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1 Trend detection

1.1 Mann-Kendall Test

The non-parametric Mann-Kendall test is commonly employed to detect monotonic
trends in series of environmental data, climate data or hydrological data. The null
hypothesis, H0, is that the data come from a population with independent realizations
and are identically distributed. The alternative hypothesis, HA, is that the data follow
a monotonic trend. The Mann-Kendall test statistic is calculated according to :

S =

n−1∑
k=1

n∑
j=k+1

sgn (Xj −Xk) (1)

with

sgn(x) =


1 if x > 0
0 if x = 0
−1 if x < 0

(2)

The mean of S is E[S] = 0 and the variance σ2 is

σ2 =

n (n− 1) (2n+ 5)−
p∑
j=1

tj (tj − 1) (2tj + 5)

 /18 (3)

where p is the number of the tied groups in the data set and tj is the number of
data points in the jth tied group. The statistic S is approximately normal distributed
provided that the following Z-transformation is employed:

Z =


S−1
σ if S > 0
0 if S = 0
S+1
σ if S > 0

(4)

The statistic S is closely related to Kendall’s τ as given by:

τ =
S

D
(5)

where

D =

1

2
n (n− 1)− 1

2

p∑
j=1

tj (tj − 1)

1/2 [
1

2
n (n− 1)

]1/2

(6)

The univariate Mann-Kendall test is envoked as folllows:

> require(trend)

> data(maxau)

> Q <- maxau[,"Q"]

> mk.test(Q)
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Mann-Kendall trend test

data: Q

z = -1.3989, n = 45, p-value = 0.1619

alternative hypothesis: true S is not equal to 0

sample estimates:

S varS tau

-144.0000000 10450.0000000 -0.1454545

1.2 Seasonal Mann-Kendall Test

The Mann-Kendall statistic for the gth season is calculated as:

Sg =

n−1∑
i=1

n∑
j=i+1

sgn (Xjg −Xig) , g = 1, 2, . . . ,m (7)

According to Hirsch et al. (1982), the seasonal Mann-Kendall statistic, Ŝ, for the entire
series is calculated according to

Ŝ =
m∑
g=1

Sg (8)

For further information, the reader is referred to Hipel and McLoed (1994, p. 866-869)
and Hirsch et al. (1982). The seasonal Mann-Kendall test ist conducted as follows:

> require(trend)

> smk.test(nottem)

Seasonal Mann-Kendall trend test (Hirsch-Slack test)

data: nottem

z = 2.0919, p-value = 0.03645

alternative hypothesis: true S is not equal to 0

sample estimates:

S varS

224 11364

Only the temperature data in Nottingham for August (S = 80, p = 0.009) as well
as for September (S = 67, p = 0.029) show a significant (p < 0.05) positive trend
according to the seasonal Mann-Kendall test. Thus, the global trend for the entire series
is significant (S = 224, p = 0.036).
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1.3 Correlated Seasonal Mann-Kendall Test

The correlated seasonal Mann-Kendall test can be employed, if the data are coreelated
with e.g. the pre-ceeding months. For further information the reader is referred to Hipel
and McLoed (1994, p. 869-871).

> require(trend)

> csmk.test(nottem)

Correlated Seasonal Mann-Kendall Test

data: nottem

z = 1.5974, p-value = 0.1102

alternative hypothesis: true S is not equal to 0

sample estimates:

S varS

224.00 19663.33

1.4 Multivariate Mann-Kendall Test

Lettenmeier (1988) extended the Mann-Kendall test for trend to a multivariate or multi-
site trend test. In this package the formulation of Libiseller and Grimvall (2002) is used
for the test.

Particle bound Hexacholorobenzene (HCB, µg kg−1) was monthly measured in sus-
pended matter at six monitoring sites along the river strech of the River Rhine (Pohlert
et al., 2011). The below code-snippet tests for trend of each site and for the global trend
at the multiple sites.

> require(trend)

> data(hcb)

> plot(hcb)
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> ## Single site trends

> site <- c("we", "ka", "mz", "ko", "bh", "bi")

> for (i in 1:6) {print(site[i]) ; print(mk.test(hcb[,site[i]], continuity = TRUE))}

[1] "we"

Mann-Kendall trend test

data: hcb[, site[i]]

z = -5.8753, n = 144, p-value = 4.221e-09

alternative hypothesis: true S is not equal to 0

sample estimates:

S varS tau

-3.402000e+03 3.350867e+05 -3.317108e-01

[1] "ka"

Mann-Kendall trend test
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data: hcb[, site[i]]

z = -3.5283, n = 144, p-value = 0.0004182

alternative hypothesis: true S is not equal to 0

sample estimates:

