QCD@IL(000 0000 Angularities

HADRONIZATION FOR JETS

Perspective

(Non)Perturbative QCD at the Linear Collider

Lorenzo Magnea

Università di Torino - INFN, Sezione di Torino

ILC Physics in Florence

GGI - 13/09/07

QCD@IL(000 0000 Angularities 00 00 HADRONIZATION FOR JETS

Perspective

Outline

QCD@ILC

QCD for new physics Precision QCD

Angularities

A family of event shapes Resummation for angularities Scaling of power corrections

Hadronization for jets

Hadronization and jet area MonteCarlo results

Perspective

(日)、

Angularities 00 00 000 HADRONIZATION FOR JETS

Perspective

QCD@ILC

- Like LEP before it, ILC will be a *wonderful machine* for *precision QCD* studies
 - Precision meaurements of α_s
 - Event shape distributions, jets.
 - Hadronization effects
 - Heavy quarks
- Precision QCD is *necessary* for many *new physics* studies (and for precise determinations of m_{top} , m_{W})
- Our understanding of QCD is *incomplete*, new studies and more data are *important*
 - LEP unfinished jobs \longrightarrow GigaZ
 - Hadronization beyond modelling
 - Universality of *power corrections*, shape functions

HADRONIZATION FOR JETS

QCD for new physics: Grand Unification

Controlling QCD effects for SM/BSM physics

- Multijet final states are *commonplace*
 - Trilinear Higgs coupling via $e^+e^- \rightarrow HHZ$ (up to 6 jets)
 - Top Yukawa coupling via $e^+e^- \rightarrow t\bar{t}H$
 - SUSY final states $(\tilde{t}\tilde{t} \rightarrow \text{jets} + \text{missing energy})$
- Understanding *jet definition* and *dynamics* is *necessary*
 - Jet *algorithm*, *size* dependence, *hadronization* corrections.
 - Flavor *tagging* crucial ↔ *Define* jet flavor (Banfi *et al.*)
- Precision observables *require* refined *QCD analysis*: resummations, effective theories
 - M_{top} from *threshold scan* (see A. Hoang)
 - M_W from WW production (see G. Zanderighi)

- *Theoretical progress* in QCD has *continued* after LEP/SLC.
 - Achieved: NNLO event shape *distributions*, *jet* cross sections
 - QCD models: *non-perturbative* corrections to event shape *distributions*, shape functions

• Experimental analysis has almost stopped (LHC beckons ...)

- Existing data not fully exploited
- More precise *future data* (GigaZ?)
 → *powerful constraints* on hadronization mod
- Do we need power corrections at ILC?

 $\left(\frac{\alpha_s(500\,{\rm GeV})}{\pi}\right)^2 \simeq 0.00093 \ , \ \frac{\Lambda_{QGD}}{500\,{\rm GeV}} \simeq 0.0005.$

- For *permille* accuracy: we do.
- Much larger impact in selected regions in phase space

- *Theoretical progress* in QCD has *continued* after LEP/SLC.
 - Achieved: NNLO event shape *distributions*, *jet* cross sections
 - QCD models: *non-perturbative* corrections to event shape *distributions*, shape functions
- Experimental analysis has almost stopped (LHC beckons ...)
 - Existing data not fully exploited
 - More precise *future data* (GigaZ?)
 - $\longrightarrow powerful \ constraints$ on hadronization models
- Do we need *power corrections* at ILC?

 $\left(\frac{\alpha_s(500\,{\rm GeV})}{\pi}\right)^2 \simeq 0.00093 \ , \ \frac{\Lambda_{QCD}}{500\,{\rm GeV}} \simeq 0.0005.$

- For *permille* accuracy: *we do*.
- Much larger impact in selected regions in phase space

- *Theoretical progress* in QCD has *continued* after LEP/SLC.
 - Achieved: NNLO event shape *distributions*, *jet* cross sections
 - QCD models: *non-perturbative* corrections to event shape *distributions*, shape functions
- Experimental analysis has almost stopped (LHC beckons ...)
 - Existing data not fully exploited
 - More precise *future data* (GigaZ?)
 - $\longrightarrow powerful \ constraints$ on hadronization models
- Do we need *power corrections* at ILC?

