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Supersymmetry vs. No Supersymmetry

Most of what we know about string theory:  Supersymmetric backgrounds


Typically we consider compactifications on special holonomy manifolds


These are the only known stable solutions in string theory 


Supersymmetry breaking backgrounds are all transient



However we live in a non-SUSY universe.  We need to understand what 
happens if SUSY is broken.


Subject of a number of Swampland conjectures (related to the possible 
existence of dS or quasi-dS backgrounds).


We need analytic tools to address this class of string backgrounds.


Difficult task…


Intermediate approach:  

Consider supersymmetric breaking states  (non-BPS) 


in supersymmetric backgrounds




Supersymmetric BPS states in SUSY backgrounds have been well studied.


Prominent examples:  Branes wrapped on calibrated cycles of manifolds of 
special holonomy; 


For example: Branes on holomorphic cycles in Calabi-Yau


They lead to charged BPS branes ( ) where





For large   (such as  for ) 

They represent macroscopic BPS black branes


T = |Q |

Q ∈ H*(M, Z)

Q Q → NQ N ≫ 1



Have led to successful predictions of BPS black hole entropy:





The general approach (Strominger+V.)

1) Construct BPS strings in 1 higher dimension

2)  Compactify on a circle and wrap the string on it

3)     The high left-moving oscillatory BPS modes on the string can represent 

black holes

4)  Use Cardy formula to get the entropy


       


where c is the central charge on the string and n is oscillator mode

S =
A
4

S = 2π
nc
6



Do all charges states  appear in the spectrum?


Yes!  (One of the most basic Swampland conditions)


In a supersymmetric theory are all charge states  stable?


No!  Only the BPS ones are stable


Are all charges represented by macroscopic branes?


No!


Are all BPS ones represented by macroscopic branes?


No!


Q

Q



Macroscopic black branes (blue and yellow regions):


White regions:  Microscopic branes as well as

             unbound branes which 


                              should be viewed as combination 

              of lower brane charges




Tensions of Branes vs Charge


For BPS states (microscopic or macroscopic)





For macrscopic extremal non-BPS black branes (large Q)





Big difference:

BPS ones are stable/Non-BPS ones are expected to decay


                                         (One of the main motivations of Weak 

                         Gravity Conjecture (WGC))


T = |Q |

T = |Q |



What do extremal non-BPS black branes decay to?


A)       Combination of BPS / anti-BPS states




B)     non-BPS but stable mircroscopic states


      For micrscopic non-BPS states


 

  


Predicted by the Weak Gravity Conjecture 

(and kinematics of decay)


T > T1 + T2̄

T < |Q |



Example:  Heterotic String on Tori


Consider heterotic string wrapped on a circle with momentum n.  

Charges are denoted by Narain Lattice vectors 


Physical states satisfy







BPS states satisfy 


non-BPS states extremal states satisfy 

                                                                              


In duality between M-theory on K3 and heterotic on 

BPS states are holomorphic curves


non-BPS states are non-holomorphic curves (unstable)

(QL, QR)

1
2

m2 =
1
2

Q2
R + NR =

1
2

Q2
L + NL − 1

NL − NR = n
NR = 0 → m2 = Q2

R
NL = 0 → m2 = Q2

L − 2
m < |QL |

T3



Class we study in this talk:
• 5d theory via M-theory on CY3 . 


• Non-BPS black holes from M2 branes on non-holomorphic curves. 


• Non-BPS black strings from M5 branes on non-holomorphic divisors.


• Brane tension computed via the the attractor mechanism, which involves 
minimizing a rational function of the moduli.  
 

                                                


• These results are asymptotic and expected to hold for large charge.


• Also: compute the central charge of non-BPS strings.

X

Tp = min ( 3
2

Vp
eff)



Black Hole Results:


In the examples we consider we find that the 
black holes correspond to local, but not global, 
volume minimizers of the corresponding
 curve classes, as there is always a disconnected, 
piecewise-calibrated representative with smaller volume.
Therefore the non-BPS extremal black hole can decay to 
BPS/anti-BPS constituents.



