

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Non-Platinum Group Metal OER/ORR Catalysts for Alkaline Membrane Fuel Cells and Electrolyzers

P. I. Name: Nemanja Danilovic

Organization: Proton OnSite

Date: May 15, 2015

Project ID: FC-133

Overview Timeline

- Project Start: 15 Feb 2015
- Project End: 15 Nov 2015
- Percent complete: ~30%

Budget

- Total project funding
 - DOE share: \$150,000

Partners

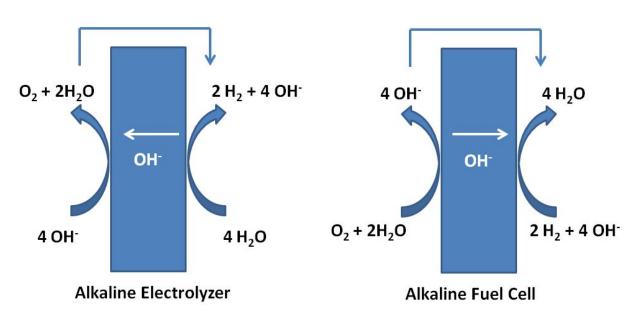
- Rutgers University:
 - Charles Dismukes (PI)
 - Graeme Gardner
 - Karin Calvinho

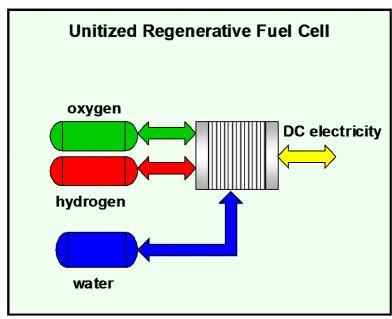
Barriers

Barriers addressed

G: Capital Cost (Electrolyzer + Fuel Cell)

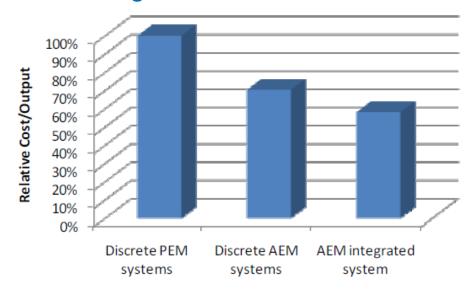
Table 3.4.7.a Technical Targets: Portable Power Fuel Cell Systems (<2 Watt) ^a							
Characteristic	Units	2011 Status	2013 Targets	2015 Targets			
Specific power ^b	W/kg	5	8	10			
Power density ^b	W/L	7	10	13			
Specific energy ^{b,c}	Wh/kg	110	200	230			
Energy density ^{b,c}	Wh/L	150	250	300			
Cost ^d	\$/system	150	130	70			
Durability ^{e,f}	hours	1,500	3,000	5,000			
Mean time between failures ^{f,g}	hours	500	1,500	5,000			


Table 3.1.4 Technical Targets: Distributed Forecourt Water Electrolysis Hydrogen Production a, b, c, l							
Characteristics	Units	2011 Status	2015 Target	2020 Target			
Hydrogen Levelized Cost ^d (Production Only)	\$/kg	4.20 ^d	3.90 ^d	2.30 ^d			
Electrolyzer System Capital Cost	\$/kg \$/kW	0.70 430 ^{e, 1}	0.50 300 ^f	0.50 300 ¹			
System Energy Efficiency ^g	% (LHV)	67	72	75			
	kWh/kg	50	46	44			
Stack Energy Efficiency ^h	% (LHV)	74	76	77			
	kWh/kg	45	44	43			
Electricity Price	\$/kWh	From AEO 2009 ¹	From AEO 2009 ¹	0.037 ^J			