 $\left(\frac{\alpha_s(500 \text{ GeV})}{\pi}\right)^2 \simeq 0.00093 \quad , \quad \frac{\Lambda_{QCD}}{500 \text{ GeV}} \simeq 0.0005.$

- For *permille* accuracy: *we do*.
- Much larger impact in selected regions in phase space

- *Theoretical progress* in QCD has *continued* after LEP/SLC.
 - Achieved: NNLO event shape *distributions*, *jet* cross sections
 - QCD models: *non-perturbative* corrections to event shape *distributions*, shape functions
- Experimental analysis has almost stopped (LHC beckons ...)
 - Existing data not fully exploited
 - More precise *future data* (GigaZ?)
 - $\longrightarrow powerful \ constraints$ on hadronization models
- Do we need *power corrections* at ILC?

 $\left(\frac{\alpha_s(500\,{\rm GeV})}{\pi}\right)^2 \simeq 0.00093 \ , \ \frac{\Lambda_{QCD}}{500\,{\rm GeV}} \simeq 0.0005.$

- For *permille* accuracy: *we do*.
- Much larger impact in selected regions in phase space

- *Theoretical progress* in QCD has *continued* after LEP/SLC.
 - Achieved: NNLO event shape *distributions*, *jet* cross sections
 - QCD models: *non-perturbative* corrections to event shape *distributions*, shape functions
- Experimental analysis has almost stopped (LHC beckons ...)
 - Existing data not fully exploited
 - More precise *future data* (GigaZ?)
 - $\longrightarrow powerful \ constraints$ on hadronization models
- Do we need *power corrections* at ILC?

 $\left(\frac{\alpha_s(500\,{\rm GeV})}{\pi}\right)^2 \simeq 0.00093 \ , \ \frac{\Lambda_{QCD}}{500\,{\rm GeV}} \simeq 0.0005.$

- For *permille* accuracy: *we do*.
- Much larger impact in selected regions in phase space

- *Theoretical progress* in QCD has *continued* after LEP/SLC.
 - Achieved: NNLO event shape *distributions*, *jet* cross sections
 - QCD models: *non-perturbative* corrections to event shape *distributions*, shape functions
- Experimental analysis has almost stopped (LHC beckons ...)
 - Existing data not fully exploited
 - More precise *future data* (GigaZ?)
 - $\longrightarrow powerful \ constraints$ on hadronization models
- Do we need *power corrections* at ILC?

$$\left(\frac{\alpha_s(500\,{\rm GeV})}{\pi}\right)^2 \simeq 0.00093 \ , \ \frac{\Lambda_{QCD}}{500\,{\rm GeV}} \simeq 0.0005.$$

- For *permille* accuracy: *we do*.
- Much larger impact in selected regions in phase space

HADRONIZATION FOR JETS

Perspective

NNLO event shape distributions

(from: T. Gehrmann et al., arXiv:0709.1608)

The perturbative thrust distribution vs. LEP data

The perturbative thrust distribution at ILC

(日) (同) (日) (日)

Angularities 00 00 000 HADRONIZATION FOR JETS

Resummation and power correction effects

A fit of LEP data for the *heavy jet mass* distribution with a *shape function* from thrust (Gardi, Rathsman).

HADRONIZATION FOR JETS

Impact of nonperturbative corrections

Different observables behave differently, understanding necessary (M. Dasgupta, G. Salam).

Data for the average thrust vs. QCD predictions

Data for the average Durham jet resolution

parameter y_{23} vs. NLO QCD

(日) (同) (日) (日)

QCD@IL(000 0000

On event shape distributions

Examples

• Thrust: $T = \max_{\hat{n}} \frac{\sum_i |\vec{p_i} \cdot \hat{n}|}{\sum_i |\vec{p_i}|}$; $\tau = 1 - T$.

 $\rightarrow \hat{n}$ is used to define several *other shape variables*.

• C-parameter: $C = 3 - \frac{3}{2} \sum_{i,j} \frac{(p_i \cdot p_j)^2}{(p_i \cdot q)(p_j \cdot q)}$.

