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Abstract

We present an approach for blind image deblurring,
which handles non-uniform blurs. Our algorithm has two
main components: (i) A new method for recovering the un-
known blur-field directly from the blurry image, and (ii) A
method for deblurring the image given the recovered non-
uniform blur-field. Our blur-field estimation is based on
analyzing the spectral content of blurry image patches by
Re-blurring them. Being unrestricted by any training data,
it can handle a large variety of blur sizes, yielding su-
perior blur-field estimation results compared to training-
based deep-learning methods. Our non-uniform deblurring
algorithm is based on the internal image-specific patch-
recurrence prior. It attempts to recover a sharp image
which, on one hand – results in the blurry image under
our estimated blur-field, and on the other hand – maxi-
mizes the internal recurrence of patches within and across
scales of the recovered sharp image. The combination of
these two components gives rise to a blind-deblurring al-
gorithm, which exceeds the performance of state-of-the-art
CNN-based blind-deblurring by a significant margin, with-
out the need for any training data.

1. Introduction
Images taken in our daily lives are often corrupted by

blur. This blur may be caused by camera motion, defocus,
movement of rigid or non-rigid objects in the scene, and
more. Recovering the sharp image solely from the blurry
image without any knowledge of the blur function, has been
the focus of many studies in the past years and is termed
“blind” image deblurring. Some methods assume a uni-
form image blur (e.g., [2, 22, 20, 15, 18]), while others as-
sume a varying blur-field [7, 16, 21, 23, 3, 9, 10, 19]

When the blur is uniform in the image, the relation be-
tween the sharp and blurry images is a simple convolution:

Ib = k ∗ Is + n (1)

where Is is the sharp image, Ib is the blurry image, k is the
spatially uniform blur kernel and n is noise. When the blur
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kernel k is known, recovering Is reduces to a deconvolution
with k (an ill-posed problem on its own, since k has many
zeros in the frequency domain). The problem becomes
much harder in the blind case, where both the sharp image
Is and the blur kernel k are unknown [2, 22, 20, 15, 18],
since many different pairs of Is and k can give rise to the
same input blurry image Ib. The problem becomes even
more ill-posed in the case where the blur is no longer uni-
form. This case can no longer be modeled as a convolution.
Nevertheless, it can still be written as the linear transforma-
tion Ib = KIs + n (2)

where the matrix K denotes a very large blur matrix, in
which each row corresponds to a kernel that models the blur
at a specific pixel. It is a matrix similar to a convolution
matrix with the exception that each row contains a different
kernel (it is no longer Toeplitz).

Non-uniform blind deblurring has attracted much atten-
tion in recent years. Some methods [7, 16, 21, 23] as-
sume that the blur is caused by a general 3D camera shake;
these do not handle dynamic scenes with blur discontinu-
ities. Other methods [3, 1, 8, 13] detect boundaries and blur-
fields of moving objects, but assume that the blur within
each moving object is either uniform [1, 8, 13] or parametric
[3]. The method of [10] handles general blurs, but assumes
the input is a video sequence. The methods of [9, 19] al-
low a non-uniform non-parametric blur-field, with different
blur per pixel, however assume that the blur at each pixel is
linear. Our method belongs to that category. In [19] CNNs
have been recruited to the task, and to the best of our knowl-
edge, this method provides the current state-of-the-art re-
sults in non-uniform bind deblurring. Nonetheless, being a
learning-based approach, CNNs are restricted by the type
of data they are trained on (e.g., restricted blur sizes). In
contrast, our method (which is not learning-based) is not
restricted to specific motion sizes or image types. In partic-
ular, it can handle very large blurs (e.g., see Figs. 1,2).

In this paper we propose an algorithm for non-uniform
blind image deblurring. Our algorithm has two major com-
ponents: (i) A new method for recovering the unknown
blur-field directly from the blurry image, and (ii) A method
for deblurring the image given the recovered non-uniform
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Blurry input image Our recovered sharp image Recovered sharp image of [19]

Blurry input image Our recovered sharp image Recovered sharp image of [19]

Figure 1: Blind-deblurring with very large real blur. Note also the significant differences between us and [19] in the
running woman, as well as the recovered background (e.g., the children and white ball in the top-right corner). (Please
zoom-in on screen to see fine details.)

