is a baseball game” event, we can 
provide justifying evidences by mentioning high occurrences of 
“crowd” “cheering”, “applause”, and “bang” labels. It is also 
important to have information regarding the presence, duration, 
and relative order of certain types of noisemes that can be used 
to infer the content of a particular video, for example, “scratch” 
followed by “clap”, followed by “clatter” can be the typical 
temporal pattern for a particular skate board trick. Therefore, an 
actual goal of working with noiseme-annotated data is to be able 
to create event signatures or event fingerprints using particular 
patterns or significant co-occurrences of features from different 
modalities. 

3.1. Experimental setup 

Only one annotator annotated our data set. In order to verify the 
usefulness of the noiseme labels, we conducted an automatic 
noiseme classification task. We used 2/3 of the labeled noiseme 
data from 150 annotated videos for training noiseme models and 
the remaining 1/3 for testing. There are in total 2510 test 
segment trials. A few noisemes were not or only with one sample 
represented in the 150 videos. We excluded them from the 



automatic classification experiments and conducted noiseme 
classification experiments for 38 classes.  

3.2. Experimental results 

The Gaussian Mixture Model (GMM) is a popular statistical 
model for classification tasks [14]. A model based on a GMM 
consists of a finite number of Gaussian distributions 
parameterized by their a priori probability, mean vectors, and 
covariance matrices. The parameters of the model are typically 
estimated by maximum likelihood estimation, using the 
Expectation-Maximization (EM) algorithm. We extract 20-
dimensional Mel-frequency Cepstral Coefficients (MFCC) with 
Cepstral Mean Normalization (CMN) applied. The first order 
derivative (delta MFCC) is appended to form a 40-dimensional 
feature in our experiments. We trained for each noiseme class a 
GMM model with 256 Gaussian mixtures.  

Table 2 presents the noiseme classification accuracy with 
respect to the test trial durations. The general trend is that the 
classification accuracy increases with longer test trials. However, 
since we are only using MFCC features, for the shorter noisemes 
such as “beep”, “clip”, etc., other types of features such as 
prosodic features or temporal patterns might be considered.  

We also looked at the top-5 hypotheses of the GMM-based 
noiseme classification system. It shows that the corresponding 
target noiseme class always appears in the top 5 hypotheses. This 
verifies that by using some acoustic features the defined noiseme 
classes can be distinguished by an automatic system. Some of 
the confusions we saw were intuitive, such as “mumble” was 
recognized as “speech”, “speech_ne” was recognized as 
“speech”, “wind” was recognized as “micro_blow” etc. However, 
there is some confusion that is harder to explain, for example 
“clap” recognized as “white_noise”, and “hammer” recognized 
as “rustle”. Noise overlap as well as the quality and the energy 
level of noise are possible reasons.  

 
Table 2. Noiseme Classification Accuracy wrt trial length 
Trial Duration 

(seconds) 
Classification 
Accuracy (%) 

Num of 
trials 

0-1 52.9% 855 
1-5 55.1% 1326 

5-10 63.1% 198 
10-15 83.3% 36 
15-20 87.5% 16 
20-25 93.8% 16 
25-30 85.7% 14 
>30 95.9% 49 

4. Conclusions 
In this paper, we introduced the concept of "noisemes" as a 
generalization for segmenting audio into speech and non-speech, 
which we not only use as a pre-processing step for speech 
recognition, but also to extract information from the audio track 
itself. We describe a process to extract and name salient features 
from the audio signal and from audible characteristics only, 
without being influenced by the context given by visual 
information. This allows us to extract robust labels, which can be 
detected automatically to create a sound signature of a video, 
which then can be used for the classification into events. We will 
continue to refine our automatic classifiers, and work towards 
linking these audio labels with semantic information that can be 
derived from the video, or from text that describes the event: i.e. 

while the "engine_heavy" noiseme is an abstract, sound-defined 
class, what context is needed to determine that a particular 
instance is a truck versus a fixed machine in a factory. 
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