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Non-Rigid Registration in 
Medical Image Analysis

• Where is Non rigid registration needed 
in Medical Imaging?

• How do we describe image deformations?
– Global Parametric Approaches
– Dense Fields Approaches: 
– ‘Physical’ Models
– Large Deformation Models:
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Uses for Non-Rigid Registration

• Correcting/Accounting for Imaging Distortions
– Scanner Induced Geometric changes

• Correcting Tissue Deformations
– Subject Related Anatomical Changes 

• Capturing Tissue Growth or Loss within a Subject
– Studying Dementia or Tissue Growth: Deformation Based 

Morphometry

• Resolving Differences Between Subjects:
– Spatial Normalization to Compare Image Data Across 

Populations
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GE 3T Control Subject

Time 1
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GE 3T Control Subject

Time 2
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With and Without Gradient Correction: No Movement,Positioned Centrally in Magnet
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Change in Positioning

(Approx 3.4cm shift along bore)

No Gradient Correction
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Change in Positioning

(Approx 3.4cm shift along bore)

With Gradient Correction

For Both Images

(2D Console Only)
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Correction of Larger Scale 
Geometric and Intensity

Distortion

Spin Echo EPI
(Rigid Registration)

readout
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Anatomical MRI

Sag. Cor.
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Components of Spatial Distortion Induced by 
Magnetic Field Inhomogeneity

Conventional Spin Echo MRI:
Displacements occur in the 
readout  and slice select axes

In Mapping EPI to Anatomical MRI:
The primary relative error to recover 
is along phase encode axis of EPI data.

Readout

Phase Encode

Slice 
Select

Phase Encode
Errors

Readout
Errors

Slice Select
Errors 3
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Using a Model of Spin Echo Signal Conservation and 
Intensity Distortion when Estimating Registration

Reconstructed
Spin Echo Image with

Intensity Distortion

Distorted Voxel
Selection

Due to Magnetic Field
Inhomogeneity

I rec(x,y,z)

Isel(x,y,z)

I rec(x,y,z)= Isel(x,y,z)/Jdist(x,y,z)

Tdist

So, if we have a spatial registration estimate of EPI to anatomy,
we can use its Jacobian to estimate an EPI intensity correction.

4
C. Studholme, T.C. Constable, J.S. Duncan, Non-Rigid Spin Echo MRI Registration Incorporating an 
Image Distortion Model: Application to Accurate Alignment of fMRI to Conventional MRI, IEEE Trans. 
Med. Imaging, Vol 19, No 11. Nov 2000. C.Studholme U.C.S.F. 12

Correction of Larger Scale 
Geometric and Intensity

Distortion

Spin Echo EPI
(Rigid Registration)

readout

P
h
a
se Reference T1

Anatomical MRI

Spin Echo EPI
(10mm Spline Estimate)
incorporating Jacobian
Intensity CorrectionSag. Cor.



3

C.Studholme U.C.S.F. 13

• Collecting data from different individual anatomies not trivial
• Need to locate corresponding location in atlas for a given 

measurement in the subject anatomy
• Need a Template (in atlas space) to match subject anatomy to

• How do we derive a correspondence or mapping?
– Estimate the warp that takes us from template to subject

Need a [non-rigid] Registration algorithm
for -> Spatial Normalisation

Spatial Normalisation: Bringing Image data 
into a Common Coordinate System

Subject A

Template AnatomyStatistical Atlas

Subject B

combine
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Example Group Spatial Normalization
(Studholme et al, proc. SPIE medical imaging 2001)

1 2 3 4 5

Compare

Transformations

Global Normalized

Mutual Information

driven

B-Spline

Spatial Normalisation

of Brain Anatomy
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• Components of a non-rigid registration algorithm

– Model or parameterization of the Transformation T
• What structural differences we can resolve

– Registration (similarity) measure S(T)
• provide an absolute or relative measure of the quality of match

– [Geometric Constraints] C(T)
• prevent unwanted or physically meaningless deformations

so... need to vary T to find Optimum (here maximum) value for 
F=S(T)-�C(T)

– Optimization Method
• Continuous refinement of many parameters
• Often high dimensional search space
• Constrained by corresponding spatial structures

