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Abstract
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1 Introduction

Theories that predict a single change of sign in the derivative of the regression function

are common in economics, and are often referred to as “U-shapes” in the literature.1 For

example, U-shaped relationships have been identified between female labor force partici-

pation and economic development (Goldin, 1995), life satisfaction and age (Blanchflower

and Oswald, 2008), and, in theory, between average total cost and quantity of output

(Walters, 1963). Inverted U-shapes have been identified between inequality and develop-

ment (Kuznets, 1955), union membership and age (Blanchflower, 2006), and innovation

and competition (Aghion et al., 2005). During the past decade, U-shaped relationships

have been mentioned in 80% of the issues of the Review of Economic Studies, and in 83%

of the issues of the American Economic Review.2 These statistics reflect the importance

of accounting accurately for non-monotonic economic relationships.

U-shaped relationships occur naturally as the result of two competing effects, such as in

Goldin (1995), where an income effect accounts for a decline in female labor supply as eco-

nomic development improves, until the substitution effect dominates and bends the labor

supply upward for higher levels of economic development. Some popular hypotheses are

not immediately thought of as U-shape hypotheses, but in fact can be treated as such. For

example, the finding that a moderate amount of alcohol consumption is associated with a

lower incidence of cardiovascular disease, compared to no consumption or heavy consump-

tion (Marmot and Brunner, 1991), can be tested as a U-shape hypothesis. Similarly, the

analysis of job polarization (Goos and Manning, 2007) is an analysis of U-shapes.

Despite many theories predicting U-shapes, few tools are available to test them; this
1Without loss of generality, throughout this paper I make statements about U-shapes

with the understanding that similar considerations apply to inverted U-shapes.
2This statistic is based only on issues that contain the terms “U-shape” or “hump-

shape,” and thus represents a lower bound, as many other terms are used to refer to
U-shaped relationships. Such terms include “quadratic,” “valley-shaped,” “trough-shaped,”
“hill-shaped,” “unimodal,” “single-peaked,” and “bell-shaped,” as well as more imaginative
phrases such as “the Goldilocks principle.” There is no inherent reason why “U-shape” is
a better term than the others, but since it is the most common, it is the term used in this
paper.
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limits the insights that can be gained from data analysis. There is no framework designed

specifically to answer questions such as, “What features of an industry cause the average

total cost curve to be U-shaped?” and “Is cardiovascular disease inherently U-shaped in

alcohol consumption, or is there a third variable that drives the relationship?” Questions

like these have been examined using ad hoc methods (e.g., manually inspecting graphs),

and with tools not designed to answer them, such as ordinary least squares (OLS).

U-shape theories are most commonly tested with OLS using a squared regressor or by

observing whether grouped dummies are consistent with a U-shape. In this paper I show

how this parametric type of testing can lead to incorrect inference when the functional

form is misspecified for either the variable of interest or a control variable. Suppose

that Y = f(X) + ϵ, and that we are interested in whether f is U-shaped. Even under

misspecification,3 OLS gives a good estimate of the regression function where the marginal

density of X is thick (i.e., where there are many observations); but this property contrasts

with the goal of having a good global estimate of the regression function. For example,

if a data set has observations for age mostly between 20 and 40 years, using the OLS

quadratic fit to infer the effect of age on life satisfaction across the entire life cycle would

be misleading, because such a regression cannot be expected to give good predictions of

life satisfaction for ages over 40.

A separate issue with OLS and semi-parametric techniques that control for variables in

a restricted manner (e.g., partially linear models) is that there is a risk of finding a spurious

U-shape of Y in X, when in fact Y is only U-shaped in one of the control variables, Z,

that is correlated with X. Suppose Y = f(X)+ g(Z)+ ϵ. If g(Z) is not correctly modeled,

the effect of Z on Y can be picked up by the estimate of f(X). In Section 2, I provide

necessary and sufficient conditions for OLS to give correct inference when testing for a

U-shape of Y in X and controlling for Z.

Given that the common parametric tests of a U-shape require assumptions unlikely

to hold in practice, it is natural to consider non-parametric models in order to avoid
3Suppose that f(x) is modeled as g(x) (a common choice is g(x)=x2). The term

“misspecification” here means that g(x) ̸= f(x).
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misspecification and the corresponding consequences. Non-parametric regression is often

used to explore potential U-shapes graphically, but without a statistical test. In addition,

non-parametric techniques are usually abandoned when conditioning on other variables.

Even if graphical techniques were used in multivariate analysis, processing and reporting

results for several models and subgroups would be impractical.4 The goal of this paper

is to maintain the advantages of a statistical test and the ease of conditioning on other

variables, without sacrificing the advantages of non- and semi-parametrics.

Developing a non-parametric test for a theory that predicts a U-shaped relationship

seems especially complicated when the turning point is not specified in the null hypothesis.

However, by reframing the null hypothesis of a U-shaped regression function as a regression

function with a single valley and zero peaks, the problem of testing such theories can be

viewed within a more general framework of testing the number of peaks and valleys of a

regression function. I propose a non-parametric test based on critical bandwidth, which

was first introduced by Silverman (1981) for a different purpose, to test the number of

modes of a density. The test statistic in this paper is the smallest bandwidth such that a

non-parametric regression (e.g., local polynomial regression) is quasi-convex, which in R is

equivalent to being either U-shaped or monotone. The key insight is that if the underlying

regression function has one valley and zero peaks, then choosing a bandwidth that forces

the kernel estimator to have one valley and zero peaks should not be a strong restriction.

The essence of the test used in this paper is an extension of Bowman et al. (1998),

who tests monotonicity of the regression function, and Harezlak and Heckman (2001) and

Harezlak et al. (2007), who consider the general case of testing for an arbitrary number

of bumps in the regression function and its derivatives. To my knowledge, the current

paper is the first to connect the U-shape literature to the literature on testing the number

of regression peaks and valleys, and specifically to use critical bandwidth tests to explore

U-shapes.
4Imagine that one would like to examine data within 100 countries, for 10 different

model specifications (e.g., different control variables), for 2 different data sets, and sepa-
rately for males and females. To report these results, the number of graphs required would
be 100× 10× 2× 2 = 4,000.
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After presenting the non-parametric test of bivariate relationships, I extend the critical

bandwidth framework in a practical way to multivariate hypotheses using generalized addi-

tive models, which allows investigation of whether an inherent U-shape exists between two

variables or the relationship is instead caused by correlation with other variables. I give suf-

ficient conditions for consistency of the test statistic, and show that the rate of convergence

under the null is at least as fast as any bandwidth sequence leading to pointwise-consistent

estimates of the regression function. The test is implemented using a bootstrap procedure

that leads to conservative inference. A user-friendly and efficient R package is provided

for practitioners to use the tools developed in this paper. The algorithm is fast, even with

many covariates and large data sets, and can be used in situations in which OLS is used

in practice.

After showing that the tests developed in this paper perform well in simulations, I

apply them to the U-shaped relationship of life satisfaction in age that is well established

by economists but not well understood.5 This paper uses repeated cross-sections from

the World Values Survey and the European Values Survey to explore the relationship of

life satisfaction and age in ninety-eight countries. The main results are that (1) there is

evidence of a U-shape of financial satisfaction in age in more countries than there is of

a U-shape of life satisfaction in age; and that (2) the U-shape of financial satisfaction

explains the U-shape of life satisfaction. These results hold for both within-country and

cross-country analyses, and are robust to several baseline specifications. Results from using

OLS with a quadratic specification are provided and do not lead to the same inference

because the parametric restrictions make it difficult to determine whether life satisfaction

or financial satisfaction is the underlying driver of the U-shaped relationship with age. The

tests in this paper thus offer a new insight into the life-satisfaction puzzle that would have

been missed by using conventional methods.

The rest of the paper is organized as follows. In Section 2, I present existing tests

of U-shaped regression functions based on OLS, discuss several inherent problems, and
5See Blanchflower and Oswald (2008), Deaton (2008), Stone et al. (2010), Wunder et al.

(2013), Schwandt (2016). I provide a literature review in Section 5.
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give sufficient conditions for such tests to be consistent. In Section 3, I introduce the

non-parametric test that forms the core of the paper, and prove consistency of the test

statistic. In Section 4, I extend the framework to include multivariate hypotheses and

semi-parametrics. Section 5 applies the tests to the U-shape of life satisfaction. Section 6

concludes, and proofs of the results are given in Online Appendix A.

2 Traditional Tests of a U-Shape

To examine theories of U-shaped regression functions, researchers commonly use either

OLS regression with linear and quadratic terms, or carry out analysis based on OLS with

a set of grouped dummies. In this section I discuss the disadvantages of, first, the quadratic

test and then of grouped dummies, and explain how both techniques can lead to incorrect

inference when used to test for a U-shape. I then discuss how controlling for variables in

a restricted way (e.g., linearly with OLS or partially linear models) can lead to spurious

findings of U-shapes.

The general specification for the OLS regression that tests for a U-shaped regression

function is

Y = α + βX + γf(X) + θ′Z + ϵ, (1)

where X is the explanatory variable of interest, Z is a vector of control variables, ϵ is an

error term with E(ϵ) = 0, and f is a function chosen by the researcher, perhaps based on

theory. f(x) is usually chosen to be f (x) = x2. The null hypothesis of {positive quadratic}

is thus tested against a composite alternative of {monotone or negative quadratic}. The

correct way to carry out the test is to reject that the regression function is not U-shaped in

X if γ̂ is significant and if the x-value that minimizes the fit is inside an acceptable range.

An immediate concern of the quadratic test is the parametric restriction: OLS could find

evidence of a U-shape if a positive quadratic term fits the data better than a negative

quadratic term, even if both are poor approximations of the true relationship.

Such tests are attractive because they are easy to carry out and to interpret. Further,

obtaining a point estimate of the location of the extremum is simple. However, because
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of the parametric restriction, the point estimate is often found to be biased (e.g., Millimet

et al., 2003). In addition to poor properties of the estimates themselves, Hirschberg and Lye

(2005) show that standard errors for this type of estimate can vary dramatically depending

on the method used, and are often inaccurate; they also note that the commonly used delta

method is especially inaccurate in the examples they explore. Similarly, Lind and Mehlum

(2010) find that the delta method is only reliable with large sample sizes.

Because tests based on the quadratic specification are so common and are the main

alternative to the non-parametric test proposed in Section 3, this section is dedicated

to exploring their properties. Lind and Mehlum (2010) analyze seven articles from the

American Economic Review that focus on testing U-shaped regression functions; all of the

papers conduct a test with a quadratic specification. As Lind and Mehlum show, some of

the studies perform the test incorrectly. For example, some fail to include the linear term,

in which case monotone regression functions are no longer in the alternative set; others

employ a joint test of the linear and squared terms when only the squared term should be

tested; and still others do not test that the location of the extremum is in an acceptable

range. Thus, although the OLS test is easy to apply and interpret, common mistakes yield

misleading conclusions.

Of the seven papers, only Imbs and Wacziarg (2003) use non-parametric techniques

in addition to an OLS quadratic specification. However, the thorough non-parametric

techniques employed by the authors, based on LOWESS,6 do not allow them to statistically

test whether the regression function is U-shaped. Further, the only way to condition on

variables is to use the bivariate technique on subgroups (for example, running LOWESS

within each category of a categorical variable).

Lind and Mehlum (2010) propose a test of a U-shape that improves on the vanilla

quadratic test. Because the test is based on the coefficients from an OLS quadratic re-

gression, the test has the same properties demonstrated in this section, and thus separate
6LOWESS is a non-parametric regression technique that is similar to local polynomial

regression and thus estimates E(Y |X = x) using the data points that are close to x. For
more information, see Cleveland (1979).
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discussion of the test is omitted. The test is presented in Online Appendix B.1 for reference.

2.1 Implicit weighting of OLS on thick marginal density

Estimating a parametric regression and then making inferences about the global shape

of the population regression function can be deceptive. This is the case even (perhaps

especially) if we have a large random sample. The reason is that OLS’s goal of minimizing

squared residuals does not, in general, coincide with the goal of estimating the regression

function, unless the model is correctly specified.