S varS tau

-2.043000e+03 3.349430e+05 -1.998191e-01

[1] "mz"

Mann-Kendall trend test

data: hcb[, site[i]]

z = -1.4447, n = 144, p-value = 0.1485

alternative hypothesis: true S is not equal to 0

sample estimates:

S varS tau

-8.370000e+02 3.348423e+05 -8.198541e-02

[1] "ko"

Mann-Kendall trend test

data: hcb[, site[i]]

z = -2.7916, n = 144, p-value = 0.005244

alternative hypothesis: true S is not equal to 0

sample estimates:

S varS tau

-1.617000e+03 3.350937e+05 -1.575802e-01

[1] "bh"

Mann-Kendall trend test

data: hcb[, site[i]]

z = -5.7681, n = 144, p-value = 8.018e-09

alternative hypothesis: true S is not equal to 0

sample estimates:

S varS tau

-3.340000e+03 3.350967e+05 -3.254744e-01

[1] "bi"

Mann-Kendall trend test
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data: hcb[, site[i]]

z = -7.1165, n = 144, p-value = 1.107e-12

alternative hypothesis: true S is not equal to 0

sample estimates:

S varS tau

-4.120000e+03 3.350080e+05 -4.023498e-01

> ## Regional trend (all stations including covariance between stations

> mult.mk.test(hcb)

Multivariate Mann-Kendall Trend Test

data: hcb

z = -6.686, p-value = 2.293e-11

alternative hypothesis: true S is not equal to 0

sample estimates:

S varS

-15359 5277014

1.5 Partial Mann-Kendall Test

This test can be conducted in the presence of co-variates. For full information, the reader
is referred to Libiseller and Grimvall (2002).

We assume a correlation between concentration of suspended sediments (s) and flow
at Maxau.

> data(maxau)

> s <- maxau[,"s"]; Q <- maxau[,"Q"]

> cor.test(s,Q, meth="spearman")

Spearman's rank correlation rho

data: s and Q

S = 10564, p-value = 0.0427

alternative hypothesis: true rho is not equal to 0

sample estimates:

rho

0.3040843

As s is significantly positive related to flow, the partial Mann-Kendall test can be
employed as follows.

> require(trend)

> data(maxau)

> s <- maxau[,"s"]; Q <- maxau[,"Q"]

> partial.mk.test(s,Q)
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Partial Mann-Kendall Trend Test

data: t AND s . Q

z = -3.597, p-value = 0.0003218

alternative hypothesis: true S is not equal to 0

sample estimates:

S varS cor

-350.6576077 9503.2897820 0.3009888

The test indicates a highly significant decreasing trend (S = −350.7, p < 0.001) of s,
when Q is partialled out.

1.6 Partial correlation trend test

This test performs a partial correlation trend test with either the Pearson’s or the Spear-
man’s correlation coefficients (r(tx.z)). The magnitude of the linear / monotonic trend
with time is computed while the impact of the co-variate is partialled out.

> require(trend)

> data(maxau)

> s <- maxau[,"s"]; Q <- maxau[,"Q"]

> partial.cor.trend.test(s,Q, "spearman")

Spearman's Partial Correlation Trend Test

data: t AND s . Q

t = -4.158, df = 43, p-value = 0.0001503

alternative hypothesis: true rho is not equal to 0

sample estimates:

r(ts.Q)

-0.5355055

Likewise to the partial Mann-Kendall test, the partial correlation trend test using
Spearman’s correlation coefficient indicates a highly significant decreasing trend (rS(ts.Q) =
−0.536, n = 45, p < 0.001) of s when Q is partialled out.

1.7 Cox and Stuart Trend Test

The non-parametric Cox and Stuart Trend test tests the first third of the series with the
last third for trend.

> ## Example from Schoenwiese (1992, p. 114)

> ## Number of frost days in April at Munich from 1957 to 1968

> ## z = -0.5, Accept H0

> frost <- ts(data=c(9,12,4,3,0,4,2,1,4,2,9,7), start=1957)

> cs.test(frost)
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Cox and Stuart Trend test

data: frost

z = -0.5, n = 12, p-value = 0.6171

alternative hypothesis: monotonic trend

> ## Example from Sachs (1997, p. 486-487)

> ## z ~ 2.1, Reject H0 on a level of p = 0.0357

> x <- c(5,6,2,3,5,6,4,3,7,8,9,7,5,3,4,7,3,5,6,7,8,9)

> cs.test(x)

Cox and Stuart Trend test

data: x

z = 2.0926, n = 22, p-value = 0.03639

alternative hypothesis: monotonic trend

2 Magnitude of trend

2.1 Sen’s slope

This test computes both the slope (i.e. linear rate of change) and intercept according to
Sen’s method. First, a set of linear slopes is calculated as follows:

dk =
Xj −Xi

j − i
(9)

for (1 ≤ i < j ≤ n), where d is the slope, X denotes the variable, n is the number of
data, and i, j are indices.