Blurry input image

Blur/flow legend

Our recovered sharp image
(PSNR = 18.51dB)

Our recovered blur
(Flow error = 2.18 pixels)

Recovered sharp image of [19]
(PSNR = 15.72dB)

Recovered blur of [19]
(Flow error = 9.76 pixels)

Ground-truth sharp image

Ground-truth blur-field

Figure 2: Blind-deblurring with very large synthetic blur. Top: blurry and sharp Images. Bottom: Recovered blur-fields
(chroma denotes direction, intensity denotes magnitude). Please zoom-in on screen to see fine details.

blur-field. The combination of these two gives rise to a
blind-deblurring algorithm, which exceeds the performance
of state-of-the-art CNN-based blind-deblurring by a signif-

icant margin, without the need for any training data.
Our first major component – the recovery of the unknown

flow-field (Sec. 3) – is based on spectral analysis of blurry



image patches, and is quite simple: We assume that the non-
uniform blur-field is locally linear (a 1D blur kernel), but
may vary across pixels and may have spatial discontinuities
(i.e., has the standard flow-field assumptions, except that it
is undirected). Have we had the sharp image Is, we could
have simply blurred (convolved) the entire image with var-
ious 1D blur kernels b(r, θ) of different lengths r and ori-
entations θ, and then choose for each pixel (x, y) the blur
b(r, θ) for which its surrounding patch in Is ∗b(r, θ) is clos-
est to the one in the blurry input Ib (in terms of MSE). How-
ever, we do not have the sharp image. We show (Sec. 3)
that the same effect can be achieved by applying the blur
kernels directly on the blurry input image Ib. We refer to
this approach as the Re-blurring method. Unlike the global
spectral analysis of [6], our analysis applies to local image
patches and to non-uniform blur.

Our second major component – the non-uniform deblur-
ring algorithm (Sec. 4) – is based on the internal patch-
recurrence property, which forms an image-specific prior:
small image patches (e.g. 5×5, 7×7) tend to repeat ‘as is’
many times inside the same scale, as well as across different
scales, of a single natural image. This recurrence property
was shown to be true for almost any small patch in almost
any natural image [5, 24]. While this recurrence is very
strong in sharp images, it was shown to diminish signifi-
cantly in blurry images [15] (see Fig. 3). It hence forms a
very strong prior on the unknown sharp image Is. This prior
was used by [15] in the context of uniform blurs (the case
of Eq. 1). We extend its applicability to non-uniform blurs.
Our deblurring component thus attempts to recover a sharp
image Is which, on one hand – results in the blurry image
Ib under our estimated non-uniform blur-field, and on the
other hand – maximizes the internal recurrence of patches
both within and across scales of the recovered sharp Is.

Finally, these two components are combined into an it-
erative coarse-to-fine blind-deblurring algorithm (Sec. 5),
which alternates between recovering the sharp image and
refining the computed blur-field. Our experimental results
(Sec. 6) show that our algorithm exceeds the performance of
state-of-the-art CNN-based blind-deblurring [19], as well as
other methods, especially in the presence of very large blurs
(e.g., Figs. 1,2). This is shown both qualitatively as well as
quantitatively (Table 1).

2. Problem Formulation and Approach
Our goal is to “blindly” remove non-uniform blur from

still images. To solve this ill-posed problem, we define the
following objective function:

E(Îs, K̂) = Edata(Îs, K̂) +Eimage(Îs) +Eblur(K̂) (3)

where Edata, the data fidelity term, enforces the forward
model (Eq. 2), meaning that the recovered sharp image Îs,
when blurred, will be similar to the blurry input image Ib:

Figure 3: Patch recurrence diminishes under blur.
Patches which are similar in the sharp image (either within
or across scales), are no longer similar in the blurry image.

Edata(Îs, K̂) = ‖K̂Îs − Ib‖2 (4)

As in [9, 19], we restrict our blur matrix K = K(u) to
blur-fields u(x,y) = (u(x, y), v(x, y))T . Namely, while
the blur may be non-rigid and different at every pixel, we
do assume that each pixel undergoes a locally linear blur.
We later show (Sec. 6) that this is not a very restrictive as-
sumption. Note, however, that unlike standard optical flow,
the blur flow in this case is undirected (since (u, v) and
(−u,−v) induce the same image blur). A row in K which
corresponds to the blur of the ith pixel in Ib, is a discrete
blur kernel hi(x, y) induced by the flow vector (ui, vi) at
that pixel:

hi(x, y) =

{
1
‖ui‖δ(vix− uiy), if x ≤ |ui|2 , y ≤ |vi|2

0, otherwise
(5)

The additional terms Eimage(Îs) and Eblur(K̂) in Eq. 3
are prior terms on the unknown sharp image Îs and the un-
known blur matrix K̂, respectively. The prior term on the
latent sharp image Îs is based on a combination of gradi-
ent sparsity prior [14, 12] and the internal patch recurrence
prior [5, 24]. While the patch recurrence property is very
strong in sharp images, it diminishes significantly in blurry
images [15] (see Fig. 3). It hence forms a strong image-
specific prior on the sharp image Îs (see Sec. 4). The sec-
ond regularization term, Eblur, enforces smoothness of the
blur-field underlying the blur matrix K̂.

