

Non-Functional &
Project Requirements

with COSMIC:

 Experts Guide

Version 2.

September 2020

Non-Functional & Project Requirements with COSMIC: Experts Guide - Copyright © 2020 2

VVeerrssiioonn ccoonnttrrooll

Date Reviewer(s) Modifications / Additions

September
2020

 See Acknowledgements Minor editing

AAcckknnoowwlleeddggeemmeennttss

Authors and reviewers who have contributed to the development of v1.0 (alphabetical order)

Alain Abran,

École de Technologie Supérieure,
Université du Québec, Canada

Diana Baklizky

TI Metricas, Brazil

Carol Buttle

Safety and Security Engineering
Council, United Kingdom

Jean-Marc Desharnais

École de Technologie Supérieure,
Université du Québec, Canada

Peter Fagg

Pentad Ltd, United Kingdom

Cigdem Gencel

DEISER, Spain

Barbara Kitchenham,

Keele University, United Kingdom

Arlan Lesterhuis

The Netherlands

Roberto Meli

Data Processing Organization,
Italy

Dylan Ren

Measures, China

Luca Santillo

Agile Metrics, Italy

Hassan Soubra

German University in Cairo, Egypt

Charles Symons*,

United Kingdom

Frank Vogelezang

METRI, Netherlands

Steve Woodward

Canada

* Author of this guideline

Copyright 2020. All Rights Reserved. The Common Software Measurement International Consortium
(COSMIC). Permission to copy all or part of this material is granted provided that the copies are not
made or distributed for commercial advantage and that the title of the publication, its version number,
and its date are cited and notice is given that copying is by permission of the Common Software
Measurement International Consortium (COSMIC). To copy otherwise requires specific permission.

Non-Functional & Project Requirements with COSMIC: Experts Guide - Copyright © 2020 3

FFoorreewwoorrdd

The COSMIC method aims to measure a ‘functional size’ of software based on its Functional
User Requirements (FUR). In simple terms these specify ‘what’ a software product must do.

The main uses of COSMIC-measured ‘functional sizes’ are in:

• measuring and comparing performance across projects of similar characteristics, e.g.
using ‘productivity’ = (software functional size)/(project effort)

• estimating effort for projects, e.g. from project effort = (new software estimated
functional size) / (productivity from previous similar projects)

This apparently simple process may be useful in practice because the ‘functional sizes’ are
usually by far the largest driver of effort of software development projects. However, the
success of this simple process depends heavily on what is meant by ‘similar’.

Clearly many other factors than just the size of the functional requirements can affect project
performance and may need to be taken into account in order to ensure fair, or ‘like-for-like’,
comparisons. These same other factors may arise when estimating the project effort to
develop some new software. Examples of such ‘other factors’ are:

• varying ease-of-use or system response time requirements (system quality factors);

• varying numbers of users that the system must serve (environmental factors)

• varying requirements for the technology to be used or for the technical architecture
(technical factors);

• varying skill-levels of the project teams or project constraints such as schedule
compression factors (project factors).

The Guideline begins by referring to these various system quality, environmental and
technical requirements and constraints as ‘non-functional requirements’, abbreviated as
‘NFR’, and ‘project requirements and constraints’ abbreviated as ‘PRC’.

In the late 1970’s when functional size measurement was first invented, few NFR were
recognized and they did not vary much for all the projects within a given company, or even
within the same domain e.g. of business applications. The first methods of functional sizing
attempted to account for a few NFR by an adjustment to the functional size. For example,
Albrecht’s ‘Value Adjustment Factor’ for FPA recognized 10 factors, later increased to 14
factors by IFPUG.

Since then, many more types of requirements are recognized as non-functional. With the
enormous varieties of technology and software, taking them into account in the activities of
project performance measurement, benchmarking and estimating can be much more difficult.

The purposes of this Guideline are

• to help understand and define the concepts of NFR and PRC;

• to propose a standard Glossary of terms and classification system for NFR and PRC;

• to provide practical guidance to users of the COSMIC FSM method on how to deal
with NFR and PRC, as well as FUR, when making software project performance
measurement comparisons, when developing benchmarks, and when estimating for
new projects.

The focus of the Guideline is on the NFR for the software deliverables of a project and on the
PRC. (A project may also have to deliver other related products such as the hardware on
which the software executes, business processes and training for human users of the
software, and such-like, but these are only considered in passing.)

Non-Functional & Project Requirements with COSMIC: Experts Guide - Copyright © 2020 4

The Guideline is structured as follows.

• Chapter 1 introduces the need for a coherent terminology and for methods of
measuring or recording FUR, NFR and PRC consistently across the activities of
software system project performance measurement, benchmarking and estimating,
and starts to discuss how FUR, NFR and PRC affect measured software size and
project effort.

• Chapter 2 introduces a coherent set of definitions of all types of requirements, in a
hierarchical structure.

• Chapter 3 introduces a classification system for NFR and PRC and gives the criteria
for deciding which NFR and PRC terms were included in the Glossary. The
classification system should also help understanding and make it easier to search for
a particular NFR or PRC term. The classification and lists of NFR and PRC terms
should be valuable as a checklist when defining requirements for a new software
project.

• Chapter 4 aims to give practical advice on how to deal with NFR and PRC in
recording project data, comparing project performance, establishing internal
benchmarks and estimating for new projects.

• Chapter 5 gives examples of quality requirements for a software system or product
that initially appear as non-functional, but that evolve as a project progresses to
requirements for software functionality. Most such functionality can be measured by
the standard COSMIC method.

• Chapter 6 (to be written mostly in a later release) introduces standard ways of
recording and measuring each of the NFR and PRC terms.

• The Glossary of Chapter 7 lists NFR and PRC terms and their definitions, selected
using the criteria of Chapter 3.

The reader is assumed to have a general understanding of functional size measurement and
of the COSMIC method. Much information about COSMIC and all documentation on the
COSMIC method is available for free download from www.cosmic-sizing.org.

The COSMIC Measurement Practices Committee.

http://www.cosmic-sizing.org/

Non-Functional & Project Requirements with COSMIC: Experts Guide - Copyright © 2020 5

TTaabbllee ooff CCoonntteennttss

1 INTRODUCTION AND TERMINOLOGY ... 1

1.1 The need for coherent and consistent data across four activities1

1.2 Towards a coherent terminology ..3
1.2.1 The relationship between ‘requirements’ and ‘constraints’3
1.2.2 What do requirements apply to? ..4
1.2.3 NFR often evolve into FUR as a project progresses ...5

1.3 Current practices in dealing with NFR in a system development project7

1.4 Summary and conclusions from this chapter ...7

2 DEFINITIONS OF THE VARIOUS TYPES OF REQUIREMENTS 8

2.1 Functional User Requirements (FUR) ..8

2.2 Non-Functional Requirements (NFR) ...9

2.3 Project Requirements and Constraints (PRC) .. 10

2.4 Summary model of requirements for a software systems project 10

3 SELECTION AND CLASSIFICATION OF NFR AND PRC TERMS 12

3.1 Selection of NFR terms ... 12
3.1.1 Quality Requirements .. 13
3.1.2 System Environment Requirements .. 14
3.1.3 Technical Requirements ... 15

3.2 Selection of terms for Project Requirements and Constraints 15

4 DEALING WITH NFR AND PRC FOR PROJECTS WITHIN AN ORGANIZATION 16

4.1 Commonality of NFR and PRC across an organization .. 16

4.2 Typical NFR and PRC to be recorded for business application projects 17

4.3 Typical NFR and PRC to be recorded for real-time embedded software projects 18

4.4 Establishing internal benchmarks.. 18

4.5 Dealing with NFR and PRC in software project estimating ... 19

5 EXAMPLES OF FUNCTIONAL SIZE MEASUREMENT OF NFR 22

5.1 Measuring the FUR of application software arising from Quality NFR 22

5.2 A simple security NFR ... 25

5.3 A portability NFR ... 26

5.4 NFR for a mobile e-mail system .. 26

6 MEASUREMENT OF NFR ... 27

6.1 Sizing NFR collectively .. 27

6.2 Recording and measuring individual NFR and PRC ... 28

6.3 ISO/IEC standards for measuring individual Quality NFR... 28

7 GLOSSARY OF NFR AND PRC TERMS .. 30

7.1 Sources of ISO standard and other definitions ... 30

7.2 Glossary of Non-Functional Requirement terms ... 32

7.3 Glossary of Project Requirement and Constraint terms .. 41

7.4 Terms that have been excluded from the Glossary .. 44

Non-Functional & Project Requirements with COSMIC: Experts Guide - Copyright © 2020 6

References ... 45

APPENDIX: COSMIC CHANGE REQUEST AND COMMENT PROCEDURE 48

Non-Functional & Project Requirements with COSMIC: Experts Guide - Copyright © 2020 7

AAccrroonnyymmss

The following acronyms are used in this Glossary

CMMI® Capability Maturity Model Integration

COBIT Control Objectives for Information and Related Technology,
http://www.isaca.org/cobit/pages/default.aspx

COSMIC Common Software Measurement International Consortium

FSM Functional Size Measurement

FUR Functional User Requirements

IEEE Institute of Electrical and Electronics Engineers

IEC International Electrotechnical Commission

IFPUG International Function Point Users Group

ISBSG International Software Benchmarking Standards Group

ISO International Organization for Standardization

NFR Non-Functional Requirements

PMI® Project Management Institute

PRC Project Requirements and Constraints

PRINCE2 PRojects IN a Controlled Environment, Version 2

ROI Return on Investment

SPICE Software Process Improvement and Capability Determination

SQuaRE System and software product Quality Requirements and Evaluation

http://www.isaca.org/cobit/pages/default.aspx

Non-functional & Project Requirements with COSMIC: Experts Guide, v.2 - Copyright © 2020. 1

All rights reserved. COSMIC

11
INTRODUCTION AND TERMINOLOGY

The purpose of this Guideline is to establish common understanding and terminology across
the activities of software sizing, software project performance measurement, benchmarking
and software project estimating.

The common subject linking these four activities are projects that develop or enhance
software-intensive ‘systems’ (comprising software, hardware, data and maybe other
deliverables) or just software products. For simplicity, when we do not need to be more
precise, we will refer to all of these as ‘software system projects’ and their output as ‘software
systems or software products’ (shortened to ’software system/product’ where convenient).

1.1 The need for coherent and consistent data across four activities

Figure 1.1 shows the dependencies across the four activities of recording and measuring
requirements for a software system project, deriving project performance measures, using
these to develop project benchmarks and estimating for a new project based on its
requirements and comparable benchmark data from previous projects (broad arrows indicate
dependency of activities).

Measuring
project

performance

Project
estimating

Benchmarking

Project

data &

benchmark

repository

Recording & measuring
software system

project requirements

Figure 1.1 - Inter-relationships of four activities that require coherent and consistent
data and terminology

Non-functional & Project Requirements with COSMIC: Experts Guide, v.2 - Copyright © 2020. 2

All rights reserved. COSMIC

We need coherent terminology to be used consistently across these four activities because
typically:

• measures of the size of software system/product requirements are used with project
effort data to produce project performance measures;

• these size and effort data are recorded together with the other characteristics of the
project and of the software system/product that are needed to ensure like-for-like
performance comparisons in a central project data repository;

• project performance measures are used to derive benchmark data for projects which
are also classified according to their most significant project and software
system/product characteristics;

• when an estimate of effort is needed for a new project, the software size is measured
or estimated from its requirements and is combined with benchmark data for projects
that had similar characteristics to produce the new project effort estimate,

To fully understand these four activities, we must first recognize that a software system
project has to consider three types of requirements, which affect the software size and the
project effort in different ways:

• Functional User Requirements (FUR) may be roughly defined as ‘what the software
must do’. They clearly affect the software size, which in turn affects project effort.

• Non-Functional Requirements (NFR) which are sometimes defined as ‘how the
software must do it’. Whether or not NFR affect software size is not immediately clear;
they certainly affect project effort.

• Project Requirements and Constraints (PRC). These clearly affect project effort
directly but do not affect software size.

As regards measurements, in practice the only measures of software size that are used
consistently across these four activities are either counts of Source Lines of Code (SLOC) or
measurements of the FUR by a ‘Functional Size Measurement’ (FSM) method such as the
ISO standard COSMIC method.

SLOC size measures have an advantage that they measure a software size that is the result
of meeting all the FUR and NFR, but they have so many disadvantages we will not consider
them further. Conventionally, FSM Methods do not now measure NFR. (Past attempts to do
so, e.g. IFPUG’s ‘Value Adjustment Factor’ are now rarely used). In general, there are no
widely-accepted standards on if and how NFR should be recorded and/or measured.

For project requirements and constraints, there are standards from benchmarking
organizations such as the ISBSG that define how to measure or record the most important
parameters.

Very commonly, a FSM method is used to measure a ‘functional size’ of the FUR, which is
used as a measure of work output of a software system project. This approach can lead to
satisfactory consistency across our four activities provided any NFR have a relatively low
effect on project effort, or account for the same proportion of effort for all projects being
studied. However, if NFR cause a high or varying amount of effort on the projects being
studied, use of a functional size as the sole measure of project work-output may be unreliable

Consequently, to ensure coherence across our four activities, we would ideally use a
consistent measure of functional size and we would measure, or at least record, NFR and
PRC in a consistent way.

However, a survey [4] of terms from nine sources ([13] to [21] inclusive) that might be
candidates for a Glossary of NFR and PRC terms relevant to these activities found that only
one term (‘Interfaces’) was common to all nine sources (from 108 unique terms found in the
nine sources). It seems that each source has defined what it thinks are the main NFR and
PRC for its purpose (or has simply defined the NFR and PRC it can easily measure).

