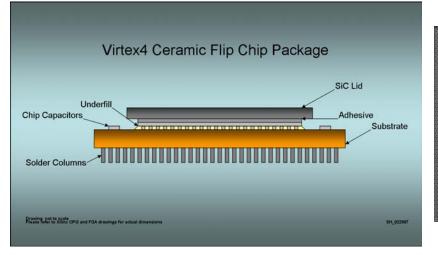


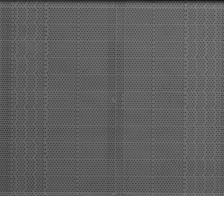
Non Hermetic Ceramic Flip Chip Package Construction and Reliability

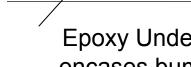
Gerry Maloney, Gabriel Dosdos, Paul Ton

8/28/09, MAPLD

Non Hermetic Ceramic Flip Chip Package Construction and Reliability


Agenda:


- Section 1: Package Construction Overview
- Section 2: Why Flip Chip, Why Non Hermetic
- Section 3: Reliability Review

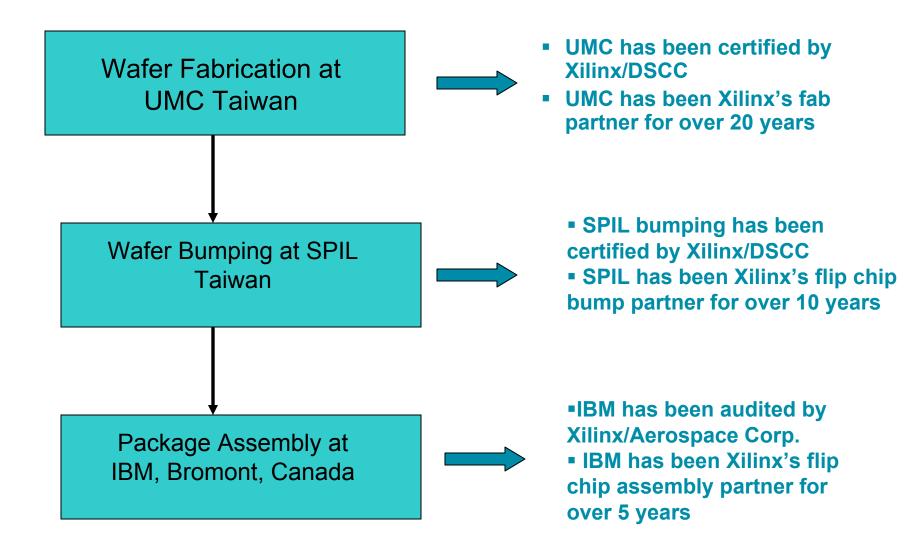


Ceramic Flip Chip CGA (CF) Package Construction

- The CF package substrate is ceramic and the columns are 90%Pb/10%Sn solid solder columns.
- All Xilinx Ceramic Flip Chip package (CF) die are Flip Chip and are bumped with High Lead bumping (95%Pb/5%Sn).
- The bumped die is flipped and reflowed to the ceramic substrate at assembly. A moisture resistant epoxy underfill encapsulates the bumps.