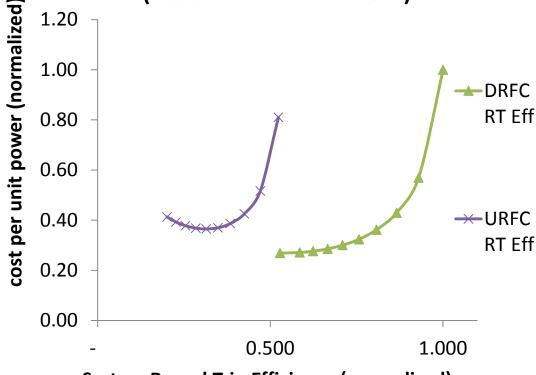
Project Goal

- Anion exchange membrane (AEM) based unitized regenerative fuel cell (URFC)
- Non-platinum group metal (PGM)-based oxygen electrode



Relevance

- Stacks are the largest cost components of RFCs
 - Integrated approach should make significant \$ impact
- Precious metal content
 - Decrease or eliminate PGM metals in electrodes
- Membrane electrode assembly cost
 - Anion exchange (AEM) vs proton exchange (PEM) membranes
- Balance of stack component cost
 - Reduction in cost using stainless steel vs valve metal components

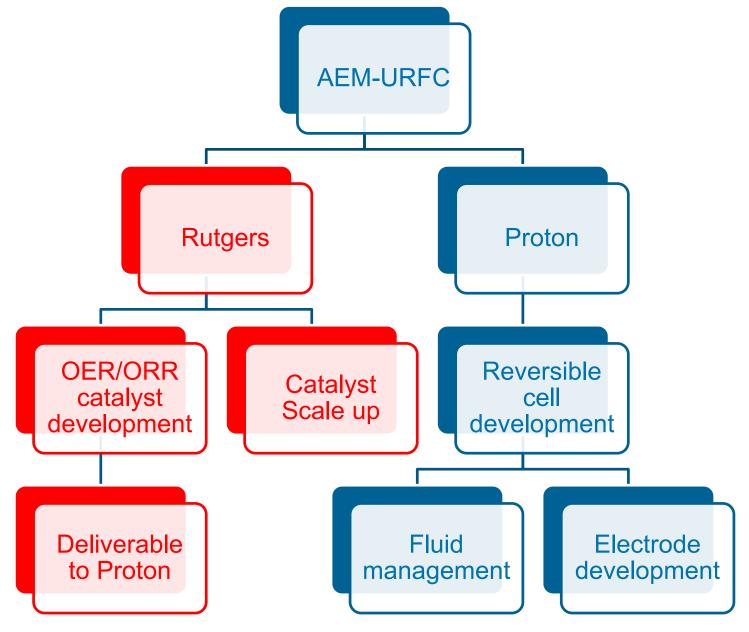


Relevance: Energy Storage

- Costs need to be significantly reduced to enable energy markets
 - Energy capture and supply
 - Auxiliary power units
 - Backup power
 - Load leveling
 - Peak shaving
- URFC traditionally sacrifices operating efficiency for capital cost
 - AEM chemistry opens up broader range of catalysts

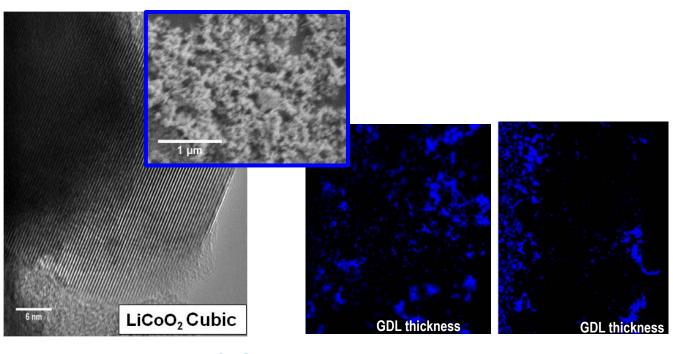
DRFC vs. URFC System Cost 1MW System, 1h:1h FC:Elct Timing (1665 cm2 FC & Elct cells)

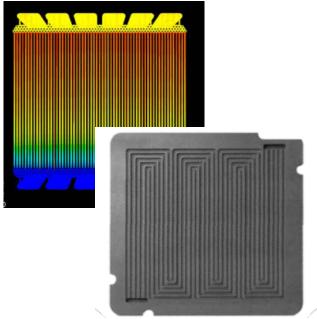
System Round Trip Efficiency (normalized)