Non-functional & Project Requirements with COSMIC: Experts Guide, v.2 - Copyright © 2020. 3

All rights reserved. COSMIC

This lack of consistency of the factors to be considered across our four activities make it
inherently difficult for an organization to decide what NFR and project data to capture for
projects, along with the functional size of the software delivered, for use in project
performance measurement and analysis, subsequent benchmarking and future project
estimating activities.

1.2 Towards a coherent terminology

This section considers some basic terminology questions that must be properly understood
before we can develop reliable definitions.

1.2.1 The relationship between ‘requirements’ and ‘constraints’

The terms ‘requirements’ and ‘constraints’ are often used inter-changeably, which can be
confusing.

In ordinary English, a requirement is a necessary condition whilst a constraint is simply a
limiting condition. It follows that all requirements are constraints, but not all constraints are
requirements. Figure 1.2 illustrates this difference with examples for NFR and PRC by means
of a Venn diagram.

NF & Project

Constraints e.g.

• communications latency

• team is inexperienced

• requirements are uncertain

NF Requirements

e.g. the system must be

written using C#

Project Requirements

e.g. the system must

be delivered by end-

year

Figure 1.2 - The relationship between ‘constraints’ and ‘requirements’

EXAMPLE 1: a requirement that the software shall be written in C# is also a constraint. But
a situation where it happens that the requirements are uncertain and very difficult to
establish, is a constraint, not a requirement.

EXAMPLE 2: Some terms can be either a constraint or a requirement depending on the
context. Achieving a certain ‘latency’ target could be a requirement for real-time
processing of audio signals, or latency could be a ‘design constraint’ for a space
communications system.

Constraints that are not requirements are often only recognized after a project is completed,
e.g. in a post-project review. The importance of this point is that if we are to understand
project performance properly, then we must take into account project constraints that were
not requirements.

EXAMPLE 3: A project might be measured as poorly-performing and a post-project review
determined that this was due to the constraint that the team was inexperienced with the

Non-functional & Project Requirements with COSMIC: Experts Guide, v.2 - Copyright © 2020. 4

All rights reserved. COSMIC

technology used. (Conversely, if the team was very experienced with the technology, this
should have been a positive factor for the project, not a ‘constraint’.)

In this Guideline, for simplicity we will mostly use ‘requirement’ and only use
‘constraint’ when really needed. This is particularly necessary for ‘project
requirements and constraints’.

1.2.2 What do requirements apply to?

Requirements may apply to any of the following ‘things’, as shown in Figure 1.3 (in bold).

• The software; typically these are Functional User Requirements (‘what the software
must do’) and software quality attributes, e.g. for usability, portability, maintainability,
etc.;

• The data that the software system/product will maintain or use;

• The technology to be used, e.g. ‘the system must execute on a Unix platform’, the
requirements must be captured using CASE tool XYZ’, ‘the software must be written
in Java’, etc.;

• Other deliverables, e.g. special documentation or training;

• The combined hardware/software system1, e.g. a response time or an availability
requirement will apply to the hardware/software system as a whole (not just to the
software);

• The project, e.g. it must use a team with a particular skill-set; must be completed by
the end of the year, must use an Agile approach, etc.;

In addition, the business or organizational environment may effectively impose certain
requirements or constraints, e.g. the software must be developed off-shore in a specific
country, or be subject to specific industry regulations, such as for banking or for safety, or will
be used by a wide population.

The relationship between these various ‘things to which requirements can apply is shown in
Figure 1.3. (The ‘crows-foot’ symbol indicates that a project may develop and/or enhance one
or more systems. Examples in italics are commonly thought of as ‘Non-Functional
Requirements’)

Software

e.g. process orders

or control a robot, and

be secure against cyber attack;

be programmed in Java

Technology

e.g. execute on Unix;

use an SQL database

Hardware/Software System
e.g. response time, availability

Project
e.g. be completed in nine

months;

use Agile methods;

deliver system with zero ‘severe’

defects in month 1

Environment
e.g. be developed in the

banking industry;

be implemented in all branches

Other Deliverables

e.g. documentation, training

Data

e.g. precision, consistency

Figure 1.3 - The ‘things’ (in bold) that requirements apply to, and the Environment
which may impose requirements.

1 A ‘system’ may well be considered to include human business processes and support activities, or the
totality of a machine that includes software (e.g. a vehicle ‘power train’ system), but in this Guideline we
limit ‘system’ to mean a ‘computer hardware-plus-software’ system.

Non-functional & Project Requirements with COSMIC: Experts Guide, v.2 - Copyright © 2020. 5

All rights reserved. COSMIC

Two important observations from Figure 1.3:

• From their definition (see 2.1) Functional User Requirements apply only to the
software.

• Other types of requirements (shown in italics in this diagram) that are commonly
thought of as ‘non-functional’ can apply to the hardware/software system, to the
software, to the data, to the technology and to other deliverables, or may be
determined by the environment.

Note: The interest in considering the scope of the things to which an NFR can apply is that it
helps us define the scope of what we will consider as an NFR. For the purpose of defining
what we mean by a non-functional requirement, it does not matter which of the things are
impacted by a particular NFR when it is implemented.

EXAMPLE 1: A requirement to use a particular programming language may apply to a
particular piece of software or may be expressed as an organizational policy for all software
system projects, and it is clearly a requirement of the technology to be used. Regardless, it is
an NFR.

EXAMPLE 2: A Non-functional requirement for a three-layer architecture may apply only to
the software or it may impact the hardware as well if the components must execute on
different technical platforms. Either way, this NFR applies to the hardware/software system.

EXAMPLE 3: A Non-functional requirement for a particular response time might be achieved
by using only fast hardware, or by using only a low-level programming language, or by a
software architectural choice, or by a combination of hardware and software features.
Regardless of how the NFR is implemented, the response time is normally measured only at
the system level, not separately for the software or the hardware. It is clearly a system NFR.

There is one further limitation on what we will consider as a Non-functional requirement. The
principal concern of this Guideline is the effect of NFR on the effort to deliver the software
component of a hardware/software system or to deliver a software product. Hence when
discussing NFR in Chapter 2 and their influence in practice for performance measurement,
benchmarking and estimating in Chapter 3, we will not discuss NFR that apply exclusively to
any other ‘thing’ that a project might have to deliver in addition to the software
system/product. These ‘Other deliverables’ include documentation and training, (as in Fig.
2.1), and requirements for hardware to be acquired and installed, business processes to be
established, etc. The variety of possible ‘other deliverables’ is potentially endless.

1.2.3 NFR often evolve into FUR as a project progresses

When first stated as ‘high-level’ (or ‘outline’) requirements, many cannot be classified clearly
as FUR or as NFR – though PRC are usually clearly distinguishable. Some requirements may
appear initially as non-functional but, as a project progresses and more of their details
become known, it becomes clear that the requirement can be satisfied wholly or partly by
software functionality. For simplicity in this Guideline, we say that such NFR may ‘evolve’2 at
least partly into functional requirements for software [7].

The importance of this observation is that when a requirement that is initially stated as
a Non-functional requirement evolves wholly or partly as a project progresses into FUR
for software, the size of this ‘additional’ functionality can potentially be measured
using the COSMIC method in the same way as any other requirement that was always a
functional requirement for software from when it was first stated.

2 Experienced software developers may know that such requirements will be satisfied by software
functionality so never consider them as NFR in the first place. This, perhaps, explains why there is some
confusion about distinguishing NFR and FUR.

Non-functional & Project Requirements with COSMIC: Experts Guide, v.2 - Copyright © 2020. 6

All rights reserved. COSMIC

Any part of a requirement originally stated as non-functional that does not evolve into FUR is
referred to as a ‘true’ NFR in this Guideline

This evolution is illustrated in Figure 1.4 against the background of the software life-cycle.

(Note: the software life-cycle illustrated in Fig. 1.4 may be part of a system life-cycle which

may include activities to decide on the allocation of requirements to hardware or software.
This aspect is not shown in Fig. 1.4.)

Outline

Funct-

-ional

Requts.

Outline

NFR

Approx.

Funct-

-ional

Requts.

‘True’

NFR

Imple-

mented

software

system

or

software

product

Project

Requts. &

Constraints

Require-

ments

Analysis

Definition

& Design

Build, Test

&

Implement

A

r

c

h

i

t

e

c

t

u

r

e

FUR

Fig. 1.4 - NFR may evolve, wholly or partly, into FUR as a project progresses

Examples will illustrate this evolution.

EXAMPLE 1: ‘Maintainability’ as defined in ISO 9126 and ISO 25000 series is a quality
requirement and therefore an NFR according to the ISO 14143/1 definition of a Functional
User Requirement (see below). But a personal computer (PC) supplier’s requirement to be
able to maintain its operating system software remotely on all its users’ PC’s may be
implemented entirely in software, at least as seen by the PC user. When worked out in
detail, this system NFR evolves almost entirely into FUR for PC software functionality. This
leaves only the pure statement of the requirement to be able to maintain the operating
system software remotely on all users’ PC’s remaining as a ‘true’ NFR.

EXAMPLE 2: In contrast to EXAMPLE 1, implementing a maintainability NFR for a space
satellite system that must operate 24/7 will probably be achieved by a combination of
multiple hardware processors (which might also be required for other reasons) as well as
special software. Whatever hardware and/or software is chosen, the statement that ‘the
system must be maintainable 24/7’ will remain a ‘true’ NFR of the hardware/software
system.

EXAMPLE 3: A system response time requirement may evolve into and/or strongly
influence the FUR for some specific software. But any part of the response time
requirement that evolves into a requirement to use fast hardware, or, say, a low-level
programming language, will remain a ‘true’ NFR. Similarly, the required response time
statement (e.g. ‘the response time during peak hour may not exceed one second’) always
remains a ‘true’ NFR for the combined hardware/software system’.

EXAMPLE 4: A requirement that an application must be readable by people with poor sight
could be implemented in various ways. If the human user must be able to change the font
size on screens used by the application, then this approach will have evolved into a FUR
for the application. Alternatively if the application is to be implemented on a tablet with a
touch-sensitive screen and built-in ‘pinch/stretch’ functionality, then there may be no
impact at all for the application. Either way, the statement that the application must be
usable by poor-sighted people remains a ‘true’ NFR.

Non-functional & Project Requirements with COSMIC: Experts Guide, v.2 - Copyright © 2020. 7

All rights reserved. COSMIC

1.3 Current practices in dealing with NFR in a system development project

Practices in specifying NFR seem to vary sharply with domain and with system and software
development processes. The following are examples of differing practices.

In the domain of business application developments, in an organization following a ‘waterfall’
development process, during the early part of the requirements phase, the focus is usually on
capturing the software functional requirement. NFR may only be captured at a very global
level. Specifying the NFR in more detail may be left until later, when the architecture and
software design are considered.

In these later phases, NFR may be viewed, defined, interpreted, and evaluated differently by
different people, particularly if they have been stated only briefly in the requirements phase.
This creates problems for project management purposes and makes it challenging to take
them into account in software estimation and software productivity benchmarking.

EXAMPLE: In a particular Bank’s systems development department, many institutional
NFR, such as for security, banking regulations, auditability, traceability, etc. were never
stated in requirements documents. It was always assumed that everyone knew about
these requirements. This could be quite risky.

In organizations using the Agile development processes, it has been reported that the focus
on delivering functionality can result in NFR that apply across the system being ignored until
far too late in the project. This may arise due to the difficulty of allocating a Non-functional
requirement to a single sprint or iteration.

EXAMPLE: A major European government project using Agile methods was stopped for a
major re-think after two years of development when it was realized that security and
privacy requirements had not been properly considered. These NFR had profound
consequences for the system architecture.

NFR become increasingly important when developing a ‘smart system’ or a ‘system of
systems’ (e.g. a system to enable automatic payment for use of car parking from portable
phones), where architecture, portability and interface NFR become very important.

The common lesson from this experience is that NFR are as important as FUR, and should
be taken into account early in the life of a new software system/product both for general
efficiency and risk-control reasons.

NFR play a critical and therefore better-understood role in the development of mission-
critical and safety-critical systems, e.g. systems for financial-market trading, air traffic
control, major process plant control, etc. It has been reported [3] that in the Statements of
Requirements sent to prospective suppliers of such systems, the NFR may account for 50%
of the documentation. (It was also stated that most of the NFR are eventually allocated to and
implemented as software.)

1.4 Summary and conclusions from this chapter

We have found that there is limited commonality in understanding and use of NFR and PRC
across software project performance measurement, benchmarking and estimating activities. It
is also not widely recognized that system non-functional requirements may evolve as a
project progresses at least partly into software functional requirements. Further, in practice
the importance of NFR is frequently not recognized and they are not specified early enough in
software projects.

There is a need for a new coherent set of definitions of NFR and PRC, and for processes for
how to deal with them consistently in software projects.

Non-functional & Project Requirements with COSMIC: Experts Guide, v.2 - Copyright © 2020. 8

All rights reserved. COSMIC

22
DEFINITIONS OF THE VARIOUS TYPES OF REQUIREMENTS

This section aims to give a coherent set of definitions for all the types of requirements that a
software project may have to satisfy. All definitions in this chapter have been developed and
agreed by COSMIC and IFPUG [29] except the ISO/IEC of FUR [1].

2.1 Functional User Requirements (FUR)

ISO/IEC 14143/1 DEFINITION – Functional User Requirements (FUR)

A sub-set of the user requirements. Requirements that describe what the software shall
do, in terms of tasks and services.