Sen’s slope is then calculated as the median from all slopes: b = Median dk. The
intercepts are computed for each timestep t as given by

at = Xt − b ∗ t (10)

and the corresponding intercept is as well the median of all intercepts.
This function also computes the upper and lower confidence limits for sens slope.

> require(trend)

> s <- maxau[,"s"]

> sens.slope(s)

Sen's slope

data: s

z = -3.8445, n = 45, p-value = 0.0001208

alternative hypothesis: true z is not equal to 0
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95 percent confidence interval:

-0.4196477 -0.1519026

sample estimates:

Sen's slope

-0.2876139

2.2 Seasonal Sen’s slope

Acccording to Hirsch et al. (1982) the seasonal Sen’s slope is calculated as follows:

dijk =
Xij − xik
j − k

(11)

for each (xij , xik pair i = 1, 2, . . . ,m, where 1 ≤ k < j ≤ ni and ni is the number of
known values in the ith season. The seasonal slope estimator is the median of the dijk
values.

> require(trend)

> sea.sens.slope(nottem)

[1] 0.05

3 Change-point detection

3.1 Pettitt’s test

The approach after Pettitt (1979) is commonly applied to detect a single change-point
in hydrological series or climate series with continuous data. It tests the H0: The T
variables follow one or more distributions that have the same location parameter (no
change), against the alternative: a change point exists. The non-parametric statistic is
defined as:

KT = max |Ut,T | , (12)

where

Ut,T =

t∑
i=1

T∑
j=t+1

sgn (Xi −Xj) (13)

The change-point of the series is located at KT , provided that the statistic is signifi-
cant. The significance probability of KT is approximated for p ≤ 0.05 with

p ' 2 exp

(
−6 K2

T

T 3 + T 2

)
(14)

The Pettitt-test is conducted in such a way:
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> require(trend)

> data(PagesData)

> pettitt.test(PagesData)

Pettitt's test for single change-point detection

data: PagesData

U* = 232, p-value = 0.01456

alternative hypothesis: two.sided

sample estimates:

probable change point at time K

17

As given in the publication of Pettitt (1979) the change-point of Page’s data is located
at t = 17, with KT = 232 and p = 0.014.

3.2 Buishand Range Test

Let X denote a normal random variate, then the following model with a single shift
(change-point) can be proposed:

xi =

{
µ+ εi, i = 1, . . . ,m
µ+ ∆ + εi i = m+ 1, . . . , n

(15)

ε ≈ N(0, σ). The null hypothesis ∆ = 0 is tested against the alternative ∆ 6= 0.
In the Buishand range test (Buishand, 1982), the rescaled adjusted partial sums are

calculated as

Sk =
k∑
i=1

(xi − x̂) (1 ≤ i ≤ n) (16)

The test statistic is calculated as:

Rb =
maxSk −minSk

σ
(17)

the p.value is estimated with a Monte Carlo simulation using m replicates.

> require(trend)

> (res <- br.test(Nile))

Buishand range test

data: Nile

R / sqrt(n) = 2.9518, n = 100, p-value < 2.2e-16

alternative hypothesis: true delta is not equal to 0

sample estimates:

probable change point at time K

28
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> par(mfrow=c(2,1))

> plot(Nile); plot(res)

Time

N
ile

1880 1900 1920 1940 1960

60
0

10
00

Buishand range test

Time

S
k*

*

1880 1900 1920 1940 1960

0
20

00
50

00

3.3 Buishand U Test

In the Buishand U Test (Buishand, 1984), the null hypothesis is the same as in the
Buishand Range Test (see Eq. 15). The test statistic is

U = [n (n+ 1)]−1
n−1∑
k=1

(Sk/Dx)2 (18)

with

Dx =

√√√√n−1

n∑
i=1

(xi − x̄) (19)

and Sk as given in Eq. 16. The p.value is estimated with a Monte Carlo simulation
using m replicates.
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> require(trend)

> (res <- bu.test(Nile))

Buishand U test

data: Nile

U = 2.4764, n = 100, p-value < 2.2e-16

alternative hypothesis: true delta is not equal to 0

sample estimates:

probable change point at time K

28

> par(mfrow=c(2,1))

> plot(Nile); plot(res)
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3.4 Standard Normal Homogeinity Test

In the Standard Normal Homogeinity Test (?), the null hypothesis is the same as in the
Buishand Range Test (see Eq. 15). The test statistic is
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Tk = kz2
1 + (n− k) z2

2 (1 ≤ k < n) (20)

where

z1 = 1
k

∑k
i=1

xi−x̄
σ z2 = 1

n−k
∑n

i=k+1
xi−x̄
σ . (21)

The critical value is:

T = maxTk (22)

The p.value is estimated with a Monte Carlo simulation using m replicates.