Although OLS has good properties for predicting the response variable given a random

draw of independent variables, these properties do not directly translate to estimating the

global shape of a regression function when the distribution of the independent variable is

not uniform. The parameter of interest is the regression function

m (x, z) = E [Y |X = x,Z = z] ,

where Y is the outcome variable, X is the variable in which Y is theorized to be U-shaped,

and Z is a vector of covariates. Even under misspecification (e.g., choosing f (x) in equa-

tion (1) to be x2 when the true function is |x|2.5), in a large sample the OLS estimator will

give us a reasonable answer to minimizing

E
[
(m̂ (X,Z)−m (X,Z))2

]
(2a)

over functions m̂. However, OLS will not give a reasonable minimization of

E
[
(m̂ (X,Z)−m (X,Z))2

∣∣X = x,Z = z
]

(2b)

for all values of x and z, unless there is no misspecification. It will likely only give a

good answer to minimizing (2b) for sets in the support of X where the density is thick.

To see this, note that in (2a) the expectation is over randomness in X and Z, and the

expectation yields a single real number. In (2b) the expectation is not over the distribution
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of X, but rather conditional on X = x. If we use OLS to minimize (2a) with the end goal

of minimizing (2b), then we are using a statistic that depends on the density of X to

estimate a parameter that does not depend on the density of X. This asymmetry can lead

to poor estimators of m (x, z).

In many cases, (2b) is not of interest. For example, policy makers might not care about

what happens to 10% of the population; they might only care about where the marginal

distribution is thick (e.g., where the most potential voters are), and thus inference based on

minimizing (2a) from a random sample would answer an interesting question. However, in

this paper we are interested in more than unconditional prediction; we are making inference

on the shape of the population regression function. For example, if we are exploring the

U-shape of life satisfaction in age, we might not want the inference to depend on the

marginal distribution of age. Thus, we should be aware that dense areas of the independent

variables can bully the parametric estimator into focusing on them.

Note that this problem is not particular to OLS; rather, it applies to any estimation

strategy that minimizes the sum of functions of the absolute values of the residuals in a

parametric fit.7 Median regression will likely be worse: The property by which OLS is

sensitive to outliers could help correct some of the problem, whereas a median regression

is more able to ignore areas in which the fit is very poor.

This implicit weighting issue is illustrated for a particular case using simulations in

Figure 1. According to a naive OLS or median regression, the simulated observations

are consistent with coming from a U-shaped regression function. However, the black line

shows that the true regression function is monotonically decreasing and is not convex. The

0.95 quantile of X is just before 60. An example of an X variable whose density has a

thin right tail is age in many developing countries. Both OLS and median regression fit

the true regression curve poorly at higher values. Because OLS minimizes the sum of

squared residuals, minimizing the squared residuals for observations with X less than 60

7The density-weighting problem can strike in more subtle ways and is not just limited
to parametric methods. For example, when estimating a non-parametric regression with
a global bandwidth where the bandwidth is chosen from cross-validation, the bandwidth
will be chosen based on the best smoothing properties for predicting parts of the regression
function where the marginal density is thick.
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is given priority over minimizing the squared residuals for observations with X between

values 60 and 100 because there are more residuals to minimize in the first part. Thus, we

should not infer much from the fit in the upper half of the support of X, unless we accept

the consequences of relying on extrapolation. Online Appendix B.2 proposes a way to fix

this particular problem if the researcher is intent on imposing a parametric form for the

regression function.

2.2 Inference based on dummies

A common attempt to address parametric inflexibility is to make dummies for intervals

partitioning x, and then to regress y on this set of dummies instead of on f(x). This ap-

proach is often referred to in the applied literature as being “non-parametric.”8 Compared

to the previously discussed quadratic fit, using a dummies approach can reduce bias when

fitting. However, in this section I discuss several problems that can occur when relying on

a test based on grouped dummies.

Testing a U-shape using dummies is not as straightforward as it might seem. When

this technique is used in practice, often a table is shown with stars that indicate whether

the dummies are individually significant. To test for a U-shape, however, one would need

to test whether each dummy is significantly different from the previous.

This test suffers from the consequence that there are dummies close to each other

around the turning point of the U because of a small first derivative, if the null is true. For

the test to find a significant U-shape, the dummies must be far enough away from each

other to be significant, but around the turning point should be close under the null. These

competing properties lead to a test that requires a large sample, as shown in simulations

in Online Appendix B.3. If such a test is used, the researcher should emphasize that the

significance tests around the turning point are known to suffer from low power.

Arbitrary decisions are often made when using grouped dummies, such as the locations

and widths of the intervals for the groups. It is thus not surprising that restrictions are
8When I refer to “non-parametric” techniques in this paper, I do not refer to OLS with

grouped dummies.
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often imposed that are known to be unlikely. For example, when exploring a U-shape of

mortality in alcohol consumption, Marmot et al. (1981) use the following categories for

grams of alcohol consumption: 0, (0, 9], (9, 34], (34,∞). The researchers effectively restrict

the effect on mortality of drinking an average of 34 grams of alcohol per day to be the same

as drinking an average of 9.1 grams of alcohol per day. The property that the estimate of

mortality for drinkers of 34 grams is more influenced by observations with a value of 9.1

grams of alcohol per day than by observations with a value of 34.1 grams is a disadvantage

of such a model.

Relying on grouped dummies can lead to incorrect inference in a multivariate regression.

Unless the control variables are categorical and the dummies for them are saturated, this

test is generally inconsistent because the dummies approach restricts the fit to be stepwise,

and the residual nonlinearity can still be spuriously attributed to the variable of interest.9

No formal demonstration of inconsistency is given here, but the concern is parallel to the

inconsistency of OLS with a quadratic under misspecification, which is explored in depth

in Section 2.3. In addition, a test based on dummies is included in the simulations shown

in Online Appendix B.3.

2.3 Inconsistency of multivariate OLS under misspecification

Suppose that Y is not actually U-shaped in X1, and that the only reason we observe a

bivariate U-shape between Y and X1 is because X1 is correlated with X2, which is the

real driver of the U-shaped relationship. For example, in the application part of this

paper (Section 5), we explore whether the U-shape between life satisfaction and age can

be explained by a third variable, financial satisfaction.

In this section I will show that existing tests of U-shapes, based on OLS with a quadratic

or grouped dummies, can find spurious evidence of a U-shape in X1, even when control-

ling for X2. Nonlinear correlation can often be spuriously attributed to variables under

misspecification. Suppose that the researcher is interested in testing the theory that Y

9This problem is worse in practice, because the researcher often controls for variables
linearly instead of using dummies for them as well, thus making it easier for the effect of
a control variable on y to be attributed to the more flexibly modeled variable of interest.
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is U-shaped in X1, conditional on X2, and that (unknown to the researcher) the data

generating process is

Y = f (X2) + ϵ. (3)

Note that X1 does not enter the equation, so the truth is that Y is not U-shaped in X1

conditional on X2. If a test asymptotically leads to inference suggesting that Y is U-shaped

in X1 conditional on X2, it is referred to as an “inconsistent” test in this section.

It is common for researchers testing for a U-shape of Y in X1 to control for X2 by

regressing Y on X1, X2
1 , and X2, and to then test the significance of the coefficient on X2

1 .

This is generally an inconsistent test, for the obvious reason that if X1 is correlated with

X2, in a large sample the coefficient on X2
1 will be significant because X2

2 was not included.

An improvement would be to regress Y on X1, X2
1 , X2, and X2

2 . This makes intuitive

sense because we are now giving the fit of X2 as many degrees of freedom as the fit of

X1, and in the same parametric manner. However, unless the functional form is correctly

specified, this test is still generally inconsistent. For simplicity, we take the case in which Y

is regressed on only the nonlinear terms (simulations in Online Appendix B.3 show results

from including linear terms). We thus consider a general OLS regression specification,

Y = α + β1g1 (X1) + β2g2 (X2) + ϵ, (4)

where g1 and g2 are functions chosen by the researcher. The most common choices of g1
and g2 are g1 (x) = g2 (x) = x2. In this section, stating that the regression corresponding

to equation (4) is correctly specified means that g1 = f . It is not required that g2 = g1,

but we will see that the optimal choice, in a certain sense, is to set them equal. We make

the following assumptions:

Assumption 1. g1 (X1) and g2 (X2) are not perfectly correlated and 0 < var (g1 (X1)) <

∞, 0 < var (g2 (X2)) < ∞, 0 < var (f (X2)) < ∞.

Assumption 2. cov [g1 (X1) , ϵ] = cov [g2 (X2) , ϵ] = 0.
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Let β̂1 be the estimated OLS coefficient on g1 (X1). If the test is consistent, β̂1 should

converge to 0 in probability, becauseX1 does not enter equation (3). The following theorem

gives the necessary and sufficient conditions under which this is true.

Theorem 1. Under assumptions (1)–(2), if the data generating process of Y is given by

equation (3), and equation (4) is the OLS specification chosen, then β̂1
p→ 0 if and only if

corr [f (X2) , g1 (X1)] = corr [g2 (X2) , g1 (X1)] corr [f (X2) , g2 (X2)] . (5)

Proof. Proved in Online Appendix A.1.

For the case in which f is guessed correctly (so g1 = f), if the researcher also sets

g2 = f then equation (5) holds and consistency is achieved. In a separate case, if g1 (X1)

is uncorrelated with both f (X2) and g2 (X2), then consistency also holds. However, if f is

not guessed correctly and if g1 (X1) is correlated with f (X1) or g2 (X2), β̂1 will in general

be inconsistent. Intuitively, equation (5) shows that in the case of misspecification of f ,

β̂1 can pick up part of what g2 cannot approximate of f .

It should be clear that the problem discussed in this section applies to any estimation

model that controls for variables in a restricted way. For example, partially linear models

do not suffer from the problems of a restricted fit of the variable of interest that were

discussed in Section 2.1. However, they do suffer from the same problem as OLS of finding

spurious U-shapes in multivariate specifications because they free the variable of interest

to pick up the residual nonlinearity of control variables.

For simulations that demonstrate the concepts discussed above, see Online Appendix B.3.
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3 Critical Bandwidth Tests of a U-Shape

3.1 Non-parametric testing of a U-shape

In this section I define a U-shape and the null and alternative hypotheses associated with

a non-parametric test of a U-shape. Let S (X) be the support of X and

Y = m (X) + ϵ,

where E(ϵ) = 0. Throughout this section I assume there are no confounding variables, in

order to focus on the statistical intuition of the test. The test will be extended to allow

for confounding variables in Section 4. We assume that the first derivative of m exists and

denote it as m′.10

If a regression function decreases across most of S(X) and turns upward just at the

end, the shape is usually not referred to as a U-shape. The framework below allows the

researcher to specify what they consider to be a U-shape by choosing the interval, denoted

by A0, of the turning point.11 For a specified set A0 ⊂ S (X), we are interested in testing

H0 : ∃a ∈ A0 st ∀x ∈ S (X)

m
′
(x) (x− a) ≥ 0

versus

HA : ∀a ∈ A0, ∃x ∈ S (X) st

m
′
(x) (x− a) < 0

The null hypothesis corresponds to a regression function that is downward sloping to a

(typically unknown) turning point, a, and upward sloping thereafter. A non-parametric

test, in this context, is a test that is consistent for any m of a large class of functions (e.g.,
10We could define a U-shape more generally, without requiring the existence of m′, but

this assumption is required by most non-parametric smoothers anyway, which are the
backbone of the test that will be proposed.

11Choosing A0 = S(X) corresponds exactly to a test of quasi-convexity, but usually we
are interested in setting A0 to a subset of S(X).
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C (S (X))). For example, in Section 5 we test for a U-shape of life satisfaction in age from

age 20 to 70, where the turning point is between ages 30 and 60. Using the framework

above, this corresponds to S(X) = [20, 70] ∩ Z and A0 = [30, 60] ∩ Z.

3.2 A critical bandwidth approach

Bowman et al. (1998) extend the idea of the critical bandwidth of a density estimate,

developed by Silverman (1981), to test monotonicity of the regression function. The current

paper is the first to use critical bandwidth to test that the regression function is U-shaped.

Let m̂ (x) represent a general estimator ofm(x) and let m̂h (x) represent a non-parametric

estimator of m(x) using the smoothing parameter (e.g., bandwidth) h, which controls the

trade-off between variance and bias of the estimator. Small values of h correspond to

low bias of m̂h (x) but large variance, leading to a jittery curve when graphed against x.

Conversely, large values of h correspond to low variance of m̂h (x) and a smooth curve.