The objective in Eq. 3 is not convex (due to the nature
of the patch-recurrence prior, as well as the matrix K), and
has no closed-form solution. Hence, we minimize it using
an alternating iterative minimization procedure. Our ini-
tial estimate of the non-uniform flow-field û is computed
directly from the blurry image Ib (see Sec. 3). This consti-
tutes our initial blur matrix K̂. The algorithm then proceeds
to alternate between the following two steps: (i) Fix K̂ and
solve for a sharper image Îs that maximizes the image prior



(Sec. 4), and (ii) Fix Îs and refine the motion flow estimate
û that constitutes K̂ (Sec. 3). This iterative alternating opti-
mization is performed coarse-to-fine, and is summarized in
Sec. 5.

3. Motion Blur Estimation by Reblurring
In this section we elaborate on estimating the underly-

ing blur field of the blurry input image Ib. Note that unlike
standard optical flow, the blur field in this case is undirected
(since (u, v) and (−u,−v) induce the same blur). More-
over, regular flow-field estimation is performed between
two images, while here we have a single (blurry) image Ib.

Our approach is based on spectral analysis of image
patches, and is conceptually simple: Have we had the sharp
image Is, we could have simply blurred (convolved) the en-
tire image with various 1D blur kernels b(r, θ) of different
lengths r and orientations θ, and then choose for each pixel
(x, y) the blur b(r, θ) for which its surrounding patch in
Is ∗ b(r, θ) is closest to the one in the input blurry image Ib
(e.g., in terms of MSE). However, we do not have the sharp
image. We next show that the same effect can be achieved
by applying the blur kernels directly on the blurry input im-
age Ib. We refer to this approach as the Re-blurring method.

Ideal uniform blur: For the sake of simplicity, let us first
assume that: (i) the entire (unknown) sharp image Is was
blurred by a single uniform 1D blur kernel b(r∗, θ∗), and
(ii) that it is an ideal Low Pass Filter (ideal LPF), namely,
a rotated 1D sinc function in the spatial domain with ori-
entation θ∗. This corresponds to multiplication by a rect
function in the frequency domain in the same orientation.
We will first prove our method works for this simple case,
and later relax these two assumptions.

Claim 1 If b(r∗, θ∗) is an ideal LPF that caused the blur
in Ib (i.e., Ib = Is ∗ b), then Re-blurring the image Ib with
b(r∗, θ∗) will not change Ib. Namely: Ib = Ib ∗ b(r∗, θ∗).

Proof: Ib ∗ b(r∗, θ∗) = Is ∗ b(r∗, θ∗) ∗ b(r∗, θ∗). Shifting
to the Fourier domain, this becomes:

Ib ·B(r∗, θ∗) = Is ·B2(r∗, θ∗) = Is ·B(r∗, θ∗) = Ib (6)

where Is, Ib, B(r∗, θ∗) denote the Fourier transforms of
Is, Ib, b(r

∗, θ∗), respectively. Eq. 6 is true since b(r∗, θ∗) is
an ideal LPF, B(r∗, θ∗) is a rect in the direction θ∗, hence
B2(r∗, θ∗) = B(r∗, θ∗). Thus, in the spatial domain:

Ib ∗ b(r∗, θ∗) = Ib (7)

Note, however, that Eq. 7 is satisfied also by smaller
ideal blurs b(r, θ∗), r ≤ r∗, with the same orientation θ∗

(since B(r∗, θ∗) · B(r, θ∗) = B2(r∗, θ∗) for r ≤ r∗).
This is not true for blurs in other orientations θ 6= θ∗. In

other words, b(r∗, θ∗) is the largest blur that satisfies Eq. 7.
Nonetheless, if we now add noise n to the blurry input Ib
and then Re-blur it, b(r∗, θ∗) will now become the kernel
which provides minimal MSE ‖(Ib+n)∗b(r, θ)−Ib‖ among
all blur kernels: ‖(Ib+n)∗b(r, θ)−Ib‖ = ‖Ib∗b(r, θ)+n∗
b(r, θ)− Ib‖. According to Claim 1, for θ = θ∗ and r ≤ r∗,
this error reduces to ‖n ∗ b(r, θ∗)‖. The latter term is min-
imized by the largest blur among all those with orientation
θ∗, namely r = r∗.