Relevance: Project Objectives

- Baseline AEM-URFC cell
 - Optimize flow fields and gas diffusion layers (GDL)
 - Optimize catalyst layers (O₂ and H₂)
- Develop non-PGM bifunctional oxygen catalyst
- Demonstrate feasibility
- Demonstrate cyclability (fuel cell ↔ electrolysis)
- Demonstrate stability
 - 200 hrs of run time

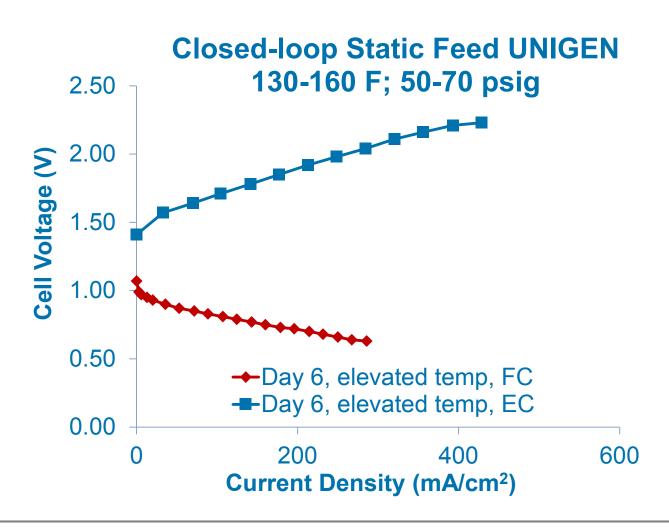
Approach




Approach

- Catalyst (Rutgers):
 - Based on cubic LiCoO₂
 - Tune OER/ORR activity by varying A and B site dopants
- AEM-URFC cell (Proton)
 - Water management
 - Flowfield
 - Wetproofing
 - Catalyst layer integration

Water management optimization


Flowfield Design

Approach: Leveraging Previous Work

- Leverage Proton PEM URFC experience from DARPA/NASA/NSF programs in AEM application:
 - Flowfields
 - Wetproofing
 - OER/ORR catalyst philosophy
 - Test stands
- Leverage AEM
 experience from
 ARPA-E and other
 programs

Objectives

Task description and significance achievements	Completion
Cubic phase LiBCoO ₂ (B=Mn ⁺ , etc) synthesized and screened	25%
Electrochemical screening of synthesized materials in RDE	25%
Development of URFC cell	100%
Optimization of flowfields for fuel cell and electrolysis operation	50%
Baselining PGM catalyst materials in fuel cell and electrolysis	100%
Evaluation of non-PGM O ₂ electrodes	10%
Durability testing of non-PGM O ₂ electrodes	10%

Technical Accomplishments

Catalyst Development

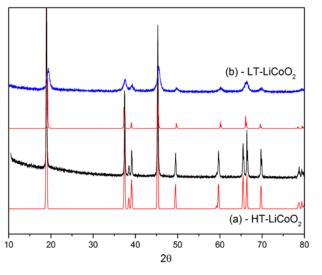
- Scaled up synthesis of LiCoO₂
- Performance verified at Proton
- Multiple B-site doped LiBCoO₂ (B=Mn...) synthesized and characterized by RDE

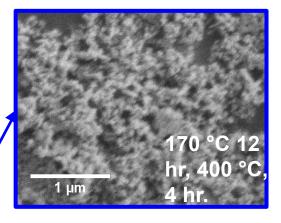
Cell Development

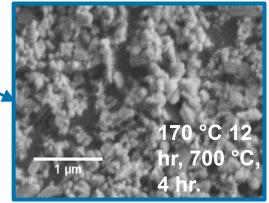
- Cell geometry and architecture defined for 25 cm² cells
- Verified to function in fuel cell and electrolysis operation
- Flowfield optimization and wet proofing initiated

