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Credits 

  These slides were sourced and/or modified from: 
 Christopher Bishop, Microsoft UK 
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Nonparametric Methods 

  Parametric distribution models are restricted to 
specific forms, which may not always be suitable; 
for example, consider modelling a multimodal 
distribution with a single, unimodal model. 

  Nonparametric approaches make few assumptions 
about the overall shape of the distribution being 
modelled. 
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Histogramming 

  Histogram methods partition 
the data space into distinct 
bins with widths Δi and count 
the number of observations, ni, 
in each bin. 

•  Often, the same width is used 
for all bins, Δi = Δ. 

•  Δ acts as a smoothing 
parameter. 

  In a D-dimensional space, using 
M bins in each dimension will 
require MD bins! 
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Kernel Density Estimation 

  Assume observations drawn 
from a density p(x) and 
consider a small region R 
containing x such that 

  The probability that K out 
of N observations lie inside 
R is  Bin(K|N,P) and if N is 
large 

  If the volume V of R is 
sufficiently small, p(x) is 
approximately constant 
over R and 

  Thus 
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Kernel Density Estimation 

Kernel Density Estimation: fix V, estimate K from 
the data. Let R be a hypercube centred on x and 
define the kernel function (Parzen window) 

It follows  that        and hence 
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Kernel Density Estimation 

To avoid discontinuities in p(x), use a smooth kernel, e.g. a Gaussian 

(Any kernel such that 

will work.) h acts as a smoother. 
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Kernel Density Estimation 

  Problem:  if V is fixed, there may be too few points 
in some regions to get an accurate estimate. 
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Nearest Neighbour Density Estimation 

Nearest Neighbour 
Density Estimation: fix K, 
estimate V from the data. 
Consider a hypersphere 
centred on x and let it 
grow to a volume V* that 
includes K of the given N 
data points. Then 

K acts as a smoother. 
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Nearest Neighbour Density Estimation 

  Problem:  does not generate a proper density (for 
example, integral is unbounded on    ) 

  In practice, on finite domains, can normalize. 
  But makes strong assumption on tails  
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Nonparametric Methods 

  Nonparametric models (not histograms) requires 
storing and computing with the entire data set.  

  Parametric models, once fitted, are much more 
efficient in terms of storage and computation. 
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K-Nearest-Neighbours for Classification 

  Given a data set with Nk data points from class Ck 
and                      ,  we have 

  and correspondingly 

  Since                    , Bayes’ theorem gives 
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K-Nearest-Neighbours for Classification 

K = 1 K = 3 
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  K acts as a smother 
   As              , the error rate of the 1-nearest-

neighbour classifier is never more than twice the 
optimal error (obtained from the true conditional class 
distributions). 

K-Nearest-Neighbours for Classification  