As the sample size, n, increases, the variance of m̂h (x) for a fixed h decreases. Thus, h is

usually specified as a function of n (by writing hn), that decreases as n increases in order

to reduce the bias of m̂h (x). The specific non-parametric regression estimator used in this

section is local polynomial regression.12

The critical bandwidth test statistic is equal to the smallest bandwidth, h, such that

the fit has 0 peaks and at most 1 valley, which is equivalent to the function being quasi-

convex. Testing the composite null of k or fewer bumps, instead of exactly k bumps, is

consistent with Silverman (1981) and Harezlak and Heckman (2001). In Section 3.5, we

will discuss how to disentangle a monotone regression function from a U-shaped regression

function when interpreting a test of quasi-convexity. The test statistic is thus

hstat = min {h | h ∈ H, m̂h (x) is quasi-convex} ,
12For advantageous properties, see Fan (1992) and Fan and Gijbels (1996). Properties on

the boundary are important in this context, because if bias causes a fit to curl down, a test
would interpret this as evidence against a U-shape. This is one reason why a first-degree
polynomial is preferred over a zero-degree in local polynomial regression.
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where H is the set of possible values for the smoothing parameter. For local polynomial

regression, H = R+ is the set of possible bandwidth values. An example of a different H

is H = (0, 1] for both generalized additive models and LOWESS.13

The intuition for using hstat as the test statistic is that under the null hypothesis, we

would expect hstat to become small as n → ∞ because as the sample increases, a smaller

amount of smoothing is needed for a small mean squared error. Restricting the fit to

be quasi-convex is only a matter of smoothing out sampling noise. If the true regression

function is quasi-convex, less smoothing is needed as the sample increases because the

mean is measured more precisely.

A nice property of hstat that can immediately be seen is that its value does not depend

on the choice of a bandwidth (e.g., through cross-validation). Practical implementations

of a critical bandwidth statistic (e.g., Bowman et al., 1998) use a grid over the space of

smoothing parameter values. The theoretical properties of this implementation of critical

bandwidth for regression functions have not yet been explored in the literature and are

examined in the next section.

3.3 Consistency of hstat

Consider the regression function,

m (x) = E (Y |X = x) ,

with the goal of estimating m (x) at a fixed number J of equally spaced points r1, . . . , rJ
in an interval [a, b], where rk = a + (b− a) (k−1)

J−1
and rk ∈ S (X). Note that r1 = a and

rJ = b. If using smoothers that do not have good properties near the boundary, r1 and rJ

can be excluded from the grid of points to test. This section focuses on local polynomial

regression of degree one, although in practice many smoothers could be used.
13The set H depends on the parameterization of the software. The examples here are

for implementations that define the smoothing parameter as the percentage of data points
used in the calculation of each point estimate.
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Define the operator ∆ such that

∆m (rk) = m (rk)−m (rk−1)

∆m̂hn (rk) = m̂hn (rk)− m̂hn (rk−1) .

I make the following assumptions:

Assumption 1. m(x) has a bounded second derivative.

Assumption 2. The kernel K (y) is a bounded and continuous density function satisfying

∫ ∞

−∞
K (y) dy = 1∫ ∞

−∞
yK (y) dy = 0∫ ∞

−∞
y2K (y) dy ̸= 0∫ ∞

−∞
y2lK (y) dy < ∞ for l = 1, 2, . . .

Assumption 3. There exists a neighborhood for each rk within which the density of X,

fX (x), satisfies

|fX (x)− fX (y)| ≤ c |x− y|α ,

for 0 < α < 1.

Assumption 4. The conditional variance σ2 (x) = V ar (Y |X = x) is bounded and contin-

uous.

Assumption 5. fX (x) is bounded away from 0 on the interval [a, b].

Assumption (5) implies that the mean integrated squared error of m̂ (x)−m (x) converges

to 0. Intuitively, the assumption ensures that the density is not decreasing at a rate faster

than the regression estimator can gain precision. This result gives us uniform convergence

across the support of x, but is not needed if J stays fixed (or is bounded) as a function of

n. In this case, we could use the weaker assumption that fX (rj) > 0 for all j.
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Assumption 6. ∆m (rk) ̸= 0 for all 1 < k ≤ J .

Theorem 2. Suppose assumptions (1)–(6) hold and m(x) is quasi-convex. Then, hstat

converges in probability to zero, and is op
(
n−β

)
for any β < 1.

Proof. Proved in Online Appendix A.2.

The following definition introduces the concept of a function being quasi-convex on a

(possibly non-convex) subset of the domain. This definition is used in the next assumption.

Definition 1. A function f :S → R is quasi-convex on a subset W ⊂ S if for all x, y, z ∈ W ,

and y ∈ [x, z],

f(y) ≤ max {f(x), f(z)} .

For consistency under the alternative, I impose some structure on the type of violations

that the test implementation can practically detect:

Assumption 7. Under HA, m is not quasi-convex on {rj}1≤j≤J .

Assumption (7) requires that the violation of quasi-convexity can be detected by precise

estimation of m(x) only on the grid points rj. If we want a strict test of quasi-convexity

asymptotically, we could make the grid finer by letting J be a function of n that goes to

infinity at a reasonable rate.

Finally, to rule out the theoretical possibility of m̂h giving a spurious quasi-convex fit

from high variance due to a small h, we make the following assumption:

Assumption 8. The total number of changes of derivatives in {m̂h(rj)}1≤j≤J is monotone

decreasing in h.

The “monotonicity property” of assumption (8) leads to attractive theoretical properties

of critical bandwidth tests. Whether this assumption holds depends on various factors,

such as the grid size, the starting value of h when searching for hstat, and the smoother

that is used. For example, local polynomial regression does not satisfy this assumption

in general for m̂h(x) (Harezlak and Heckman, 2001). However, similar to Harezlak and

Heckman (2001) and Harezlak et al. (2007), I have found that with both simulated and

real data, in practice it makes no difference as long as a reasonable grid size is used.
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Theorem 3. Suppose assumptions (1)–(8) hold and m(x) is not quasi-convex. Then, hstat

does not converge in probability to zero.

Proof. Proved in Online Appendix A.3.

3.4 Bootstrapping the null distribution for conservative infer-

ence

If we bootstrapped directly from the (Xi, Yi) data to estimate the distribution of hstat, we

would not be imposing the null hypothesis. Thus, we restrict m̂h (x) to yield a U-shaped

regression function by using m̂hstat (x), which gives us the fit that is the least biased of

all fits while still being consistent with the null hypothesis. Then, we instead bootstrap

residuals and add those to the restricted fit to produce bootstrapped data points that give

bootstrapped hstat. The intuition is consistent with Efron and Tibshirani (1994, p. 230).

To obtain a bootstrapped distribution of the residuals, we use as the sample popula-

tion the residuals from the best fit, which is taken as the fit according to the smoothing

parameter chosen from cross-validation. Note that the distribution of these residuals will

be valid under both the null and the alternative. This method is consistent with Bowman

et al. (1998). This is the only step in carrying out the test in which selection of a smooth-

ing parameter is used and the choice of method does not seem to affect results in practice.

The algorithm for generating critical values of hstat is as follows:

Algorithm 1. Critical bandwidth test

1. find hstat by scaling smoothing parameter up

2. estimate a fit using a cross-validated smoothing parameter

3. calculate residuals e from (2)

4. draw bootstrapped residuals eb from e in (3)

5. calculate yb from fitted values in (1) and residuals in (4)

6. generate a distribution of hb
stat based on hstat

(
x, yb

)
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The test is conservative because the test statistic leads to an undersmoothed fit under

the null. To see this, suppose that the true regression function is quasi-convex. Because of

statistical noise, there likely exists a different quasi-convex function that is more consistent

with the data than the true regression function. Estimation of the regression function with

the smoothing parameter set to the test statistic thus leads to overfitting and a less smooth

fit than the true regression function. Because the fit is less smooth, after the bootstrapped

data are constructed (in step 5), more smoothing on average is needed to obtain a quasi-

convex fit than was needed for the original data, so the bootstrapped test statistics are on

average larger. The p-value thus has a distribution skewed away from zero under the null,

leading to a conservative test. This property can be seen in the results from simulations

in Section 4.1, and is consistent with other tests based on critical bandwidth (Silverman,

1981; Bowman et al., 1998; Harezlak and Heckman, 2001; Harezlak et al., 2007).

3.5 Interpretation of the non-parametric test results

The test for a U-shaped regression function is implemented as a combination of (1) a

test of quasi-convexity (2) a test of a monotonicity. A quasi-convex function can either

be single-dipped or monotone. Results from a test of monotonicity can thus distinguish

between the two. Consider the following order of testing:

1. Test for quasi-convexity.

2. Test for monotonicity.

If (1) rejects, there is no need to proceed to (2) because the null in (2) is a subset of the

null in (1). Failing to reject in (1) and rejecting in (2) is consistent with a U-shape and

not consistent with monotonicity. If both tests fail to reject, it is difficult to distinguish

between low power, a quasi-convex regression function, and a non-quasi-convex regression

function. Using simulation for further power analysis could be useful in this case.

Observe that the p-value of the test of quasi-convexity need not be lower than the

p-value of the test of monotonicity, and understanding why this is true can give intuition

for how to interpret the results. It is possible for hstat to be the same for both tests. This
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happens if, as h is increased, the fit becomes monotone without first passing through a

U-shaped fit. A bootstrapped test statistic, hb
stat, is more likely to be smaller for the test of

quasi-convexity, because m̂hb
stat

(x) is (weakly) more likely to be quasi-convex than it is to

be monotone. Thus P
(
hb
stat < hstat

)
is larger for the test of quasi-convexity than the test

of monotonicity. If hstat is the same for both tests, this suggests that the true regression

function is not U-shaped.

For more practical discussion on interpreting results, see the application in Section 5.2.

4 Semi-Parametric Tests of Multivariate Hypotheses

We now extend the discussion started in Section 2.3 of testing for a U-shape conditional

on other variables. A non-parametric test for Y being U-shaped in X1 conditional on X2

could be implemented by testing that for any value of X1, Y is U-shaped in X2. However,

the focus of this paper is on a practical test, and the curse of dimensionality leads to

many common situations in which a non-parametric test would not have enough precision

to be useful. The idea behind the critical bandwidth test introduced in Section 3 can be

generalized in an intuitive way. As discussed before, in addition to a bandwidth, smoothing

parameters from other non-parametric regression techniques can be used as test statistics.14

Generalized additive models (GAMs) (Hastie and Tibshirani, 1986) provide a reason-

able way to flexibly estimate a multivariate regression function. We model Y as

Y =
∑

fk (Xk) + ϵ,

and estimate fk without having to guess a functional form as in OLS.15 This paper is the

first to extend the concept of a critical bandwidth to GAMs in order to test multivariate

hypotheses in a semi-parametric way. When compared to the bivariate non-parametric

test in Section 3, an important difference with GAMs is that there are multiple smoothing
14 This approach is also used by Harezlak and Heckman (2001), who find that “the

method of smoothing is not crucial” (p. 714).
15The locations of the fk are not identified because of the additivity, but we are only

interested in the shape.
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parameters, one for each k. The algorithm for implementing a critical smoothing parameter

test using GAMs is similar to the bivariate case (Algorithm 1) and is shown below.

Algorithm 2. Critical bandwidth test with GAMs

1. find hstat by scaling up smoothing parameter(s)

2. fit a GAM with cross-validated smoothing parameters

3. calculate residuals e from (2)

4. draw bootstrapped residuals eb from e in (3)

5. calculate yb from fitted values in (1) and residuals in (4)

6. generate a distribution of hb
stat based on hstat

(
x, yb

)
Step (1) can be implemented in two ways. The first method is to fix the smoothing

parameters of the control variables equal to their cross-validated values, while increasing

the smoothing parameter of the variable of interest until the fit becomes quasi-convex. The

second method is to scale up all smoothing parameters at the same time, again until the fit

of interest becomes quasi-convex. The potential advantage of the first method is that the

fit for the variable of interest should not be confounded by poor fits of the other variables.

The potential advantages of the second method is that the degrees of freedom given to

each fit are more similar for all smoothing values, and there is no reliance on a bandwidth

selector. A third variation, which combines elements from each of the first two, is to scale

up all bandwidths proportional to their cross-validation values. Which method is better

depends on the implementation and properties of the smoother used, but in practice the

choice does not seem to make a difference.