NOTE: Functional User Requirements relate to but are not limited to:

• data transfer (for example Input customer data; Send control signal)

• data transformation (for example Calculate bank interest; Derive average
temperature)

• data storage (for example Store customer order; Record ambient temperature over
time)

• data retrieval (for example List current employees; Retrieve latest aircraft position)

Examples of user requirements that are not Functional User Requirements include but
are not limited to:

• quality constraints (for example usability, reliability, efficiency and portability)

• organizational constraints (for example locations for operation, target hardware and
compliance to standards)

• environmental constraints (for example interoperability, security, privacy and safety)

• implementation constraints (for example development language, delivery schedule)

NOTE: From v4.0.1 of the COSMIC method, we use the term ‘FUR’ to mean the functional
user requirements that: contain all the information needed for a detailed COSMIC Functional
Size Measurement.

Earlier in the life of a project, before that detail is known, we refer simply to ‘functional
requirements’. (See Figure 1.4.)

Non-functional & Project Requirements with COSMIC: Experts Guide, v.2 - Copyright © 2020. 9

All rights reserved. COSMIC

2.2 Non-Functional Requirements (NFR)

There is no good accepted definition of NFR. The ISO 25756 definition for NFR is particularly
unhelpful3 in COSMIC’s opinion, so we do not use it. (Indeed the term ‘NFR’ is not universally
used. A software architect’s view is that a better expression for NFR would be ‘other
stakeholder concerns’ [4].)

COSMIC has therefore agreed a definition with IFPUG of NFR that may be easily compared
and contrasted with the ISO definition of FUR, to make it easier to distinguish FUR and NFR.

 DEFINITION – Non-Functional Requirements (of a software system/product)

Any requirement for a hardware/software system or for a software product, including how
it should be developed and maintained, and how it should perform in operation, except
any functional user requirement for the software. Non-functional requirements concern:

• the software system or software product quality;

• the environment in which the software system or software product must
be implemented and which it must serve;

• the processes and technology to be used to develop and maintain the software
system or software product, and the technology to be used for their execution.

It follows from the above that we can define three main classes of NFR.

DEFINITION – Quality Requirements

Requirements for the quality or for the architecture or design of a delivered software
system or software product.

DEFINITION – System Environment Requirements

Characteristics of the environment in which a software system or software product is
developed and maintained and which it must support in operation, e.g., its user base,
etc.

DEFINITION – Technical Requirements

Requirements for how a software system or software product will be built, such as the
programming language to be used and for the technology (hardware and
communications) that the software system or software product will need in operation.

3 The ISO 25756 definition defines a Non-functional requirement as: “A software requirement

that describes not what the software will do but how the software will do it. Example: software
performance requirements, software external interface requirements, software design constraints, and
software quality attributes.

The main problem with this definition is that ‘how the software will do it’ is both vague and incompatible
with three of the four examples of NFR given in the definition. For example, a ‘software performance
requirement’ says nothing about how the software will do it. Only ‘software design constraints’ say
anything about ‘how’ the software will ‘do it’. Further, this ISO 25756 definition is not compatible with the
ISO 14143/1 definition of Functional User Requirements.

Non-functional & Project Requirements with COSMIC: Experts Guide, v.2 - Copyright © 2020. 10

All rights reserved. COSMIC

Recalling section 1.2.3 which describes how some NFR may evolve wholly or partly as a
project progresses into FUR for software, we can now see that Quality Requirements may
evolve this way, but not System Environment or Technical Requirements.

Note that in addition to quality NFR for the software system/product, ISO/IEC has published a
‘Data Quality Model’ [39] which includes 15 terms that describe data quality from two
perspectives, ‘inherent’ and ‘system dependent’, which partly overlap.

• ‘Inherent’ terms concern data quality attributes which describe whether the data itself
meets needs, e.g. Accuracy, Completeness, Consistency, and Credibility.

• System dependent’ terms concern data quality attributes that depend on the software
system/product environment in which the data are used (hardware devices, etc.), e.g.
Accessibility, Availability, Portability, and Precision.

Several of the terms in this Guideline with definitions relevant to NFR of the software
system/product also occur in the ISO/IEC ‘Data Quality Model’ with definitions relevant to the
quality of data used or maintained by the software.

This first version of this Guideline does not include the definitions that are relevant to data
quality. They will be considered for inclusion in a future version of the Guideline.

2.3 Project Requirements and Constraints (PRC)

 DEFINITION – Project Requirements and Constraints

Requirements that define how a software system project should be managed and
resourced or constraints that affect its performance:

Requirements may include:

• the targets the project should achieve (e.g. budget, delivery date, product
quality);

• the project management processes that should be used;

• how the project should be governed and resourced.

Constraints may include:

• limitations on the project resources planned or needed;

• dependencies on other projects outside the control of the project concerned.

2.4 Summary model of requirements for a software systems project

Figure 2.1 shows the overall classification scheme for the various types of requirements that
may arise in a software systems project, as used in this Guideline.

Non-functional & Project Requirements with COSMIC: Experts Guide, v.2 - Copyright © 2020. 11

All rights reserved. COSMIC

Requirements for a
Software System

Project

Project Requirements
and Constraints (PRC)

System and Software
Non-Functional

Requirements (NFR)

Software
Functional User

Requirements (FUR)

Technical
Requirements

Quality
Requirements

(Software System)

Quality
Requirements

(Data)

System
Environment

Requirements

Figure 2.1 - Summary model of requirements for a software systems project

Guideline for NF and Project Requirements, v. 1.0 - Copyright © 2015. 12
All rights reserved. COSMIC

33
SELECTION AND CLASSIFICATION OF NFR AND PRC TERMS

3.1 Selection of NFR terms

Because there are so many possible NFR terms and because of the overlaps, subtleties and
variations of definition, we are far from having a complete universally-accepted list. (In
addition to the survey already mentioned [4] that found 108, terms, another study [40] listed
’at least 161’ NFR terms, and a third study [8] found 122 terms and structured them into a
hierarchy.)

The list of NFR terms in this Glossary was developed starting from the list in [4], expanded by
including a wider range of ISO or IEEE terms, then followed by some rationalization. The list
has been checked against ‘A taxonomy of software projects productivity impact factors’ [31]
and has also benefited from a collaboration between COSMIC and the International Function
Point Users Group (IFPUG) to produce a common Glossary of NFR terms [29]. The resulting
list comprises 60 terms, which aims to be reasonably comprehensive and a useful practical
starting point.

Readers should feel free to modify this list for their own purposes and, if they feel strongly,
suggest changes to the list in the Glossary, using the procedure of Appendix A.

The 60 terms are divided into three Main Classes (corresponding to the three bullet points of
the NFR definition) to make them more manageable and easier to find, as shown in the tables
below. A very important factor in deciding on this structure was to try to reconcile the NFR
classification with the structure of the ‘product quality model’ of the ISO/IEC 25010:2011
’System and software product Quality Requirements and Evaluation’ (‘SQuaRE’) standard [5].

Selection of terms involved many pragmatic judgments. First we included only terms that are
‘elementary’ NFR, i.e. terms that are not composites of, or derived from, or classes of other
NFR terms. This is because the number of terms derivable from two or more elementary NFR
is huge. If needed, these can be defined locally.

EXAMPLE 1: The term ‘performance’ is one of the parameters of the SQuaRE Quality
Model [5]. ‘Performance’ is defined as ‘the degree to which a system or component
accomplishes its designated functions within given constraints, such as speed, accuracy,
or memory usage’. The term ‘performance’ is therefore a composite non-functional
requirement covering several possible parameters. To state a non-functional requirement
of ‘performance’ would be meaningless without further information; you must specify a
specific performance parameter, such as ‘response time ‘, or ‘transaction rate’. So
‘performance’ is not included.

EXAMPLE 2: All terms concerned with costs have been excluded, e.g. ‘cost of ownership’,
‘ROI’, etc., as they can all be derived from other data. Cost comparisons are, of course,
extremely important but to understand them properly may require knowledge of cost
accounting conventions (e.g. whether staff-rates are fully-loaded with all overheads, or
only partially loaded), cost inflation (if comparing historic data) currency exchange rates,
etc. These factors can be considered locally.

Guideline for NF and Project Requirements, v. 1.0 - Copyright © 2015. 13
All rights reserved. COSMIC

EXAMPLE 3: The ISBSG requirement to record Programming language ‘level’, (i.e. 2GL. 3
GL, 4 GL, etc.) [8], was omitted since these classes of ‘programming language’ are not
well defined. Instead, ‘programming language’ and ‘programming paradigm’ are included.

Second, we excluded terms that are ‘sub-sorts’ of other terms included in the Glossary.

EXAMPLE 4: ’Maintainability’ is included but it has many sub-sorts, e.g. modularity,
modifiability, extendibility, flexibility, testability, etc. These sub-sort terms are not included.
Maintainability might also be made easier by using re-usable software, hence ‘re-usability’
may also be considered as a sub-sort of maintainability. However a requirement for
‘reusability’ is different from a requirement for ‘maintainability’, with different consequences
for project activities, so both these terms are included.

Third, we avoided terms with strongly overlapping definitions.

EXAMPLE 5: ‘Modifiability’, ‘Evolvability’ and ‘‘Extensibility’ overlap with ‘Adaptability’. Only
the latter was included.

Some decisions on what to include or exclude were marginal.

EXAMPLE 6: The ISO/IEC 25010:2011 definition of ‘adaptability’ (defined as 'degree to
which a product or system can effectively and efficiently be adapted for different or
evolving hardware, software or other operational or usage environments') overlaps
strongly with that of ‘portability’ (defined as ‘(1) ease with which a system or component
can be transferred from one hardware or software environment to another (ISO/IEC/IEEE
24765:2010) (2) capability of a program to be executed on various types of data
processing systems without converting the program to a different language and with little
or no modification (ISO 2382-1:1993)). However, given the ISO/IEC 25010:2011 definition,
‘adaptability’ could also be applied to evolving business requirements. We therefore
included both portability and adaptability.

A few terms that have ISO definitions were excluded for reasons that might not be clear. See
section 7.4 of the Glossary on ’Terms that have been excluded’, where the reasons for their
exclusion are given.

3.1.1 Quality Requirements

The table below shows the 42 NFR terms in this class quite closely mapped to the eight
groups of the ISO/IEC 25010:2011 ‘System/Software Product Quality’ model [5]. A ninth
group (‘Related to system or software architecture or design’) of terms that are not mentioned
in ISO/IEC 25010:2011 also seems to fit naturally into this main class.

 Quality Group NFR terms

1 Related to the quality of the data maintained
by the software

Accountability
Accuracy
Auditability
Precision
Validation (of data)

2 Related to system performance Response time
Transaction rate

3 Related to compatibility Co-existence
Compatibility
Interoperability

Guideline for NF and Project Requirements, v. 1.0 - Copyright © 2015. 14
All rights reserved. COSMIC

 Quality Group NFR terms

4 Related to the ease of use by the intended
user

Accessibility
Aesthetics (of the UI)
Customer satisfaction (software)
Learnability
Multi-lingual support
Operability
Usability

5 Related to system reliability Availability
Back-up
Dependability
Diversity
Failure management
Fault tolerance
Recoverability
Reliability
Safety

6 Related to control of access

Authenticity
Confidentiality
Non-repudiation
Privacy
Security
Usage mode (live vs training/testing)

7 Related to maintainability Adaptability
Maintainability
Reusability
Re-use type

8 Related to ease of deployment Installability
Portability

9 Related to system or software architecture or
design

Architecture/Design
Interfaces
Open source
Operational processing mode

3.1.2 System Environment Requirements

The six System Environment Constraints that characterize the environment that the software
system/product must support are taken mainly from the ISBSG Data Collection forms [19].

 System Environment Group NFR terms

1 Context Industry

2 Application Domain
Application type
Application sub-type

3 Implementations Implementations (number of)

4 User Base Distinct users - maximum number
Concurrent users - maximum number

Guideline for NF and Project Requirements, v. 1.0 - Copyright © 2015. 15
All rights reserved. COSMIC

3.1.3 Technical Requirements

The 12 Technical Requirements are taken mainly from the ISBSG Data Collection forms [19].

 Technical Group NFR terms

1 Operational Platform Operational platform type
Operational platform physical distribution
Operational platform volatility

2 Database Database management system
Database size

3 Operational Platform
constraints

Communications network
Operational processor memory
Operational processor speed
Operational storage capacity

4 Development requirements Methods and tools
Programming language
Programming paradigm

3.2 Selection of terms for Project Requirements and Constraints

The 19 terms are mostly taken from ISBSG and PMI® Terminology [38].

 PRC Group Project Requirements and Constraints terms

1 Project Type Project type (e.g. new vs enhancement)

2 Project Resources Effort
Skills and experience level
Staffing level
Team relationships
Work breakdown structure

3 Project Quality Customer satisfaction (project)
Defect count

4 Project Risk Dependencies on other parties
Post-project review findings
Risk
Scope change

5 Project Processes Development environment
Governance
Location
Process maturity
Project management method

6 Project Duration (Schedule) Duration
Schedule compression / expansion

Guideline for NF and Project Requirements, v. 1.0 - Copyright © 2015. 16
All rights reserved. COSMIC

44
DEALING WITH NFR AND PRC FOR PROJECTS WITHIN AN
ORGANIZATION

The purpose of this chapter is to advise on how to take account of individual NFR and PRC
for comparing project performance, developing benchmarks and estimating within an
organization, i.e. the most common practical situations where COSMIC functional sizes will be
used.

[If your organization wishes to participate in an external benchmarking exercise, then some
environmental data may need to be recorded in addition to that recorded for internal purposes
to enable the external benchmark service supplier to make like-for-like comparisons across,
for example, different countries. However, as these data are usually common for all projects
to be benchmarked, they do not need to be routinely recorded for internal purposes.]

The contents of this Chapter are relevant to relatively simple software projects. For projects to
develop large ‘mission-critical’ systems, where NFR can be dominantly important, a more
sophisticated approach for dealing with NFR will be needed than is described here.

