
NON-BLOCKING DATA STRUCTURES

AND TRANSACTIONAL MEMORY

Tim Harris, 28 November 2014

Lecture 8

� Problems with locks

� Atomic blocks and composition

� Hardware transactional memory

� Software transactional memory

Transactional Memory

Companion slides for

The Art of Multiprocessor Programming

by Maurice Herlihy & Nir Shavit

4

Our Vision for the Future

In this course, we covered &.

Best practices &

New and clever ideas &

And common-sense observations.

Art of Multiprocessor
Programming

5

Our Vision for the Future

In this course, we covered &.

Best practices &

New and clever ideas &

And common-sense observations.

Nevertheless &

Concurrent programming is still too hard &

Here we explore why this is &.

And what we can do about it.

Art of Multiprocessor
Programming

6

Locking

Art of Multiprocessor
Programming

7

Coarse-Grained Locking

Easily made correct &

But not scalable.

Art of Multiprocessor
Programming

8

Fine-Grained Locking

Can be tricky &

Art of Multiprocessor
Programming

9

Locks are not Robust

If a thread holding

a lock is delayed &

No one else can

make progress
Art of Multiprocessor

Programming

Locking Relies on Conventions

• Relation between

– Locks and objects

– Exists only in programmer’s mind

/*

* When a locked buffer is visible to the I/O layer

* BH_Launder is set. This means before unlocking

* we must clear BH_Launder, mb() on alpha and then

* clear BH_Lock, so no reader can see BH_Launder set

* on an unlocked buffer and then risk to deadlock.

*/

Actual comment

from Linux Kernel
(hat tip: Bradley Kuszmaul)

Art of Multiprocessor
Programming

11

Simple Problems are hard

enq(x) enq(y)
double-ended queue

No interference if

ends “far apart”
Interference OK if

queue is small
Clean solution is

publishable result:
[Michael & Scott PODC 97]

Art of Multiprocessor
Programming

Art of Multiprocessor
Programming

12

Locks Not Composable

Transfer item from one

queue to another
Must be atomic :

No duplicate or missing items

Art of Multiprocessor
Programming

13

Locks Not Composable

Lock source

Lock target

Unlock source

& target

Art of Multiprocessor
Programming

14

Locks Not Composable

Lock source

Lock target

Unlock source &

target

Methods cannot provide

internal synchronization
Objects must expose

locking protocols to clients

Clients must devise and

follow protocols
Abstraction broken!

15

Monitor Wait and Signal

zzz

Empty

buffer
Yes!

Art of Multiprocessor
Programming

If buffer is empty,

wait for item to show up

16

Wait and Signal do not Compose

empty

emptyzzz&

Art of Multiprocessor
Programming

Wait for either?

Art of Multiprocessor
Programming

1717

The Transactional Manifesto

• Current practice inadequate

– to meet the multicore challenge

• Research Agenda

– Replace locking with a transactional API

– Design languages or libraries

– Implement efficient run-time systems

Art of Multiprocessor
Programming

1818

Transactions

Block of code &.

Atomic: appears to happen

instantaneously

Serializable: all appear to

happen in one-at-a-time

orderCommit: takes effect

(atomically)

Abort: has no effect

(typically restarted)

Art of Multiprocessor
Programming

1919

atomic {
x.remove(3);
y.add(3);

}

atomic {
y = null;

}

Atomic Blocks

Art of Multiprocessor
Programming

2020

atomic {
x.remove(3);
y.add(3);

}

atomic {
y = null;

}

Atomic Blocks

No data race

Art of Multiprocessor
Programming

2121

public void LeftEnq(item x) {
Qnode q = new Qnode(x);
q.left = left;
left.right = q;
left = q;

}

A Double-Ended Queue

Write sequential Code

Art of Multiprocessor
Programming

2222

public void LeftEnq(item x)
atomic {
Qnode q = new Qnode(x);
q.left = left;
left.right = q;
left = q;
}
}

A Double-Ended Queue

Art of Multiprocessor
Programming

2323

public void LeftEnq(item x) {
atomic {
Qnode q = new Qnode(x);
q.left = left;
left.right = q;
left = q;
}
}

A Double-Ended Queue

Enclose in atomic block

Art of Multiprocessor
Programming

2424

Warning

• Not always this simple

– Conditional waits

– Enhanced concurrency

– Complex patterns

• But often it is&

Art of Multiprocessor
Programming

25

Composition?