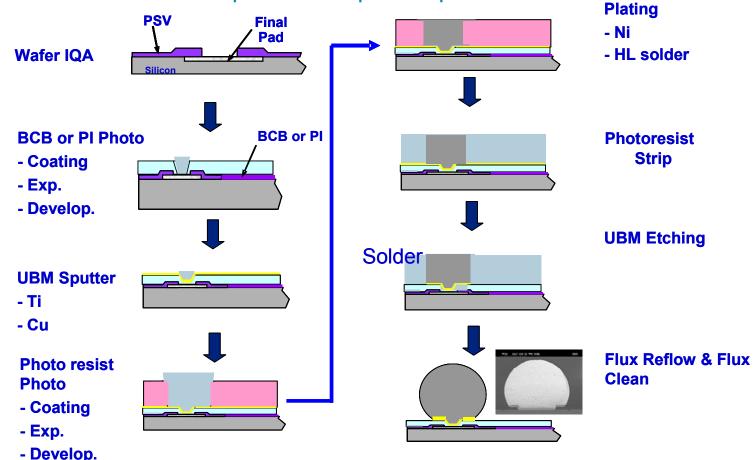
V4 Bumped Die

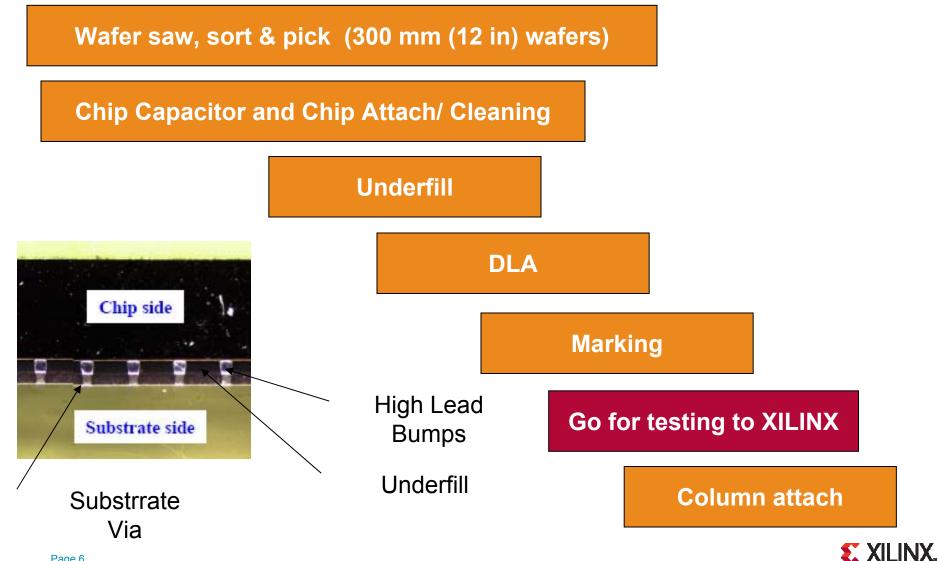
-Minimum Bump Pitch: 190 microns


-# of Bumps: 3896-8248

Epoxy Underfill encases bumps

Xilinx CF Package Construction


CF Package Manufacturing Flow



CF Package Bumping

- All CF package die are flip chip and are bumped with High Lead Bumping. (95% Pb/5% Sn)
- Bump Pads are arranged across the top surface of the die. Bump pads consist of power, ground and I/O pads.
- Bumps are attached after wafer sort. Bump Pads and Bumps are not probed.

CF Package Assembly Flow

CF Package Assembly Process

- CF package is assembled at IBM using IBM's qualified material set/process flow
- Xilinx and Aerospace Corp. have audited IBM and have added the following additional assembly process monitors to Xilinx's Class V flow to closely match Class S military screening requirements:

Assembly Monitor	Sample Size	Xilinx Specification
Die Visual Inspection	100%	MAC0123
Die Adhesion Test (Pad	Package Substrate Lot Acceptance,	MFC0087
Wettability Test)	1% per substrate lot	
Die Bump Shear and Die	Lot Acceptance, 3 units per assembly	MAC0117
Bump Pull Monitor	lot	
Underfill Coverage Monitor	100% of lot	MAC0120
(CSAM)		
Lid Shear Test	Lot Acceptance, 8 units per assembly	MAC0118
	lot	
Temperature Cycle	100% of lot, 50 cycles, Condition C	MFC0087
	(-65 to 150 C)	

Why Flip Chip, Why Non Hermetic

- All Xilinx V4/V5 devices are only offered in Flip Chip for both commercial & military markets.
- Flip Chip gives the best electrical performance. Eliminating wire bond wires improves the inductance and capacitance of the electrical connections.
- Flip Chip connections uses the whole area of the die (compared to the peripheral for wire bond) thus allowing more I/O, Power & Ground signals.
- Non Hermetic Ceramic Flip Design allows Xilinx to assemble at IBM. IBM has been assembling Non Hermetic Ceramic Flip Chip for over 30 years, so the package has a proven excellent reliability record.