This Chapter takes no account of the use of automated tools such as for storing
requirements, project data repositories, or for estimating. These tools may require some other
data to be gathered than the data listed here.

It is recommended that organizations first study and decide what data they need to collect for
their internal needs before selecting tools to meet these needs.

4.1 Commonality of NFR and PRC across an organization

The combined total of 79 types of NFR and PRC is long but it should not be necessary to
record any of these for each system and project if they are common across the organization.
In any one software development environment, most NFR and many PRC will be the same for
all systems and projects.

EXAMPLE. If all systems in your organization are from the domain of ‘insurance’, and the
systems must all be able to operate in disaster recovery mode, must all be auditable, etc.,
there is no point in recording these constraints for every system. But a constraint that
varies by system such as that some systems must operate in on-line and some in batch
mode should be recorded as this constraint affects the development tools that can be used
and hence project performance.

The NFR and PRC that should be recorded are those that vary significantly across projects,
and hence may need to be considered when comparing performance across multiple projects
and for building estimating models.

The set of NFR and PRC for a specific domain, perhaps in a specific organization, may be
described as a ‘NFR/PRC Pattern’.

 [Obviously, if you work in a very complex business, e.g. aircraft manufacturing, then your
systems will come from multiple domains, but you will probably not want to compare software
project performance across multiple domains.]

Guideline for NF and Project Requirements, v. 1.0 - Copyright © 2015. 17
All rights reserved. COSMIC

4.2 Typical NFR and PRC to be recorded for business application projects

The following set illustrates the limited number of NFR and PRC that may be worth recording
in any one organization because they typically vary across its projects. These NFR and PRC
may need to be taken into account when making ‘like-for-like’ comparisons of project
performance, developing internal benchmarks and when estimating for new projects.

The NFR and PRC in the table below are listed in the order of the Classification presented in
Chapter 2.

NFR and PRC
Class

Terms

Quality NFR Response time, Transaction rate
Security, Privacy
Maintainability, Reusability
Interfaces, Operational processing mode

System
Environment NFR

Application type, sub-type
Implementations (numbers of)
Maximum number of concurrent users

Technical NFR Operational platform type
Programming language
DBMS software

Project
Requirements and
Constraints (PRC)

Many, but not all of the 19 project requirements and constraints are
worth recording. Example: if staff experience levels, processes and
methods and tools are the same for all projects, then they need not be
recorded for internal purposes.

Note that advanced software organizations may not need to record so many NFR for each
project if they build certain functional implementations of NFR into the basic development
environment

EXAMPLE: a project may not need to specify usability NFR if the development environment
has built-in standard usability functionality (either in terms of re-usable standardized GUIs or
standard human interface development procedures), unless a new usability NFR is needed.

Software functional size data must of course also be collected and the parameters of the size
measurement that will enable anyone to understand the measurement in the future.

Generally, it is best to start with collecting data on a carefully-selected minimum number of
NFR and PRC to avoid unnecessary work. Other NFR and PRC can be added at a later date
if experience shows they are necessary.

Guideline for NF and Project Requirements, v. 1.0 - Copyright © 2015. 18
All rights reserved. COSMIC

4.3 Typical NFR and PRC to be recorded for real-time embedded software projects

As for business application projects discussed in section 4.2, advanced software
organizations may not need to record many NFR separately for each project if they build
certain functional implementations of NFR into the basic development environment.

Probably most of the NFR listed below will be common for a ‘smart system’ (or a ‘system of
systems’), i.e. a system formed by linking components each of which is a system with its own
embedded software. For such systems, the NFR may be recorded only at the overall system
level.

NFR and PRC
Class

Terms

Quality NFR Precision
Response time, Transaction rate
Interoperability
Dependability, Safety
Security,
Maintainability, Reusability
Architecture/Design, Interfaces

System
Environment NFR

Application type, sub-type
Implementations (numbers of)

Technical NFR Operational platform type
Operational processor memory
Operational processor speed
Operational storage, capacity
Programming language
DBMS software

Project
Requirements and
Constraints (PRC)

Many, but not all of the 19 project requirements and constraints are
worth recording. Example: if staff experience levels, processes and
methods and tools are the same for all projects, then they need not be
recorded for internal purposes.

4.4 Establishing internal benchmarks

Internal benchmark data can be very valuable as the ‘organization’s standard performance
levels’ against which the performance of individual projects may be compared, and for use in
project effort estimating.

Establishing such benchmarks normally involves sorting the data from completed projects into
clusters of similar types, defined by their common NFR and PRC. Normally, projects would
first be sorted by the common NFR and PRC of:

• environmental requirements (e.g. application domain or type), and then by

• project type (development, enhancement, etc.), and then by

• technical requirements, i.e. combinations of operational platform type and
development methods & tools and programming language that are common in the
organization.

Benchmarks for the main performance indicators can then be derived from the completed
project data in these clusters by plotting the relationships of:

• software functional size versus actual project effort, to establish the productivity
benchmark;

• software functional size versus actual project duration, to establish a project speed
benchmark;

Guideline for NF and Project Requirements, v. 1.0 - Copyright © 2015. 19
All rights reserved. COSMIC

• defects found in the first month of operation versus functional software size to
establish defect density, further sub-divided by defect severity;

• Actual versus estimated effort, and actual versus estimated duration, etc.

When these benchmarks are established, the performance parameters of an individual project
may be compared against the benchmarks. Project constraints will then likely remain as the
main causes of variations in individual project performance relative to the benchmarks.

Of course, many other benchmark data can be established and many other data analyses
carried out depending on the organization’s particular goals and concerns.

4.5 Dealing with NFR and PRC in software project estimating

The purpose of this section is to describe how NFR and PRC should be taken into account in
an estimating process (but not to describe software project estimating processes in detail). An
estimating process is very straightforward in principle, though the details will vary greatly
across different types of projects.

Figure 4.1 shows how the measurement of functional size may evolve, super-imposed on the
process shown in Fig. 1.4, and assuming a waterfall project management approach.

Outline

Funct-

-ional

Requts.

Outline

NFR

Approx.

Funct-

-ional

Requts.

‘True’

NFR

Imple-

mented

software

system

or

software

product

Project

Requts. &

Constraints

Require-

ments

Analysis

Definition

& Design

Build, Test

&

Implement

A

r

c

h

i

t

e

c

t

u

r

e

FUR

Size by analogy or

expert judgement
Approx. COSMIC

size measurement

Precise COSMIC

size measurement

Figure 4.1 - The measurement of functional size as a project evolves

In an ideal world, the estimating process proceeds as follows:

Estimating project effort from outline FUR and NFR

The process for estimating project effort very early in a project will be largely independent of
how the project will be managed once it starts, e.g. using a waterfall versus agile process.

a) When developing the initial outline or ‘high-level’ statement of requirements for the
software to be developed by a new project, the focus will be on the functional
requirements – what the software must do and on the PRC concerned with targets
(budget, delivery date, etc.) and risk.

b) In spite of this focus, the classification and the Glossary of NFR terms should be used
to elicit and document other requirements that may appear as NFR at this stage.

Guideline for NF and Project Requirements, v. 1.0 - Copyright © 2015. 20
All rights reserved. COSMIC

c) When there is an outline statement of functional requirements and the principal NFR
have been identified, we have reached the starting point of the process shown in
Figure 4.1. If a software project effort estimate is needed at this stage, it can only be
made by using an analogy or by expert judgment, including a contingency allowance,

d) The outline functional requirements and NFR feed decisions about the
system/software architecture which begin to help identify the Quality NFR that evolve
into FUR [9].

Estimating project effort and cost from approximate functional requirements and NFR

e) As the project progresses, a contribution to the total software functional size may be
added in for the Quality NFR that evolve into FUR. This contribution may be made on
the basis of experience of adding a contingency or allowing for ‘scope creep’, or by
using specific experience of sizing Quality NFR, e.g. using cases such as described
in Chapter 5 of this Guideline (Quality NFR are the only types of NFR that should
automatically be considered as possibly affecting the functional size.) The
contingency for further scope creep may be updated.

f) When the requirements analysis phase is considered complete, it is unlikely that the
software functional requirements are detailed enough for a precise COSMIC
measurement. Nevertheless, the functional size may be estimated using a COSMIC
approximate size measurement method [6].

g) The estimated total functional size may be converted to estimated project effort using
benchmark data established (as in section 4.4) for projects with a functional size and
a profile of NFR as close as possible to that of the new project. This ‘closeness of fit’
may be determined by analogy or by statistical analysis of completed past projects.

Figure 4.2 shows the various ways by which NFR may, as they evolve, contribute to
the total functional size and/or may affect the benchmark figure used to convert size
to effort and then to cost. For example, the benchmark figure used will probably
depend on the ‘true’ NFR’s of the programming language and hardware platform on
which the software will execute; a NFR for significant re-use of existing code may also
affect the effort calculation. (The model of Figure 4.2 for estimating project costs can
be applied as soon as an approximate functional size is known and any time
thereafter, and is independent of the development process e.g. waterfall versus agile.)

The estimated project effort obtained by this process may be further refined by the
PRC of the project (see further below).

Functional

Size

Approximate,

or precise

Contingency

due to ‘Scope

Creep’ & NFR

Evolving

Funct-

-ional

Requts.

Convert to FS-

related effort
E.g. productivity

benchmarks, % re-use

X Staff ratesX = $

Evolving

NFR

‘True’ NFR
e.g. technology,

training

E.g. hardware

unit cost,

staff-rates
X = $

+

+

Project Requirements & Constraints, e.g. target duration, available skills, risk

Total project cost = $$$

= $

Convert to cost

E.g. project

overheads

Figure 4.2 - The various ways by which evolving functional requirements, NFR and
PRC contribute to functional size and affect the determination of project effort and cost

Guideline for NF and Project Requirements, v. 1.0 - Copyright © 2015. 21
All rights reserved. COSMIC

Estimating from detailed functional requirements

h) As the project progresses into the Design phase, the functional requirements will be
worked out in more detail and the Quality NFR will evolve into FUR that can be
measured. The size of the FUR (those originating as functional requirements plus
those originating as NFR) will become progressively more accurate, hopefully falling
within the contingency established in steps e) and f). The process of converting
functional size and PRC to effort remains essentially the same but will be better
informed.

Estimating in iterative or agile projects

i) Alternatively, if an ‘Agile’ or iterative process is followed, the functional requirements
of each sprint or iteration can be measured. Contributions to the total functional size,
and hence total software project effort can then be refined and made more accurate.
[10] NFR must not be forgotten. NFR that evolve into FUR can be taken into account
in separate sprints (or iterations) or in sprints that comprise FUR from various origins.
The results of tracking actual progress against the PRC and any need for re-work will
also need to be taken into account in refining the effort estimates.

Taking account of PRC

j) A project constraint such as a firm budget limit may directly affect the functional size
that can be delivered. This may happen in agile developments where the prioritization
processes may result in a project being stopped when the budget limit is reached;
low-priority FUR are never implemented.

However, project requirements and constraints most often directly affect the project
effort, but have no effect on the software size. Examples are staff experience,
duration constraints, project processes, and risk. Such PRC may not need to be taken
into account separately if the project to be estimated is considered to be typical of
those included in the benchmark dataset.

If the project is not typical of those in the benchmark dataset, the additional (or
reduced) effort for any of these PRC must be estimated separately. The approach will
vary depending on the parameter. Examples:

• to take account of a duration constraint, most Estimators will rely on one of the
effort/duration trade-off models;

• to take account of staff experience, the Estimator will allow for training or extra
effort in consultation with the project manager who knows his staff (or if the staff
are much more experienced in the problem area than average, the initially-
estimated effort might be reduced);

• to take account of varying project management methods, e.g. agile versus
waterfall, would need a special study to sort project effort versus size data by the
two approaches;

• a measure of risk could affect the estimate of contingency effort needed;

• in some organizations, a fixed project start-up overhead adds to the cost.

Guideline for NF and Project Requirements, v. 1.0 - Copyright © 2015. 22
All rights reserved. COSMIC

55
EXAMPLES OF FUNCTIONAL SIZE MEASUREMENT OF NFR

5.1 Measuring the FUR of application software arising from Quality NFR

As explained earlier, all Quality NFR may evolve as a project progresses, wholly or partly into
FUR for software. Most of these FUR can be measured at least to some degree by the
COSMIC method. The table below illustrates possible evolutions for each of the 42 Quality
NFR terms. The table shows:

• (Column 2) requirements initially expressed as NFR

• (Column 3) examples of functionality of application software that may evolve from the

requirement initially expressed as non-functional (in column 2), whose functional size

may be measured by COSMIC and added into the total size.

• (Column 4) the part of the requirement initially expressed as non-functional (in column

2) that remains a non-functional requirement throughout the system/software product

life, and that can never contribute to functional size.

 ‘Not measurable’ means ‘very unlikely to be measurable with the standard COSMIC method’.
This could be due, for example, to the FUR resulting from the NFR being at a finer level of
granularity than can be measured by the COSMIC method.

EXAMPLE: A Quality NFR for calculating the precision of an individual data attribute is
very unlikely to be measurable by the COSMIC method.

Abbreviations: E = Entry, X = Exit, R = Read, W = Write.