Art of Multiprocessor
Programming

26

Composition?

public void Transfer(Queue<T> q1, q2)
{
atomic {
T x = q1.deq();
q2.enq(x);
}
}

Trivial or what?

Art of Multiprocessor
Programming

2727

public T LeftDeq() {
atomic {
if (left == null)

retry;
…

}
}

Conditional Waiting

Roll back transaction

and restart when

something changes

Art of Multiprocessor
Programming

2828

Composable Conditional Waiting

atomic {
x = q1.deq();
} orElse {
x = q2.deq();
}

Run 1st method. If it retries %
Run 2nd method. If it retries %

Entire statement retries

Art of Multiprocessor
Programming

2929

Hardware Transactional

Memory
• Exploit Cache coherence

• Already almost does it

– Invalidation

– Consistency checking

• Speculative execution

– Branch prediction =

optimistic synch!

Art of Multiprocessor
Programming

3030

HW Transactional Memory

Interconnect

caches

memory

read active

T

Art of Multiprocessor
Programming

3131

Transactional Memory

read

active
TT

active

caches

memory

Art of Multiprocessor
Programming

3232

Transactional Memory

active
TT

activecommitted

caches

memory

Art of Multiprocessor
Programming

3333

Transactional Memory
write

active

committed

T
D caches

memory

Art of Multiprocessor
Programming

3434

Rewind

active
TT

active
writeaborted

D caches

memory

Art of Multiprocessor
Programming

3535

Transaction Commit

• At commit point

– If no cache conflicts, we win.

• Mark transactional entries

– Read-only: valid

– Modified: dirty (eventually written back)

• That’s all, folks!

– Except for a few details &

Art of Multiprocessor
Programming

3636

Not all Skittles and Beer

• Limits to

– Transactional cache size

– Scheduling quantum

• Transaction cannot commit if it is

– Too big

– Too slow

– Actual limits platform-dependent

HTM Strengths &

Weaknesses

• Ideal for lock-free data structures

HTM Strengths &

Weaknesses

• Ideal for lock-free data structures

• Practical proposals have limits on

– Transaction size and length

– Bounded HW resources

– Guarantees vs best-effort

HTM Strengths &

Weaknesses
• Ideal for lock-free data structures

• Practical proposals have limits on
– Transaction size and length

– Bounded HW resources

– Guarantees vs best-effort

• On fail

– Diagnostics essential

– Try again in software?

Composition

Locks don’t compose, transactions do.

Composition necessary for Software Engineering.

But practical HTM doesn’t really support

composition!
Why we need STM

Transactional Consistency

• Memory Transactions are collections of

reads and writes executed atomically

• They should maintain consistency

– External: with respect to the interleavings

of other transactions (linearizability).

– Internal: the transaction itself should

operate on a consistent state.

External Consistency

Application

Memory

X

Y

4

2

8

4

Invariant x = 2y

Transaction A:

Write x

Write y

Transaction B:

Read x

Read y

Compute z = 1/(x-y) = 1/2

Art of Multiprocessor
Programming

43

A Simple Lock-Based STM

• STMs come in different forms

– Lock-based

– Lock-free

• Here : a simple lock-based STM

• Lets start by Guaranteeing External

Consistency

Art of Multiprocessor
Programming

44

Synchronization

• Transaction keeps

– Read set: locations & values read

– Write set: locations & values to be written

• Deferred update

– Changes installed at commit

• Lazy conflict detection

– Conflicts detected at commit

Art of Multiprocessor
Programming

4545

STM: Transactional Locking

Map

Application

Memory

V#

V#

V#

Array of

version #s &

locks

Art of Multiprocessor
Programming

4646

Reading an Object
Mem

Locks

V#

V#

V#

V#

V#

Add version numbers

& values to read set

Art of Multiprocessor
Programming

4747

To Write an Object
Mem

Locks

V#

V#

V#

V#

V#

Add version numbers &

new values to write set

Art of Multiprocessor
Programming

4848

To Commit
Mem

Locks

V#

V#

V#

V#

V#

X

Y

V#+1

V#+1

Acquire write locks

Check version numbers

unchanged
Install new values

Increment version numbers

Unlock.

