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� Atomic blocks and composition

� Hardware transactional memory
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Our Vision for the Future

In this course, we covered &.

Best practices &

New and clever ideas &

And common-sense observations.
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Our Vision for the Future

In this course, we covered &.

Best practices &

New and clever ideas &

And common-sense observations.

Nevertheless &

Concurrent programming is still too hard &

Here we explore why this is &.

And what we can do about it.
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Locking
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Coarse-Grained Locking

Easily made correct &

But not scalable.

Art of Multiprocessor 
Programming



8

Fine-Grained Locking

Can be tricky &
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Locks are not Robust

If a thread holding

a lock is delayed &

No one else can 

make progress
Art of Multiprocessor 

Programming



Locking Relies on Conventions

• Relation between

– Locks and objects

– Exists only in programmer’s mind

/* 

* When a locked buffer is visible to the I/O layer

* BH_Launder is set. This means before unlocking

* we must clear BH_Launder, mb() on alpha and then

* clear BH_Lock, so no reader can see BH_Launder set

* on an unlocked buffer and then risk to deadlock. 

*/

Actual comment 

from Linux Kernel
(hat tip: Bradley Kuszmaul)
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Simple Problems are hard

enq(x) enq(y)
double-ended queue

No interference if 

ends “far apart”
Interference OK if 

queue is small
Clean solution is 

publishable result:
[Michael & Scott PODC 97]
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Locks Not Composable

Transfer item from one 

queue to another
Must be atomic :

No duplicate or missing items
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Locks Not Composable

Lock source

Lock target

Unlock source 

& target
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Locks Not Composable

Lock source

Lock target

Unlock source & 

target

Methods cannot provide 

internal synchronization
Objects must expose 

locking protocols to clients

Clients must devise and 

follow protocols
Abstraction broken!
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Monitor Wait and Signal

zzz

Empty

buffer
Yes!
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If buffer is empty,

wait for item to show up
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Wait and Signal do not Compose

empty

emptyzzz&
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Wait for either?
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The Transactional Manifesto

• Current practice inadequate

– to meet the multicore challenge

• Research Agenda

– Replace locking with a transactional API 

– Design languages or libraries

– Implement efficient run-time systems
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Transactions

Block of code &.

Atomic: appears to happen 

instantaneously

Serializable: all appear to 

happen in one-at-a-time 

orderCommit: takes effect 

(atomically)

Abort: has no effect 

(typically restarted)
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atomic {
x.remove(3);
y.add(3);

}

atomic {
y = null;

}

Atomic Blocks
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atomic {
x.remove(3);
y.add(3);

}

atomic {
y = null;

}

Atomic Blocks

No data race
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public void LeftEnq(item x) {
Qnode q = new Qnode(x);
q.left = left;
left.right = q;
left = q;

}

A Double-Ended Queue

Write sequential Code
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public void LeftEnq(item x) 
atomic {
Qnode q = new Qnode(x);
q.left = left;
left.right = q;
left = q;
}
}

A Double-Ended Queue
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public void LeftEnq(item x) {
atomic {
Qnode q = new Qnode(x);
q.left = left;
left.right = q;
left = q;
}
}

A Double-Ended Queue

Enclose in atomic block
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Warning

• Not always this simple

– Conditional waits

– Enhanced concurrency

– Complex patterns

• But often it is&
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Composition?
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Composition?

public void Transfer(Queue<T> q1, q2)
{
atomic {
T x = q1.deq();
q2.enq(x);
}
}

Trivial or what?
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public T LeftDeq() {
atomic {
if (left == null)

retry;
…

}
}

Conditional Waiting

Roll back transaction 

and restart when 

something changes
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Composable Conditional Waiting

atomic {
x = q1.deq(); 
} orElse {
x = q2.deq();
}

Run 1st method. If it retries %
Run 2nd method. If it retries %

Entire statement retries
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Hardware Transactional 

Memory
• Exploit Cache coherence

• Already almost does it

– Invalidation

– Consistency checking

• Speculative execution

– Branch prediction = 

optimistic synch!
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HW Transactional Memory

Interconnect

caches

memory

read active

T
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Transactional Memory

read

active
TT

active

caches

memory
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Transactional Memory

active
TT

activecommitted

caches

memory
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Transactional Memory
write

active

committed

T
D caches

memory
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Rewind

active
TT

active
writeaborted

D caches

memory
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Transaction Commit

• At commit point

– If no cache conflicts, we win.