Quality NFR
Group

The initial Non-
Functional

Requirement
(NFR)

Example functionality that
may evolve from the NFR,

whose size may be measured
by COSMIC

The remaining part of the
NFR that that cannot

contribute to Functional
Size

Data Quality Accountability Functionality that links a person
responsible for maintaining data
or software to changes

The specific accountability
requirements statement

Accuracy Validation checks by R’s of
stored data. GUI elements that
accept only valid data

The quantified accuracy
targets

Auditability Functionality needed by
auditors, e.g. X or W of hash
totals; special enquiries

Adequate documentation

Precision Not measurable The quantified precision
targets

Validation (of
data)

See ‘Accuracy’ E.g. legal requirements for
independent audits. Need
to store data within
national boundary or ‘safe
haven’

Guideline for NF and Project Requirements, v. 1.0 - Copyright © 2015. 23
All rights reserved. COSMIC

Quality NFR
Group

The initial Non-
Functional

Requirement
(NFR)

Example functionality that
may evolve from the NFR,

whose size may be measured
by COSMIC

The remaining part of the
NFR that that cannot

contribute to Functional
Size

System
Performance

Response time Functionality to import external
data so that it is available for
immediate use.

The quantified response
time target;

Fast hardware;

Low-level programming
languages

 Transaction rate Functionality to measure the
transaction rate (usually
measured by the OS, not by the
application to which the NFR
applies)

The quantified transaction
rate target

Compatibility Co-existence Achieved via the OS? The specific co-existence
requirements

Compatibility Functionality of interfaces,
achieved either via X/E
exchanges or via shared
persistent data, or via
conversion functionality

The specific compatibility
requirements

Interoperability See ‘Compatibility’ The specific inter-
operability requirements

Ease of use Accessibility See ‘Usability’ The requirements for
accessibility by specific
classes of people;

Provision of braille
keyboards

Aesthetics (of
the UI)

Not measurable The specific aesthetic
requirements

Customer
satisfaction
(software)

Not measurable The customer satisfaction
target, as measured by a
specific technique.

Learnability Functionality to assist users to
learn the system

The specific learnability
targets

Multi-lingual
support

Functionality for the users to
select the language and to enter
E’s and receive X’s in multiple
languages

The requirement to support
named languages and their
character sets

Operability Functionality to assist operators
(maybe provided by the OS)

The specific operability
requirements

Usability Graphical User Interface
functions;

Functionality to assist users, e.g.
‘Help’ functions

The specific usability
requirements (e.g. ‘must
be usable by public with no
training’)

Guideline for NF and Project Requirements, v. 1.0 - Copyright © 2015. 24
All rights reserved. COSMIC

Quality NFR
Group

The initial Non-
Functional

Requirement
(NFR)

Example functionality that
may evolve from the NFR,

whose size may be measured
by COSMIC

The remaining part of the
NFR that that cannot

contribute to Functional
Size

System
reliability

Availability Functionality to exploit multiple
parallel processors to ensure
high availability

The specific, quantified
availability target;

High reliability or fault-
tolerant hardware

Back-up Back-up functionality, if not
provided by the OS

The specific requirements
for back-up of named files

Dependability See ‘Availability’, ‘Fault
tolerance’, Recoverability’

The specific Dependability
target

Diversity The diverse software solutions
resulting from a Diversity NFR

The specific Diversity
target

Failure
management

Functionality to assist failure
management

Manual processes;

Specific quantified failure
management targets

Fault tolerance Functionality to exploit multiple
parallel processors to ensure
continuity when one or more
processors fail

The specific target for
continuity in spite of faults.

Fault-tolerant hardware

Recoverability Functionality to recover data and
resume processing following
faults or interruptions

The specific recoverability
target

Reliability See ‘availability’, ‘security’,
maintainability’, etc.

The specific Reliability
target

Safety Functionality (as in safety-critical
systems) to ensure human
safety

The specific safety targets

Access control Authenticity Functionality that enables the
identity of a person or a
resource to be proven

The specific authenticity
target.

Finger-print recognition
hardware

Confidentiality Functionality that protects data
against unauthorized access

The specific confidentiality
target

Non-repudiation Functionality that helps prove
that an event or action did take
place

The specific non-
repudiation target

Privacy Functionality to control access to
personal data

The specific privacy
requirements

Security Functionality to control access to
systems and/or data

The specific security
requirements

Usage mode
(live vs training)

Functionality to provide both
modes and to allow the user to
access both modes

The specific requirements
for different modes

Guideline for NF and Project Requirements, v. 1.0 - Copyright © 2015. 25
All rights reserved. COSMIC

Quality NFR
Group

The initial Non-
Functional

Requirement
(NFR)

Example functionality that
may evolve from the NFR,

whose size may be measured
by COSMIC

The remaining part of the
NFR that that cannot

contribute to Functional
Size

Maintainability Adaptability Functionality to enable the
system to be adapted to
different hardware, operational,
etc., environments

The requirements for the
specific environments for
which the software must be
adaptable

Maintainability Functionality to enable the
system to be maintained without
re-programming, e.g. via
parameterization

The specific maintainability
requirements

Reusability The functionality that must be
made re-usable

The specific re-usability
requirements

Re-use type Functionality of re-used artefacts The specific re-use types
required

Ease of
deployment

Installability Functionality to facilitate ease of
installation

The specific installability
requirements

Portability ‘Middleware’ functionality to
enable portability across multiple
DBMS or OS software

The requirements for the
specific environments
across which the software
must be portable

System or
software
architecture or
design

Architecture/
Design

Software can be measured in
any layer of an architecture

Design requirements that
do not affect FUR

Interfaces Functionality achieved either via
X/E exchanges or via shared
persistent data

The specific interface
requirements

Open source It is irrelevant to FSM whether
the software is open source or
not but the functionality of such
software may be measured

The specific open source
requirements

Operational
processing
mode

Any functionality can be
measured regardless of its
Operational Processing Mode

The specific operational
processing mode
requirement

5.2 A simple security NFR

A requirement may be stated as ‘The application A will require its own user identification and
password sign-on procedure. Only employees authorized by the System Administrator will be
allowed access’.

As ‘security’ is listed in the ISO 14143/1 definition of FUR as a quality requirement, it may be
interpreted as non-functional. In fact this requirement is commonly implemented entirely by
software functionality which can be measured with the COSMIC method. The following
illustrates a possible simple implementation.

Guideline for NF and Project Requirements, v. 1.0 - Copyright © 2015. 26
All rights reserved. COSMIC

First the System Administrator will need to maintain a file of employees who may access
application A. (For simplicity, we ignore how the System Administrator maintains the security
of this file.) The attributes of each employee record could be: Employee_ID, Employee_name,
Employee_password (PW), Date of last change of PW, plus maybe a history of, say, the
previous 10 PW’s,

The System Administrator will need functional processes (FP’s) to Create, Retrieve and
Delete employee records, and probably to List employee records. The Create employee
functional process will generate an e-mail to send an initial PW to a newly-authorized
employee. Two more FP’s will be needed a) to send a new PW to an employee who has
forgotten his/her PW and b) to force an employee to change the current PW at, say, monthly
intervals. So far we have identified the need for six FP’s.

For the employee sign-on process, the application must be able to access the System
Administrator’s employee PW file. Two sign-on FP’s will be needed, first for an initial sign-on
when the employee will have to create his own personal PW, second to change a PW.

In total this simple example needs eight FP’s. Guessing that each FP would need an average
of 4 – 5 data movements, the total size of this simple access control functionality would be
about 8 x 5 = 40 CFP.

5.3 A portability NFR

The paper ‘A standards-based reference framework for system portability requirements’ [23]
analyses how various standards define what they mean by ‘portability’ requirements at the
system level, i.e. before these requirements are allocated to hardware or software. At this
level these are non-functional requirements.

The standards considered are from the European Cooperation for Space Standardization
[24], and for IEEE 830 [25], ISO 9126 [17], ISO 24765 [26] and ISO 2382-1 [27].

The paper synthesizes the system portability NFR from these various standards into a generic
model of portability requirements of which there are four main types. A system may be
required to be independent of, i.e. portable across:

1. software components (operating system software, middleware, etc.);

2. data components (DBMS, etc);

3. hardware components (client, server, storage, etc);

4. the ‘isolating software system calls function’ (a function used by a software system to
request a service from the OS which isolates the calling software system from the
OS).

The generic portability model is analyzed as if it were being implemented by a set of SOA
services. The approach of the COSMIC ‘Guideline for sizing SOA software’ [28] is used to
measure the functional size of all the possible interfaces to the services which would be
needed to implement the entire generic portability model. These interfaces require 240 CFP.

The lesson from this paper for this Guideline is that a single, apparently simple NFR such as
that a piece of software must be portable across various technical hardware/software
environments can evolve, when worked out in detail, into a considerable addition to the
functional size of the piece of software.

5.4 NFR for a mobile e-mail system

The paper ‘A meta-model for the assessment of non-functional requirement size’ [32] contains
a fully worked-out example of measuring part of the ‘operationalization’ of an e-mail system.

Guideline for NF and Project Requirements, v. 1.0 - Copyright © 2015. 27
All rights reserved. COSMIC

66
MEASUREMENT OF NFR

6.1 Sizing NFR collectively

When Allan Albrecht of IBM first defined Function Point Analysis [11], the size scale was
defined to measure the ‘functions in an application’. This size was adjusted by a ‘complexity
adjustment’ which took account of the ‘degrees of influence’ of 10 factors that nowadays
would be called NFR. The weights of all the components of this method were derived from
IBM methods for estimating project effort [12]. Later the ’complexity adjustment’ was extended
to account for 14 NFR and was re-named as the ‘Value Adjustment Factor’ (VAF). [13].

The VAF gives higher values for on-line systems (typically ~ 1.1 to 1.2) compared with batch-
processed systems (typically ~ 0.75 to 0.85). In the early 1980’s this was understandable; at
that time it often took more effort to develop an on-line system relative to a batch-processed
system. For example, each on-line application might have to develop its own back-up and
recovery processes, and making on-line software easy-to-use was difficult; GUI interfaces
had not yet become generally available.

Later, Symons noted that ‘the restriction to 14 factors ‘seems unlikely to be satisfactory for all
time’ [14]. He proposed a ‘Technical Complexity Adjustment’ (TCA) which extended Albrecht’s
VAF list to 19 factors with the possibility of adding more factors locally. The weights of the
‘degrees of influence’ were also re-calibrated and related to development effort by a Delphi
technique.

The experience of these early attempts to account for NFR by a collective size scale is that
such measures might be useful for performance measurement comparisons and estimating
for projects within a very limited software domain, with a limited range of NFR. But a collective
size measure for all possible NFR cannot be generally valid across all types of software, for
all time. Any such measure is soon out of date, given the continuously evolving technology.

Furthermore, such constructs as the VAF and the TCA are mathematically invalid4, so the
resulting number ‘feels good’ but has no mathematical validity (and it is therefore invalid to
multiply such a number by a size in ‘unadjusted’ function points).

In addition, a collective size measure for NFR is semantically meaningless unless it is
calibrated so that the weights applied to the various NFR are related to a common scale such
as the relative effort to implement each of them. But since:

• there are so many possible NFR (over 100 according to some studies, with
overlapping definitions);

• NFR can sometimes interact, e.g. satisfying a NFR for portability may or may not
cause extra effort to meet a NFR for response time and another NFR for security;

4 1: The 14 General Systems Characteristics (GSC) are on a 'nominal' scale type. 2: Each GSC is

subdivided into six categories, each with an increased 'ranking', at irregular intervals. 3: Each of these
rankings is next 'labelled' from 0 to 5 (and while these appear as numbers they are merely ordered
labels on which no mathematical operations are allowed). 4: Each of these 'labels' is multiplied by the
same 'factor' of 0.1; it is mathematically invalid to add or multiply labels of an ordinal scale [33].

Guideline for NF and Project Requirements, v. 1.0 - Copyright © 2015. 28
All rights reserved. COSMIC

• the effort for the various NFR will itself vary with several factors, e.g. the technology
used, the type of software, the re-use of existing software, etc.,

it is impossible to establish a standard set of NFR and a standard set of weights that will be
applicable in all circumstances and for all time.

As one commenter remarked, ‘non-functional’ is a ‘troublesome’ term ... it ‘bundles together
many things that are otherwise unrelated to one another. … There’s no reason to assume that
such diverse concerns as design-time modifiability, run-time performance, product time-to-
market and architectural consistency are all amenable to the same treatment’. [4]

Finally, even if the collective NFR size measure had some meaning, the fact that NFR evolve,
as a project progresses, into FUR makes it extremely difficult to capture the associated effort
data which would be needed to calibrate the collective NFR size measure and to use it in
practice for estimating future projects. Figures 4.1 and 4.2 show the variety and complexity of
how NFR and PRC affect effort as a project progresses and requirements evolve.

6.2 Recording and measuring individual NFR and PRC

In contrast to the conclusion of section 6.1, it could be beneficial for the software industry if a
standard size scale could be established for each individual type of NFR and PRC for which a
standard definition has been agreed as, for example, in the Glossary of this Guideline. This
would at least facilitate comparing performance across projects subject to different NFR and
PRC, and the use of this data for defining benchmarks and for new project estimating.

The task of developing a size scale for all NFR and PRC listed in the Glossary is however
well beyond the scope of this first version of this Guideline.

At this stage we can only illustrate the various possible measurement scale types with
examples.

Scale Type Examples of possible NFR and PRC for the scale type

Nominal (labelling,
classifying entities)

Programming language, Application domain, Project type

Ordinal (monotonically
increasing)

A scale of project risk, e.g. (low, average, high, very high)

Project process maturity e.g. CMM-I level

Interval (ratios not valid) Target project completion date, Customer satisfaction
expressed on a numerical scale

Ratio (the scale, or ‘unit of
measure’ can vary)

Project duration, Database size (measured in e.g. Mbytes),
Response time, Availability (measured as MTBF).

Absolute (counting entities) Numbers of Implementations, Interfaces, Users, Defects,

Note that the parts of most Quality NFR that remain after separating out the parts that evolve
into FUR for software (column 4 of the table in section 5.1) can only be measured on a
nominal or ordinal scale.