Ceramic Flip Chip Reliability

• CF Package has proven excellent Reliability:

Reliability Characteristic	Detail
MSL 1: Package is rated as a Moisture	2 Passivations (BCB & SiN) cover the top surface
Superior MSL 1 (Package has passed 168	of the die. Epoxy underfill protects the bumps
hrs 85/85 followed by 4000 TCB testing)	from moisture.
CTE Matching: CTE of the ceramic package	CTE matching eliminates thermal expansion
(7) closely matches the die CTE (3)	stresses and so there is little risk for bump or die cracks with ceramic flip chip.
Excellent Bump Quality	Automoated bumping fabrication process provdes strong bumps. Bumps are not probed and are 100% visualed before assembly.
Strong Bump to Package Interconnection	Bumps form strong solder joint connections with the package. No marginal connections (like low wire pull on wire bond packages) are seen.
Multiple 100% Open/Short Electrical Testing	All package connections go through multiple 100% Open/Short testings in the screening flow as part of Final Test.

Virtex-4, XQR CF Package V Grade Qualification Summary

- Virtex-4, XQR-CF product has completed and passed qualification to the requirements of MIL-PRF-38535 & MIL-STD-883.
- Product qualified are:

Family	Device/Package
V4	XQR4VLX200-10CF1509V
V4	XQR4VSX55-10CF1140V
V4	XQR4VFX60-10CF1144V
V4	XQR4VFX140-10CF1509V

Product has passed the following qualification tests:

Qualification Test	Test Method	Sample Size	Device	Results
Group A testing	Mil Std 883, TM5005	100%	AII 4 V4 XQR CF's	Pass
Modified* Group B Testing	Mil Std 883	per Mil Std 883	AII 4 V4 XQR CF's	Pass, see Section 1
			XQR4VFX60,	
			XQR4VLX200 &	
Group C testing	Mil Std 883, TM1005	15 units per device	XQR4VSX55	Pass, see Section 2
			XQR4VLX200 &	
Group D testing	Mil Std 883	per Mil Std 883	XQR4VSX55	Pass, see Section 1
Group E testing	Mil Std 883	per Mil Std 883	AII 4 V4 XQR CF's	Pass
BLR Temperature Cycle Testing	IPC 9701	per IPC 9701	XQR4VLX200-CF1509	Pass, see Section 3
MLS 1 testing + CSAM	JEDEC Std 020A	15 units	XQR4VLX200-CF1509	Pass, see Section 4
Package Temperature Cycle Condition B				
Testing + CSAM	JEDEC & Xilinx Std	14 units	XQR4VLX200-CF1509	Pass, see Section 4
			CF Underfill and Lid	
Outgassing Testing	ASTM E-595	3 units	Adhesive	Pass, see Section 5
Wear Out Tests	Xilinx Std	Xilinx Std	V4	Pass, see Section 6
Mask Qualification (Latch Up and ESD)	Xilinx Std	Xilinx Std	AII 4 V4 XQR CF's	Pass, see Section 6

* Some tests do not apply to ceramic flip chip

Appendix: Virtex-4, XQR CF Package Group B & D Qualification Results

- Group B and D Test Results:
 - Group B Test Results:

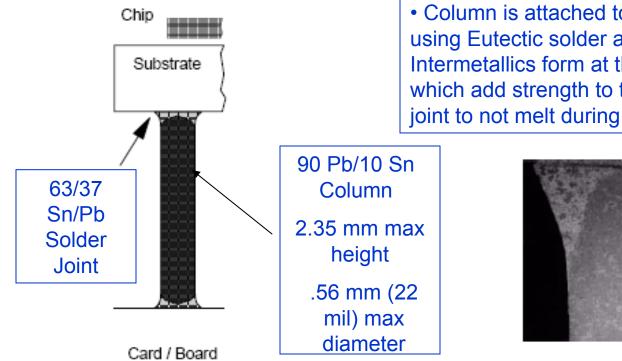
Subgroup	Test	Method	Sample Size	Results
1	Physical Dimensions	2016	2	Pass
	Internal Water Vapor	1018	N/A	Parts are not hermetically sealed
2	Resistance to Solvents	2015	N/A	Parts are laser marked
	Internal Visual and Mechanical	2013	2	Pass
	Die Pull (Bond Strength/Die Shear)		3	Pass
3	Solderability	IBM Std	1% per substrate lot	Pass
N/A	CSAM	IBM Std	100% of lot	Pass
N/A	Lid Shear	IBM Std	8 units per lot	Pass

- Group D Test Results: D3 & D4 units passed -55, 25 and 125 °C electrical testing

before and aft	Subgroup	MIL-S	TD-883		Sample	Results	Ref #
	Subgroup	Test Method Condition		Condition	Size	Results	Hel#
1		Physical Dimensions	2016		2	0 fail	N/A ⁽¹⁾
		a. Thermal Shock	1011	B, 15 cycles	15	0 fail	
		b. Temperature Cycle	1010	C, 100 cycles	15	0 fail]
	3	c. Moisture Resistance	1004		15	0 fail	STS139014
		e. Visual Inspection	1004 & 1010	4 &1010 15 0 fail		0 fail	7
		f. End-Point Electrical Test			15	0 fail]
		a. Mechanical Shock	2002	В	15	0 fail	
		b. Vibration	2007	А	15	0 fail]
	4	c. Constant Acceleration	2001	E, Y1 only	15	0 fail	STS139015
		e. Visual Inspection	1010		15	0 fail	
		f. End-Point Electrical Test			15	0 fail]
	5(2)	a. Salt Atmosphere	1009	А	15	0 fail	STS137031
	3.4	c. Visual Inspection	1009		15	0 fail	51515/051

Appendix: Virtex-4, XQR CF Package Group C, Steady State Life Test Qualification Results

- Virtex 4, XQR4VFX60, XQR4 VLX200 & XQR4VSX55 V Grade CF product have successfully passed qualification with each device passing 2000 hours of steady state life.
- Steady State Life Conditions are per Mil Std 883, Method 1005 as follows:
 - Static Burn In, Temperature = 125°C -0/+8°C
 - VCC CORE: 1.26v
 - VCC AUX: 2.625v
 - VCC IO: 3.45v
 - -55, 25 and 125 °C Electrical Testing at each readpoint


Background:

- Daisy Chain CF parts were assembled and columns were attached following the Xilinx production approved IBM V flow.
- Parts were then attached to 8-layer thick FR4 boards and put through Temperature Cycling Condition J (0°C to 100°C)
- Daisy Chain nets were continuously electrically monitored for resistance change.
- Failure criteria is when the resistance of a net exceeds the threshold resistance (300 ohms)
- BLR testing successfully completed using XQR4VLX200-CF1509 IBM columns
 - Results very good with first failure not seen until 3892 cycles.
- IBM column is used on all Xilinx CF products.

90 Pb/10 Sn IBM Column:

- After Final Test screening, CF packages are column attached at IBM with 90 Pb/10 Sn columns using IBM's proprietary CLASP process.
- Columns are non Wire solid solder.
- IBM's column attach CLASP process is fully automated with no manual handling.

• Column is attached to the CF package substrate using Eutectic solder and additional dopant. Intermetallics form at the column to package interface which add strength to the solder joint and causes the joint to not melt during board attach.