4.1 Simulations

We start by looking at whether there is a U-shape in one variable conditional on another,

and will later consider the more general case of conditioning on multiple covariates. The
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true regression functions that we will consider are shown in Figure 2, and are defined as

follows:

m1 (x) = 0

m2 (x) = x (1− x)

m3 (x) = x+ 0.415e−50(x−0.5)2

m4 (x) =

10 (x− 0.5)3 − e−100(x−0.25)2 if x < 0.5,

0.1 (x− 0.5)− e−100(x−0.25)2 otherwise

sin (x) = 0.5 · sin(9 · (x+ 0.02))

sq (x) = (x− 0.5)2

The mn functions were explored by Ghosal et al. (2000), and some were also studied in

other papers that tested for monotonicity of regression functions. m1 is used to examine

the level of the test. m2 is a simple function that is inverse-U-shaped. m3 was considered

in both Bowman et al. (1998) and Hall and Heckman (2000). m4 was used by Hall and

Heckman (2000) to illustrate the flatness problem, which affects tests based on critical

bandwidth and is presented in Online Appendix C.

Table 1 shows results from semi-parametric regressions of Y on X, conditioning on

another variable. Tests of quasi-convexity and monotonicity are both shown, as discussed

in Section 3.5. The regressors are all uniformly distributed and the dependent variable

is constructed additively, with a normally distributed error. For example, for the test

“Q(Xsq) + s(Xm3)” the data are constructed as follows:

Usq ∼ unif (0, 1) , Um3 ∼ unif (0, 1) , ϵ ∼ N(0, 1)

Xsq = sq (Usq) , Xm3 = m3 (Um3)

Y = Xsq +Xm3 + ϵ,

with correlation 0.25 between the uniforms. Then, Algorithm 2 is carried out to obtain a

p-value for testing whether Y is quasi-convex in Xsq, conditional on Xm3 . The simulations
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in the table are consistent with the test being asymptotically valid. Not surprisingly, the

power is lower for relationships that do not deviate as much from monotonicity, such as

m3, compared to sin. The test is conservative, as discussed in Section 3.4: Under the null,

the test carried out at the nominal level α = 0.05 rejects less than 5% of the time. This

can be seen in the rows with H0 containing Q(Xsq).

Table 2 shows semi-parametric tests of a U-shape conditioning on multiple other vari-

ables. In all cases, the data are generated as follows:

Y = Xsq +Xm1 +Xm2 +Xm3 +Xm4 + ϵ,

where ϵ ∼ N(0, 1) and Xf = f (Uf ), where Uf ∼ unif (0, 1) with 0.25 correlation between

them. Then, a test is performed on each of the X variables conditioning on all of the others.

For example, for the row “Q(Xm2) + . . .” the null hypothesis is that Y is quasi-convex in

Xm2 , conditional on Xsq, Xm1 , Xm3 , Xm4 . The symptoms of low power from the flatness

problem (discussed in Online Appendix C) can be seen in the table by looking at the slow

convergence toward 1 of both the monotonicity and quasi-convexity tests of Xm3 .

Comparison of the results across Tables 1 and 2 suggests that power is not noticeably

affected by controlling for more variables. This nice property is due to using GAMs (as

opposed to a fully non-parametric model), and provides for practical multivariate analysis

of U-shapes by applied researchers: If conditioning on a variable causes a pattern to

disappear, it is likely because the conditional relationship is different and not because

there is lower precision from conditioning on another variable.

5 The U-Shape of Life Satisfaction in Age

A U-shape of life satisfaction in age has been found by many economists. Blanchflower

and Oswald (2008), for example, find that such a relationship holds in 72 countries. There

is more agreement that the U-shape holds in certain sets of countries, notably English-

speaking countries (Deaton, 2008), than in other sets of countries, such as Eastern Eu-

ropean and developing countries. Using data from Gallup for the United States, after
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controlling for gender, unemployed, with a partner, and living with a child at home, Stone

et al. (2010) find that not only does the U-shape still exist, but its shape is almost un-

changed. The U-shape has been found to be robust to the inclusion of individual fixed

effects with British panel data (Clark, 2007) and to various panel data methods dealing

with age-period-cohort issues in German panel data (Landeghem, 2012; Schwandt, 2016).

The U-shape findings in both of these panel data sets are generally confirmed using par-

tially linear models by Wunder et al. (2013). Several studies using different types of data

are consistent with the life satisfaction U-shape, such as an inverted U-shape of antidepres-

sants in age (Blanchflower and Oswald, 2016), and a U-shape of a measure of happiness

for apes in age (Weiss et al., 2012).

Despite the popularity of the topic, no clear theory has emerged that definitively ex-

plains the channel through which the U-shape emerges. Solving the puzzle of why life

satisfaction increases in later ages, despite worsening health and declining wage-earning

ability, would provide insight into the fundamental question of “What makes us happy?”

Further, although age is not a choice variable, policy decisions might affect the way in

which age affects life satisfaction (Landeghem, 2012). Understanding age effects also of-

fers a foundation for understanding issues regarding period and cohort effects, such as

trends of subjective well-being over time.

Wunder et al. (2013) propose an explanation for the initial decline in life satisfaction

by which time passes more quickly as one ages, which causes individuals to perceive that in

recent times they experienced fewer pleasurable events. A separate approach suggests that

the U-shape can be explained by initial decreasing satisfaction due to unmet aspirations,

followed by an increase due to acceptance of those unmet aspirations as one ages; This

has been found to be consistent with panel data from Germany (Schwandt, 2016). Finally,

after observing a related U-shape in apes over their life cycles, Weiss et al. (2012) propose

that there are biological foundations for the U-shaped relationship in humans.

In this section I apply the semi-parametric tests developed in Section 4 to the life

satisfaction U-shape. I show that the U-shape goes away when conditioning on financial

satisfaction, for several baseline specifications. Using the data explained in Section 5.1,
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both within-country (Section 5.2) and cross-country (Online Appendix D.4) results suggest

the same conclusion: that the U-shape of financial satisfaction in age explains the U-shape

of life satisfaction in age. Section 5.3 explains potential channels through which financial

satisfaction is U-shaped in age.

5.1 Description of the data

I use data from the World Values Survey (WVS) manually merged16 with the European

Values Survey (EVS) (I refer to the merged dataset as WVS-EVS). The WVS-EVS merges

the WVS waves 1981–1984, 1990–1994, 1995–1998, 1999–2004, 2005–2009, and 2010–2014

with the EVS waves 1981–1983, 1989–1993, 1999–2001, and 2008–2010. Ninety-eight coun-

tries are used for most parts of the analysis, and the median sample size for a country

(pooling across survey waves) is 2,431. See Online Appendix D.1 for the survey questions

that correspond to the WVS-EVS variables used in the data analysis.

The semi-parametric methods used in this paper ignore the ordinal nature of the out-

come variable. Findings by Ferrer-i-Carbonell and Frijters (2004) suggest that analysis of

subjective well-being data is not sensitive to the use of methods that do take into account

the ordinal nature of the variable. Similar studies (e.g., Wunder et al., 2013) take the

same approach. Regressions are not run separately by gender, which is consistent with

the within-country regressions in Blanchflower and Oswald (2008); similar relationships

have been found between males and females for life satisfaction, as well as for a variety of

hedonic well-being measures across age (Steptoe et al., 2015).

5.2 Within-country results

Table 3 shows columns that summarize the results of the semi-parametric test of a U-shape

of life satisfaction in age for various specifications, using the WVS-EVS data. The hypoth-

esis explored is that there is a U-shape between life satisfaction and age, over the age range

20 to 70, with a turning point between 30 and 60. Because the semi-parametric test has a
16The agreement betweenWVS and EVS that lead to an official merged dataset, covering

the period 1981–2004, was not renewed.
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composite null hypothesis of monotone and U-shaped, interpretation requires care in order

to differentiate between the two classes of functions, as discussed in Section 3.5. Column

names for Table 3 are defined as follows:

U There is evidence consistent with a U-shape: The test of quasi-convexity fails

to reject; the test of quasi-concavity rejects; the turning point associated with

the test statistic is inside the specified range of turning points.

U-out The same criteria as the U column, except that the turning point is outside the

specified range of turning points (there must, however, be a turning point).

mono. ↓ There is evidence consistent with a monotone regression function: Both of

the quasi- tests fail to reject; the turning points (if they exist) for the quasi-

tests do not fall inside the range; the fit associated with the monotone test

statistic is decreasing.

reject all There is evidence against a U-shape, inverted U-shape, and monotonicity:

Both quasi- tests reject.

low power Both quasi- tests fail to reject, and the criteria for mono. ↓ and mono. ↑ are

not met.

The inv-U columns and mono. ↑ column have descriptions parallel to those of the U

columns and mono. ↓ column. In the U column, it is not enough to fail to reject quasi-

convexity; there could be low power, or the true regression function could be monotone.

To address both of these possibilities, a criterion for the U column is that quasi-concavity

is rejected (recall that monotone functions are in the null sets of both quasi- tests). A

reasonable way to separate monotone increasing from monotone decreasing is to look at

the slope of the fit associated with the test statistic for monotonicity, as done in the mono.

columns. There are not many entries in the U-out and inv-U-out columns, because it

is not common for a country to have a U-shape with the turning point close to one of the

ends and, at the same time, have enough power to reject monotonicity.17

17As the level of the test tends to zero, the table entries will move toward the mono.
columns and the low power column. Thus, when interpreting the mono. columns, it is
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The results in Table 3 suggest that for the unconditional relationship, there is more

evidence of a monotone decreasing relationship (36 countries) than of a U-shaped relation-

ship (15 countries). Including the control variables income, education, employment status,

and marital status is consistent with the within-country regressions of Blanchflower and

Oswald (2008). When controlling for these variables, the results flip compared to the

unconditional results: There is evidence of a U-shape in 37 countries and of a monotone

decreasing relationship in 19 countries.

The table also shows that financial satisfaction can explain much of the U-shaped

relationship between life satisfaction and age, where it exists. No matter which of the three

baseline specifications is used, after conditioning on financial satisfaction, the number of

countries in the U column is more than halved. With the second (rows three and four) and

third (rows five and six) specifications, many of the countries move from the U column

to the mono. ↓ column. Conditioning on another variable might decrease the power of

the test, which could be a reason countries move out of the U column (because of failing

to reject quasi-concavity). However, most of the countries migrating out of the U column

into the mono. ↓ column do so because the turning point (if it exists) is no longer in the

specified range of turning points, which is not a consequence of low power. In addition,

the simulations in Section 4.1 suggest that adding control variables does not noticeably

decrease power, as it might in a fully non-parametric framework.

There is reason to be concerned with regressing one subjective measure on another,

because such a regression could suffer from correlated measurement error. For example, if

a survey respondent is in a good mood, they could respond with a high response to both

subjective measures. We might see a high correlation between the two variables when in

fact the correlation is caused by a (hidden) third variable. One robustness check to address

this possibility is to run the same tests as above, but switch the positions of life satisfaction

and financial satisfaction. By running these parallel tests, we can get an idea of which of

important to recognize that there is no criterion of a statistical test rejecting, only tests
failing to reject. Hence, if entries move from the out columns to the mono. columns
(e.g., when adding a control variable or using a subset of the data), it is possible that this
is purely the result of reduced power.
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the highly correlated variables is responsible for the U-shape with age.

Table 4 shows results from testing for a U-shape of financial satisfaction in age. There is

evidence of a U-shaped relationship in more countries than in Table 3, which suggests that

financial satisfaction could be the underlying driver of the observed U-shaped relationship

between life satisfaction and age. Recall that when financial satisfaction was added as

a control variable in the unconditional life satisfaction test (second row of Table 3), the

number of countries consistent with a U-shape dropped from 15 to 5. Conversely, when life

satisfaction is added as a control in the unconditional financial satisfaction test (second row

of Table 4), the number stays constant at 24. Similar patterns hold for the other baseline

specifications shown in the table. This suggests that financial satisfaction explains the

U-shaped relationship between life satisfaction and age more than the other way around.

A potential reason for why financial satisfaction might have more explanatory power

than life satisfaction could be that financial satisfaction has more variance, and thus inher-

ently contains more information than life satisfaction. Both satisfaction variables should

be viewed as collapsed approximations of underlying continuous variables, so if the finan-

cial satisfaction variable were collapsed less than life satisfaction, financial satisfaction

would mechanically have more explanatory power. However, this does not seem to be the

case: As Online Appendix D.2 shows, the two distributions are similar. Thus, it does not

seem that the differences in marginal distribution are the reason for financial satisfaction’s

higher explanatory power of the U-shape.