To recap, in the case of uniform global ideal blur,
the way to recover the unknown blur kernel b(r∗, θ∗)
underlying the blurry image Ib, is to add noise n to Ib,
Re-blur (convolve) it with a variety of 1D kernels b(r, θ),
and choose the one that minimizes the MSE w.r.t. Ib.

Generalizing to non-uniform blurs: We next show that
the same procedure generalizes to non-uniform blur, by ap-
plying it to smaller image patches (windows) rather than the
entire image. We assume a local 1D uniform blur within
each local patch in Ib. Let P be the patch of size s × s
centered at pixel {x0, y0}: P [x0, y0, s] = Ib ·winp , where

winp ,

{
1 |x− x0| ≤ s

2 , |y − y0| ≤
s
2

0 otherwise

Claim 2 Claim 1 holds for the case of smaller image
patches too. Namely, the true blur kernel b(rp, θp)
in patch P minimizes the difference between the blurry
patch P and the corresponding patch in the Re-blurred im-
age Ib ∗ b(rp, θp) (i.e., within winp).

Proof: Let Ibp denote a uniformly blurred image resulting
from globally blurring the (unknown) sharp image Is with
the local blur of patch P :

Ibp = Is ∗ b(rp, θp). (8)

Since Ibp is uniformly blurred, then according to Claim 1:
Ibp = Ibp∗b(rp, θp). Multiplying both sides by winp yields:

Ibp · winp = Ibp ∗ b(rp, θp) · winp. (9)

While Ib and Ibp are globally different, they are identical on
the patch P :

Ib · winp = Ibp · winp. (10)

Similarly, Ib ∗ b(rp, θp) and Ibp ∗ b(rp, θp) will also be the
same in P , except at the patch boundaries. If, however,
we assume the local blur is uniform within a slightly larger
region than the window size, then the two blurred images
will be identical for the entire window winp, hence:

Ib ∗ b(rp, θp) · winp =
Ibp ∗ b(rp, θp) · winp = Ibp · winp = Ib · winp. (11)

To recap, in the case of non-uniform blur, we globally
Re-blur (convolve) the noised blurry image Ib + n with



Figure 4: Blur estimation by Re-blurring (see text in Sec. 3 for explanation of the figure).

a variety of 1D kernels b(r, θ), and assign to each pixel
(x, y) the blur which minimizes the MSE w.r.t. Ib within
its surrounding window (e.g., patches P of size 30× 30).

Realistic blurs: So far we discussed ideal LPF blurs. In re-
ality however, the blur is caused by camera motion or scene
objects motion, during exposure time. In the spatial domain,
this corresponds to a convolution with a rect function, rather
than with an ideal LPF. In the frequency domain, this corre-
sponds to a multiplication by a sinc function, rather than by
the ideal LPF rect function.

For non-ideal blurs b(r, θ), Eqs. 6 and 7 no longer
hold, because B2(r, θ) 6= B(r, θ) (unlike a rect function,
sinc2(r, θ) 6= sinc(r, θ)). Note, however, that sinc2(r, θ)
does maintain the same zeros in the Fourier domain as
sinc(r, θ), whereas multiplying by a different sinc kernel
(with different r and θ) will generate new zeros in the
Fourier domain (see Fig. 4.d).

For non-ideal blurs, the blur kernel minimizing ‖Ib ∗
b(r, θ) − Ib‖2 will always be the trivial delta function (no
blur), rather than the correct blur kernel. As before, how-
ever, this changes once we add noise to Ib before Re-
blurring. The kernel minimizing the MSE ‖(Ib + n) ∗
b(r, θ) − Ib‖ (namely, ‖(Ib ∗ b(r, θ) − Ib) + n ∗ b(r, θ)‖)
is the one that best balances between (i) removing as much
of the added noise n, and (ii) harming as little the spectral
content of Ib. This balance is best reached when the noise
added is “pink-noise”, whose Power Spectral Density (PSD)
function S(f) ∝ 1

fβ
resembles the PSD of natural images

(we use β = 2) [17]. This is explained next and illustrated
through Fig. 4. For simplicity, we illustrate it for uniform
blur, but it generalizes to non-uniform blur using the same
logic as in Claim 2.