Black String Results:


In the examples we consider we find that 
that sometimes the black strings correspond 
to global volume minimizer of a given
class.  In such cases we predict the existence of a stable
non-BPS microscopic string as the decay remnant.
We also find examples where this is not global volume 
minimizers as there is a disconnected, 
piecewise-calibrated representative with smaller volume.
Therefore in these other cases non-BPS extremal 
black strings can decay to BPS/anti-BPS constituents.



5d Black holes from BPS and non-BPS Strings

• M-theory on Elliptic CY 
threefold, can be obtained 
from F-theory on the same CY 
times a circle. 


• 5d black holes in these cases 
can be viewed as wrapped 6d 
strings.


• Compute black hole entropy 
using Cardy formula. Results 
agree!



Black Holes and Strings from M-Theory on a 
Calabi-Yau Threefold



M-theory on Calabi-Yau Threefold X
• 5d field content from dimensional reduction on :


1. Gravity multiplet (that includes a vector).


2.  vector multiplets, each with a real scalar. 


3.  hypermultiplets (which completely decouple!).


• Moduli of  are  
 

 Kähler moduli  ,  ,  . 
  

 complex structure moduli. 

X

h1,1(X) − 1

h2,1(X) + 1

X

h1,1(X) tI J = tIωI ωI ∈ H1,1(X)

h2,1(X)



M-theory on Calabi-Yau Threefold X
• Kähler moduli  are essentially the scalars in vector multiplets, EXCEPT the overall volume of , 

which belongs to a hypermultiplet.


• Parametrize vector multiplet moduli space by  fields , with constraint 
 

                                         .


• Relevant terms in the action:  
 

                   


• Gauge kinetic function and metric on moduli space: 
 

                                                               

tI X

h1,1 tI

vol(X) := 𝒱 =
1
6 ∫

X

J ∧ J ∧ J =
1
6

CIJKtItJtK = 1

S5 =
1

2κ2
5 ∫ (R * 1 − GIJdtI ∧ *dtJ − GIJFI ∧ *FJ −

1
3!

CIJKFI ∧ FJ ∧ Ak) ,

GIJ = −
1
2

∂I∂Jlog(𝒱) .



Charged particles and strings
• Introduced gauge and gravity fields, to construct charged black holes we need charged 

objects.


• In 5d, we have electrically charged particles, and magnetically charged strings. 


• Wrap M2 brane around curve   to get electrically charged particle. 


• Charge under I-th  given by intersection of  with I-th divisor:  . 


• Central charge takes the form 
 

                                                          . 


• For BPS particle central charge agrees with volume of wrapped curve, as measured by 
Kähler form. 

C ⊂ X

U(1) C qI = C ⋅ DI

Ze = qItI = ∫
C

J



Charged particles and strings

• Wrap M5 brane around divisor  to get magnetically charged string.


• Magnetic charge given by wrapping number  of M5 brane around I-th divisor  . 


• Central charge takes the form 
 

                          . 


• For BPS string central charge agrees with volume of wrapped divisor, as measured 
by the Kähler form.

D ⊂ X

pI DI

Zm =
1
2 ∫

D

J ∧ J = pIτI



Black holes and strings

• Introduce enough charge, expect a black object to form.


• Presence of the charged objects also sources the scalars in the vector multiplets, 
forces scalars to flow to fixed values at the horizon (attractor mechanism). 


• Horizon moduli determined by minima of “effective potential”: 
 
                                  or       


• Normalization is so that, in both cases 
 

                                  

Ve
eff = GIJqIqJ Vm

eff = 4GIJ pI pJ

Ve,m
eff =

2
3

Z2
e,m + GIJ(𝒟IZe,m)(𝒟JZe,m)

Ferrara, Kallosh, Strominger



BPS black holes and strings

• First, BPS solutions satisfy . Horizon moduli  fixed by solution. Some features:


1. BPS black holes then satisfy     . 
 
It follows BPS black holes correspond to M2 branes wrapping curves given by the self-
intersection of the Kähler divisor. These curves are examples of strongly movable curves, 
which are irreducible and foliate X. 