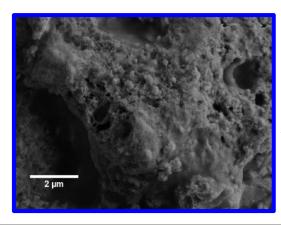
URFC Testing

- Baseline performance obtained in fuel cell and electrolysis mode for Pt | Pt catalyst (PGM baseline)
- Baseline electrolysis performance for LiCoO₂ and 600 hrs stability test completed

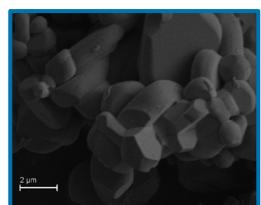



Technical Accomplishments: Synthesis


 Sol-gel synthesis employed for high phase purity and higher surface area catalysts


Sol-Gel Synthetic Routes

 $\text{Li}_2 \text{NO}_3 + \text{Co}(\text{NO}_3)_2 + \\ \text{CH}_4 \text{N}_2 \text{O}(\text{urea}) + \\ \text{C}_6 \text{H}_8 \text{O}_7(\text{citric acid}) + \\ \text{H}_2 \text{O}$

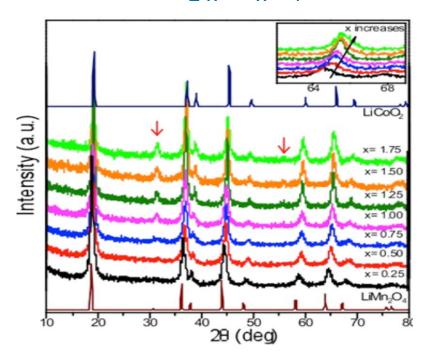


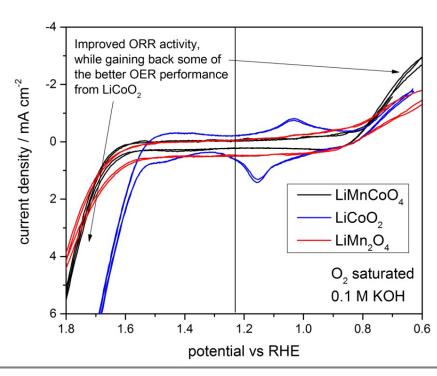
Solid State Synthesis

Li₂CO₃ + CoCO₃ (grinding)

400 °C, 72 hr.

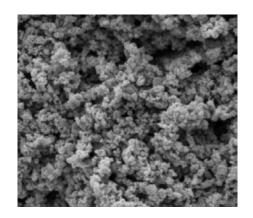
800 °C, 12 hr.





Technical Accomplishments: Non-PGM OER/ORR catalysts

- Synthesized well-defined non-PGM O₂ catalysts based on LiCoO₂ and LiMn₂O₄ families
 - Large batches by sol-gel method achieved high surface area
- Tuned OER and ORR activity by B site substitution
 - $LiMn_{2-x}Co_xO_4$ (0 < x < 1.5)



Technical Accomplishments: GDE Manufacture and Integration

- Rutgers non-PGM materials integrated in GDE ink and sprayed to make electrodes for electrolysis testing
- CCM based approach pending