 \rightarrow does not require maximization procedures.

• Broadening: $B_{\ell,r} = \frac{\sum_{i \in \mathcal{H}_{\ell,r}} |\vec{p_i} \times \hat{n}|}{2\sum_i |\vec{p_i}|}$

 \rightarrow select or combine hemispheres.

• Angularity: $\tau_a = \frac{1}{Q} \sum_i (p_\perp)_i e^{-|\eta_i|(1-a)}$.

 \rightarrow recently introduced, *one-parameter* family.

Angularities

HADRONIZATION FOR JETS

Perspective

Angularities

• Definition: $\tau_a = \frac{1}{Q} \sum_i (p_\perp)_i e^{-|\eta_i|(1-a)}$.

Also: $\tau_a = \frac{1}{Q} \sum_i \omega_i (\sin \theta_i)^a (1 - |\cos \theta_i|)^{1-a}$,

- Some properties
 - $\tau_0 = 1 T$; $\tau_1 = B$.
 - *a* < 2 for IR safety.
 - a < 1 for simplicity of resummation (*recoil* negligible).
- For *negative a*, high rapidity particles (*w.r.t.* the thrust axis) are weighted less: *better* collinear behavior.
- At one loop, with the thrust axis given by particle *i*,

$$\tau_a = \frac{(1-x_i)^{1-a/2}}{x_i} \left[(1-x_j)^{1-a/2} (1-x_k)^{a/2} + (j \leftrightarrow k) \right].$$

QCD@IL(000 0000

Resumming Sudakov logarithms

Infrared and collinear emission dominates the two-jet limit

- Large *double* logarithms of the variable vanishing in the two-jet limit (L = log τ ; L = log C ;...) enhance finite orders
 → need to resum.
- A pattern of *exponentiation* emerges

 $\sum_k \alpha_s^k \sum_p^{2k} c_{kp} L^p \to \exp\left[Lg_1(\alpha_s L) + g_2(\alpha_s L) + \alpha_s g_3(\alpha_s L) + \dots\right]$

• In general the Laplace transform exponentiates. For thrust

$$\int_{0}^{\infty} d\tau e^{-\nu\tau} \frac{1}{\sigma} \frac{d\sigma}{d\tau} = \exp\left[\int_{0}^{1} \frac{du}{u} \left(e^{-u\nu} - 1\right) \left(B\left(\alpha_{s}\left(uQ^{2}\right)\right) + 2\int_{u^{2}Q^{2}}^{uQ^{2}} \frac{dq^{2}}{q^{2}} A\left(\alpha_{s}(q^{2})\right)\right)\right].$$

ANGULARITIES

Hadronization for jets

Resummation for angularities

• Sudakov logs at one loop have *simple scaling* with *a*.

$$\left. \frac{d\sigma}{d\tau_a} \right|_{\log}^{(1)} = \frac{2}{2-a} \frac{2}{\tau_a} C_F \frac{\alpha_s}{\pi} \ln\left(\frac{1}{\tau_a}\right) = \frac{2}{2-a} \left. \frac{d\sigma}{d\tau} \right|_{\log}^{(1)}.$$

• Resummation is *intricate*. To *NLL* accuracy

$$\tilde{\sigma}_{a}(\nu) = \exp\left\{2\int_{0}^{1} \frac{du}{u} \left[\int_{u^{2}Q^{2}}^{uQ^{2}} \frac{dq^{2}}{q^{2}}A\left(\alpha_{s}(q^{2})\right)\left(e^{-u^{1-a}\nu(q/Q)^{a}}-1\right)\right.\right.\\\left.\left.\left.+\frac{1}{2}B\left(\alpha_{s}(uQ^{2})\right)\left(e^{-u\nu^{2/(2-a)}}-1\right)\right]\right\}.$$

• General *a*-dependence of Sudakov logs is *nontrivial*.

$$g_1(x,a) = -\frac{4}{\beta_0} \frac{2-a}{1-a} \frac{A^{(1)}}{x} \left[\frac{1-x}{2-a} \ln(1-x) - \left(1-\frac{x}{2-a}\right) \ln\left(1-\frac{x}{2-a}\right) \right].$$

Scaling for the shape function

An analysis of power corrections for angularities using the *shape function* approach (Berger, Sterman) shows a remarkable *scaling*.