As shown in Online Appendix D.3, the OLS results do not suggest the same conclusion

as the semi-parametric results: that financial satisfaction explains the U-shape of life

satisfaction. Instead, the results are consistent with the common situation that when a

variable that is highly correlated with the dependent variable is controlled for, there are

larger standard errors. As demonstrated in Section 2, because OLS does not capture the

effect of one variable on another in a flexible way, it is more difficult to discern which

variable is the underlying driver of an observed relationship.

Online Appendix D.4 provides estimations of several different pooled models. The re-

sults are consistent with the within-country results, and include graphs of semi-parametric
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estimates to demonstrate that the tests of a U-shape agree with what one would conclude

from visual inference.

5.3 Discussion of results

The results in the previous section suggest that financial satisfaction can explain much of

the U-shaped relationship between life satisfaction and age, and that financial satisfaction

itself has a U-shaped relationship with age. In this section, some potential reasons are

discussed for why the above patterns are found in the data, in order to encourage future

research to quantitatively determine why financial satisfaction is U-shaped in age.

It is not surprising that financial satisfaction is positively related to life satisfaction.

However, financial satisfaction is also positively related to age later in life in most countries.

This result might initially be surprising, given that income decreases in old age. Taking

the subset with ages between 40 and 70, although age and income are positively correlated

in only 8 of the 102 countries, age and financial satisfaction are positively correlated in

59 countries. The most immediate explanation to reconcile the divergent directions of

income and financial satisfaction is that although income decreases in old age, expenses

also decrease. The increase in financial satisfaction at later ages was also listed as one

reason for increasing life satisfaction by Wunder et al. (2013).

Financial obligations and sources of financial stress typically are most pronounced dur-

ing the middle years of a person’s life. For instance, raising children increases both present

financial expenditures and stress about meeting future expenditures, and the parents of

middle-aged individuals are usually no longer in the workforce and thus less able to provide

support. Further, in many cultures, children are expected to care for their elderly parents.

In some countries, it is common to have large debts in the middle years of life, such as from

mortgages. Finally, the middle-aged are more likely to hold risky financial assets (Guiso

et al., 2000). These sources of financial stress appear to outweigh the high wage-earning

ability of the middle-aged.

In addition to fewer expenditures in old age, stress about one’s financial situation might

be lower as the result of reduced uncertainty about the future, because the future is shorter.
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Many 70-year-olds do not have the stress of planning for retirement because that planning

has already been done. Similarly, there is less need to save as insurance against events

such as losing one’s job. Also, in contrast to the situation of middle-aged individuals, in

many countries there are welfare systems or cultural expectations about being cared for

by children that ensure that the elderly will not have financial concerns.

6 Conclusion

Economists have been exploring U-shaped relationships in the data since at least Kuznets

(1955), but econometric tools that focus on testing U-shapes have not been developed.

Using traditional tools (e.g., OLS) to explore U-shapes can lead to unwanted consequences,

such as testing for the regression function being more positive-quadratic than negative-

quadratic. This paper provides a framework for analyzing U-shapes, and proposes to

test them exactly how they are defined, rather than by a restricted approximation. By

bridging the literatures that test U-shapes and that test bumps in regression functions, this

framework opens the door for further contributions of tools that analyze this common type

of relationship between variables. In addition to being the first to use critical bandwidth

for testing U-shapes, the methodologies developed in this paper apply more generally to

all tests based on critical bandwidth by extending them to multivariate analysis through

the use of GAMs, which renders them more attractive for use in practice.

OLS will always be a useful tool for data analysis because of its convenient properties;

the advanced techniques developed in this paper are intended to supplement the use of

OLS, not replace it. Controlling for other variables in a flexible way ensures that those

variables’ effects are not picked up by the variable of interest only because of parametric

restrictions. This paper contributes to the trend for non- and semi-parametric techniques

to become more important in economics; the requirements for their advantages to stand

out are more easily met, as a result of both computational power increasing and size of

data increasing (e.g., Varian, 2014). A user-friendly R package accompanies this paper

and allows for easy application of the methods described.

The theoretical tools developed were applied to the open question of why life satisfac-
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tion is commonly found to be U-shaped in age. Results from the semi-parametric tests

within countries and in several pooled models suggest that the U-shape of financial satisfac-

tion in age explains the U-shape of life satisfaction in age. This insight is not found when

using the classic OLS quadratic specification. The discovery that financial dissatisfaction

causes the midlife dip in life satisfaction leads to important policy considerations: Many

countries have policies that encourage saving by the middle-aged for retirement, but the

results in this paper suggest that if the social planner’s goal is to smooth well-being across

the life cycle, then perhaps more attention should be given to alleviating financial stress

during the middle years of life, rather than later. The optimal policies can be designed

only by identifying the sources of financial dissatisfaction.
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Figure 1: Quadratic Fits (OLS and Quantile)

This figure shows two estimated regressions, one using OLS (the solid red curve) and one

using median regression (the dotted red curve), of the true regression function (the thick

black curve). The first stick on the x-axis is the minimum of the realizations of X, at 10,

and the last stick is the maximum, at 100. Each stick in between represents 5% increments

of the number of observations.
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Figure 2: True Regression Functions

The functions shown in this figure are used in simulations throughout the paper. For their

definitions, see Section 4.1.
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Table 1: Semi-Parametric Test with Two Covariates

sample size
H0 100 500 1,000 5,000 10,000 100,000

M(Xm3) + s(Xsq) 0.02 0.03 0.03 0.15 0.45 1.00
Q(Xm3) + s(Xsq) 0.02 0.03 0.02 0.15 0.45 1.00
M(Xsin) + s(Xsq) 0.14 0.36 0.59 0.98 1.00 1.00
Q(Xsin) + s(Xsq) 0.02 0.22 0.71 1.00 1.00 1.00
M(Xm3) + s(Xsin) 0.02 0.04 0.02 0.17 0.51 1.00
Q(Xm3) + s(Xsin) 0.02 0.03 0.03 0.17 0.50 1.00
M(Xsin) + s(Xm3) 0.15 0.38 0.64 0.98 1.00 1.00
Q(Xsin) + s(Xm3) 0.03 0.27 0.77 1.00 1.00 1.00
M(Xsq) + s(Xm3) 0.07 0.09 0.13 0.34 0.57 1.00
Q(Xsq) + s(Xm3) 0.04 0.01 0.00 0.01 0.01 0.01
M(Xsq) + s(Xsin) 0.08 0.08 0.13 0.36 0.59 1.00
Q(Xsq) + s(Xsin) 0.03 0.01 0.00 0.01 0.01 0.02

This table shows the proportion of times each test rejects the null hypothesis at the 0.05

level. For the test name (column 1), “M (Z)” means a null hypothesis of regression mono-

tonicity in Z; “Q (Z)” means a null of regression quasi-convexity in Z; and s (W ) indicates

that W is controlled for semi-parametrically. All tests use GAMs. The solid horizontal line

separates the sets of tests in which the null hypotheses are false from sets in which at least

one is true (indicated in the test name using a different font, Q and M). For the shapes

of the regression functions, see Figure 2. Proportions are based on 10,000 simulations.
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Table 2: Semi-Parametric Test with Five Covariates

sample size
H0 100 500 1,000 5,000 10,000 100,000

M(Xm2) + ... 0.07 0.10 0.13 0.37 0.64 1.00
Q(Xm2) + ... 0.10 0.17 0.23 0.58 0.83 1.00
M(Xm3) + ... 0.03 0.02 0.02 0.19 0.52 1.00
Q(Xm3) + ... 0.03 0.02 0.02 0.19 0.51 1.00
M(Xm4) + ... 0.05 0.12 0.18 0.30 0.45 0.77
Q(Xm4) + ... 0.05 0.13 0.18 0.31 0.46 0.77
M(Xsq) + ... 0.07 0.11 0.14 0.39 0.62 1.00
Q(Xsq) + ... 0.04 0.01 0.01 0.01 0.01 0.01
M(Xm1) + ... 0.06 0.06 0.05 0.05 0.05 0.05
Q(Xm1) + ... 0.06 0.06 0.05 0.04 0.04 0.05

This table shows the proportion of times each test rejects the null hypothesis at the 0.05

level. For the test name (column 1), “M (Z)” means a null hypothesis of regression mono-

tonicity in Z, and “Q (Z)” means a null of regression quasi-convexity. Each test conditions

on all other variables. For example, test “Q(Xsq) + . . .” tests for quasi-convexity in Xsq,

conditioning on Xm1 , Xm2 , Xm3 , and Xm4 . All tests use GAMs. The solid horizontal line

separates the sets of tests in which the null hypotheses are false from sets in which at least

one is true (indicated in the test name using a different font, Q and M). For the shapes

of the regression functions, see Figure 2. Proportions are based on 10,000 simulations.
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Table 3: Tests for U-Shape of Life Satisfaction in Age

controls U U
out

Inv-U Inv-U
out

mono.
↓

mono.
↑

reject
all

low
power

unconditional 15 3 3 1 36 10 2 28
FS 5 1 6 0 38 11 0 37
inc 28 4 6 0 22 10 2 26
inc FS 7 2 8 0 31 11 2 37
inc ed emp marital 37 2 1 0 19 8 1 30
inc ed emp marital FS 18 4 3 0 36 4 1 32

This table summarizes results from various country-level specifications for a test of a

U-shape of life satisfaction in age. Each numeric cell of the table is the number of countries

that fall into the category indicated in the column, for the specification listed in the row.

The first column indicates the variables that were conditioned on for the test. Variable

abbreviations are as follows: “FS” is financial satisfaction, “inc” is income, “ed” is edu-

cation, “emp” is employment status, and “marital” is marital status. See Section 5.2 for

descriptions of the columns. The level of significance used is 0.1.
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Table 4: Tests for U-Shape of Financial Satisfaction in Age

controls U U
out

Inv-U Inv-U
out

mono.
↓

mono.
↑

reject
all

low
power

unconditional 24 6 4 1 28 12 1 22
LS 24 5 4 0 26 13 0 26
inc 39 7 3 0 17 10 1 21
inc LS 42 5 3 0 10 12 0 26
inc ed emp marital 47 0 1 0 15 11 0 24
inc ed emp marital LS 32 2 3 0 13 21 0 27

This table summarizes results from various country-level specifications for a test of a

U-shape of financial satisfaction in age. Each numeric cell of the table is the number

of countries that fall into the category indicated in the column, for the specification listed

in the row. The first column indicates the variables that were conditioned on for the test.

Variable abbreviations are as follows: “LS” is life satisfaction, “inc” is income, “ed” is

education, “emp” is employment status, and “marital” is marital status. See Section 5.2

for descriptions of the columns. The level of significance used is 0.1.
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Online Appendix

A Proofs of Results in the Main Text

Lemma 1. Suppose that var (U) > 0 and var (V ) > 0. Then

var (U) var (V )− cov (U, V )2 = 0

if and only if there is perfect correlation (correlation is 1 or -1) between U and V .

Proof. Without loss of generality, suppose that cov (V, U) ≥ 0. We start with the Pearson

correlation inequality (easily proved with the Cauchy-Schwartz inequality):

cov (U, V )√
var (U)

√
var (V )

≤ 1

cov (U, V )2 ≤ var (U) var (V )

0 ≤ var (U) var (V )− cov (U, V )2

Note that if the top inequality is strict, the following two are as well, and if the top

inequality is an equality, the following two are as well.

A.1 Proof of Theorem 1

Proof. It is easily shown that

β̂1 =
ĉov [Y, g1 (X1)] v̂ar [g2 (X2)]− ĉov [g2 (X2) , g1 (X1)] ĉov [Y, g2 (X2)]

v̂ar [g1 (X1)] v̂ar [g2 (X2)]− ĉov [g2 (X2) , g1 (X1)]
2 ,

where ĉov and v̂ar are sample covariance and sample variance. The probability limit of β̂1

is then given by the law of large numbers and the continuous mapping theorem as

β̂1
p→ cov [Y, g1 (X1)] var [g2 (X2)]− cov [g2 (X2) , g1 (X1)] cov [Y, g2 (X2)]

var [g1 (X1)] var [g2 (X2)]− cov [g2 (X2) , g1 (X1)]
2 .
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By Lemma 1, the denominator is 0 if and only if there is perfect correlation between

g1 (X1) and g2 (X2), so by assumption (1), β̂1
p→ 0 only when the numerator is 0. By

assumption (2), for consistency to hold, we must then have that

cov [f (X2) , g1 (X1)] var [g2 (X2)] = cov [g2 (X2) , g1 (X1)] cov [f (X2) , g2 (X2)] .