• Mark transactional entries

– Read-only: valid

– Modified: dirty (eventually written back)

• That’s all, folks!

– Except for a few details &
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Not all Skittles and Beer

• Limits to

– Transactional cache size

– Scheduling quantum

• Transaction cannot commit if it is

– Too big

– Too slow

– Actual limits platform-dependent



HTM Strengths & 

Weaknesses

• Ideal for lock-free data structures
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• Practical proposals have limits on

– Transaction size and length

– Bounded HW resources

– Guarantees vs best-effort



HTM Strengths & 

Weaknesses
• Ideal for lock-free data structures

• Practical proposals have limits on
– Transaction size and length

– Bounded HW resources

– Guarantees vs best-effort

• On fail

– Diagnostics essential

– Try again in software?



Composition

Locks don’t compose, transactions do.

Composition necessary for Software Engineering.

But practical HTM doesn’t really support 

composition!
Why we need STM



Transactional Consistency

• Memory Transactions are collections of 

reads and writes executed atomically

• They should maintain consistency

– External: with respect to the interleavings

of other transactions (linearizability).

– Internal: the transaction itself should 

operate on a consistent state. 



External Consistency

Application 

Memory

X

Y

4

2

8

4

Invariant x = 2y

Transaction A: 

Write x

Write y

Transaction B: 

Read x

Read y 

Compute z = 1/(x-y) = 1/2
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A Simple Lock-Based STM

• STMs come in different forms

– Lock-based

– Lock-free

• Here : a simple lock-based STM

• Lets start by Guaranteeing External 

Consistency
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Synchronization

• Transaction keeps

– Read set: locations & values read

– Write set: locations & values to be written

• Deferred update

– Changes installed at commit

• Lazy conflict detection

– Conflicts detected at commit
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STM: Transactional Locking

Map

Application 

Memory

V#

V#

V#

Array of 

version #s & 

locks 
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Reading an Object
Mem

Locks

V#

V#

V#

V#

V#

Add version numbers 

& values to read set
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To Write an Object
Mem

Locks

V#

V#

V#

V#

V#

Add version numbers & 

new values to write set
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To Commit
Mem

Locks

V#

V#

V#

V#

V#

X

Y

V#+1

V#+1

Acquire write locks

Check version numbers 

unchanged
Install new values

Increment version numbers

Unlock.



Encounter Order Locking (Undo Log)

1. To Read: load lock + location

2. Check unlocked add to Read-Set

3. To Write: lock location, store value

4. Add old value to undo-set

5. Validate read-set v#’s unchanged
6. Release each lock with v#+1

V#       0 V#      0 

V#       0 

V#      0 

V#       0 

V#      0 

V#       0 

X V#      1

V#       0 Y V#      1

V#       0 V#     0 

Mem    Locks

V#+1  0

V#+1  0

V#      0 

V#      0 

V#       0 

V#+1   0 

V#       0 

V#       0 

V#       0 

V#       0 

V#+1   0 

V#       0 

X

Y

Quick read of values freshly 

written by the reading transaction



Commit Time Locking (Write Buff)

1. To Read: load lock + location

2. Location in write-set? (Bloom Filter)

3. Check unlocked add to Read-Set

4. To Write: add value to write set

5. Acquire Locks

6. Validate read/write v#’s unchanged
7. Release each lock with v#+1

V#       0 V#      0 

V#       0 

V#      0 

V#       0 

V#      0 

V#       0 

V#      0 

V#       0 V#      0 

V#       0 V#     0 

Mem    Locks

V#+1  0

V#      0 

V#      0 

Hold locks for very short duration

V#      1

V#      1

V#      1X

Y

V#+1  0

V#      1V#+1   0

V#       0 

V#+1   0 

V#       0 

V#       0 

V#       0 

V#       0 

V#+1   0 

V#       0 

X

Y



COM vs. ENC High Load

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

 0  2  4  6  8  10  12  14  16

o
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s
/s

e
c

threads

(c) Small Red-Black Tree 20%/20%/60%

TL:CMT:PS
TL:CMT:PO
TL:Enc:PS
TL:Enc:PO

mutex
spinlock
mcslock

stm_fraser
stm_ennals

hanke

ENC

Hand

MCS

COM

Red-Black Tree 20% Delete 20% Update 60% Lookup



COM vs. ENC Low Load

COM

0

2000000
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14000000
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threads

(b) Large Red-Black Tree 5%/5%/90%

TL:CMT:PS
TL:CMT:PO
TL:Enc:PS
TL:Enc:PO

mutex
spinlock
mcslock

stm_fraser
stm_ennals

hanke

ENC

Hand

MCS

Red-Black Tree 5% Delete 5% Update 90% Lookup



Problem: Internal 

Inconsistency

• A Zombie is an active transaction destined to 

abort.