2. Not all holomorphic curves correspond to large BPS black holes. For instance, rational 
curves cannot be written as the self-intersection of a Kähler divisor. Nor can any rigid 
curve. 


• Similar for BPS black strings, for which an M5 brane must wrap an ample divisor.

𝒟IZ = 0 t0

qI =
1

3𝒱
τIZ → C ⋅ DI ∼ J2 ⋅ DI



BPS masses and tensions

• Horizon values of moduli  fixed by attractor mechanism. Asymptotic values  
are not, and can take any values inside Kähler cone. 


• Mass of BPS black hole, and tension of BPS black string, given by central 
charge, with moduli evaluated at infinity: 
 

                                           
 

                                          

t0 t∞

M = Ze |t=t∞
=

3
2

Ve
eff |t=t∞

T = Zm |t=t∞
=

3
2

Vm
eff |t=t∞



Non-BPS black holes and strings

• Main case of interest in a brane wrapping a non-holomorphic cycle.


• These do not solve  inside the Kähler cone. Instead, must solve 
 inside Kähler cone.


• Non-BPS critical point is not automatically a minimum, and this must be 
checked case-by-case. 


• Mass/tension still depends on asymptotic values of moduli , but is not 
given by central charge.

𝒟IZ = 0
𝒟IVeff = 0

t∞



Non-BPS black holes and strings

• Simplified approach: set , so-called “double extremal” black hole/
string, in which the scalars do not flow.


• Setting  essentially reduces to an ordinary Reissner-Nordström black 
hole/string, and mass/tension can be read off as 
 

                           ,    


• If we fix , solving the attractor equations is equivalent to minimizing 
the mass/tension, as a function of the moduli.

t∞ = t0

t∞ = t0

M =
3
2

Ve
eff |t=t0

T =
3
2

Vm
eff |t=t0

t∞ = t0

Meessen, Ortin, Perz, Shahbazi



Minimal Cycles and Branes



Brane tension

• Consider n-cycle , which is a local volume minimizer in its class . An m-brane 
wrapping  gives a -brane in the non-compact space, and has tension 
given by 
 
                                               


• For a BPS black hole/string, the brane must wrap holomorphic cycles, and then 
tension and volume are computed via calibration: 
 

                                      

Σn [Σn]
Σn (m − n)

T(m−n) = vol(Σn)

T = Z =
1
n! ∫

Σn

Jn = vol(Σn)



Brane tension and volumes

• However, for a non-BPS black hole/string, for which the brane wraps a non-
holomorphic, locally volume-minimizing cycle, we have 
 
                                              


• Therefore, computing  provides a prediction for the volume of the non-
holomorphic, non-calibrated cycle .

T = vol(Σn) ≠ Z

T
Σn



Computing the tension
• Objective: minimize  with  . 


• Constraint from effective field theory: minimum must be interior to Kähler cone, for control of 
EFT (some boundaries of Kähler cone are likely fine). This is what we mean by “large black 
object”.


• Proposal: a minimum of  , corresponding to a class , whose moduli solution is interior to 
the Kähler cone, corresponds to a local volume minimizing representative . Moreover 
 

                                     , 

 
where one uses the appropriate   depending on whether we consider black holes or black 
strings.

Veff 𝒱 = 1

Veff [Σ]
Σ ∈ [Σ]

vol(Σ) = ∫
Σ

|g | dnx = min ( 3
2

Veff)
Veff



Definition
Consider an electric or magnetic charge, corresponding to a “large” even-
dimensional homology class  (e.g. , ) in a Calabi-Yau 
threefold X.  If the corresponding black brane equations of motion are 


1. solved in the strict interior of the Kähler cone, and 


2. the solution is an attractor ,


we call the associated locally volume-minimizing representative  a ``large black 
brane cycle'' (LBBC).