Non Rigid Registration

T
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Image Warping:
How to model deformations

between Images?
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Mathematical Models for Spatial 
Transformations of Image Data

• Global Affine

• Non-Linear Global Parameterizations

• Spatially Local Parameterizations

• Dense Field Techniques
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Deformation Models For Non-Rigid Registration

• Simplest Methods:
– Use Global Linear or Affine model

– Describing only global 
• Translations, Rotations,

• Scaling and Skew
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Deformation Models For Non-Rigid Registration

• More complex deformations: 
Globally Parameterize the Deformation Field:

e.g. Polynomial function of location (here 1D)
T(x)=a.x3 +b.x2 + cx + d

• Modify Parameters a,b,c and d so global similarity F(T)
maximized

[Woods et al, Automated Image registration,JCAT 1998.]
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Deformation Models For Non-Rigid Registration

Cosine Basis Functions

T(xi)=xi- Σj=1..J tjd bij(xi)

T(yi)=yi- Σj=1..J tjd bij(yi)

T(zi)=zi- Σj=1..J tjd bij(zi)
where:
bm1(xi)=1/√M   for m=1... M

bmj(xi)= √2/√M cos[π(2m-1)(j-1)/2M]
j=2....J, m=1..M

[Ashburner and Friston, Nonlinear Spatial Normalisation Using Basis 
Functions, Human Brain Mapping, 7:254-266, 1999]
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Radial Basis Functions
• Given a set of corresponding landmarks, what happens between?

• An RBF estimates mapping for points not at landmarks 
• For a given point x, it combines mappings from neighboring 

landmarks ci weighted by a function of distance

• Where the basis function determines the form of the warp:

?

x y

ci

F. L. Bookstein. Principal Warps: Thin-Plate Splines and the Decomposition of Deformations. 
IEEE Trans. on Pattern Anal. and Machine Intell., 11(6):567-585, 1989.
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Different forms of Radial Basis Function:

• Thin Plate Spline:

• Gaussian:

• Multiquadric

J. A. Little, D. L. G. Hill, and D. J. Hawkes. Deformations Incorporating Rigid Structures. 
Computer Vision and Image Understanding,66(2):223-232,1997.

D. Ruprecht and H. Muller. Free form deformation with scattered data interpolation methods. Comp. 
Suppl., 8:267-281, 1993.
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Properties of RBF

• Many of the common forms (eg thin plate) provide 
optimally smooth deformations

• Generally stable to estimate weights for many 
different configurations of points. 

• Change location of any landmark and whole 
deformation field changes:
– Expensive to re-evaluate whole image match
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Limitations of Global Parameterizations

• Each Parameter a,b,c... Modifies entire image
– Expensive to evaluate gradients of T wrt parameters

• Complex Brain shape differences requires a fine 
scale deformation

• Fine Scale deformation requires MANY parameters
– High spatial frequencies for Cosine parameters
– or: high order polynomial

So.. Need a way to simplify problem

T(x)=f(x,a,b,c)
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Alternatives: Local Models

• Rather than have:
– Many parameters
– Where each influences the image deformation over the 

whole space:

• Need parameters that have localized influence on the 
deformation
– Faster to Evaluate Image Match

• Forms of Spline can provide spatially localized 
deformation control

C.Studholme U.C.S.F. 26

Spline Based Deformations with local support

• Thin-Plate splines can be adapted to have local 
support:

• Other forms using Specialized regular control knots 
can provide faster evaluation:

Mike Fornefett, Karl Rohr, and H. Siegfried Stiehl, Elastic Registration of 
Medical Images Using Radial Basis Functions with Compact Support, Computer 
Vision and Pattern Recognition, 1999

S. Lee, G. Wolberg, K.Y. Chwa and S.Y. Shin IEEE Trans Vis. Comp. Graph., 
1996 and 1997
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• B-Spline Model: T(x) function of sparse knot values

f(x) = Σ r=0,N Pi+r .Br(x-xp)

Sum of contributions from local knots r=0..N only
The Basis functions Br() are specific polynomials eg Cubic 