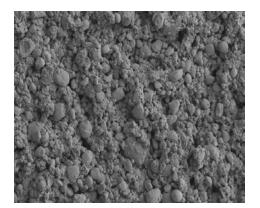
Anode GDL

Anode Catalyst

Membrane

Cathode Catalyst

Cathode GDL

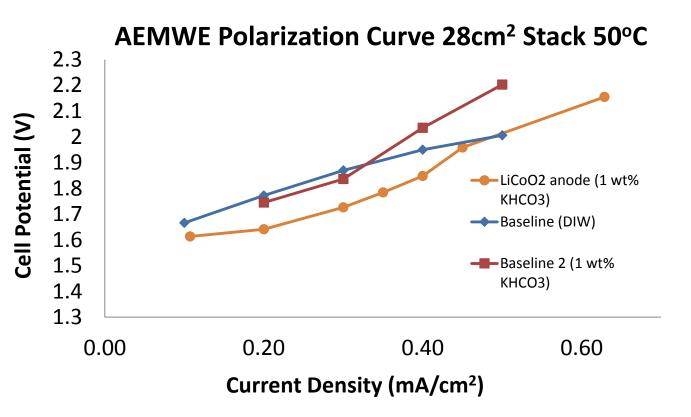

Anode GDL

Anode Catalyst

Membrane

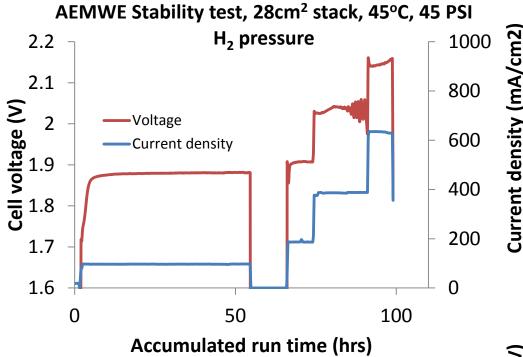
Cathode Catalyst

Cathode GDL


Catalyst coated membrane (CCM)

Gas diffusion electrodes (GDE)

Technical Accomplishments: Non-PGM OER Performance Screening



- Anode DI water or bicarbonate feed
- Equivalent Pt cathodes
- Improved performance over baseline anode catalyst

Technical Accomplishments Non-PGM O₂ Catalyst Durability Test

- Stainless steel and carbon BOP
- 1wt% KHCO₃ anode feed
- Cumulative run time of 550 hrs
- Apparent drift at high current densities

AEMWE Stability test, 28cm² stack, 45°C, 45 PSI

H₂ pressure

1.9

1.8

1.7

1.6

1.6

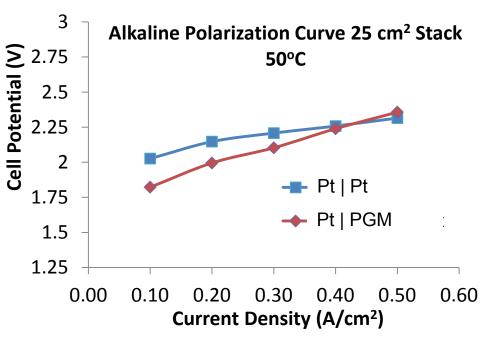
100

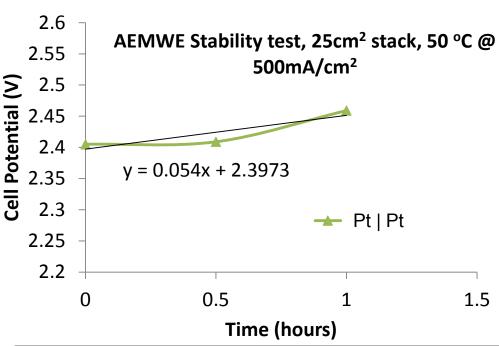
Accumulated run time (hrs)