Encounter Order Locking (Undo Log)

1. To Read: load lock + location

2. Check unlocked add to Read-Set

3. To Write: lock location, store value

4. Add old value to undo-set

5. Validate read-set v#’s unchanged
6. Release each lock with v#+1

V# 0 V# 0

V# 0

V# 0

V# 0

V# 0

V# 0

X V# 1

V# 0 Y V# 1

V# 0 V# 0

Mem Locks

V#+1 0

V#+1 0

V# 0

V# 0

V# 0

V#+1 0

V# 0

V# 0

V# 0

V# 0

V#+1 0

V# 0

X

Y

Quick read of values freshly

written by the reading transaction

Commit Time Locking (Write Buff)

1. To Read: load lock + location

2. Location in write-set? (Bloom Filter)

3. Check unlocked add to Read-Set

4. To Write: add value to write set

5. Acquire Locks

6. Validate read/write v#’s unchanged
7. Release each lock with v#+1

V# 0 V# 0

V# 0

V# 0

V# 0

V# 0

V# 0

V# 0

V# 0 V# 0

V# 0 V# 0

Mem Locks

V#+1 0

V# 0

V# 0

Hold locks for very short duration

V# 1

V# 1

V# 1X

Y

V#+1 0

V# 1V#+1 0

V# 0

V#+1 0

V# 0

V# 0

V# 0

V# 0

V#+1 0

V# 0

X

Y

COM vs. ENC High Load

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

 0 2 4 6 8 10 12 14 16

o
p

s
/s

e
c

threads

(c) Small Red-Black Tree 20%/20%/60%

TL:CMT:PS
TL:CMT:PO
TL:Enc:PS
TL:Enc:PO

mutex
spinlock
mcslock

stm_fraser
stm_ennals

hanke

ENC

Hand

MCS

COM

Red-Black Tree 20% Delete 20% Update 60% Lookup

COM vs. ENC Low Load

COM

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

 0 2 4 6 8 10 12 14 16

o
p

s
/s

e
c

threads

(b) Large Red-Black Tree 5%/5%/90%

TL:CMT:PS
TL:CMT:PO
TL:Enc:PS
TL:Enc:PO

mutex
spinlock
mcslock

stm_fraser
stm_ennals

hanke

ENC

Hand

MCS

Red-Black Tree 5% Delete 5% Update 90% Lookup

Problem: Internal

Inconsistency

• A Zombie is an active transaction destined to

abort.

• If Zombies see inconsistent states bad things

can happen

Art of Multiprocessor
Programming

54

Internal Consistency

x

y

4

2

8

4

Invariant: x = 2y

Transaction A: reads x = 4
Transaction B: writes

8 to x, 16 to y, aborts A)

Transaction A: (zombie)
reads y = 4

computes 1/(x-y)

Divide by zero FAIL!

Art of Multiprocessor
Programming

55

Solution: The Global Clock

(The TL2 Algorithm)

• Have one shared global clock

• Incremented by (small subset of) writing

transactions

• Read by all transactions

• Used to validate that state worked on is

always consistent

100

Art of Multiprocessor
Programming

5656

Read-Only Transactions
Mem

Locks

12

32

56

19

17

100

Shared Version
Clock

Private Read
Version (RV)

Copy version clock to local
read version clock

100

Art of Multiprocessor
Programming

5757

Read-Only Transactions
Mem

Locks

12

32

56

19

17

100

Shared Version
Clock

Private Read
Version (RV)

Copy version clock to local
read version clock

Read lock, version #, and
memory

Art of Multiprocessor
Programming

5858

Read-Only Transactions
Mem

Locks

12

32

56

19

17

100

Shared Version
Clock

Private Read
Version (RV)

Copy version clock to local
read version clockRead lock, version #, and

memory, check version # less
than read clock

100

On Commit:
check unlocked &

version #s less than
local read clock

Art of Multiprocessor
Programming

5959

Read-Only Transactions
Mem

Locks

12

32

56

19

17

100

Shared Version
Clock

Private Read
Version (RV)

Copy version clock to local
read version clock

Read lock, version #, and
memoryOn Commit:

check unlocked &
version #s less than

local read clock100

We have taken a snapshot without
keeping an explicit read set!