[Σ] [Σ] = N [Σ0] N ≫ 1

Σ



No large black holes

Not every “large” homology class has a large black brane!

Hypersurface in ℙ1 × ℙ3



Some characteristics of LBBCs
1. Locally-volume minimizing:


• Correspond to black objects, which decay via classically disallowed trajectories. 


2. Connected: 


• Bound states. 


• BPS case: strongly movable curves or very ample divisors.


• Non-holomorphic curves: predicted volumes generally different from piecewise-calibrated,  
disconnected representatives. 


3. Large in charge:


• Correspond to black objects, and so obtained by e.g., ,  . [Σ] = N [Σ0] N ≫ 1



Complex structure independence 
• Volume given by effective potential, expect it to be independent of complex 

structure! Well-known for a holomorphic cycle, but perhaps surprising for a 
non-holomorphic one, even if even-dimensional. 


• Conjecture: Consider an LBBC, , in a Calabi-Yau threefold , and let the 
moduli take the corresponding attractor values . For these values, the volume 
of  is asymptotically independent of the complex structure moduli.   
 
More precisely  is independent of the complex structure 
moduli (and ), where .


• Physics proof given by complex-structure independence of effective potential.

Σ X
t0

Σ

limN→∞vol([Σ])/N
N [Σ] = N [Σ0]



Recombination and Examples



Recombination

• Consider an even-dimensional cycle in a Calabi-Yau threefold that admit a 
piecewise-calibrated representative , given by the union of holomorphic and 
anti-holomorphic cycles: 
 
                                                 


• Volume of  is given by the sum of the volumes of its constituents, each of 
which is calibrated: 
 

                               

Σ∪

Σ∪ = (Σh) ∪ (Σh̄)

Σ∪

vol(Σ∪) = vol(Σh) + vol(Σh̄) = ∫
Σh

Jn + | ∫
Σh̄

Jn |



Recombination
• Question: when is  , for all  ?


• When this happens, we say that  undergoes recombination; that is, the 
holomorphic and anti-holomorphic constituents fuse to form a smaller cycle.


• Only explicit recombination results for CY manifolds are for K3, via Micallef-
Wolfson and Sen. Prediction for recombination in CY3/CY4 using WGC.


• Can we use the attractor mechanism to identify examples of recombination? 

vol(Σ) < vol(Σ∪) Σ∪

[Σ]

Demirtas, CL, McAllister, Stillman



Simple example: hypersurface in ℙ2 × ℙ2

• Consider a generic anti-canonical hypersurface .


• Basis of divisors  given by restrictions of hyperplanes .


• Expand Kähler form as , volume takes the form 
 

                                                   


• Holomorphic curves in  and  generated (over ) by the toric curves in : 
 
                                          , 

X ⊂ ℙ2 × ℙ2

{D1, D2} {D̂1, D̂2}

J = t1D1 + t2D2

𝒱 =
3
2

t1t2(t1 + t2)

X ℙ2 × ℙ2 ℤ ℙ2 × ℙ2

C1 = D̂2
1 ⋅ D̂2 C1 = D̂2

2 ⋅ D̂1



Black holes
• Wrap M2 brane on  . 


• Black hole effective potential: 
 

           ,


• Minimize while holding  . 

αC1 + βC2

Veff =
α2t2

2 (2t2
1 + 2t1t2 + t2

2) − 2αβt2
1 t2

2 + β2t2
1 (t2

1 + 2t1t2 + 2t2
2)

t2
1 + t1t2 + t2

2

𝒱 = 1



BPS Black holes
• BPS equations of motion: 

 
                                    ,          .


•  Subject to  
 

                                                   


• For solution inside Kähler cone, need , . Satisfied when 
 

, solutions are automatically 
attractor. 