Dividing both sides by var [g2 (X2)]
√

var [f (X2)] var [g1 (X1)] gives the equivalent and

more intuitive condition that

corr [f (X2) , g1 (X1)] = corr [g2 (X2) , g1 (X1)] corr [f (X2) , g2 (X2)] .

A.2 Proof of Theorem 2

Proof. Fix ϵ > 0, δ > 0, β < 1. We want to show that ∃N st for n > N ,

P
[
nβh

(n)
stat < ϵ

]
> 1− δ.

Take any bandwidth sequence, hn, that satisfies

hn = dn−β, 0 < β < 1, d > 0.

Take N1 such that hN1 < ϵ. Let

M = min
k

|(∆m (rk))| .

2



M > 0 by assumption (6). Under assumptions (1)–(5), using the results of Fan (1993) we

have that m̂hn (rk)
p→ m (rk) pointwise so for 1 < k ≤ J , ∃N2 st for n > N2,

P [sign (∆m̂hn (rk)) = sign (∆m (rk))]

≥ P [|∆m̂hn (rk)−∆m (rk)| < M ]

> 1− δ

J
.

Let N∗ = max (N1, N2). It follows from Boole’s inequality that

P [sign (∆m̂hn (rk)) = sign (∆m (rk)) , for 1 < k ≤ J ] > 1− δ.

Note that under the null, the event {sign (∆m̂hn (rk)) = sign (∆m (rk)) , for 1 < k ≤ J}

implies the event
{
h
(n)
stat ≤ hn

}
. We then have that for n > N∗,

P
[
h
(n)
stat ≤ hn

]
> 1− δ

and so

P
[
h
(n)
stat < ϵ

]
> 1− δ.

Because hn above can be any sequence such that hn = dn−β, 0 < β < 1, d > 0, and

because

P
[
h
(n)
stat ≤ hn = dn−β

]
→ 1

for all β < 1, it must be that h
(n)
stat converges in probability to 0 faster than n−β for any

0 < β < 1.

A.3 Proof of Theorem 3

Proof. SupposeH0, as defined in Section 3.1, is not true. Then, by assumption (7), ∀a ∈ A0

∃j ≤ J such that ∆m (rj) (x− a) < 0. Take any bandwidth sequence hn that satisfies

hn → 0, nhn → ∞.
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Because m̂hn (rj)
p→ m (rj) (Fan, 1993) and by assumption (6), ∃N such that for n > N ,

P [|∆m̂hn (rj)−∆m (rj)| < |∆m (rj)|] > 1− δ

and

P [sign (∆m̂hn (rj)) = sign (∆m (rj))] > 1− δ.

Fix such an N and thus an hN . Then,

P [sign (∆m̂hN
(rj)) = sign (∆m (rj))] > 1− δ

for all n > N because if we fix the bandwidth, as the sample increases, precision can

only be gained. In other words, if hN were used as the bandwidth for n > N , the bias

of m̂hN
(rj) would not increase, and the variance would decrease. Thus, the probability

that m̂h is quasi-convex is less than δ for any h smaller than hN and greater than hn, for

n > N .

There is still the possibility that m̂h could be quasi-convex for h less than hn. However,

this case is ruled out by assumption (8). To see this, suppose that because of high variance

caused by a small h, the probability that m̂h is quasi-convex for some h < hn is greater

than δ. Because the total number of changes of the sign of the derivative of m̂h is monotone

in h, this would imply that the probability that m̂hN
is quasi-convex is also greater than

δ, which contradicts the result above. Thus, P [hstat > hN ] > 1− δ for n > N .

B Supplements for OLS Discussions

B.1 The Lind and Mehlum test

This section describes the test by Lind and Mehlum (2010), which has been the only test

(parametric or non-parametric) of a U-shape in addition to the vanilla OLS quadratic spec-

ification. The test is implemented on top of the coefficients and standard errors obtained

from estimating equation (1) with OLS. The function f must be chosen to have one ex-
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tremum. Then, the relationship is U-shaped, inverse-U-shaped, or monotone, depending

on β and γ. A U-shape exists if and only if the slope is negative at the start and positive

at the end of a chosen interval [xl, xh] (e.g. [xl, xh] = [min(xi),max(xi)]), in which case the

following inequalities hold:

β + γf ′ (xl) < 0 < β + γf ′ (xh) .

To test that the inequalities hold, Lind and Mehlum propose a likelihood ratio test, based

on the framework of Sasabuchi (1980). Simulations in the paper suggest that the Lind

and Mehlum test provides an improvement over the vanilla test of the coefficient on the

quadratic term. Further, it has the nice property of testing for a U-shape in an intuitive

way. Nonetheless, because the test relies on the choice of f in the OLS specification, it

shares the same parametric properties as the vanilla quadratic specification discussed in

Section 2.

B.2 Inverse frequency weighting

Section 2.1 discusses how using OLS can lead to incorrect inference about the shape of

the regression function because of its implicit weighting on the density of the X variable.

To estimate the regression function in a way that has better global properties, we should

prevent the fitting algorithm (e.g., OLS) from ignoring points at which the marginal distri-

bution of the independent variable is thin. One way to do this is to artificially redistribute

the density of X in the sample until it is uniform. We could resample from the dataset

conditional on the values of X where the density is thin. It is on this set of estimates that

we would then make inference about a U-shape. This resampling method is equivalent to

using generalized least squares, which is easier to implement.

To see the above intuition mathematically, for notational simplicity I take the case in

which the vector of covariates z is empty. OLS minimizes

∫
(m̂(x)−m(x))2 dFX(x) . (6)

5



In general, we do not want to force weighting the loss function L (x) = [m(x)− m̂(x)]2 by

the distribution of X, dFX(x). When looking at the shape of m (x) over the entire support,

it would be more sensible to minimize

∫
[m̂ (x)−m (x)]2 dx,

which is the special case of (6) when X is uniformly distributed. This suggests that we

could get estimates with better global properties using generalized least squares, where the

weight of each observation is the inverse of the empirical cumulative distribution function

(ECDF) of X evaluated at each point. We would in essence be weighting in order to

cancel the underlying weights in (6). Note that we do not have the same problems that,

for example, feasible generalized least squares can suffer from,18 because the ECDF itself

gives the ideal weights; we do not use it as an estimator of the CDF of X.

Figure 3a shows these proposed weights applied to OLS and quantile regressions with

the quadratic specification. The weighted regressions are the green lines, which give a

better global fit to the regression function and which correctly fail to reject that the

regression function is not U-shaped. Alternatively, a dummies approach can reduce bias

when fitting, as shown in Figure 3b. However, as discussed in Section 2.2, and shown in

Tables 5 and 6, a test based on dummies has poor properties.

B.3 Simulations of OLS inconsistency

Section 2.3 shows analytically how an OLS-implemented test of a U-shape is inconsistent.

This appendix provides simulations to explore the properties of the inconsistency for a few

specific cases. Table 5 shows simulations of an OLS quadratic test based on the following

specification:

Y = β0 + β11X1 + β12X
2
1 + β21X2 + β22X

2
2 + ϵ

18Although feasible generalized least squares is asymptotically more efficient than OLS,
in finite samples it can actually be less efficient because of the reliance on estimating the
variances to use as weights.
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The test is simply whether β̂12 is significantly positive. The coefficient β11 on the linear

term should not be tested because the support of X1 is R, as shown below. Table 5 also

shows results from a test based on dummies, as discussed in Section 2.2. The data are

generated as follows: 
X1

X2

ϵ

 ∼ N




0

0

0

 ,


1 .8 0

.8 1 0

0 0 1




Y = |X2|a + ϵ,

(7)

where a is a constant (specified in the “exp.” column of the table). When a is 2, the model

is correctly specified. In this case, the OLS test of a U-shape of Y in X1, conditional on

X2, is consistent. This can be seen in the table by noting that β̂12 is significantly positive

about 5% of the time. However, when a is 3 or 4, the rejection rate is considerably larger

than 5% and it is common to find a spurious U-shape of Y in X1, conditional on X2. These

simulations are consistent with the theoretical results of the previous section.

A comparison between a quadratic test of a U-shape and a semi-parametric test is not

straightforward, because the null and alternative sets are different. In the semi-parametric

test, the null hypothesis is that Y is U-shaped in X1; for the quadratic test, the null is that

Y is not U-shaped in X1. However, as the sample increases to the point at which power is

“large,” we can compare the inference that one would get from each. It makes more sense

to include X1 in the data generating process because if it is absent, the semi-parametric

test will expectedly fail to reject. We thus add X1 such that its relationship to Y is clearly

not U-shaped. Here we have the following data generating process, in which the ϵk are

independent standard normals:

X2 ∼ ϵ1

X1 = X2(1 + ϵ2)

Y = |X2|a + .05 sin (15X1) + ϵ3,

(8)

Ideally, a test with a null hypothesis of “not U-shaped” should find even less evidence of

a U-shape in X1 than when X1 did not enter the equation of Y : Instead of the test statistic
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being insignificant (as it should be in the data generating process shown in equation (7)),

it should be significant in the opposite direction. Table 6 yields the same conclusion as

Table 5: The quadratic specification finds a spurious U-shape with respect to X1 because

of the correlation between X1 and X2. In all panels of the table except the a = 2 panel,

the coefficient β̂12 is significantly positive in more than 5% of the samples. The semi-

parametric tests are consistent and correctly reject that Y is U-shaped in X1, conditional

on X2.

C The Flatness Problem

Tests based on critical bandwidth can be inconsistent if the regression function has a first

derivative that is zero for a long enough interval (that is, if assumption (6) in Section 3.3

is violated). Even if assumption (6) holds, there could be power issues in finite samples

if there is a stretch on the x-axis with ∆m (rk) small in absolute value. Just as Hartigan

and Hartigan (1985) demonstrate regarding Silverman (1981), Hall and Heckman (2000)

show that for the critical-bandwidth test of monotonicity of Bowman et al. (1998), there

are cases in which the power does not tend to one. In particular, they give an example

of a regression function that is not monotone, but is not rejected asymptotically (we will

define this function in Section 4.1 as m4). In fact, the power of the test for this regression

function can decrease as the sample size increases. The intuition for why this can happen

is that if there is a flat region (∃c, d st m′ (x) = 0 for x ∈ [c, d]), hstat will be large because

a lot of smoothing is required before the fit becomes flat.19 Because a global bandwidth

is used, a large bandwidth can smooth out non-monotone segments in other parts of the

underlying regression function.

The flatness problem is relevant to all critical bandwidth tests and can occur when all

of the following three conditions are present:

1. The smoothness of m (x) is not uniform.
19Here, whether a smooth is flat depends on the decimal precision used in the computa-

tion.
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2. There is a long interval where m′ (x) ≈ 0.

3. The sample size is not large enough.

The closer m′ (x) is to 0 and the longer the flat interval (condition 2), the larger the sample

size must be to overcome the decrease in power. Below, I give a few practical suggestions

for addressing this issue.

1. Use an adaptive smoothing parameter for the critical bandwidth.

2. Look at plots of m̂h (x) using several smoothing parameters.

3. Determine whether m′′ (x) varies considerably, using a test or exploring graphically

as in (2).

4. Be wary of a large hstat.

5. Be wary if hstat − hcv is large, where hcv is the smoothing parameter from cross-

validation.

At first, (1) seems incompatible with a critical bandwidth test because there is no single

h with an adaptive bandwidth. However, we define a new test statistic

α = min {a ∈ R | m̂ (x; ah (x)) is quasi-convex} ,

where m̂ (x;h (x)) is a fit using an adaptive bandwidth. Instead of increasing the bandwidth

uniformly, we can view the coefficient a as the smoothing parameter, which scales the set

of bandwidths. This allows each section on the x-axis to become smoother at a different

rate. Most popular adaptive bandwidths have two properties: They are (1) positively

related to a measure of smoothness of the regression function at each point; and they are

(2) inversely related to the density. These properties lead to a good (in a mean squared

error sense) trade-off between bias and variance. In areas of the x-axis with a large density,

a smaller bandwidth can be used to reduce bias without a significant sacrifice of variance
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of m̂ (x). In areas in which there is a lot of curvature, a small bandwidth is used because

over-smoothing can lead to a large cost of bias.20

In our case we do not want the second property (that the adaptive bandwidth depends

on the density), because an example similar to the one given by Hall and Heckman (2000)

could be constructed. For example, imagine a case in which the density is thin in the

non-monotone interval and thick elsewhere. A large bandwidth would be used in the

non-monotone interval and could smooth out a non-stochastic wrinkle in the underlying

regression function.