Example Execution: Read Only

Trans

1. RV � Shared Version Clock

2. On Read: read lock, read mem,

read lock: check unlocked,

unchanged, and v# <= RV

3. Commit.

87 0 87 0

34 0

88 0

V# 0

44 0

V# 0

34 0

99 0 99 0

50 0 50 0

Mem Locks

Reads form a snapshot of memory.

No read set!

100 Shared Version Clock

87 0

34 0

99 0

50 0

87 0

34 0

88 0

V# 0

44 0

V# 0

99 0

50 0

100 RV

100

Art of Multiprocessor
Programming

6161

Ordinary (Writing) Transactions
Mem

Locks

12

32

56

19

17

100

Shared Version
Clock

Private Read
Version (RV)

Copy version clock to local
read version clock

100

Art of Multiprocessor
Programming

6262

Ordinary Transactions
Mem

Locks

12

32

56

19

17

100

Shared Version
Clock

Private Read
Version (RV)

Copy version clock to local
read version clock

On read/write, check:
Unlocked & version # < RV

Add to R/W set

Art of Multiprocessor
Programming

6363

On Commit
Mem

Locks

100

Shared Version
Clock

100

12

32

56

19

17 Private Read
Version (RV)

Acquire write locks

Art of Multiprocessor
Programming

6464

On Commit
Mem

Locks

100

Shared Version
Clock

100101

12

32

56

19

17 Private Read
Version (RV)

Acquire write locks

Increment Version Clock

Art of Multiprocessor
Programming

6565

On Commit
Mem

Locks

100

Shared Version
Clock

100101

12

32

56

19

17 Private Read
Version (RV)

Acquire write locks

Increment Version Clock
Check version numbers ≤ RV

Art of Multiprocessor
Programming

6666

On Commit
Mem

Locks

100

Shared Version
Clock

100101

12

32

56

19

17 Private Read
Version (RV)

Acquire write locks

Increment Version Clock
Check version numbers ≤ RV

Update memoryx

y

Art of Multiprocessor
Programming

6767

On Commit
Mem

Locks

100

Shared Version
Clock

100101

12

32

56

19

17 Private Read
Version (RV)

Acquire write locks

Increment Version Clock
Check version numbers ≤ RV

Update memory

Update write version #s

x

y

101

101

Example: Writing Trans

1. RV � Shared Version Clock

2. On Read/Write: check

unlocked and v# <= RV then

add to Read/Write-Set

3. Acquire Locks
4. WV = F&I(VClock)

5. Validate each v# <= RV

6. Release locks with v# � WV

Reads+Inc+Writes

=serializable

100 Shared Version Clock

87 0 87 0

34 0

88 0

44 0

V# 0

34 0

99 0 99 0

50 0 50 0

Mem Locks

87 0

34 0

99 0

50 0

34 1

99 1

87 0

X

Y

Commit

121 0

121 0

50 0

87 0

121 0

88 0

V# 0

44 0

V# 0

121 0

50 0

100
RV

100120121

X

Y

Art of Multiprocessor
Programming

69

TM Design Issues

• Implementation

choices

• Language design

issues

• Semantic issues

Art of Multiprocessor
Programming

70

Granularity

• Object

– managed languages, Java, C#, &

– Easy to control interactions between

transactional & non-trans threads

• Word

– C, C++, &

– Hard to control interactions between

transactional & non-trans threads

Art of Multiprocessor
Programming

71

Direct/Deferred Update

• Deferred

– modify private copies & install on commit

– Commit requires work

– Consistency easier

• Direct

– Modify in place, roll back on abort

– Makes commit efficient

– Consistency harder

Art of Multiprocessor
Programming

72

Conflict Detection

• Eager

– Detect before conflict arises

– “Contention manager” module resolves

• Lazy

– Detect on commit/abort

• Mixed

– Eager write/write, lazy read/write &

Art of Multiprocessor
Programming

73

Conflict Detection

• Eager detection may abort transactions

that could have committed.