βx2 + 2(β − α)x − α = 0 x =
t1
t2

3
2

x(1 + x)t3
2 = 1

t2 > 0 x > 0

{β < 0 and α < 0} or {β > 0 and α > 0}



non-BPS Black holes
• non-BPS equations of motion: 

 
                                                


• Solution inside Kähler cone when 
 
 


• Solutions can be checked to be attractors. 

2βx5 + x4(4α + 3β) + x3(8α + 7β) + x2(7α + 8β) + x(3α + 4β) + 2α = 0

{β < 0 and α > 0} or {β > 0 and α < 0}



Non-holomorphic cycle volumes
• Simplest example: : .  Moduli stabilized on symmetric locus 

  

                                           


• Black hole mass given by 
 
                                         


• Volume of piecewise calibrated representative of  given by 
 

                                      


• Therefore we find  . Same result for all non-holomorphic curves!

α = − β [C] = β[C2 − C1]

t1 = t2 = ( 1
3 )

1/3

M = vol(Σ) = 231/6 |β | ≃ 1.69 |β |

β[C2 − C1]

vol(Σ∪) =
2

31/3
|β | ≃ 1.39 |β |

vol(Σ) > vol(Σ∪)



Weak Gravity

• Weak Gravity Conjecture: large non-BPS black holes can decay. 


• In this example, we see WGC is satisfied: allowed decay channel is into 
widely separated BPS-anti-BPS constituents.  
 
                                      mBH > ∑

constituents I

mI



Black strings in X ⊂ ℙ2 × ℙ2

• Veff =
9
2 (p2

1 t2
2 (2t2

1 + 2t1t2 + t2
2) + 2p1p2t2

1 t2
2 + p2

2 t2
1 (t2

1 + 2t1t2 + 2t2
2))



Black strings in X ⊂ ℙ2 × ℙ2

• Again consider symmetric locus  . Moduli again stabilized on symmetric locus . 


• Tension of non-BPS black string takes the form 
 
                   . 


• Volume of minimal piecewise-calibrated representative is 
 
                           .


• Ratio is  , we find recombination 

 
in the class !

p1 = − p2 t1 = t2 = ( 1
3 )

1/3

T = vol(Σ) = 235/6 |p2 |

vol(Σ∪) = 34/3 |p2 |

R =
vol(Σ)
vol(Σ∪)

=
2
3

p2[D2 − D1]



Black strings in X ⊂ ℙ2 × ℙ2

• Find that, on the symmetric locus, the divisor , , recombines, via black string physics.


• Also find recombination for all non-holomorphic divisors, for their attractor moduli.

n(D1 − D2) n ≫ 1

R =
vol(Σ)
vol(Σ∪)



Weak Gravity

• Black strings that exhibit recombination cannot decay completely to BPS-
anti-BPS constituents, via conservation of energy.


• WGC then predicts the existence of a stable, microscopic non-BPS string. 


• Two options: recombination of small cycles, or bound state.

OR S

5d



Black holes vs. Black Strings
• Find different behavior for black holes  

and black string, appears to be  
generic for examples studied 


• For BHs studied CY hypersurfaces in 124  
smooth Fano toric fourfolds, for which  
we know the generators of effective curves. 
Also looked at smooth elliptic fibrations.  
Found no black holes whose mass was  
SMALLER than the minimal  
piecewise-calibrated representative!


• Evidence for WGC for non-BPS black holes. 
Allowed decay channel into BPS and 
anti-BPS constituents.

mBH > ∑
constituents I

mI
Skauli



Black holes vs. Black Strings
• Black strings are different. Found recombination in Calabi-Yau hypersurface in 

 (and in  ).


• Also found examples where tension of black string was GREATER than 
minimal piecewise-calibrated, so black strings exhibit both types of behavior.


• Possible difference: divisors generically intersect, so expect localized modes 
on intersection of holomorphic and and anti-holomorphic branes. 
Condensation could lead to recombination. 