In the case of testing for monotonicity, the flatness problem could be improved by

breaking the test into smaller pieces so that a flat part in one area would not affect the fit

in other areas. For testing a U-shape, this is not easily done. However, a similar approach

could be taken in testing for a U-shape by composing monotone tests.

D Supplements for Life Satisfaction Application

D.1 Variable definitions for the World Values Survey

life satisfaction All things considered, how satisfied are you with your life as a whole

these days? 1 (Dissatisfied), 2, …, 10 (Satisfied).

financial satisfaction How satisfied are you with the financial situation of your house-

hold? 1 (Dissatisfied), 2, …, 10 (Satisfied).

income Scale of household incomes: 1 (Lower step), 2, …, 11 (Highest step).

marital status Married, Living together as married, Divorced, Separated, Widowed, Sin-

gle/Never married.
20The assumption of smoothness of m is important here, because if the regression func-

tion has a very sharp linear kink such that m′′ (x) = 0 except for a couple of points, this
might not be detected because typical adaptive bandwidth techniques measure smoothness
based on m′′.
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education At what age did you complete your education? <12 years, 13 years, 14 years,

…, 20 years, 21+ years.

employment status Full time, Part time, Self employed, Retired, Housewife, Student,

Unemployed.

number of children Have you had any children? 0, 1, …,7, 8+.

D.2 Distributions of life and financial satisfactions

Figure 4 compares the marginal distributions of life satisfaction and financial satisfaction

in the WVS-EVS. The two distributions are similar. The main difference is that in

the bottom three categories, there is more mass for financial satisfaction than for life

satisfaction; the opposite is true for the top three categories.

D.3 Results from OLS quadratic specification

Tables 7–10 below show results from using a quadratic specification to explore the life

satisfaction U-shape, in order to determine whether inference leads to the same conclusion

as obtained with the semi-parametric tests in Section 5.2. The OLS-based test is carried

out for each country. A country is categorized as having a U-shape if, for the subset with

ages 20 to 70, the coefficient on the age term is significantly negative, the coefficient on the

squared age term is significantly positive, and the age that corresponds to the bottom of

the fit is within the range [30, 60]. Similarly, a country is categorized as having an inverted

U-shape if the coefficient on the age term is significantly positive, the coefficient on the

squared age term is significantly negative, and the age that corresponds to the peak of

the fit is within the range [30, 60]. It is not always necessary to test the linear term when

implementing a quadratic test of a U-shape, but in this case it is because the support of

age is positive.

The distribution of age is not uniform in most countries, and a situation similar to

the one shown in Figure 1 is a concern: It might be that life satisfaction monotonically
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decreases as one ages, but that the relationship is not picked up by the quadratic because

of a thin right tail in the density of age. This is especially a concern in developing coun-

tries. Thus, in order to get a good global estimate of the regression function, weighting

is performed as suggested in Online Appendix B.2. The inference and lack of inference

discussed in this section do not change when regressions are run without weighting.

The columns U× and Inv-U× indicate that the signs of the coefficients yield the corre-

sponding shape and the turning point is within the required range, but at least one of the

coefficients was insignificant. The columns are useful for concerns that a country leaves

the U column only because of decreased power (e.g., because of added control variables).

The mono. columns are meant to give an idea of why a country is not in one of the

U-shape columns, rather than as evidence that a country has a monotone life-satisfaction

relationship with age. A country falls into a mono. column if both coefficients have the

same sign or if the turning point of the U-shape or inverted U-shape is not in the range

[30,60] (that is, it falls within the first 10 years or the last 10 years). Only the signs of the

point estimates are checked. This is just to show that the results are likely not due to lack

of power. Finally, two specifications are used as the base specification: an unconditional

specification and the set of control variables from Blanchflower and Oswald (2008) that

were also used in the semi-parametric analysis.

Table 7 shows that when conditioning on financial satisfaction, the number of countries

that have a U-shape falls only slightly compared to the unconditional results. Similarly,

when adding control variables in Table 8, although the number of countries with a signifi-

cant U-shape decreases, most of those countries move to having an insignificant U-shape.

When comparing these results to the same models—except for switching life satisfaction

and financial satisfaction (Tables 9 and 10)—the results are similar.

D.4 Cross-country results

In this appendix section we approach the data from a different angle than the within-

country analysis in Section 5.2. We now consider pooled regressions, motivated by cross-

country models in this section. The models necessarily rely on strong assumptions that
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certain variables affect the dependent variable the same way across all countries. To the

extent that these assumptions hold approximately, pooling the data allows to overcome

some potential shortcomings of the within-country results regarding cohort effects that are

discussed below. This section asks the same question as the within-country analysis, of

what drives the U-shape of life satisfaction in age, but from a different perspective, and

arrives at the same conclusion: the U-shape is driven by financial satisfaction.

Pooling the data could solve a particular type of issue related to cohort effects: Because

in some of the tests a strict test was used, a small violation of a U-shape could lead to

a rejection by the test. If those violations occurred because of cohort effects that were

specific to a country, and if the cohort effects were not correlated across countries, then

by averaging across countries the cohort effects would be averaged away.21 To see this

formally, consider an age, period, and cohort framework in which the life satisfaction of

individual i who has age a and was born in year b is

yi,b,a = αb + βa + γb+a + ϵi,b,a.

For a detailed introduction to this model, see Online Appendix D.5. For simplification, let

us assume that the period effects γb+a are zero, and further that cohort effects depend on

the country, but that averaging the cohort effects over countries yields a constant. Formally,

for an individual in country q we assume the model

yi,b,a,q = αbq + βa + ϵi,b,a,

where
∑

q αbq = k does not depend on birth year, b. This assumption is strong and likely

does not hold exactly,22 but the framework allows us to motivate analysis of the aggregated

data. If the above assumption does hold, GAM estimations of age effects could be biased
21“Averaging across countries” refers to how if a GAM is estimated on the pooled data

set, the estimate of life satisfaction for a given age will be the average of life satisfaction
in the data.

22For example, this assumption would be violated if cohort effects were correlated across
countries during, e.g., World War II or worldwide economic crises that scarred people of
certain ages more than others.
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for the within-country regressions but not for the pooled regressions.23 At the very least,

as long as there is not perfect correlation, the cohort effects would be smoothed away more

than for the within-country tests.

Figure 5a gives a first look at the pooled-data relationship between life satisfaction and

age, and how controlling for financial satisfaction affects that relationship. The two curves

correspond to estimates of f(agei), the effect of age on life satisfaction (LS), before and

after controlling for financial satisfaction (FS), as in the following GAM models:

LSi = f(agei) + ϵi (9a)

LSi = f(agei) + g (FSi) + ϵi (9b)

The estimate of f(agei) from the unconditional specification in (9a), shown as the red

curve in Figure 5a, reproduces the U-shape that is commonly found in similar regressions

in previous literature. In the same plot, the blue curve shows that after controlling for

financial satisfaction in (9b), the effect of age on life satisfaction changes: The right arm

of the U flattens out.24

For the same reason as explained in the cross-country regressions, to see if the age

effects weaken only because life satisfaction and financial satisfaction are highly correlated,

we consider symmetric models with financial satisfaction as the dependent variable:

FSi = f(agei) + ϵi (10a)

FSi = f(agei) + g (LSi) + ϵi (10b)

Figure 5b shows that financial satisfaction has a stronger U-shaped relationship with age

than life satisfaction does, and that the shape shifts only slightly when including life
23For the cohort effects to average to a constant, we would need to weight the GAM

estimations by the inverse of country size. The results do not change much when this is
done.

24For all results plotted in this section, the y-axis has been fixed to be the same, and
that the range of the estimated effect functions is indeed comparable across specifications
in GAMs. The location of the y-axis, however, is not comparable or interpretable, and is
thus centered around 0.
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satisfaction as a control variable. These regressions are consistent with the within-country

regressions, and further suggest that the reason life satisfaction is U-shaped in age is

because financial satisfaction is also U-shaped in age.

If the same countries that have older populations are also the countries that generally

have higher life satisfaction and financial satisfaction, the right arm of the U-shape could

be explained simply by the differences in marginal distribution of age. The results from

the within-country estimations in Section 5.2 should address this concern, but we can also

address it with the pooled estimations by including country fixed effects. For individual i

in country c, consider the sets of specifications

LSic = f(agei) + σc + ϵi (11a)

LSic = f(agei) + g (FSi) + σc + ϵi (11b)

and

FSic = f(agei) + σc + ϵi (12a)

FSic = f(agei) + g (LSi) + σc + ϵi (12b)

Figure 6 shows the estimations of f(agei). For the regression of life satisfaction, condi-

tioning on financial satisfaction (Figure 6a) leads to the right arm not only flattening out

but to it becoming monotonically decreasing. For the regression of financial satisfaction

(Figure 6b), conditioning on life satisfaction does not change the U-shaped relationship

with age.

Although there is some prior theory for introducing the effect of age on life satisfaction

as a function that is shared across countries,25 there is less reason to require that the effect

of financial satisfaction on life satisfaction be shared across countries. Viewing financial

satisfaction as one of several components of life satisfaction, it makes sense to think that the

effect of financial satisfaction on life satisfaction would differ by country. When assessing
25It has been proposed by some authors (e.g., Weiss et al., 2012) that the life satisfaction

U-shape is innate in human DNA.
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one’s life as a whole, a person in one culture might give more weight to financial satisfaction

than someone in a different culture. Similarly, how much one’s financial woes affect their

life depends on the welfare system of the country. The following specifications thus allow

for the relationship between financial satisfaction and life satisfaction to differ by country:

LSic = f(agei) + gc (FSi) + σc + ϵi (13)

FSic = f(agei) + gc (LSi) + σc + ϵi (14)

The results, shown as the blue curves in the two panels of Figure 7, support the same

conclusion as the previous specifications and as the within-country tests in Section 5.2:

The U-shape of life satisfaction is driven by the U-shape of financial satisfaction.

D.5 Identification of age, period, and cohort effects

When analyzing age effects, it often makes sense to also consider period and cohort effects.

This section introduces a framework for modeling age, period, and cohort effects and shows

how there are inherent problems for identifying all of the effects. Suppose that we have

observations on individuals of A age groups a1, . . . , aA observed during T time periods

t1, . . . , tT . Let C be the number of cohorts that we observe, which is the number of

distinct birth years. In McKenzie (2006) and Landeghem (2012), C = A + T − 1. This

happens if each tn represents a year and if tn+m = tn +m (that is, if the observation years

are consecutive).26 In that case, the first time that the cohorts are observed (t1) there are

A new cohorts, and in each following year one new cohort ages into the cohorts observed.

In the McKenzie (2006) setup, the cohort aged aj observed in time period tk can be

denoted as cj−k+1. This is because the cohort aged aj observed in time period tk is the

same as the cohort aged aj+n observed in time period tk+n. However, this is not true

for data from the WVS-EVS, because the observation years are not consecutive. Thus,

I refer to the cohort born in year b as cohort b. For individual i in cohort b of age a in
26More generally, C = A+ T − 1 if the differences in tn from one observation period to

the next are the same differences as in the age categories. Usually these units are years,
but they could, for example, be months.
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time period t, let the variable of interest (e.g., life satisfaction) be denoted as yi,b,a,t. The

inconvenience of this notation is that the subscripts do not express the restriction that

only certain combinations make sense. For example, it is nonsensical to talk about the

life satisfaction of the cohort born in 1940 and aged 50 when surveyed in 1970 (which

could be allowed by the notation as yi,1940,50,1970). We capture this restriction by noting

that t = c+ a. Substituting in the subscript gives yi,b,a,b+a. We drop the unnecessary last

subscript and model yi,b,a as

yi,b,a = αb + βa + γb+a + ϵi,b,a, (15)

where αb is the effect of being in the cohort with birth year b, βa is the effect of having

age a, and γb+a is the effect of being observed in year b+ a. This additive structure is not

enough to identify any of the effects. To see this, consider that we could add a time trend

to the cohort and age effect profiles and then subtract it from the period effect profile:

Define a new set of effect profiles as

α̃b = αb + sb

β̃a = βa + sa

γ̃b+a = γb+a − s(b+ a)

where s is a fixed scalar. Then αb + βa + γb+a = α̃b + β̃a + γ̃b+a. Without theory to put

more structure on what s would be, for example, we are stuck. However, McKenzie (2006)

shows that in model (15) we can identify second differences of the effect profiles.