• Lazy detection discards more

computation.

Art of Multiprocessor
Programming

74

Contention Management &

Scheduling

• How to resolve

conflicts?

• Who moves forward

and who rolls back?

• Lots of empirical

work but formal

work in infancy

Art of Multiprocessor
Programming

75

Contention Manager Strategies

• Exponential backoff

• Priority to

– Oldest?

– Most work?

– Non-waiting?

• None Dominates

• But needed anyway
Judgment of Solomon

Art of Multiprocessor
Programming

76

I/O & System Calls?

• Some I/O revocable

– Provide transaction-

safe libraries

– Undoable file

system/DB calls

• Some not

– Opening cash

drawer

– Firing missile

Art of Multiprocessor
Programming

77

I/O & System Calls

• One solution: make transaction
irrevocable

– If transaction tries I/O, switch to irrevocable
mode.

• There can be only one &

– Requires serial execution

• No explicit aborts

– In irrevocable transactions

Art of Multiprocessor
Programming

78

Exceptions

int i = 0;

try {

atomic {

i++;

node = new Node();
}

} catch (Exception e) {

print(i);

}

int i = 0;

try {

atomic {

i++;

node = new Node();
}

} catch (Exception e) {

print(i);

}

Art of Multiprocessor
Programming

79

Exceptions

int i = 0;
try {
atomic {

i++;
node = new Node();

}
} catch (Exception e) {
print(i);

}

int i = 0;
try {
atomic {

i++;
node = new Node();

}
} catch (Exception e) {
print(i);

}

Throws OutOfMemoryException!

Art of Multiprocessor
Programming

80

Exceptions

int i = 0;

try {

atomic {

i++;

node = new Node();
}

} catch (Exception e) {

print(i);

}

int i = 0;

try {

atomic {

i++;

node = new Node();
}

} catch (Exception e) {

print(i);

}

Throws OutOfMemoryException!

What is

printed?

Art of Multiprocessor
Programming

81

Unhandled Exceptions

• Aborts transaction

– Preserves invariants

– Safer

• Commits transaction

– Like locking semantics

– What if exception object refers to values

modified in transaction?

Art of Multiprocessor
Programming

82

Nested Transactions

atomic void foo() {
bar();

}

atomic void bar() {
…
}

atomic void foo() {
bar();

}

atomic void bar() {
…
}

Art of Multiprocessor
Programming

83

Nested Transactions

• Needed for modularity

– Who knew that cosine() contained a
transaction?

• Flat nesting

– If child aborts, so does parent

• First-class nesting

– If child aborts, partial rollback of child only

Hatin’ on TM

STM is too inefficient

Hatin’ on TM

Requires radical change in programming style

Hatin’ on TM

Erlang-style shared nothing only true path to salvation

Hatin’ on TM

There is nothing wrong with what we do today.

Gartner Hype Cycle

Hat tip: Jeremy Kemp

You are here

Art of Multiprocessor
Programming

89

• Multicore forces us to rethink

almost everything

I, for one, Welcome our new

Multicore Overlords &

Art of Multiprocessor
Programming

90

• Multicore forces us to rethink

almost everything

• Standard approaches too

complex

I, for one, Welcome our new

Multicore Overlords &

Art of Multiprocessor
Programming

91

• Multicore forces us to rethink

almost everything

• Standard approaches won’t

scale

• Transactions might make life

simpler&

I, for one, Welcome our new

Multicore Overlords &

Art of Multiprocessor
Programming

92

• Multicore forces us to rethink almost

everything

• Standard approaches won’t scale

• Transactions might &

• Multicore programming

Plenty more to do&

Maybe you will save us&

I, for one, Welcome our new

Multicore Overlords &

Thanks ! תודה

Art of Multiprocessor
Programming

93