6.3 ISO/IEC standards for measuring individual Quality NFR

ISO/IEC has published standards [34, 35] that list some measures for individual Quality NFR.
The ‘Quality Model’ of this 9126 series of standards has, however, been updated to the
SQuaRE ‘Product Quality’ model of the ISO/IEC 25010:2011 standard [5], which has been
used as the basis for the selection and classification of NFR terms in this Guideline and in the
joint COSMIC.IFPUG Glossary [29].

Guideline for NF and Project Requirements, v. 1.0 - Copyright © 2015. 29
All rights reserved. COSMIC

The ISO/IEC 25023 standard [36], still under development in 2015, will eventually replace the
9126 standards [34, 35]. It is sub-titled ‘Measurement of system and product quality’. Its
contents will define measures for most of the Quality NFR listed in this Guideline.

Guideline for NF and Project Requirements, v. 1.0 - Copyright © 2015. 30
All rights reserved. COSMIC

77
GLOSSARY OF NFR AND PRC TERMS

This Glossary is divided into three lists: NFR terms, PRC terms, and excluded terms. Each list
is in alphabetic order, selected as described in sections 3.1 and 3.2.

Readers who wish to add to or amend the lists are asked to use the Change Request and
Comment Procedure in the Appendix to this Guideline.

The contents of this chapter were produced jointly with IFPUG (The International Function
Point Users Group) and are identical to the corresponding chapter 4 of the joint
COSMIC/IFPUG Glossary [29].

7.1 Sources of ISO standard and other definitions

Definitions of the terms in the Glossary are taken from the sources listed below.

Doc. Reference No. Document Title

Chambers The Chambers Dictionary

COSMIC/IFPUG Glossary of terms for Non-Functional Requirements and
Project Requirements used in software project performance
measurement, benchmarking and estimating, joint publication
of COSMIC and IFPUG, September 2015 [29]

IEC 60050-191 International Electrotechnical Vocabulary, Chapter 191,
Dependability and quality of service, 1990.

IEEE 982.1-2005 IEEE Standard Dictionary of Measures of the Software Aspects
of Dependability

IEEE 1012-2004 IEEE Standard for Software Verification and Validation

ISBSG Glossary of terms for software project development and
enhancement v5.16a, 22/08/12

ISO 5725-1:1994 Accuracy (trueness and precision) of measurement methods
and results -- Part 1: General principles and definitions

ISO 9241-110: 2006 Ergonomics of human-system interaction – Part 110: Dialogue
principles

ISO 9241-171:2008 Ergonomics of human-system interaction – Part 171: Guidance
on software accessibility

ISO/IEC 2382-1: 1993 Information technology–Vocabulary–Part 1: Fundamental
terms

ISO/IEC 2382-20:1990
Information technology–Vocabulary–Part 20: System
development

ISO/IEC 10746-2:2009 Information technology – Open Distributed Processing –
Reference Model: Foundations

ISO/IEC 12207:2008 Systems and software engineering–Software life cycle

http://www.techstreet.com/ieeegate.html
http://www.techstreet.com/ieeegate.html

Guideline for NF and Project Requirements, v. 1.0 - Copyright © 2015. 31
All rights reserved. COSMIC

processes

ISO/IEC 15026-1:2013 Systems and software engineering--Systems and software
assurance--Part 1: Concepts and vocabulary

ISO/IEC 15288:2008 Systems and software engineering–Software life cycle
processes

ISO/IEC 20000-1:2011 Information technology–Service management–Part 1: Service
management system requirements

ISO/IEC/IEEE 24765:2010 Systems and software engineering–Vocabulary

ISO/IEC 25010:2011 Systems and software engineering–Systems and software
Quality Requirements and Evaluation (SquaRE)–System and
software quality models

ISO/IEC 25062:2006 Software engineering – Software product Quality
Requirements and Evaluation (SquaRE)

ISO/IEC 42010:2011 Systems and software engineering – Architecture description

ISBN-13: 893-7485908328 Project Management Body of Knowledge, PMI

Wikipedia www.wikipedia.org

http://www.iso.org/iso/en/CatalogueListPage.CatalogueList
http://www.iso.org/iso/en/CatalogueListPage.CatalogueList
http://www.wikipedia.org/

Guideline for NF and Project Requirements, v. 1.0 - Copyright © 2015. 32
All rights reserved. COSMIC

7.2 Glossary of Non-Functional Requirement terms

The following abbreviations are used in the Glossary for the Main Classes of NFR:

Qual. = Quality Requirements; ‘Env.’ = System Environment Requirements; ‘Tech.’ =
Technical Requirements;

N.B. The classification given for each term is not absolute. Some NFR terms could be
classified under more than one heading.

NFR Term Class Group Definition

Accessibility Qual. Ease of
use

(1) Usability of a product, service, environment
or facility by people with the widest range of
capabilities (25062:2006) (2) degree to which a
product or system can be used by people with the
widest range of characteristics and capabilities to
achieve a specified goal in a specified context of
use (25010:2011).

Note: Although “accessibility” typically addresses
users who have disabilities, the concept is not
limited to disability issues. The range of capabilities
includes disabilities associated with age. (ISO
9241-171:2008)

Accountability Qual. Data
quality

Degree to which the actions of an entity can be
traced uniquely to the entity (25010:2012)

Accuracy Qual. Data
quality

A qualitative assessment of correctness, or freedom
from error (24765:2010). (2) a quantitative measure
of the magnitude of error (24765:2010). The
proximity of a result or a measure to the true value
(ISO 5725-1:1994)

See also: precision

Adaptability Qual. Maintain-
ability

Degree to which a product or system can effectively
and efficiently be adapted for different or evolving
hardware, software or other operational or usage
environments (25010:2011). Note: Adaptability
includes the scalability of internal capacity, such as
screen fields, tables, transaction volumes, and
report formats. Adaptations include those carried
out by specialized support staff, business or
operational staff, or end users. If the system is to be
adapted by the end user, adaptability corresponds
to suitability for individualization as defined in ISO
9241-110.

See also: ‘portability’

Related concept: modifiability, evolvability,
extensibility, flexibility

Guideline for NF and Project Requirements, v. 1.0 - Copyright © 2015. 33
All rights reserved. COSMIC

NFR Term Class Group Definition

Aesthetics (of
the user
interface)

Qual. Ease of use Degree to which a user interface enables pleasing
and satisfying interaction for the user
(25010:2011). Note: refers to properties of the
product or system that increase the pleasure and
satisfaction of the user, such as the use of color
and the nature of the graphical design.’

Related concept: ’Customer experience
(software)’

Application
Domain

Env. See ‘Application Type (or Software Type)’

Application
Sub-Type

Env. Application
domain

A type of software within each of the four ISBSG
‘Application Types’. (The ISBSG Glossary lists 20
sub-types of Business Applications, 8 sub-types of
Real-time Applications, 7 sub-types of
Mathematically-intensive software and 6 sub-
types of Infrastructure software.)

Application
Type (or
‘Software
Type’)

Env. Application
domain

A classification of software into four groups:
business applications, real-time applications,
mathematically-intensive software, infrastructure
software (ISBSG)

Architecture-
/Design

Qual. System or
software
architect-
ture or
design

Fundamental concepts or properties of a system
in its environment embodied in its elements,
relationships, and in the principles of its design
and evolution. (42010:2011). Examples:
requirement to conform to the ISO 7-layer model,
or to the AUTOSAR architecture [37].

Related concept: structure

Auditability Qual. Data quality Facility of a software system or software product
to enable an auditor to examine whether data is
processed correctly so as to meet requirements
and internal or external audit standards
(COSMIC/IFPUG).

Related concepts: assurance, compliance to
regulations

Authenticity Qual. Access
control

The degree to which the identity of a subject or
resource can be proved to be the one claimed
(25020:2011)

Availability Qual. System
reliability

(1) Ability of a service or service component
to perform its required function at an agreed
instant or over an agreed period of time (20000-
1:2011) (2) the degree to which a system or
component is operational and accessible when
required for use (25010:2011) Note: Availability is
normally expressed as a ratio or percentage of the
time that the service or service component is
actually available for use by the customer to the
agreed time that the service should be available.
Availability is a combination of maturity (which
reflects the frequency of failure), fault tolerance
and recoverability (which reflect the length of
downtime following each failure).

Guideline for NF and Project Requirements, v. 1.0 - Copyright © 2015. 34
All rights reserved. COSMIC

See also: fault tolerance, reliability, recoverability

NFR Term Class Group Definition

Back-up Qual. System
reliability

(1) A system, component, file, procedure, or
person available to replace or help restore a
primary item in the event of a failure or externally
caused disaster (24765:2010). (2) to create or
designate a system, component, file, procedure,
or person as a replacement (24765:2010)

Co-existence Qual. Compati-
bility

Degree to which a product can perform its
required functions efficiently while sharing a
common environment and resources with other
products, without detrimental impact on any other
product (25010:2011)

Communica-
tions network

Tech. Operational
Platform
Constraints

The data communication protocols that a software
system or software product must observe, e.g.
none, standard LAN/WAN protocols, special open
protocols, proprietary or classified protocols, etc.’
(COSMIC/IFPUG)

Compatibility Qual. Compati-
bility

(1) degree to which a product, system or
component can exchange information with other
products, systems or components, or perform its
required functions, while sharing the same
hardware or software environment (25020:2011)
(2) the ability of two or more systems or
components to exchange information
(24765:2010) (3) the capability of a functional unit
to meet the requirements of a specified interface
without appreciable modification (2382-1:1993)

Concurrent
users
(maximum
number)

Env. User base The maximum number of users that a system can
support concurrently under specified conditions
(COSMIC/IFPUG)

Confidentiality Qual. Access
control

Degree to which a product ensures that data is
accessible only by those authorized (25010:2011)
Example degrees: ‘internal use only’, ‘secret’, ‘top
secret’. See also ‘Privacy’

Customer
Satisfaction
(software)

Qual. Ease of use The degree to which the customer of a software
system or software product is satisfied with the
system/product (COSMIC/IFPUG)

Database
management
system
software

Tech. Database Software system that is used by an application to
efficiently manage the access control, storage and
retrieval of persistent data used by the application.
Sometimes regarded as part of the infrastructure
software (COSMIC/IFPUG)

Database size Tech. Database (1) A measure of the physical storage space
needed for a database, usually measured in units
such as ‘megabytes’. (2) A measure of the size of
a database in units relevant to the business
application software that will use the database,
e.g. no. of customers, no. of employees
(COSMIC/IFPUG)

Guideline for NF and Project Requirements, v. 1.0 - Copyright © 2015. 35
All rights reserved. COSMIC

NFR Term Class Group Definition

Dependability Qual. System
Reliability

(1) trustworthiness of a computer system such that
reliance can be justifiably placed on the service it
delivers (IEEE 982.1-2005 IEEE.

(2) availability performance and its influencing
factors: reliability performance, maintainability
performance and maintenance support
performance (ISO/IEC 15026-1:2013)

3) the ability to perform when required (IEC 60050-
191:1990)

Note: Dependability characteristics include
availability and its inherent or external influencing
factors, such as availability, reliability (including
fault tolerance and recoverability), security
(including confidentiality and integrity),
maintainability, durability, and maintenance support.
(taken from the definition of ‘Reliability’ in ISO/IEC
25010:2011)

Disaster
recovery

Qual. See ‘Recoverability’’

Distinct users
(maximum
number)

Env. User base The maximum number of distinctly identifiable users
that a system can support (COSMIC/IFPUG)

Distributed
Processing

Tech. Operation-
al Platform

See ‘Operational Platform type’

Diversity Qual. System
Reliability

In fault tolerance, realization of the same function
by different means (ISO/IEC 24765:2010) Example:
use of different processors, storage media,
programming languages, algorithms, or
development teams

Ease of use Qual. See ‘Usability’

Emotional
Factors

Qual. See ‘Aesthetics’ (of the user interface)

Failure
Management

Qual. System
reliability

The management of failures from their occurrence
until resolution (COSMIC/IFPUG), where ‘failure’ is
defined as (1) termination of the ability of a product
to perform a required function or its inability to
perform within previously specified limits
(25000:2005) (2) an event in which a system or
system component does not perform a required
function within specified limits (24765:2010)

Fault
tolerance

Qual. System
reliability

(1) The ability of a system or component to
continue normal operation despite the presence of
hardware or software fault (25010:2010). (2).
pertaining to the study of errors, faults, and failures,
and of methods for enabling systems to continue
normal operation in the presence of faults. cf. error
tolerance, fail safe, fail soft, fault secure,
robustness. (24765:2010)

See also ‘Operational Platform type’

http://www.techstreet.com/ieeegate.html

Guideline for NF and Project Requirements, v. 1.0 - Copyright © 2015. 36
All rights reserved. COSMIC

NFR Term Class Group Definition

Industry Env. Context The type of business that a software system or
software product must support, as identified by a
Standard Industry Code. SIC codes ‘are assigned
based on common characteristics shared in the
products, services, production and delivery system
of a business’. (Wikipedia)

Implement-
ations
(number of)

Env. Implement-
ations

 The number of times that a software system or
software product must be installed. See also
‘Installability’, as ‘installation’ is virtually a synonym
of ‘implementation’. (COSMIC/IFPUG)

Note: Normally, the effort for a development project
includes only the first implementation.

Installability Qual. Ease of
deploy-
ment

Degree of effectiveness and efficiency with which a
product or system can be successfully installed or
uninstalled in a specified environment (25010:2010)

‘Installation’ is defined as ‘system development
phase at the end of which the hardware, software
and procedures of the system become operational
(2382-20:1990)

See also ‘Implementations (number of)’.