150

200

250

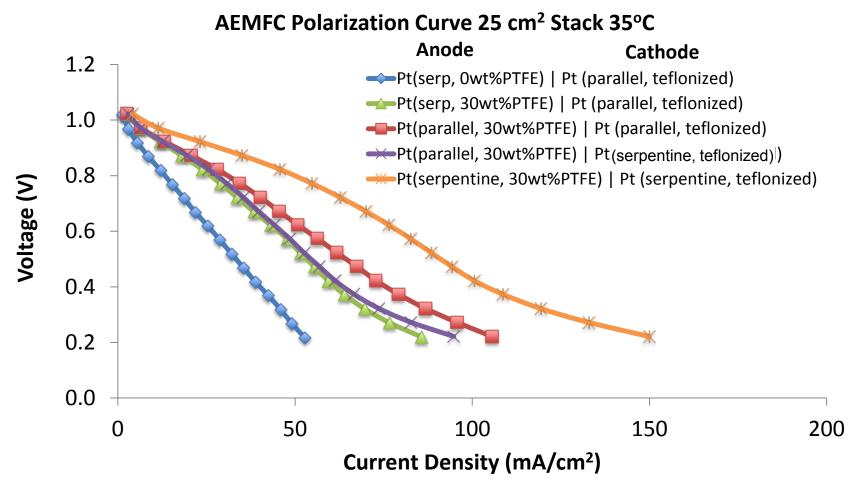

1.5


0

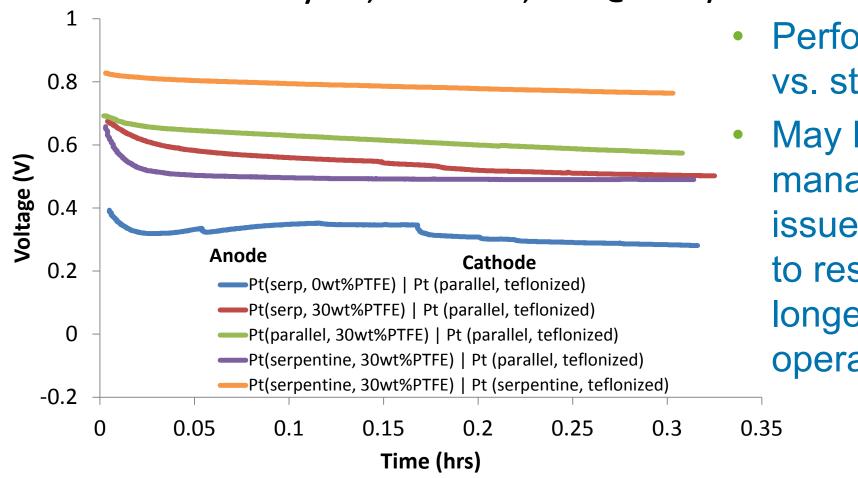
50

Technical Accomplishments: URFC cell baselining - Electrolysis

- 25cm² non-proprietary cell platform
- Deionized water feed on the anode side (O₂ electrode)
- Baseline vs conventional PGM anode catalyst
- Little difference at higher current densities points to other rate limiting steps



Technical Accomplishments: URFC cell baselining – Fuel Cell


- 25 cm² non-proprietary cell platform
- Underhumidified H₂ overhumidified O₂: high flow rates

Technical Accomplishments: URFC cell baselining – Fuel Cell

AEMFC Stability test, 25cm² stack, 35 °C @ 50mA/cm²

- Performance vs. stability
 - May have water management issues need to resolve for longer term operation

Future Work

Balance of Phase I:

- Test non-PGM Rutgers catalyst in URFC
 - Stability and cyclability data
- Investigate CCM based approach
- Incorporate advanced H₂ electrode catalyst
- Investigate alternative membranes

Proposed work for Phase II:

- Development of 28cm² URFC platform
- Multi cell stack
- Scale up fabrication of non-PGM catalyst materials
- Long term cycling and stability performance

Collaborations

- Rutgers University
 - Synthesis of ~ 2 gram batches of non-PGM oxygen catalysts
 - Cubic LiCoO₂ and spinel LiMn₂O₄
 - B site dopants (transition metal cations)
 - N doping into O site
 - OER/ORR activity and stability screening with RDE in near neutral, NaOH (pH 14) and potassium bicarbonate
 - Supplemental characterization

Summary

- Relevance: Demonstrates non-PGM AEM based URFC for reduced capital cost system and higher market penetration
- Approach: Optimize cell design and non-PGM catalyst activity for fuel cell and electrolysis operation with an anion exchange membrane

Technical Accomplishments:

- >500 hour durability test successfully completed for non-PGM electrolysis anode GDE
- Baseline PGM feasibility demonstrated in 25 cm² test cell in both electrolysis and fuel cell operation

Collaborations:

Rutgers University: non-PGM catalyst synthesis and screening

Proposed Future Work:

- Test non-PGM Rutgers catalyst in URFC
- Investigate CCM based approach
- Incorporate advanced H₂ electrode catalyst
- Incorporate membrane improvements