B-Spline with 4 controlling knots:
Bo(t)=(1-t)

3/6

B1(t)=(3t
3-6t 2 +4)/6

B2(t)=(-3t
3+3t 2 +3t+1)/6

B3(t)=t
3/6

B-Spline Models For Registration

PPi+ri+r

xxpp

f(xf(x))

xx

S. Lee, G. Wolberg, K.Y. Chwa and S.Y. Shin IEEE Trans 
Vis. Comp. Graph., 1996 and 1997
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f(x) = Σ r=0,N Pi+r.Br(x-xp)

B-Spline Models For Registration

PPi+ri+r

xxpp

f(xf(x))

Move one knot and deformation changes only within
A given range of knot locations.

A B-Spline Approximates: it does not interpolate!
Functions does not have to pass through knot values
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• B-Spline Transformation Model

T(x) = x+ Σ r=0,N Pi+r .Br(x-xp)

B-Spline can Still Fold! (e.g. multiple x’s map to the same 
value of T(x)

Can Test for Folding based on distance between knot 
values. 

Can Prevent folding by adding a smoothness penalty term 

B-Spline Models For Registration

PPi+ri+r

xxpp

T(x)T(x)
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x

y

z

Tx

Ty
Tz

•Describe Transformation T() in directions x , y and z
for each point in {x,y,z}

•Parameterized by a Lattice of control parameters (knots)

Qpqr={kpqr,lpqr,mpqr}

Extend to 3D Displacement Along 3 Axes
Using 3 3D lattices of control knots

Tx(x,y,z)            Ty(x,y,z)                    Tz(x,y,z)

Ty(x,y,z) Tz(x,y,z)Tx(x,y,z)

kpqr lpq

r

mpq

r
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x

y

z

Tx

Ty
Tz

Extend to 3D Displacement Along 3 Axes
Using 3 3D lattices of control knots

Ty(x,y,z) Tz(x,y,z)Tx(x,y,z)

kpqr lpq

r

mpq

r

R(R(Qpqr)= )= Y(Y(Qpqr)) –– λλ Σx

Maximize Image Similarity Y() w.r.t. Qpqr

dddddddd22 T(T(x,Qx,Qpqr))
dddddddd22x

Registration Criteria Regularization Penalty

Ruckert, Hayes, Studholme, Leach, Hawkes,  Non-rigid registration of Breast MR images using 
Mutual Information Proc. MICCAI, 1998 pp1144-1152, Springer, eds Wells, Colchester, Delp
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Example Group Spatial Normalization
(Studholme et al, proc. SPIE medical imaging 2001)

1 2 3 4 5

Global Normalized

Mutual Information

driven

B-Spline

Spatial Normalisation

of Brain Anatomy
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Capturing More Detail...

Dense Field Models
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Dense Field Methods
• Derive a voxel by voxel force field making images more similar

– (local gradient of similarity measure with respect to individual voxel location)

• Move in the direction of the force field and re-evaluate

?

Need a model to describe how image responds to registration force
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u(x)

Deformation Models for Registration

• Early approach applied to 3D brain images:
Elastic Registration [Bajcsy, JCAT, 1983]

– Applying a marked template to a new individual

T(x)=x+u(x)

• Find a displacement field u(x) which balances the elastic 
energy of u(x) with the registration criteria S(x)

• So the Elastic Deformation Model then is given by:
µ∇2 u(x) + (λ+µ) ∇(∇T u(x) ) = S(x)

µ and λ are Lame’s elasticity constants
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Deformation Models for Registration

• µ∇2 u(x) + (λ+µ) ∇(∇T u(x) ) = S(x)
µ and λ relate applied forces to the  resulting strains, by 

the Poisson’s Ratio:

σ= λ/(λ+µ)

-> Ratio of Lateral Shrink to Extensional Strain.
Generally for registration λ=0
So registration force in one axis does not 
influence other axes
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Elastic Deformation for Registration

µ∇2 u(x) + (λ+µ) ∇(∇T u(x) ) = S(x)
Key Idea: The Force balancing registration Criteria is a 

function of the derivatives of the deformation field   

[∇T u(x) etc]. 
..Rates of Change of displacements u(x) w.r.t. location x:

Prefer Smooth 

deformation maps

C.Studholme U.C.S.F. 39

Elastic Deformation for Registration

µ∇2 u(x) + (λ+µ) ∇(∇T u(x) ) = S(x)
If neighboring displacements are similar: 
Local relative size is similar across image.
If neighboring displacements are different:
local relative size is changing.
When anatomical differences very localized (e.g. voxels in 

cortex) Registration Force balancing smoothness may 
under-estimate local contractions
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Example Elastic Warping of Brain Anatomy: Template (MNI)
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Example Elastic Warping of Brain Anatomy: Subject (affine)
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Example Elastic Warping of Brain Anatomy: Subject (Elastic Warp)
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template(MNI) Warped Subject Subject (affine alignment)
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Elastic Deformation for Registration

• Can be used to prevent Singularities or Folding…
• But as displacement field evolves:

– Deformation Energy builds up

• For extreme differences in anatomies: 
– deformation energy will prevent complete registration
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Limits of Elastic Matching

Template
(MNI27)

Subject

Elastic
Warp of 

Subject to 
Template
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Regularization and Large Deformations

Simple Case More Complex Case

Intermediate 
Anatomy

For “Large Deformations” When Evaluating “Distance”
of deformation for regularization: linear distance can 
fail or limit our shape alignment

µ∇2 u(x) + (λ+µ) ∇(∇T u(x) ) = S(x)

u(x=x1)

u(x=x2)

u(x=x3)
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Regularization and Large Deformations

One Step Multiple Steps: Regridding

Track Evolution over
Curved Manifold

Christensen, Miller et al, 

IEEE trans Image Processing, 1996
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Mapping between Anatomies:
Describing Correspondence
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Curved Diffeomorphic Mapping:
Describing Large Deformations
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Discrete Large Diffeomorphic Mapping:
Composing Sequences of Small deformations

T1 (x)=x+u1(x)
T2 (x)=x+u2(x)

T3 (x)=x+u3(x)

TTOT(x)=T3 (T(2 (T1 (x) ) ) ) Christensen, Miller et al, 
IEEE trans Image Processing, 
1996
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Deformation Models For Registration

• Best known approach is a Viscous Fluid Deformation Model 
[Christensen,TIP,1996] and (Freeborough&Fox98]

• For current deformation, evaluate Velocity Field:
µ∇2 v(x) + (λ+µ) ∇(∇T v(x) ) = S(u(t,x))

µ is Shear Modulus, λ is Lame’s Modulus

• Evaluate a fractional update (∆t ‘seconds’) of the 
displacement field along current velocity field:
u’(x)=u(x)+R ∆t

where

R=v(x)-v(x).[∂u/∂x]T

• Then update the Force Field S(u(x,t)) and iterate

C.Studholme U.C.S.F. 52

Sparse Registration Force Field
Driving Points into Better 
Alignment

In Regions of misaligned Tissue 
Force->0

‘Velocity’ Field

Smooth and Well Behaved

i.e. no  singularity points or folding

Then: Update displacement estimate 

u(x) along v(x)
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Deformation Models For Registration

i) Evaluate Velocity Field v(x) for Current Force 
ii) Propagate mapping along Velocity Field (update u(x))
iii) Update Force Field F(u(t,x)) for Current Deformation  
Key Idea: The fluid model ensures that the deformation 

preserves topology at each step:
i.e. two points don’t map to one point.

SubjectAtlas

Can Resolve Complex Deformations:
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Example Large Deformation
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Viscous Fluid 

Registration

Even Many Cortical

Structures Deformed

(intensities/tissue... 

look the same)

BUT: not necessarily

registered!

Derived from: Studholme et al, IEEE transactions on medical imaging, 2006
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H. Lester, S. Arridge, A survey of hierarchical nonlinear medical image registration.,
Pattern recognition, vol 32(1), 1999, page 129-149.

Fluid registration 
can be dangerous..

Can be critically 
dependent 
on initialization:
pre-registration and 
constraints on region
applied to.

Key factor: 
Lots of engineering
rather than 
mathematics
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Atlases and Templates for Spatial 
Normalization of Anatomies
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Overview

• What is an Atlas?