Related concept: configurability

Interfaces Qual. System or
software
architect-
ure or
design

Shared boundary between two functional units,
defined by various characteristics pertaining to the
functions, physical signal exchanges, and other
characteristics (25010:2010)

Related concepts: autonomy, inter-process
communication

For project interfaces, see ‘Dependencies on other
parties’ (a PRC term)

Interoperability Qual. Compati-
bility

Degree to which two or more systems, products or
components can exchange information and use the
information that has been exchanged (25010:2011)

Learnability Qual. Ease of
use

Degree to which a product or system can be used
by specified users to achieve specified goals of
learning to use the product or system with
effectiveness, efficiency, freedom from risk and
satisfaction in a specified context of use
(25010:2011) Note: Can be specified or measured
either as the extent to which a product or system
can be used by specified users to achieve specified
goals of learning to use the product or system with
effectiveness, efficiency, freedom from risk and
satisfaction in a specified context of use, or by
product properties corresponding to suitability for
learning as defined in ISO 9241-110.

Related concept: teachability

Guideline for NF and Project Requirements, v. 1.0 - Copyright © 2015. 37
All rights reserved. COSMIC

NFR Term Class Group Definition

Maintainability Qual. Maintain-
ability

Ease with which a software system or component
can be modified to change or add capabilities,
correct faults or defects, improve performance or
other attributes, or adapt to a changed environment
(24765:2010). Note: Maintainability includes
installation of updates and upgrades. Modifications
may include corrections, improvements or
adaptation of the software to changes in
environment, and in requirements and functional
specifications. Modifications include those carried
out by specialized support staff, and those carried
out by business or operational staff, or end users.

See also: adaptability

Related concepts: comprehensibility, modularity,
supportability

Methods and
Tools

Tech. Develop-
ment
require-
ments

Procedures for carrying out tasks, and supporting
software aids used by the project team.
(COSMIC/IFPUG)

NOTE: methods and tools used should be recorded
by the principal software activities, i.e. requirements
determination, analysis, design, programming,
testing, implementation, maintenance and support.

See also ‘Project Management methods’.

Multilingual
support

Qual. Ease of
use

Requirement for a system to be usable in two or
more natural languages (COSMIC/IFPUG)

Non-
repudiation

Qual. Access
control

Degree to which actions or events can be proven to
have taken place, so that the events or actions
cannot be repudiated later. (ISO/IEC 250101:2011)

Open source Qual. System or
software
architect-
ture or
design

Requirement to use open source software or not.
(COSMIC/IFPUG)

Open-source software is defined as ‘computer
software with its source code made available with a
license in which the copyright holder provides the
rights to study, change, and distribute the software
to anyone and for any purpose’. (Wikipedia)

Operability Qual. Ease of
use

Degree to which a product or system has attributes
that make it easy to operate and control (ISO/IEC
250101:2011) Note: Operability corresponds to
controllability, (operator) error tolerance, and
conformity with user expectations as defined in ISO
9241-110.

Operational
platform
physical
distribution

Tech. Operation-
al platform

An indicator of whether the platform on which a
software system or software product is required to
execute is located at a single site or is distributed
over multiple sites. (COSMIC/IFPUG)

Note: not to be confused with a requirement to
implement the software system or software product
on a single platform at multiple sites.

Guideline for NF and Project Requirements, v. 1.0 - Copyright © 2015. 38
All rights reserved. COSMIC

NFR Term Class Group Definition

Operational
platform type

Tech. Operation-
al platform

The hardware/software environment on which a
software system or software product executes.
Examples: shared utility (e.g. ‘cloud’); main-frame;
mid-range; PC; embedded; mobile; multi-platform
(for a distributed system); parallel (or ‘array’)
processor, communications network processor (e.g.
a router) (ISBSG, COSMIC/IFPUG)

Operational
platform
volatility

Tech. Operation-
al platform

An indicator of whether the operational platform
(hardware or software) is stable or changes often.
(COSMIC/IFPUG)

Operational
processing
mode

Qual. System or
software
architect-
ure or
design

 An indicator of whether a software system or
software product is required to execute transactions
on-demand (‘i.e. ‘on-line’); in batches; mixed on-line
and in batches; or subject to real-time constraints.
(COSMIC/IFPUG)

Operational
processor
speed

Tech. Operation-
al platform
constraints

The speed of the processor on which a software
system or software product executes. (Used to
indicate whether the processor speed is limited,
thus requiring special effort when developing the
software system or software product.)
(COSMIC/IFPUG)

Operational
processor
memory

Tech. Operation-
al platform
constraints

The memory capacity of the processor on which a
software system or software product executes.
(Used to indicate whether the processor memory is
limited, thus requiring special effort when
developing the software system or software
product.) (COSMIC/IFPUG)

Operational
storage
capacity

Tech. Operation-
al platform
constraints

The on-line storage capacity available to an
executing software system or software product.
(Used to indicate whether the storage capacity is
limited, thus requiring special effort when
developing the software.) (COSMIC/IFPUG)

Portability Qual. Ease of
deploy-
ment

(1) Ease with which a system or component can be
transferred from one hardware or software
environment to another (24765:2010) (2) capability
of a program to be executed on various types of
data processing systems without converting the
program to a different language and with little or no
modification (2382-1:1993)

Precision Qual. Data
quality

The degree of exactness or discrimination with
which a quantity is stated (24765:2010) Example: a
precision of 2 decimal places versus a precision of
5 decimal places

Privacy Qual. Access
control

Ability of a software system or software product to
protect personal data from unauthorized or
unwarranted disclosure (COSMIC/IFPUG). See
also ‘Confidentiality’

Programming
language

Tech. Develop-
ment
require-
ments

The computer languages in which a software
system or software product is required to be
programmed e.g. C, C#, Java (COSMIC/IFPUG)

Guideline for NF and Project Requirements, v. 1.0 - Copyright © 2015. 39
All rights reserved. COSMIC

NFR Term Class Group Definition

Programming
paradigm

Tech. Develop-
ment
require-
ments

A fundamental style of computer programming, a
way of building the structure and elements of
computer programs (Wikipedia), e.g. procedural,
object-oriented, imperative, literate, declarative,
functional, logic, symbolic, synchronous, etc.

Recoverability Qual. System
reliability

Degree to which, in the event of an interruption or a
failure, a product or system can recover the data
directly affected and re-establish the desired state
of the system (25010:2011)

Reliability Qual. System
reliability

(1) The ability of a system or component to perform
its required functions under stated conditions for a
specified period of time (24765:2010) (2) degree to
which a system, product or component performs
specified functions under specified conditions for a
specified period of time (25010:2011) Note:

Response
time

Qual. System
perform-
ance

The elapsed time between the end of an inquiry or
command to an interactive computer system and
the beginning of the system’s response
(24765:2010).

 Related concept: ‘latency’

Reusability Qual. Maintain-
ability

Degree to which an asset can be used in more than
one system, or in building other assets
(25010:2010)

Re-use type Qual. Maintain-
ability

Types of re-usable assets, e.g. requirements,
designs, code (modules, object classes), test
suites, documentation. (COSMIC/IFPUG)

Safety Qual. System
reliability

Expectation that a system does not, under defined
conditions, lead to a state in which human life,
health, property, or the environment is endangered
(24765a:2011)

Scalability Qual. See ‘Adaptability’

Security Qual. Access
control

(1) Protection of information and data so that
unauthorized persons or systems cannot read or
modify them and authorized persons or systems are
not denied access to them (12207:2008)

(2) The protection of computer hardware or
software from accidental or malicious access, use,
modification, destruction, or disclosure. Security
also pertains to personnel, data, communications,
and the physical protection of computer
installations. (1012-2012)

Related concepts: accountability, authenticity,
confidentiality, integrity, non-repudiation, privacy

Guideline for NF and Project Requirements, v. 1.0 - Copyright © 2015. 40
All rights reserved. COSMIC

NFR Term Class Group Definition

Transaction
rate

Qual. System
perform-
ance

A transaction rate is the rate at which a defined mix
of transactions is processed on a defined
operational platform; it may be a target rate or an
actual rate and it may be the average rate over a
defined time-period, a maximum rate or a percentile
rate (e.g. 90% of the transactions shall
complete faster than the target rate). Synonym:
‘throughput rate’.

Note: A transaction is the implementation of a
software system or software product requirement
that may correspond to a part of, or a whole, or
more than one COSMIC functional
process, or similarly correspond to an IFPUG
elementary process. (COSMIC/IFPUG)

Usability Qual. Ease of
use

(1) degree to which a product or system can be
used by specified users to achieve specified goals
with effectiveness, efficiency and satisfaction in a
specified context of use (25010:2011) (2) ease with
which a user can learn to operate, prepare inputs
for, and interpret outputs of a system or component
(24765:2010).

See also appropriateness, recognizability,
learnability, operability, user error protection, user
interface aesthetics (qv), accessibility (qv)

Usage modes Qual. Access
control

Requirement for a software system or software
product to be able to be used in different modes,
i.e. live, test, training, or combinations thereof
(COSMIC/IFPUG)

User numbers Env. (See ‘Distinct user maximum numbers’ and
‘Concurrent user maximum numbers’)

Validation (of
data)

Qual. Data
quality

Process of controlling that the data entered into a
software system or software product satisfies
requirements allocated to software in terms of
format, range and type of permitted data values.
The process should not allow invalid data to enter a
data store and should inform the user of the nature
of any defects. (COSMIC/IFPUG, partly based on
IEEE 1012-2004)

Guideline for NF and Project Requirements, v. 1.0 - Copyright © 2015. 41
All rights reserved. COSMIC

7.3 Glossary of Project Requirement and Constraint terms

In this section, the word ‘project’ in any of the terms means a project of any ‘Project type’ as
defined below. Where ‘locally’ appears in a definition, this could mean ‘within your
organization’ or ‘for a given benchmarking exercise’, i.e. whatever is appropriate depending
on the context.

All term definitions are proposed by COSMIC and IFPUG [29], unless another source is given
explicitly.

Term Project
Group

Definition

Customer
Satisfaction
(project)

Project
Quality

The degree to which the customer of a software system or
software product is satisfied with the project that developed or
enhanced it.

Defect count Project
Quality

The number of defects, within a defined period starting from the
date of first implementation of a software system or software
product. (Defect counts should be classified by severity and
may be target or actual.)

Note: ‘Defect count’ is an attribute of the delivered software
system or software product. However, is it not a quality
requirement of the product, so it is classified as a Project
Requirement and Constraint term, i.e. as an attribute of a
project, together with other project performance-related
characteristics, such as effort and duration.

Dependencies
on other
parties

Risk Dependencies of the project activities on activities that are
performed by other parties, e.g. other projects or decision-
making bodies, which may affect the progress of the project.

Development
environment

Processes The hardware/software platform used by the development
project. To be recorded if different from the Operational
Platform.

See also the classification of ‘Operational Platform type’

Duration
(Schedule)

Duration The elapsed time for a project from Project Start Date (when a
project is given resources and starts work) until Project Finish
Date (the end of first site implementation).

NOTE: Both the estimated and actual duration should be
recorded, the latter excluding periods when the project was
inactive.

See also ‘Schedule compression/expansion’

Effort Resources The amount of work (in labor units such as staff-months)
required to complete a project.

Note 1: Effort must be further clarified locally, e.g. it may:

• be estimated, planned or actual;

• be for a whole project or broken down by activity (see ‘work
breakdown’);

• define whether users, customers, or support staff (e.g. DB
specialists, project management office staff, etc.),are
included in or excluded from the project team.

Note 2: A ‘project team’ is defined as ‘The people who report
either directly or indirectly to the project manager. (PMI)

Guideline for NF and Project Requirements, v. 1.0 - Copyright © 2015. 42
All rights reserved. COSMIC

Term Project
Group

Definition

Governance Processes (1) The management framework within which project decisions
are made, e.g. COBIT, PRINCE, etc.

(2) The organization that is accountable for the project, e.g. a
Steering Committee, Change Control Board.

Location Processes The country(ies) or site(s) where the project takes place.

NOTE: Project location may be classified as e.g.: On-site,
Multi-site, Near-shore, Multi-country, Off-shore etc.

Off-shore: The practice of hiring external organizations to
perform work in a country other than the one where the
products or services are required or will be used; Near-shore:
The practice of hiring external organizations to perform work in
neighboring countries.

Post-project
review
findings

Risk (1) Measures of actual project performance, e.g. actual
productivity, customer satisfaction (project), defect counts, etc.

(2) Factors (positive and negative) identified in a post-project
review that affected the project outcome, such as unanticipated
staff turnover, scope or technology changes, experienced
team, etc.

Note 1: Ideally the impact on the planned effort and/or
schedule should be estimated for each factor.

Note 2: see also ‘Scope change (Scope creep)’

Process
maturity

Processes The level of adherence of the project processes to a quality
standard, e.g. as per CMMI®, SPICE or similar assessment.

Project
management
method(s)

Processes A method for dividing project activities into distinct phases (or
stages, or iterations) for the purposes of planning and control.

NOTE: Common project management methods include
waterfall, prototyping, iterative and incremental development,
spiral development, rapid application development, extreme
programming and agile methods.

(Also known as software development methodology, or
software development life cycle.)

Project type Type A class of software project dependent on its purpose in relation
to the software. A project type may be New development,
Enhancement, Maintenance, Re-development (ISBSG), where
‘Maintenance’ includes Adaptive, Corrective, Perfective and
Preventive maintenance.

Notes:

1. The criterion for when an activity is considered as a
maintenance activity and when it is an enhancement
project should be defined locally.

2. Maintenance may also be defined as a continuing
activity to evolve a system and not as a project

Guideline for NF and Project Requirements, v. 1.0 - Copyright © 2015. 43
All rights reserved. COSMIC

Term Project
Group

Definition

Risk Risk (1) The aggregate probability of the project not succeeding
in meeting its goals. (COSMIC/IFPUG)

(2) An uncertain event or condition that, if it occurs, has a

positive or negative effect on a project’s objectives (PMI®).)