In a recent paper, Landeghem (2012) uses the identification framework of McKenzie

(2006) to test the convexity of well-being in age. Landeghem uses panel data from the

German Socio-Economic Panel in which individuals were observed in consecutive years

from 1984 to 2007, and adapts McKenzie’s framework to allow for true panel data instead

of pseudo-panel data. He concludes that well-being is indeed convex in age for the majority

of the life cycle.
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Figure 3: Improvements to Quadratic Fits

Figure 3a shows the same graph as Figure 1, with two additional fits (the green curves),

which are weighted with inverse frequency weights, as described in Section B.2. The OLS

regressions are the solid curves and the median regressions are the dotted curves. The

thick black curve is the true regression function. Figure 3b shows fits to the same data

using single (blue) and 5-year (red) dummy specifications. β̂j(x) is the coefficient for the

interval that x belongs to (or the coefficient for x itself in the case of single dummies for

x).

18



0

20000

40000

 1  2  3  4  5  6  7  8  9 10
satisfaction

co
un

t

life financial

Figure 4: Distributions of life and financial satisfactions

This figure compares the marginal distributions of life satisfaction (red) and financial

satisfaction (blue) in the WVS-EVS.
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Figure 5: Life Satisfaction and Financial Satisfaction Against Age

This figure shows estimates of the age effects on life satisfaction (left panel) and on fi-

nancial satisfaction (right panel) using GAMs, for the specifications referenced below each

plot. The red line represents the estimates from the baseline specification. The blue line

represents the estimates when additionally controlling for financial satisfaction (left panel),

or life satisfaction (right panel).
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(b) Specifications (12a) and (12b)

Figure 6: Life Satisfaction and Financial Satisfaction Against Age (FE)

This figure shows estimates of the age effects on life satisfaction (left panel) and on fi-

nancial satisfaction (right panel) using GAMs, for the specifications referenced below each

plot. The red line represents the estimates from the baseline specification. The blue line

represents the estimates when additionally controlling for financial satisfaction (left panel),

or life satisfaction (right panel).

21



−0.2

−0.1

0.0

0.1

0.2

20 30 40 50 60 70

age

lif
e 

sa
tis

fa
ct

io
n

control variables

country FE                                                                

country FE, financial sat., and their interaction

(a) Specifications (11a) and (13)

−0.2

−0.1

0.0

0.1

0.2

20 30 40 50 60 70

age

fin
an

ci
al

 s
at

is
fa

ct
io

n

control variables

country FE                                                        

country FE, life sat., and their interaction

(b) Specifications (12a) and (14)

Figure 7: Life Satisfaction and Financial Satisfaction Against Age (FE Interacted)

This figure shows estimates of the age effects on life satisfaction (left panel) and on fi-

nancial satisfaction (right panel) using GAMs, for the specifications referenced below each

plot. The red line represents the estimates from the baseline specification. The blue line

represents the estimates when additionally controlling for financial satisfaction (left panel),

or life satisfaction (right panel).
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Table 5: Inconsistency of Multivariate OLS Test for U-Shape

sample size
exp. H0 100 500 1,000 5,000 10,000 100,000
1.5 β12 ≤ 0 (no U-shape) 0.05 0.06 0.05 0.06 0.06 0.06

β22 ≤ 0 (no U-shape) 1.00 1.00 1.00 1.00 1.00 1.00
αX1,[5] are not U-shaped 0.00 0.00 0.00 0.00 0.00 0.77
αX2,[5] are not U-shaped 0.00 0.14 0.53 0.91 0.96 1.00

2 β12 ≤ 0 (no U-shape) 0.05 0.05 0.05 0.05 0.05 0.05
β22 ≤ 0 (no U-shape) 1.00 1.00 1.00 1.00 1.00 1.00
αX1,[5] are not U-shaped 0.00 0.00 0.00 0.00 0.03 0.90
αX2,[5] are not U-shaped 0.00 0.17 0.58 0.93 0.96 1.00

3 β12 ≤ 0 (no U-shape) 0.15 0.22 0.24 0.26 0.28 0.29
β22 ≤ 0 (no U-shape) 1.00 1.00 1.00 1.00 1.00 1.00
αX1,[5] are not U-shaped 0.00 0.00 0.00 0.00 0.28 0.95
αX2,[5] are not U-shaped 0.00 0.02 0.28 0.88 0.94 0.99

4 β12 ≤ 0 (no U-shape) 0.27 0.37 0.38 0.43 0.44 0.45
β22 ≤ 0 (no U-shape) 1.00 1.00 1.00 1.00 1.00 1.00
αX1,[5] are not U-shaped 0.00 0.00 0.00 0.00 0.00 0.92
αX2,[5] are not U-shaped 0.00 0.00 0.00 0.57 0.81 0.98

This table shows the proportion of times each test rejects the null hypothesis, specified

in the H0 column, at the 0.05 level. The data generating process is given in equation (7).

The OLS-implemented test βk2 ≤ 0 rejects if the coefficient on the quadratic term for the

kth regressor is significantly positive. The OLS-implemented test αXk,[5] rejects if the 5

dummies that partition Xk are in the shape of a U and if each is significantly different

from the previous. Proportions are based on 10,000 simulations.
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Table 6: OLS Test for U-Shape Compared to Semi-Parametric Test

sample size
exp. H0 100 500 1,000 5,000 10,000 100,000
1.5 β12 ≤ 0 (no U-shape) 0.09 0.11 0.13 0.14 0.18 0.16

β22 ≤ 0 (no U-shape) 1.00 1.00 1.00 1.00 1.00 1.00
αX1,[5] are not U-shaped 0.00 0.00 0.00 0.05 0.11 0.63
αX2,[5] are not U-shaped 0.00 0.00 0.00 0.00 0.00 0.00
f1(x1) is quasi-convex 0.13 0.17 0.15 0.15 0.17 0.21
f1(x1) is monotone 0.80 1.00 1.00 1.00 1.00 1.00
f2(x2) is quasi-convex 0.00 0.00 0.00 0.00 0.00 0.00
f2(x2) is monotone 0.82 0.92 0.94 1.00 1.00 1.00

2 β12 ≤ 0 (no U-shape) 0.05 0.04 0.04 0.05 0.06 0.05
β22 ≤ 0 (no U-shape) 1.00 1.00 1.00 1.00 1.00 1.00
αX1,[5] are not U-shaped 0.00 0.00 0.00 0.11 0.25 0.78
αX2,[5] are not U-shaped 0.00 0.00 0.00 0.00 0.00 0.00
f1(x1) is quasi-convex 0.26 0.31 0.33 0.49 0.52 0.55
f1(x1) is monotone 0.93 1.00 1.00 1.00 1.00 1.00
f2(x2) is quasi-convex 0.02 0.00 0.01 0.00 0.00 0.00
f2(x2) is monotone 0.94 0.96 0.98 1.00 1.00 1.00

3 β12 ≤ 0 (no U-shape) 0.44 0.56 0.56 0.63 0.66 0.68
β22 ≤ 0 (no U-shape) 1.00 1.00 1.00 1.00 1.00 1.00
αX1,[5] are not U-shaped 0.00 0.00 0.00 0.03 0.17 0.68
αX2,[5] are not U-shaped 0.00 0.00 0.00 0.00 0.00 0.00
f1(x1) is quasi-convex 0.62 0.88 0.97 1.00 1.00 1.00
f1(x1) is monotone 0.93 1.00 1.00 1.00 1.00 1.00
f2(x2) is quasi-convex 0.01 0.00 0.00 0.00 0.00 0.00
f2(x2) is monotone 0.97 0.98 1.00 1.00 1.00 1.00

4 β12 ≤ 0 (no U-shape) 0.56 0.67 0.70 0.75 0.72 0.77
β22 ≤ 0 (no U-shape) 1.00 1.00 1.00 1.00 1.00 1.00
αX1,[5] are not U-shaped 0.00 0.00 0.00 0.00 0.01 0.52
αX2,[5] are not U-shaped 0.00 0.00 0.00 0.00 0.00 0.00
f1(x1) is quasi-convex 0.69 0.91 0.98 1.00 1.00 1.00
f1(x1) is monotone 0.86 0.99 1.00 1.00 1.00 1.00
f2(x2) is quasi-convex 0.02 0.00 0.01 0.00 0.00 0.00
f2(x2) is monotone 0.98 0.98 0.99 1.00 1.00 1.00

This table shows the proportion of times each test rejects the null hypothesis at the 0.05

level. The data generating process is given in equation (8). In addition to the tests in

Table 5, this table includes the semi-parametric tests of Section 4. For the OLS-based tests,

the null is that there is no U-shape of the dependent variable in the indicated variable (X1

or X2). For the semi-parametric test of quasi-convexity (monotonicity), the null is that

the relationship between Xk and Y is quasi-convex (monotone). Proportions are based on

10,000 simulations.
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U U× Inv-U Inv-U× mono. ↓ mono. ↑
Developing 11 12 6 11 18 5
E. European 6 1 0 0 6 0
Western 6 6 3 3 3 5
Sum 23 19 9 14 27 10

(a) Unconditional

U U× Inv-U Inv-U× mono. ↓ mono. ↑
Developing 7 14 4 17 13 8
E. European 7 1 0 0 5 0
Western 5 5 3 6 5 2
Sum 19 20 7 23 23 10

(b) Controlling for financial satisfaction

Table 7: OLS Results for Life Satisfaction

This table provides OLS results for testing a U-shape of life satisfaction in age. Subtable

(a) has no control variables. Subtable (b) controls for financial satisfaction.  means

“significant” and ×means “not significant” (at the 0.05 level).
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U U× Inv-U Inv-U× mono. ↓ mono. ↑
Developing 22 18 4 6 11 2
E. European 11 0 0 0 2 0
Western 15 5 1 1 3 1
Sum 48 23 5 7 16 3

(a) Controlling for income, education, employment status, and marital status

U U× Inv-U Inv-U× mono. ↓ mono. ↑
Developing 12 21 4 8 13 5
E. European 7 3 0 0 3 0
Western 9 8 1 2 5 1
Sum 28 32 5 10 21 6

(b) Additionally controlling for financial satisfaction

Table 8: OLS Results for Life Satisfaction with Control Variables

This table provides OLS results for testing a U-shape of life satisfaction in age. Subtable

(a) controls for the variables specified, which is consistent with Blanchflower and Oswald

(2008). Subtable (b) controls for the same variables as in (a), and additionally for financial

satisfaction.  means “significant” and ×means “not significant” (at the 0.05 level).
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U U× Inv-U Inv-U× mono. ↓ mono. ↑
Developing 15 11 7 5 22 3
E. European 5 3 0 0 5 0
Western 7 6 2 0 2 9
Sum 27 20 9 5 29 12

(a) Unconditional

U U× Inv-U Inv-U× mono. ↓ mono. ↑
Developing 15 15 3 9 18 3
E. European 3 2 0 0 5 3
Western 5 3 1 0 3 14
Sum 23 20 4 9 26 20

(b) Controlling for life satisfaction

Table 9: OLS Results for Financial Satisfaction

This table provides OLS results for testing a U-shape of financial satisfaction in age. Sub-

table (a) has no control variables. Subtable (b) controls for life satisfaction.  means

“significant” and ×means “not significant” (at the 0.05 level).
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U U× Inv-U Inv-U× mono. ↓ mono. ↑
Developing 28 14 2 5 8 6
E. European 10 2 0 0 1 0
Western 16 3 0 1 1 5
Sum 54 19 2 6 10 11

(a) Controlling for income, education, employment status, and marital status

U U× Inv-U Inv-U× mono. ↓ mono. ↑
Developing 14 25 3 6 8 7
E. European 4 4 0 0 2 3
Western 11 3 0 0 1 11
Sum 29 32 3 6 11 21

(b) Additionally controlling for life satisfaction

Table 10: OLS Results for Financial Satisfaction with Control Variables

This table provides OLS results for testing a U-shape of financial satisfaction in age. Sub-

table (a) controls for the variables specified, which is consistent with Blanchflower and

Oswald (2008). Subtable (b) controls for the same variables as in (a), and additionally for

life satisfaction.  means “significant” and ×means “not significant” (at the 0.05 level).
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