• As done for *thrust*, focus on *small* τ_a , *large* ν , set IR factorization scale μ , expand in powers of ν/Q (soft), *neglecting* ν/Q^2 (collinear). In this case

$$S_{\rm NP}^{(a)}(\nu/Q,\mu) = 2 \int_0^{\mu^2} \frac{dq^2}{q^2} A\left(\alpha_s(q^2)\right) \int_{q^2/Q^2}^{q/Q} \frac{du}{u} \left(e^{-u^{1-a}\nu(q/Q)^a} - 1\right)$$
$$\simeq \frac{1}{1-a} \sum_{n=1}^{\infty} \frac{1}{n!} \left(-\frac{\nu}{Q}\right)^n \lambda_n(\mu^2) ,$$

• The *full result* suggested by the resummation can be expressed in terms of *two* shape functions $\tilde{\sigma}_{a}(\nu) = \tilde{\sigma}_{a,\text{PT}}(\nu,\mu) \tilde{f}_{a,\text{NP}}\left(\frac{\nu}{Q},\mu\right) \tilde{g}_{a,\text{NP}}\left(\frac{\nu}{Q^{2-a}},\mu\right)$,

CD@ILC	Angularities	HADRONIZATION FOR JETS	Perspective
000	00 00 000	000 0000	

• Leading power corrections are described by $\tilde{f}_{a,\mathrm{NP}}$ and obey

$$\tilde{f}_{a,\mathrm{NP}}\left(\frac{\nu}{Q},\mu\right) = \left[\tilde{f}_{0,\mathrm{NP}}\left(\frac{\nu}{Q},\mu\right)\right]^{1/(1-a)}$$

 Scaling can be traced to boost invariance in the eikonal limit. A renormalon calculation breaks boost invariance but scaling survives in the Sudakov limit. DGE (Berger, LM) yields

$$B_a^{\rm soft}(\nu, u) = \frac{1}{1-a} \left[2 \, \mathrm{e}^{5u/3} \, \frac{\sin \pi u}{\pi u} \, \Gamma(-2u) \left(\nu^{2u} - 1 \right) \frac{2}{u} \right]$$

- Collinear contribution shows an *intricate* structure of fractional power corrections in DGE, but they are suppressed by ν/Q^{2-a}, consistent with resummation.
- Scaling is a testable prediction with existing LEP data. ILC, GigaZ provide lever arm, precision.

A D F A B F A B F A B F

Angularities

HADRONIZATION FOR JETS 000 0000

Testing the scaling rule

The scaling rule is a *prediction* waiting for data *analysis* ... in the meantime, it can be compared with **PYTHIA** output (Berger).

Shift in the position of the peak of τ_a distribution, between NLL result and PYTHIA, after rescaling by 1 - a, vs. shift for a = 0 computed from data.

The leading shape function for different *a*, PYTHIA output (solid) vs. scaled result (dashed).

(日) (同) (日) (日)

Hadronization for jets, in hadron collisions

M. Cacciari, M. Dasgupta, LM, G. Salam

- Consider the single inclusive distribution for a jet observable $O(y, p_T, R)$, with an effective jet radius $R = \sqrt{(\Delta y)^2 + (\Delta \phi)^2}$.
- *Measure* the effect on the distribution of *single soft gluon* emission by each *hard dipole* at power accuracy.
- *Define R*-dependent power correction

 $\Delta O_{ij}^{\pm}(R) \equiv \int_{\pm} d\eta \frac{d\phi}{2\pi} \int_{\mu_c}^{\mu_f} d\kappa_T^{(ij)} \alpha_s \left(\kappa_T^{(ij)}\right) k_T \left| \frac{\partial k_T}{\partial \kappa_T^{(ij)}} \right| \left| \frac{p_i \cdot p_j}{p_i \cdot k \, p_j \cdot k} \, \delta O^{\pm} \left(k_T, \eta, \phi\right) \right|.$