• Recombined strings predict the existence of stable non-BPS states, via the 
WGC. 

ℙ2 × ℙ2 (ℙ1)4

See Sen’s K3 analysis



Recombination and Forces
• So far have used black branes to search for recombination via direct computation, 

but can the physics explain why cycles might or might not recombine?


• Black hole formation process might. Consider separating the black hole charge 
into BPS and anti-BPS constituents, corresponding to M2 branes on holomorphic 
and anti-holomorphic curves.


• Set moduli to attractor values, bring a BPS particle and an anti-BPS particle close 
together, and compute the total (gravity, EM, scalar) force between them. 
 
 
 
                 
 

t = t0

F ∼ GIJq1
I q2

J

F ∼ GIJ pI
1 pJ

2

Electric:

Magnetic:
1 2

anti-BPS BPS



Recombination and Forces
• If force is repulsive, need to put energy into the system to form black holes, so expect black 

hole mass to be greater than volume of piecewise-calibrated representative. 
 

• On the other hand, if force is attractive, expect system to radiate energy as black hole forms, 
and so might find recombination. 


• Find that all examples with recombination have attractive forces, all examples without 
recombination have repulsive forces, EXCEPT ONE. Consistency of this one example then 
predicts some interesting behavior. 
 
 
 
 



Small curve recombination
• Let  be a generic CY elliptic fibration over . Consider the curve class 

, where  are the respective  curves, and  is the fiber. 


• Form a non-BPS black hole from wrapping  M2 branes on . Large 
non-BPS solution exists.


• Mass of black hole greater than sum of masses of BPS-anti-BPS 
constituents.


• However, in the attractor background the force between M2 branes on 
 and M2 branes on  is attractive! This presents a puzzle. 

X ℙ1 × ℙ1

Σ = C1 − C2 + E Cα ℙ1 E

N ≫ 1 Σ

C1 + E −C2

C1 + E−C2



Small curve recombination

• Resolution: microscopic M2 branes on  and on  form a bound state 
.  

 

• Binding energy enough so that  is self-repulsive, and so to form a black hole 
out of many ’s need to put energy into system. 
 
 

C1 + E −C2
B

B
B

=



Small curve recombination
• Bound state can either be from a 5d bound state, or from recombination of 

 and . 
 
 
 
 
 
 
 

• Mathematical support for recombination:  recombines with 
FS metrics on  factors when ratio of Kähler classes is 3/2. Our ratio is instead 
3, so a good example to check for recombination.

C1 + E −C2

[C1 − C2] ⊂ ℙ1 × ℙ1

ℙ1

OR S

5d

Arezzo, La Nave



Central Charges of Non-BPS Strings



5d Black holes from BPS and non-BPS Strings
• So far focused on measure-

theoretic aspects, but also can use 
these supergravity techniques to 
learn about the theory on the non-
BPS branes.


• Compute central charge of BPS 
and non-BPS black strings via 
attractor mechanism and Brown-
Henneaux formula in near-horizon 
(AdS3) limit.


• Circle reduction yields 5d black 
holes, compute central charge via 
entropy and Cardy formula. Results 
agree!



6d black strings

•  via IIB on 4d base  .


•  . 


• 6d black strings from D3 branes wrapping .


• Near horizon geometry . 


• Effective potential for black strings (holding ):  
 

                                         .

𝒮6 = ∫ℳ6
[ R

2
* 1 −

1
4

gαβHα ∧ *Hβ −
1
2

gαβdtα ∧ *dtβ] B

Hα = dBα

C ⊂ B

AdS3 × S3

𝒱B = 1/2

Veff = gαβqαqβ = (−Ωαβ +
tαtβ

𝒱B ) qαqβ

Intersection matrix



6d BPS black strings
• BPS equation of motion: 

 

                                           , 

 
which implies D3 branes wrap an ample curve in the base. 


• Gives minimum of effective potential (positive-definite Hessian). 