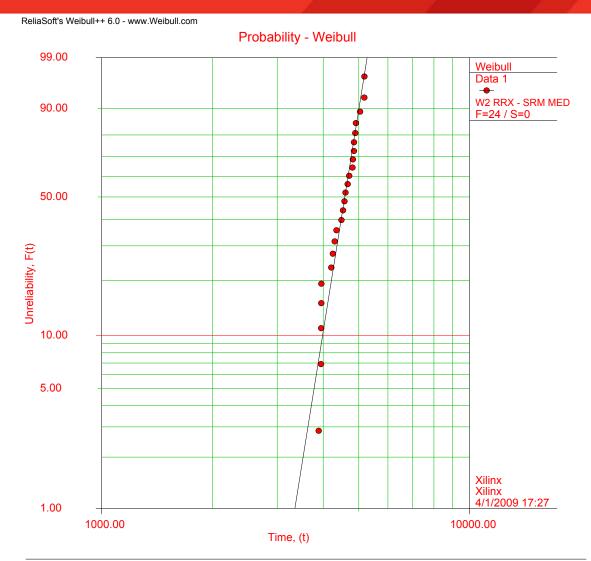
Test Board

- 8 Layer FR4 Board: Signal/GND/Signal/Power/Signal/GND/Signal/Power
- 0.70mm NSMD Pad, 0.85mm Solder Mask Opening, HASL Finish
- Size: 220x140x2.36 mm

Package

- Substrate Thickness: 2.97 mm.
- Package size: 40 x 40 mm
- Die size: 23.8 x 20.4 mm, XQR4VLX200
- Column: 0.56mm diameter with 1.0mm pitch
- Pad size: 0.80mm

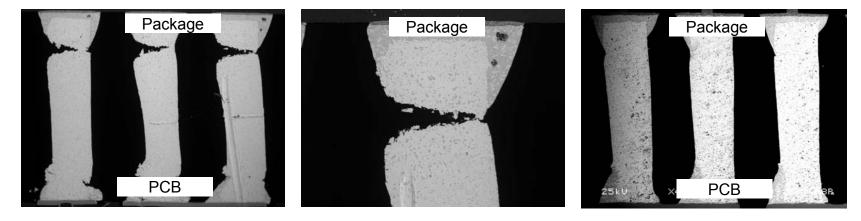
Test Condition


- Temperature Cycle, 0°C to 100°C
- 30 min/cycle (10min. Dwell and 5min. Ramp)

Test Results

- 24 out of 27 units failed until 5305 cycles

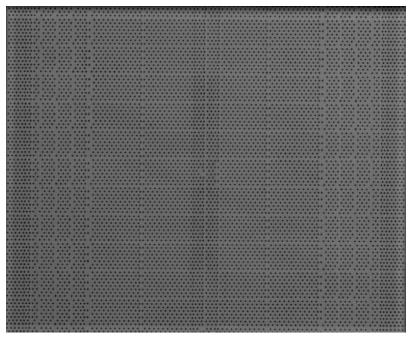
Package	Cycles Completed	# Tested	# Failed	1st. Failure (Cycles)	Characteristic Life (Cycles)
CF1509	5305	27	44	3892	4707



β=13.5523, η=4707.0417, ρ=0.9639

Failure Analysis

 Cross section of the failing chain showed that the failure occurred at the columns on the package side.


SEM photo of crack columns of First Fail Unit – SN112

SEM photo of good columns

Appendix: XQR4VLX200-CF1509 Moisture PreConditioning Qualification Results

- XQR4VLX200-CF1509 has been put through MSL 1 Preconditioning (168 hrs. 85°C/85% RH) followed by 25°C Electrical Test & CSAM. Results are as follows:
- 15/15 units pass Electrical testing after Preconditioning.
- I/1 units pass CSAM inspection. See below.