• Templates for Spatial Normalisation
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An Atlas

In practice we might say an Atlas is:
A map or spatial record of what we know about a region
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Types of Atlas

Characteristics of an Atlas:

1. The type information we record in it

2. How we place that information within the atlas

3. How we display/project/extract that information
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Atlases in Medical Imaging

1. An Atlas usually refers to an (often probabilistic) 
model of a population of spatial data (images).

2. Parameters determining the model are learned 
from a set of training data.
• One or more subjects: eg atlas of brain regions

3. Simplest form is a template or average intensity.
– Eg: Mean grey matter density, Mean PET tracer uptake

4. More complex forms capture 
– Higher order statistics: Variance, or other Model of 

Distribution
– Complex parameterized models: eg Age
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Example Atlases: Statistical Model of Brain 
Tissue Distribution in fetal brain

Subject 1

Subject 2

Subject N

Probability of Tissue Class

Reference

Anatomy

Grey Matter

Germinal Matrix

White Matter

Ventricular CSF

Count # of Voxels

With Each Label

Manual Segmentations

P. A. Habas,et al, "Atlas-based segmentation of the germinal matrix from in utero clinical MRI of the fetal brain," in 
Medical Image Computing and Computer-Assisted Intervention, LNCS, vol. 5241, part I, pp. 351-358, September 2008. 

C.Studholme U.C.S.F. 63

Example Atlas: Complex Parameterized Models

WM

GMAT

21 weeks 22 weeks 23 weeks 24 weeks

Age-specific tissue probability maps generated in average space

P. A. Habas, et al "A spatio-temporal atlas of the human fetal brain with application to tissue segmentation," 
in Medical Image Computing and Computer-Assisted Intervention, LNCS, vol. 5761, part I, pp. 289-296, 
September 2009. 
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eg: Use ‘structure’ to place ‘functional’ measurements within the atlas
– Use MRI to normalize subject anatomy to a template anatomy

– Apply anatomical transformations to bring functional measurements in a 
subject into the atlas

How do we place information into an atlas?
Independent Modalities

Structure Function

Subject

Atlas

<-Warp->
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• Use neighboring structure to locate and place measurements within 
an atlas of the same type of measurements

– How accurately do we place that information?

– How does that neighboring information influence placement?

How do we place information into an atlas?
Same Modality

SubjectAtlas

<-Warp->
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• Do not record imaging measurements in subject:
BUT: record how subject was spatially re-arranged to fit the atlas

– Record how the shape of Subject and Atlas differ  

How do we place information into an atlas?
Shape Mapping: Morphometric Atlases

SubjectAtlas

<-Warp->
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• Collecting data from different individual anatomies not trivial
• Need to locate corresponding points in atlas for a give measurement in the 

subject
• Need a Template (in atlas space) to match each subject to

• How do we derive a correspondence or mapping?
– Warp from template to subject?

Need a [non-rigid] Registration algorithm
for -> Spatial Normalisation

Warping in Atlas Mapping

SubjectTemplateAtlas
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• What structure do we use as a target or template?
• Needs to contain information relevant to problem

– Where are the ports along a coastline?
– Where are the gyri delineating functional brain regions?

• Needs to Exclude irrelevant information:
– Template should not contain a tumor if studying normal anatomy

• Need to have a representative shape:
– Don’t use a brain with rare sulcal patterns to study normal anatomy 

Templates for Atlas Mapping

SubjectAtlas
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Templates and Atlases

• Early Atlases for presentation/visualization: 
– Were often manually drawn

• Broadmann[1]

– ‘Idealized’ anatomies created by sketching features of 
interest

– Difficult to compare results

• Modern Templates -> for Spatial normalisation:
– Can be optimized for use with registration method

1. Broadmann, K: On the Comparative Localization of the Cortex 201-230.
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Optimizing Templates

• Contrast/Intensity Properties
– High signal to noise (average brain of MNI colin27?)
– Show Imaging structures of interest:

• T1W template for T1W matching -> structure
• T2W template for T2W matching -> fMRI?