• *Express* leading power *R* dependence in terms of (*universal?*) moment of coupling *A*

$$\mathcal{A}\left(\mu_{f}\right) = \int_{0}^{\mu_{f}} \frac{dk_{\perp}}{k_{\perp}} \alpha_{s}(k_{\perp}) \cdot k_{\perp}$$

• Note: only the *final state* dipole would contribute in e^+e^- annihilation

Angularities 00 00 000 HADRONIZATION FOR JETS 000 0000 Perspective

Radius dependence: p_T distribution

Let $O = \xi_T \equiv 1 - 2p_T/\sqrt{S}$. In this case

• In-In dipole

$$\Delta\xi_{T,12}(R) = \frac{-4}{\sqrt{S}} \int_{+} d\eta \frac{d\phi}{2\pi} \alpha_s(k_t) \frac{dk_t}{k_t} k_t \cos\phi = -\frac{4}{\sqrt{S}} \mathcal{A}(\mu_f) \left(\frac{R^2}{2} - \frac{R^4}{16} + \frac{R^6}{384} + \dots\right).$$

• In-Jet dipoles

$$\begin{aligned} \Delta \xi_{T,1j}(R) &= -\sqrt{\frac{2}{S}} \int_{\eta^2 + \phi^2 < R^2} d\eta \frac{d\phi}{2\pi} \alpha_s(\kappa_t) \frac{d\kappa_t}{\kappa_t} \kappa_t \frac{\cos \phi \, e^{\frac{3\eta}{2}}}{(\cosh \eta - \cos \phi)^{\frac{3}{2}}} \\ &= \frac{2}{\sqrt{S}} \mathcal{A}(\mu_f) \left(\frac{2}{R} - \frac{5}{8}R + \frac{23}{1536}R^3 + \dots\right) \end{aligned}$$

• Jet-Recoil dipole

$$\Delta \xi_{T,jr}(R) = \frac{2}{\sqrt{S}} \mathcal{A}(\mu_f) \left(\frac{2}{R} + \frac{1}{2}R + \frac{1}{96}R^3 + \ldots\right)$$

• In-Recoil dipoles

$$\Delta \xi_{T,1r}(R) = -\frac{2}{\sqrt{S}} \mathcal{A}(\mu_f) \left(\frac{1}{8}R^2 - \frac{9}{512}R^4 - \frac{73}{24576}R^6 + \ldots\right)$$

イロト 不得 トイヨト イヨト

Radius dependence: mass distribution

For comparison, let $O = \nu_J \equiv M_J^2/S$. Now only gluons *recombined* with the jet contribute, and one finds *nonsingular* R dependence.

• In-In dipole

$$\Delta \nu_{J,12}(R) = \frac{1}{\sqrt{S}} \mathcal{A}(\mu_f) \left(\frac{1}{4} R^4 + \frac{1}{4608} R^8 + \mathcal{O}\left(R^{12} \right) \right) \;,$$

• In-Jet dipoles

$$\Delta \nu_{J,1j}(R) = \frac{1}{\sqrt{S}} \mathcal{A}(\mu_f) \left(R + \frac{3}{16} R^3 + \frac{125}{9216} R^5 + \frac{7}{16384} R^7 + \mathcal{O}\left(R^9\right) \right) \,,$$

• Jet-Recoil dipole

$$\Delta \nu_{J,jr}(R) = \frac{1}{\sqrt{S}} \mathcal{A}(\mu_f) \left(R + \frac{5}{576} R^5 + \mathcal{O}\left(R^9 \right) \right) \ ,$$

• In-Recoil dipoles

$$\Delta \nu_{J,1r}(R) = \frac{1}{\sqrt{S}} \mathcal{A}(\mu_f) \left(\frac{1}{32} R^4 + \frac{3}{256} R^6 + \frac{169}{589824} R^8 + \mathcal{O}\left(R^{10}\right) \right) \; .$$

イロト 不得 トイヨト イヨト

Power corrections by MonteCarlo

The *analytical* estimate of power corrections provided by resummation is valid *near threshold*. It can be compared with *numerical* estimates from QCD-inspired *MonteCarlo models* of hadronization.