• Find      
 
(self-intersection of curve wrapped by D3 branes), valid for curves with 
positive self-intersection, but not all such curves give valid solutions!

tα =
2Σα𝒱B

(tλqλ)

Veff = (C ⋅ C)

Wrapping numbers



6d non-BPS black strings
• non-BPS equation of motion: 

 

                                           ,   .


• Gives a minimum with  flat directions.


• Find    
 
(negative self-intersection of curve wrapped by D3 branes), only valid for 
negative-self intersection curve, including many non-holomorphic curves in . 


• Again, not all negative self-intersection curves work.

tλqλ = 0 𝒱B =
1
2

h1,1(B) − 2

Veff = − (C ⋅ C)

B



The central charge

• For both the BPS and non-BPS case, horizon value of effective potential is 
 
                                                 


• Brown-Henneaux formula:  (or central charge function extremization) 


• Find 
                                                , 
 
which agrees with the known BPS case, and gives a simple extension to the non-
BPS case.

Veff = |C ⋅ C |

c =
3lAdS

2G3

c = 3 |C ⋅ C |

Kraus, Larsen



6d to 5d
• Compactify on circle to arrive at a 5d black hole, with  units of momentum 

around the circle.


• Arrive at 5d black holes with same charges by considering an M2 brane 
wrapping , and elliptic fiber  times. 


• Whether or not black hole is BPS depend on 1) if the 6d string was BPS and 
2)  relative momentum around the circle:  BPS,  non-BPS.

n

C ⊂ B n

n ≥ 0 n < 0



5d black holes from 6d BPS string

• First consider ample curve , wrap fiber  times. Equations of motion for black 
hole: 
 

                                        ,   base Kähler moduli. 

 

                                      


• In agreement with 6d EOM for relative values of moduli.


• Doesn’t depend on sign of  :  is BPS,  is non-BPS, interpreted as a non-
BPS excitation of a BPS string (right-moving momentum around the circle instead of 
left).

C ⊂ B n

tα =
2VBΣα

ZB
tα

VB = ( 2n2

(C ⋅ C) )
1/3

n n ≥ 0 n < 0



5d black holes from 6d BPS string
• Entropy takes the form 

 
                             


• Matching with the Cardy formula , find  
 
                   ,            in agreement with 6d calculation. 


• Via D3 brane on , leading central charges is  
 
                                              ,  , 
 
agrees with 6d calculation for both signs of !

S = 2π |n | (C ⋅ C)

S = 2π
c |n |

6

c = 3C ⋅ C

C

cL = 3C ⋅ C cR = 3C ⋅ C

n



5d black holes from 6d non-BPS strings

• Now wrap a non-holomorphic curve , EOM give 
 

                            ,  ,


• Again  flat directions, in agreement with 6d calculation!


• Valid for . 


• Via entropy and Cardy, find   ,   in agreement with 6d. 

C ⊂ B

tαqα = 0 VB = (−
2n2

C ⋅ C )
1/3

h1,1(B) − 2

C ⋅ C < 0

c = 3 |C ⋅ C |



Summary: Central Charges

• Compute central charge of 
non-BPS string from 6d and 5d 
perspectives.


• Results agree, simple 
extension of BPS case: 
 
             c = 3 |C ⋅ C |



Summary: Minimal Cycles

• Used the attractor mechanism to compute tension of non-BPS black holes and 
black strings, corresponding to M2 and M5 branes wrapping non-holomorphic 
curves and divisors, respectively.


• This in turn provides a conjectural formula for the volumes of locally volume-
minimizing, connected representatives of their corresponding homology classes.


• Black hole/curve case: found a great deal of evidence for WGC, since mass of 
black hole was always greater than sum of masses of BPS-anti-BPS constituents.


• Black string/divisor case: found examples that exhibit recombination, 
holomorphic-anti-holomorphic constituents fuse to make a smaller cycle. WGC 
predicts the existence of stable microscopic non-BPS string!



Thanks!