> require(trend)

> (res <- snh.test(Nile))

Standard Normal Homogeneity Test (SNHT)

data: Nile

T = 43.219, n = 100, p-value < 2.2e-16

alternative hypothesis: true delta is not equal to 0

sample estimates:

probable change point at time K

28

> par(mfrow=c(2,1))

> plot(Nile); plot(res)
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4 Randomness

4.1 Wallis and Moore phase-frequency test

A phase frequency test was proposed by Wallis and Moore (1941) and is used for testing
a series for randomness:

> ## Example from Schoenwiese (1992, p. 113)

> ## Number of frost days in April at Munich from 1957 to 1968

> ## z = -0.124, Accept H0

> frost <- ts(data=c(9,12,4,3,0,4,2,1,4,2,9,7), start=1957)

> wm.test(frost)

Wallis and Moore Phase-Frequency test

data: frost

z = -0.12384, p-value = 0.9014

alternative hypothesis: The series is significantly different from randomness
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> ## Example from Sachs (1997, p. 486)

> ## z = 2.56, Reject H0 on a level of p < 0.05

> x <- c(5,6,2,3,5,6,4,3,7,8,9,7,5,3,4,7,3,5,6,7,8,9)

> wm.test(x)

Wallis and Moore Phase-Frequency test

data: x

z = 2.5513, p-value = 0.01073

alternative hypothesis: The series is significantly different from randomness

4.2 Bartels test for randomness

Bartels (1982) has proposed a rank version of von Neumann’s ratio test for testing a
series for randomness:

> ## Example from Schoenwiese (1992, p. 113)

> ## Number of frost days in April at Munich from 1957 to 1968

> ##

> frost <- ts(data=c(9,12,4,3,0,4,2,1,4,2,9,7), start=1957)

> bartels.test(frost)

Bartels's test for randomness

data: frost

RVN = 1.3304, p-value = 0.1137

alternative hypothesis: The series is significantly different from randomness

> ## Example from Sachs (1997, p. 486)

> x <- c(5,6,2,3,5,6,4,3,7,8,9,7,5,3,4,7,3,5,6,7,8,9)

> bartels.test(x)

Bartels's test for randomness

data: x

RVN = 1.0444, p-value = 0.008371

alternative hypothesis: The series is significantly different from randomness

> ## Example from Bartels (1982, p. 43)

> x <- c(4, 7, 16, 14, 12, 3, 9, 13, 15, 10, 6, 5, 8, 2, 1, 11, 18, 17)

> bartels.test(x)

Bartels's test for randomness

data: x

RVN = 0.97626, p-value = 0.009463

alternative hypothesis: The series is significantly different from randomness

16



4.3 Wald-Wolfowitz test for stationarity and independence

Wald and Wolfowitz (1942) have proposed a test for randomness:

> ## Example from Schoenwiese (1992, p. 113)

> ## Number of frost days in April at Munich from 1957 to 1968

> ##

> frost <- ts(data=c(9,12,4,3,0,4,2,1,4,2,9,7), start=1957)

> ww.test(frost)

Wald-Wolfowitz test for independence and stationarity

data: frost

z = 1.9198, n = 12, p-value = 0.05488

alternative hypothesis: The series is significantly different from

independence and stationarity

> ## Example from Sachs (1997, p. 486)

> x <- c(5,6,2,3,5,6,4,3,7,8,9,7,5,3,4,7,3,5,6,7,8,9)

> ww.test(x)

Wald-Wolfowitz test for independence and stationarity

data: x

z = 2.1394, n = 22, p-value = 0.03241

alternative hypothesis: The series is significantly different from

independence and stationarity

> ## Example from Bartels (1982, p. 43)

> x <- c(4, 7, 16, 14, 12, 3, 9, 13, 15, 10, 6, 5, 8, 2, 1, 11, 18, 17)

> ww.test(x)

Wald-Wolfowitz test for independence and stationarity

data: x

z = 1.7304, n = 18, p-value = 0.08357

alternative hypothesis: The series is significantly different from

independence and stationarity
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