- Run MC at parton level (p), hadron level without UE (h) and finally with UE (u)
- Select events with hardest jet in chosen p_T range, *identify* two hardest jets, *define* for each hadron level

$$\Delta p_T^{(h/u)} = \frac{1}{2} \left(p_{T,1}^{(h/u)} + p_{T,2}^{(h/u)} - p_{T,1}^{(p)} - p_{T,2}^{(p)} \right) .$$
$$\Delta p_T^{(u-h)} = \Delta p_T^{(u)} - \Delta p_T^{(h)} .$$

• Compare results for different *jet algorithms*, *hadronization models*, *parton channels*.

QCD@IL(000 0000 Angularities 00 00 000 HADRONIZATION FOR JETS

Perspective

MC power corrections: comparing jet algorithms

Angularities

HADRONIZATION FOR JETS

Perspective

MC power corrections: quark channel

Angularities

HADRONIZATION FOR JETS

Perspective

MC power corrections: gluon channel

Angularities

HADRONIZATION FOR JETS

Perspective

Perspective

- ILC is *very useful* for QCD (even more so in GigaZ mode)
- QCD is a necessary tool for ILC
- Hadronization matters even at large \sqrt{s}
- LEP left unfinished work: analytic hadronization models make testable predictions.
 - Scaling rule for shape function for angularities
 - Singular *R*-dependence of hadronization corrections for jets
- We should be *ready* to take *full advantage* of a wonderful precision machine for both SM and BSM physics.

HADRONIZATION FOR JETS

Perspective

- ILC is *very useful* for QCD (even more so in GigaZ mode)
- QCD is a necessary tool for ILC
- Hadronization matters even at large \sqrt{s}
- LEP left *unfinished work*: analytic hadronization models make *testable predictions*.
 - Scaling rule for shape function for angularities
 - Singular *R*-dependence of hadronization corrections for jets
- We should be *ready* to take *full advantage* of a wonderful precision machine for both SM and BSM physics.

HADRONIZATION FOR JETS

Perspective

Perspective

- ILC is *very useful* for QCD (even more so in GigaZ mode)
- QCD is a necessary tool for ILC
- Hadronization matters even at large \sqrt{s}
- LEP left *unfinished work*: analytic hadronization models make *testable predictions*.
 - Scaling rule for shape function for angularities
 - Singular *R*-dependence of hadronization corrections for *jets*
- We should be *ready* to take *full advantage* of a wonderful *precision machine* for both SM and BSM physics.

イロト 不良 トイヨト イロト

HADRONIZATION FOR JETS

Perspective

Perspective

- ILC is *very useful* for QCD (even more so in GigaZ mode)
- QCD is a necessary tool for ILC
- Hadronization matters even at large \sqrt{s}
- LEP left *unfinished work*: analytic hadronization models make *testable predictions*.
 - Scaling rule for shape function for angularities
 - Singular *R*-dependence of hadronization corrections for *jets*
- We should be *ready* to take *full advantage* of a wonderful *precision machine* for both SM and BSM physics.

HADRONIZATION FOR JETS

Perspective

Perspective

- ILC is *very useful* for QCD (even more so in GigaZ mode)
- QCD is a necessary tool for ILC
- Hadronization matters even at large \sqrt{s}
- LEP left *unfinished work*: analytic hadronization models make *testable predictions*.
 - Scaling rule for shape function for angularities
 - Singular *R*-dependence of hadronization corrections for *jets*
- We should be *ready* to take *full advantage* of a wonderful *precision machine* for both SM and BSM physics.

HADRONIZATION FOR JETS

Perspective

Perspective

- ILC is *very useful* for QCD (even more so in GigaZ mode)
- QCD is a necessary tool for ILC
- Hadronization matters even at large \sqrt{s}
- LEP left *unfinished work*: analytic hadronization models make *testable predictions*.
 - Scaling rule for shape function for angularities
 - Singular *R*-dependence of hadronization corrections for *jets*
- We should be *ready* to take *full advantage* of a wonderful *precision machine* for both SM and BSM physics.