• If Zombies see inconsistent states bad things 

can happen
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Internal Consistency

x

y

4

2

8

4

Invariant: x = 2y

Transaction A: reads x = 4
Transaction B: writes

8 to x, 16 to y, aborts A )

Transaction A: (zombie)
reads y = 4

computes 1/(x-y)

Divide by zero FAIL!
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Solution: The Global Clock  

(The TL2 Algorithm)

• Have one shared global clock

• Incremented by (small subset of) writing 

transactions

• Read by all transactions

• Used to validate that state worked on is 

always consistent
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Read-Only Transactions
Mem

Locks

12

32

56

19

17

100

Shared Version 
Clock

Private Read 
Version (RV)

Copy version clock to local 
read version clock
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Read-Only Transactions
Mem

Locks

12

32

56

19

17

100

Shared Version 
Clock

Private Read 
Version (RV)

Copy version clock to local 
read version clock

Read lock, version #, and 
memory
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Read-Only Transactions
Mem

Locks

12

32

56

19

17

100

Shared Version 
Clock

Private Read 
Version (RV)

Copy version clock to local 
read version clockRead lock, version #, and 

memory, check version # less 
than read clock

100

On Commit:
check unlocked & 

version #s less than 
local read clock
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Read-Only Transactions
Mem

Locks

12

32

56

19

17

100

Shared Version 
Clock

Private Read 
Version (RV)

Copy version clock to local 
read version clock

Read lock, version #, and 
memoryOn Commit:

check unlocked & 
version #s less than 

local read clock100

We have taken a snapshot without 
keeping an explicit read set!



Example Execution: Read Only 

Trans

1. RV � Shared Version Clock

2. On Read: read lock, read mem, 

read lock: check unlocked, 

unchanged, and v# <= RV

3. Commit.

87       0 87       0 

34       0 

88       0 

V#       0 

44       0 

V#       0 

34       0 

99       0 99       0 

50       0 50       0 

Mem    Locks

Reads form a snapshot of memory.

No read set! 

100 Shared Version Clock

87       0 

34       0 

99       0 

50       0 

87        0 

34        0 

88        0 

V#       0 

44        0 

V#       0 

99        0 

50        0 

100 RV
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Ordinary (Writing) Transactions
Mem

Locks

12

32

56

19

17

100

Shared Version 
Clock

Private Read 
Version (RV)

Copy version clock to local 
read version clock
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Ordinary Transactions
Mem

Locks

12

32

56

19

17

100

Shared Version 
Clock

Private Read 
Version (RV)

Copy version clock to local 
read version clock

On read/write, check:
Unlocked & version # < RV

Add to R/W set
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On Commit
Mem

Locks

100

Shared Version 
Clock

100

12

32

56

19

17 Private Read 
Version (RV)

Acquire write locks
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On Commit
Mem

Locks

100

Shared Version 
Clock

100101

12

32

56

19

17 Private Read 
Version (RV)

Acquire write locks

Increment Version Clock
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On Commit
Mem

Locks

100

Shared Version 
Clock

100101

12

32

56

19

17 Private Read 
Version (RV)

Acquire write locks

Increment Version Clock
Check version numbers ≤ RV
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On Commit
Mem

Locks

100

Shared Version 
Clock

100101

12

32

56

19

17 Private Read 
Version (RV)

Acquire write locks

Increment Version Clock
Check version numbers ≤ RV

Update memoryx

y
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On Commit
Mem

Locks

100

Shared Version 
Clock

100101

12

32

56

19

17 Private Read 
Version (RV)

Acquire write locks

Increment Version Clock
Check version numbers ≤ RV

Update memory

Update write version #s

x

y

101

101



Example: Writing Trans

1. RV � Shared Version Clock

2. On Read/Write: check 

unlocked and v# <= RV then 

add to Read/Write-Set

3. Acquire Locks
4. WV = F&I(VClock)

5. Validate each v# <= RV

6. Release locks with v# � WV

Reads+Inc+Writes

=serializable

100 Shared Version Clock

87       0 87       0 

34       0 

88       0 

44       0 

V#       0 

34       0 

99       0 99       0 

50       0 50       0 

Mem    Locks

87       0 

34       0 

99       0 

50      0 

34       1

99       1

87        0 

X

Y

Commit

121     0

121      0

50        0 

87        0 

121      0 

88        0 

V#       0 

44        0 

V#       0 

121      0 

50        0 

100
RV

100120121

X

Y
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TM Design Issues

• Implementation 

choices

• Language design 

issues

• Semantic issues
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Granularity