• Resolution
– High isotropic resolution

• Minimize loss of fine structure/tissue boundary

• Spatial Mathematical Properties:
– Average ‘Shape’ of Anatomies studied

• Aid in visualization of results
• Improve registration algorithm?
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• Average Intensity? (older SPM/VBM analyses)

– Register a set of MRI’s to a single subject MRI:
– and average intensities to form a new template:

Optimal Templates for Matching

T2T1 T3

T4
T5

T6

T7

T2T1 T3

T4
T5

T6

T7

Single subject MRI ‘Average’ subject MRI

Single Subject Average of 14 subjects
(Coarse deformation)

•Since images imperfectly aligned:
there is a Fundamental problem:

•Resulting ‘average’ image is not necessarily an example of a real anatomy 
which has been blurred.
•May even be topologically different: (eg sulci covered over)
•So... deforming an individual to it may be impossible!
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Average Shape Between a Cube and a Sphere:
The need for local deformations

Linear
average

Unreal intensities
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• Improving Average through fine scale registration

Optimal Templates for Matching

Reference 
MRI

2.4mm B-
Spline

4.8mm B-
Spline

9.6mm B-
Spline

19.2mm B-
Spline

Average of 14 Controls Mapped to Reference MRI
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• Average Geometry?
– Template is most similar in shape to a given group being studied
– Makes registration easier?

• How to define Average anatomical geometry??
– need a definition of distance between anatomies

Optimal Templates for Matching

T2
T1 T3

T4T5
T6

T7

T2T1 T3

T4
T5

T6

T7
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Linear Averaging: ‘Unbiased Atlases’

Evaluate a common space such that the 
average displacements of a given point to 
a set of subjects is zero.

Can do this 
1) Group-Iteratively during registration:

• register group to template
• warp template to linear average
• re-warp subject to template
– Guimond, A., Meunier, J., Thirion, J.P.: 

Average brain models: a convergence 
study. Comput. Vis. Image Underst. 77(2) 
(2000) 192–210

2) Collectively during group-wize registration
• Use distance as a constraint

T2
T1 T3

T4T5
T6

T7

d3

d2

d1

Σ dn
n=1..N

0

template

Σ
x
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A spatially unbiased atlas template of the human cerebellum, Jörn Diedrichsen ,
Neuroimage vol 33, issue 1, 2006
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Elastic averaging of  group (driven by entropy)
Starting Population Populations Deformed Toward Each other

Subpopulation 
with 

Internal 
Spheres

Collectively 

Aligned

(No Knowledge of 
Underlying Average Shape 
or Contrast Differences)

Studholme et al, A template free approach to spatial normalisation of brain anatomy
Pattern Recognition Letters, vol 25(10), July. 2005
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• The shape distance problem (same as in regularization):

Non-Linear Shape Averaging

Simple Case More Complex Case

Average Shape Measure distances along
a curved manifold

C.Studholme U.C.S.F. 80

T6

Distance measured
along curved 
Manifold: Then
Averaged Over 
Population 

Large Deformation Non-Linear Average Shape 
Between a Cube and a Sphere

T2
T1 T3

T4T5
T6

T7

T2
T1 T3

T4T5

T7
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Average Anatomical Space Scanned Anatomy 

Warp Image Pair Into Alignment

Scan1 Scan2

28.9W 32.6W

Scan1 Scan2

Example Symmetric Warping between Developing Anatomies
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Scan1 Scan2Scan1

Warp

Average Anatomical Space Scanned Anatomy 

Scan2

Warp

Example Symmetric Warping between Developing Anatomies
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Linear and Non-linear Averages of 23 Subjects

S. Joshi, B. Davis , M. Jomier, and G. Gerig, "Unbiased Diffeomorphic Atlas
Construction for Computational Anatomy", NeuroImage; Supplement issue on
Mathematics in Brain Imaging, Vo lume 23, Supplement 1, Pages S151-S160,
Elsevier, 2004. C.Studholme U.C.S.F. 84

Summary

• Many Different factors in atlas based analysis

• Critical issues is registration algorithm
– how accurately can you relate individuals to atlas?

• for atlas construction and atlas use

– importance depends on application.

• Very active area of research