Appendix: XQR4VLX200-CF1509 Package Temperature Cycling Qualification Results

- Temperature Cycling Test Conditions:
 - Condition B (-55 to 125° C) followed by 25°C Electrical Test on fully electrically functional die.
- Results:

- 14/14 units pass Electrical testing at 1000, 1500 & 2000 3000 & 4000 cycle readpoints.

Appendix: XQR CF Package Outgassing Results

- CF Package Material Set passes outgassing criteria per ASTM E-595 testing and criteria.
- Key Outgassing Parameters:
 - TML (Total Mass Loss)
 - CVCM (Collected Volatile Condensable Materials)
- Specification:
 - TML < 1%
 - CVCM < 0.1%
- CF Package Outgassing Data is as follows:

	Underfill (LP2)	Lid Adhesive (ATI)
TML %:	0.21%	0.36%
CVCM %:	0.01%	0.01%

Appendix: XQR CF Package Wear Out Test and Latch Up and ESD Test Summary

Wear Out Test Summary for M-Grade and V-Grade Products

Table 4: Wear-out Test Summary

Mechanism	Sample	Condition	Conditions	Fallure	Comments	Product Life	Time at Tj of
Mechanism	Size	sofStress Test	of Quoted results	Criterion	Comments .	100°C	125°C
Hot Carrier Injection	20 per condition	3 voltages 25°⊂	≥1.09CVcc 123 ⁰ C for com, -65 ⁰ C for 10	Δldsat > 10%	Worst at cold for IO NMOS & hot for others	53 years	50 years
Vtstability	10 per condition	3 voltages/3 temps, 100 to 160 ⁶ C	1.05 Vec, 1259C	100mV for core/mid oxide; 110mV for 2.5V device; 200mV for 3.3V device	Verified by produce HTOL	42 years	12 years
Gaie oxide TDDB	20 per condition	3 voltages/3 temp, 300°C to 160°C	1.05 Vec	Ign/Ign - 1>1.2 for core NMC6/mi d oxide & 2 for core PMC6,>10 for IO CDP = 0.1%	Equivalent to 11 HTs after 10 years	157 years for L3200	27 years for LX200
Electromi- gration	20-24 per condition	250°C to 250°C	design rule J _{ann} at 100 ⁰ C	Δ R/R >20% CDF = 100 PPM	Equivalent to 1 FIT after 10 years	34 years	6 years
VRDB	total test areas >0.2cm*2 for area; > 1E3cm for STI edge; > 1E4cm for poly edge	Vidiage ramp @ 25 ⁹ C	DD	lgn/lgn - 1>12 for core∣ exide,>10 for 10	Broode 1.1Vcc-(VB D-(2.3 Vcc	pass	Pass

Table 4: Wear-out Test Summary (Continued)

	Sample	Condition	Conditions	Failure		Product Life	Time at Tj of
Mechanism	Size	sofStress Test	of Quoted results	Criterion	Criterion Comments	100°C	125°C
SM	20-30 per condition	3 tempera- turos 1000 hours	pass or fail	Δ R/R >20% of EDR for single Via; Δ R/R > 2.5% for via chains	No sample seress fail allowed	разя	Pass
BEOL TDDB	16-20 per condition	125 ⁰ C-203 ⁰ C	1.1 Var, 100°C	line to line leakage > 1 µA CDF=0.01 %	Equivalent to 1 FIT after 10 years	646 years	214 years

The Latch-Up, HBM and CDM tests are performed according to the following industry standard specifications:

- Latch-Up: JESD-78, ±200mA and 1.5 x V^{*}_{DD}
- HBM: JESD-22-A114, ESDA STM5.1
- CDM: JESD-22-A115, ESDA STM5.3.1

Table 5: Mask Qualification Summary

Device	Latoh-Up	HBM Passing Voltage	CDM Passing Voltage
XQ4VLX60	pass	2000V	400V
XQR4VLX200	Pass	2000V	350V
XQR4VSX55	pass	2000V	400V
XQR4VFX60	pass	2000V	500V

*Latch up performed at 125°C