• Object

– managed languages, Java, C#, &

– Easy to control interactions between 

transactional & non-trans threads

• Word

– C, C++, &

– Hard to control interactions between 

transactional & non-trans threads
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Direct/Deferred Update

• Deferred 

– modify private copies & install on commit

– Commit requires work

– Consistency easier

• Direct 

– Modify in place, roll back on abort

– Makes commit efficient

– Consistency harder



Art of Multiprocessor 
Programming

72

Conflict Detection

• Eager

– Detect before conflict arises

– “Contention manager” module resolves

• Lazy

– Detect on commit/abort

• Mixed

– Eager write/write, lazy read/write &
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Conflict Detection

• Eager detection may abort transactions 

that could have committed.

• Lazy detection discards more 

computation. 
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Contention Management & 

Scheduling

• How to resolve 

conflicts?

• Who moves forward

and who rolls back?

• Lots of empirical

work but formal

work in infancy
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Contention Manager Strategies

• Exponential backoff

• Priority to

– Oldest?

– Most work?

– Non-waiting?

• None Dominates

• But needed anyway
Judgment of Solomon
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I/O & System Calls?

• Some I/O revocable

– Provide transaction-

safe libraries

– Undoable file 

system/DB calls

• Some not

– Opening cash 

drawer

– Firing missile
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I/O & System Calls

• One solution: make transaction 
irrevocable

– If transaction tries I/O, switch to irrevocable 
mode.

• There can be only one &

– Requires serial execution

• No explicit aborts

– In irrevocable transactions
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Exceptions

int i = 0;

try {

atomic {

i++;

node = new Node();
}

} catch (Exception e) {

print(i);

}

int i = 0;

try {

atomic {

i++;

node = new Node();
}

} catch (Exception e) {

print(i);

}
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Exceptions

int i = 0;
try {
atomic {

i++;
node = new Node();

}
} catch (Exception e) {
print(i);

}

int i = 0;
try {
atomic {

i++;
node = new Node();

}
} catch (Exception e) {
print(i);

}

Throws OutOfMemoryException!
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Exceptions

int i = 0;

try {

atomic {

i++;

node = new Node();
}

} catch (Exception e) {

print(i);

}

int i = 0;

try {

atomic {

i++;

node = new Node();
}

} catch (Exception e) {

print(i);

}

Throws OutOfMemoryException!

What is 

printed?
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Unhandled Exceptions

• Aborts transaction

– Preserves invariants

– Safer

• Commits transaction

– Like locking semantics

– What if exception object refers to values 

modified in transaction?
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Nested Transactions

atomic void foo() {
bar();

}

atomic void bar() {
…
}

atomic void foo() {
bar();

}

atomic void bar() {
…
}
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Nested Transactions

• Needed for modularity

– Who knew that cosine() contained a 
transaction?

• Flat nesting

– If child aborts, so does parent

• First-class nesting

– If child aborts, partial rollback of child only



Hatin’ on TM

STM is too inefficient



Hatin’ on TM

Requires radical change in programming style



Hatin’ on TM

Erlang-style shared nothing only true path to salvation



Hatin’ on TM

There is nothing wrong with what we do today.



Gartner Hype Cycle

Hat tip: Jeremy Kemp

You are here
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• Multicore forces us to rethink 

almost everything

I, for one, Welcome our new 

Multicore Overlords &
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• Multicore forces us to rethink 

almost everything

• Standard approaches too 

complex

I, for one, Welcome our new 

Multicore Overlords &
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• Multicore forces us to rethink 

almost everything

• Standard approaches won’t 

scale

• Transactions might make life 

simpler&

I, for one, Welcome our new 

Multicore Overlords &
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• Multicore forces us to rethink almost 

everything

• Standard approaches won’t scale

• Transactions might &

• Multicore programming

Plenty more to do&

Maybe you will save us&

I, for one, Welcome our new 

Multicore Overlords &



Thanks !  תודה
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