Risk is usually derived from other data that encompasses
the size of the software to be delivered, anticipated
requirements stability & validity, staff skills and experience
in the problem area, stakeholders cohesion, etc. Risk
analysis may also take into account the impact of failing to
meet project goals and the uncertainty in the risk
assessment.

Schedule
compression /
expansion

Duration The degree to which a target project duration (’schedule’)
is compressed or expanded compared with the estimated
duration that is ideally or optimally estimated as needed.
(COSMIC/IFPUG)

Note: The PMI defines ‘schedule compression’ as ’taking
actions to decrease the total project duration after
analyzing number of alternatives to determine how to get
the maximum duration compression for the least cost.’

Scope change
(“Scope creep”)

Risk Any change to the project’s scope. A scope change almost
always requires an adjustment to the project cost or
schedule (PMI)

Skills and
experience level

Resources The degree to which the human resources who perform
the project as defined by the plan have the necessary skills
and expertise to perform or support the processes they
are assigned to (after CMMI®)

Staffing level Resources The number of staff employed on the project.

Note: Need to distinguish the average number over the life
of the project from the peak number of staff, and planned
versus actual.

Team
relationships

Resources Any factor that affects the team’s ability to work effectively,
e.g. team stability, culture (single/multi-culture) and
cohesion, physical working conditions, relationships with
non-project staff, e.g. other development teams, users,
customers, specialist staff, etc.

Work-breakdown
structure

Resources A deliverable-oriented grouping of project work elements
that organizes and defines the total work scope of the
project. (PMI)

Guideline for NF and Project Requirements, v. 1.0 - Copyright © 2015. 44
All rights reserved. COSMIC

7.4 Terms that have been excluded from the Glossary

This Chapter contains terms that:

• were considered for inclusion but were NOT included in the Glossary. The reasons for
their exclusion are given;

• or are used in the analysis of project performance data, but are not NFR nor project
requirements.

Complexity Composed of more than one or many parts; not simple or straightforward;
intricate, difficult. (Chambers). Note that there can be several types of
complexity of software: algorithmic, architectural, data, process, operational,
semantic, etc.

Excluded because the term is ill-defined, with many possible types

Control* (1) In engineering, the monitoring of system output to compare with
expected output and taking corrective action when the actual output does
not match the expected output (24765:2010). (2) A requirement that a
software system or software product must operate, regulate or direct some
other device or process, probably in real-time (COSMIC/IFPUG)

Excluded because the requirement to control is really a functional user
requirement

Criticality A requirement that is decisively important for some imperative goal such as
the organization’s mission, or for human safety (COSMIC/IFPUG)

Excluded because it is a very high-level NFR that in practice would be
elaborated in more detail

Programming
language
maturity

A classification of programming language maturity levels of historical
development used by the ISBSG (2GL, 3GL, 4GL).

Excluded because the distinctions between the three classes are not well
defined. (See: ‘programming paradigm’.)

Quality The degree to which a set of inherent characteristics fulfills a set of
requirements. (ISO 9000)

(See ‘customer satisfaction’, ‘defect level’)

Excluded because it is too general to be a non-functional requirement.

* Note: When measuring business application software using the COSMIC method, ‘control
commands’ are not measured. The term ‘control commands’ is used only in the context of
business application software [30].

Guideline for NF and Project Requirements, v. 1.0 - Copyright © 2015. 45
All rights reserved. COSMIC

RReeffeerreenncceess

REFERENCES

For the sources and definitions of terms in the Glossary, see section 7.1

(COSMIC publications are all available from the portal of www.cosmic-sizing.org).

[1] ISO/IEC 14143/1:2011, ‘Information Technology - software measurement – functional
size measurement’, 2011.

 [2] Butcher, C., ‘Delivering mission-critical systems’, British Computer Society, Central
London Branch meeting, 18th November 2010.

[3] Symons, C.R., ‘Accounting for non-functional requirements in productivity
measurement, benchmarking and estimating’, UKSMA/COSMIC International
conference on software metrics and estimating’, 27/28 October 2011,
www.uksma.co.uk.

[4] Lago, P., Avgerieu, P., Hilliard, R.,. ‘Software architecture: farming Stakeholders’
concerns, IEEE Software, November/December 2010

[5] ISO/IEC 25010:2011, Systems and software engineering – Systems and software
Quality Requirements and Evaluation (SquaRE) – System and software quality
models.

[6] COSMIC ‘Guideline for early or rapid COSMIC functional size measurement using
approximation approaches’, July 2015, http://cosmic-sizing.org/publications/guideline-
for-early-or-rapid-cosmic-fsm/.

[7] Al-Sarayreh, K., Abran, A., Cuadrado-Gallego, J., ‘A Standards-based model of
system maintainability requirements’, Journal of Software: Evolution and Process,
2013, Vol. 25, no. 5, pp. 459-505.

[8] Saito, Y., Monden A., Matsumoto K., ‘Evaluation of non-functional requirements in a
request for proposal (RFP)’, Nara Institute of Science & Technology, Japan, at
International Workshop on Software Measurement (IWSM), Nara, 2012.

[9] Poort, E., van der Vliet, E., ‘Estimating the cost of heterogeneous solutions’,
International Workshop on Software Measurement (IWSM) & MENSURA Conference,
Rotterdam, 2014.

[10] COSMIC ‘Guideline for the use of COSMIC FSM to measure Agile projects’,
September 2011, http://cosmic-sizing.org/publications/guideline-for-sizing-agile-
projects-with-cosmic/

[11] Albrecht, A.J., ‘Measuring application development productivity’, IBM application
development symposium, Monterey, CA, October 1979

[12] Albrecht, A.J., ‘Where function points (and weights) came from’, IBM Corporation, 19th
February 1986.

[13] Albrecht, A.J., ‘AD/M productivity measurement and estimate validation – Draft’, IBM
Corporate Information Systems & Administration Guideline, AD/M Improvement
Program, Purchase, NY, May 1 1984.

[14] Symons, C.R., ‘Function point analysis, difficulties and improvements’, IEEE
Transactions on Software Engineering, Vol. 14, No. 1, January 1988,

http://www.cosmic-sizing.org/

Guideline for NF and Project Requirements, v. 1.0 - Copyright © 2015. 46
All rights reserved. COSMIC

[15] IFPUG ‘Software Non-functional Assessment Process’, www.ifpug.org (as defined in
2011).

[16] IEEE 804, ‘Recommended Practices for Software Requirements Specifications’,
1983.

[17] ISO/IEC 9126: 1991. ‘Software engineering – Software product evaluation – Quality
characteristics and guidelines for their use’, www.iso.org

[18] Wikipedia entry for ‘Non-functional Requirements’.

[19] International Software Benchmarking Standards Group, ‘Data Collection
Questionnaire …using IFPUG or NESMA Function Points’, 5.12, 2009,

[20] Software Engineering Institute, ‘A Data Specification for Software Project
Performance Measures: Results of a Collaboration on Performance Measurement’,
Carnegie Mellon University, CMU/SEI-2008-TR-012, July 2008.

[21] ‘COCOMO II Model Definition Manual’, version 2.1, Centre for Software Engineering,
USC, 2000

[22] ISO/IEC 25020:2007, ‘Software Engineering – Software product Quality
Requirements and Evaluation (SQuaRE) – Measurement reference model and guide’,
www.iso.org.

[23] Abran A., Al-Sarayreh, KT., Cuadrado-Collego, JJ., ‘A standards-based reference
framework for system portability requirements’, Computer Standards and Interfaces,
Elsevier, Vol 35, 2013, pp. 380-395. http://dx.doi.org/10.1016/j.csi.2012.11.003.

[24] European Cooperation for Space Standardization, ‘Space Engineering: Software –
Part 1 Principles and Requirements, The Netherlands, 2005.

[25] IEEE 830, 1998, ‘Recommended practice for software requirements specifications’.

[26] ISO 24765:2008. ‘Systems and software engineering–Vocabulary’.

[27] ISO 2382-1:1993, ‘Information technology–Vocabulary–Part 1: Fundamental terms.

[28] COSMIC ‘Guideline for sizing Service-Oriented Architecture software’, COSMIC
method v4.0.1, 2014, http://cosmic-sizing.org/publications/guideline-for-sizing-service-
oriented-architecture-software/.

[29] COSMIC and IFPUG ‘Glossary of terms for Non-Functional Requirements and Project
Requirements used in software project performance measurement, benchmarking
and estimating’, joint publication of COSMIC and IFPUG, September 2015.
http://cosmic-sizing.org/publications/glossary-of-terms-for-nf-and-project-
requirements/

[30] COSMIC ‘Measurement Manual: The COSMIC implementation guide for ISO/IEC
19761:2011’, v4.0.1, April 2015, http://cosmic-sizing.org/publications/measurement-
manual-401/

[31] ‘A taxonomy of software projects productivity impact factors’, v1.1, Gruppo Utenti
Function Point Italia – Italian Software Metrics Association, 15/2/2011, www.gufpi-
isma.org/sbc/tassonomia

[32] Kassab, M., Daneva, M., and Ormandjieva, O., ‘A meta-model for the assessment of
non-functional requirement size’, 34th Euromicro conference on software engineering
and advanced applications, Parma (Italy) 2008.

[33] Abran, A., ‘Software metrics and software metrology’, John Wiley and Sons and IEEE
CS, 2010, Chapter 8, ISBN: 978-0-470-59720-0.

[34] ISO/IEC TR 9126-2:2003, Software engineering -- Product quality -- Part 2: External
metrics. [35] ISO/IEC TR 9126-3:2003, Software engineering -- Product quality --
Part 3: Internal metrics.

http://www.ifpug.org/
http://www.iso.org/
http://www.iso.org/
http://dx.doi.org/10.1016/j.csi.2012.11.003
http://cosmic-sizing.org/publications/glossary-of-terms-for-nf-and-project-requirements/
http://cosmic-sizing.org/publications/glossary-of-terms-for-nf-and-project-requirements/
http://www.gufpi-isma.org/sbc/tassonomia
http://www.gufpi-isma.org/sbc/tassonomia

Guideline for NF and Project Requirements, v. 1.0 - Copyright © 2015. 47
All rights reserved. COSMIC

[36] ISO/IEC CD 25023.3, Software Engineering – Software Product Quality
Requirements and Evaluation (SQuaRE) – Measurement of system and product
quality, 14 Feb 14.

[37[AUTOSAR (AUTomotive Open System ARchitecture), www.autosar.org

[38] Project Management Institute, A Guide to the Project Management Body of
Knowledge (PMBOK® Guide)—Fifth Edition, http://www.pmi.org/pmbok-guide-and-
standards/pmbok-guide.aspx

[39] ISO/IEC 25012:2008, ‘Software Engineering – Software Product Quality
Requirements and Evaluation (SQuaRE) – Data Quality Model’.

[40] L. Chung, B. Nixon, E. Yu, and J. Mylopoulos, "Non-functional Requirements in
Software Engineering,“ Kluwer Academic Publishing, 2000

http://www.autosar.org/
http://www.pmi.org/pmbok-guide-and-standards/pmbok-guide.aspx
http://www.pmi.org/pmbok-guide-and-standards/pmbok-guide.aspx

Guideline for NF and Project Requirements, v. 1.0 - Copyright © 2015. 48
All rights reserved. COSMIC

AAppppeennddiixx

APPENDIX: COSMIC CHANGE REQUEST AND COMMENT PROCEDURE

The COSMIC Measurement Practices Committee (MPC) is very eager to receive feedback,
comments and, if needed, Change Requests for this guideline. This appendix sets out how to
communicate with the COSMIC MPC.

All communications to the COSMIC MPC should be sent by e-mail to the following address:

mpc-chair@cosmic-sizing.org

Informal general feedback and comments

Informal comments and/or feedback concerning the guideline, such as any difficulties of
understanding or applying the COSMIC method, suggestions for general improvement, etc
should be sent by e-mail to the above address. Messages will be logged and will generally be
acknowledged within two weeks of receipt. The MPC cannot guarantee to action such general
comments.

Formal change requests

Where the reader of the guideline believes there is a defect in the text, a need for clarification,
or that some text needs enhancing, a formal Change Request (‘CR’) may be submitted.
Formal CR’s will be logged and acknowledged within two weeks of receipt. Each CR will then
be allocated a serial number and it will be circulated to members of the COSMIC MPC, a
world-wide group of experts in the COSMIC method. Their normal review cycle takes a
minimum of one month and may take longer if the CR proves difficult to resolve. The outcome
of the review may be that the CR will be accepted, or rejected, or ‘held pending further
discussion’ (in the latter case, for example if there is a dependency on another CR), and the
outcome will be communicated back to the Submitter as soon as practicable.

A formal CR will be accepted only if it is documented with all the following information.

• Name, position and organization of the person submitting the CR.

• Contact details for the person submitting the CR.

• Date of submission.

• General statement of the purpose of the CR (e.g. ‘need to improve text…’).

• Actual text that needs changing, replacing or deleting (or clear reference thereto).

• Proposed additional or replacement text.

• Full explanation of why the change is necessary.

A form for submitting a CR is available from the www.cosmic-sizing.org site. The decision of
the COSMIC MPC on the outcome of a CR review and, if accepted, on which version the CR
will be applied to, is final.

Questions on the application of the COSMIC method

The COSMIC MPC regrets that it is unable to answer questions related to the use or
application of the COSMIC method. Commercial organizations exist that can provide training
and consultancy or tool support for the method. Please consult the www.cosmic-sizing.org
site for further detail.

mailto:mpc-chair@cosmic-sizing.org
http://www.cosmic-sizing.org/
http://www.cosmic-sizing.org/