Fig. 4(a-c) shows images along with their Fourier magni-
tudes. The sharp image Is (Fig. 4.a) is blurred by a realistic
(non-ideal) 1D blur kernel b(r∗, θ∗) (a spatial rect of length
r = 10 and angle θ = 30◦, shown in the upper-right cor-
ner of 4.b). This generates the blurry image Ib (Fig. 4.b).
As expected, this blur induces a multiplication by a sinc

function in the Fourier domain in the direction θ = 30◦.
Adding pink-noise n to the blurry image results in image
Ib + n (Fig. 4.c), whose spectral magnitude resembles that
of a sharp natural image (see similarity to spectrum of 4.a).

We now Re-blur Ib + n with various 1D blur kernels
b(r, θ) of different lengths and orientations. The Fourier
spectra of the resulting Re-blurs are shown in Fig. 4.d, along
with their blur kernels at the upper-right corner. Notice that
Re-blurring with the correct kernel (center image in (4.d))
yields the most similar result to the blurry image Ib (4.b),
with zeros at the same frequencies. In contrast, other ker-
nels with different θ and r yield zeros in different frequen-
cies. While the differences and similarities are easier to il-
lustrate in the fourier domain, recall that according to Par-
seval’s theorem, the MSE between the blurry image (4.b)
and its Re-blurred noisy versions in (4.d) are equal in the
spatial and in the frequency domains. Indeed we see that
the correct blur kernel yields the lowest MSE (computed in
the spatial domain and displayed in yellow for each kernel).

The above Re-blurring method results in a dense blur-
field û (an undirected flow-field). This constitutes the initial
estimate for the blur matrix K̂ of Eq. 3, which is used for
estimating an initial sharp image Îs (see Sec. 4).

As sharper images are recovered, Îs approaches the un-
derlying sharp image Is. Applying the Re-blurring method
on Îs (instead of Ib) gradually converges towards our ‘ideal’
scenario mentioned earlier this section: namely, when both
Is and Ib are given, we can seek within each local window,
the blur kernel that locally satisfies Is ∗ b(r, θ) = Ib . Thus
our flow estimation is gradually refined.

However, estimation of the flow with the Re-blurring
method alone is not accurate enough to obtain good flow
estimation, as it suffers from the aperture problem in small
image patches (just like in regular flow estimation). For ex-
ample, if a local patch contains only a blurry 1D edge, anal-
ysis of this patch alone can only estimate the component
of the local blur in the direction perpendicular to the edge,
but not in the direction parallel to the edge. This results in
ambiguous local blur recovery. Increasing the window size



may resolve the aperture problem, but may no longer sat-
isfy the locally-uniform motion assumption, especially at
motion discontinuities. In our current implementation we
usually work with patches of size around 30×30. Nonethe-
less, this often results in noisy blur-fields.

To alleviate this problem, we add a prior term to our blur
estimation process, in the form of a smoothness constraint,
which is imposed on the estimated blur-field

Eblur(K̂(u)) =
∑
i

wi‖∇ui‖2 (12)

where wi (the ith pixel weight) penalizes large flow (blur)
discontinuities that do not coincide with sharp image edges.
In our current implementation, wi is a decreasing sigmoid
function of ∇I (initially estimated using the blurry image
Ib, and later using the gradually recovered sharp image Îs).

To recap, our motion flow estimation boils down to the
following: Given the current estimate of the sharp image Îs,
Eq. 3 reduces to

E(K̂) = Edata(Îs, K̂) + Eblur(K̂). (13)

At each iteration, we first minimize Edata using our Re-
blurring method, yielding K̂(u). We then refine it to fur-
ther satisfy the smoothness constraint, by optimizing Eq. 13
(using Matlab’s lsqnonlin function), using the estimated K̂
as an initial guess.

4. Non-Uniform Deblurring Given K̂

We next explain how we deblur an image corrupted by
non-uniform blur given the blur field K̂. Optimizing Eq. 3
in this case reduces to

E(Îs) = Edata(Îs, K̂) + Eimage(Îs) (14)

The image prior Eimage is a combination of the inter-
nal patch recurrence prior [15] and the gradient sparsity
prior [14, 12]. The former is an image-specific prior,
whereas the latter helps reduce ringing artifacts.

The patch recurrence property is very strong in sharp nat-
ural images [5, 24]. However, it was shown to diminish sig-
nificantly in blurry images [15] (see illustration in Fig. 3).
It hence forms a very strong image-specific prior for image
deblurring. Michaeli and Irani [15] showed that in the uni-
form blur case, the patch recurrence property degrades only
across scales, therefore, they maximize the patch recurrence
property across scales in order to reconstruct a sharp image.
In this work we deal with non-uniform blur, in which the
patch recurrence property degrades both within and across
scales (as illustrated in Fig. 3). We use both deviations from
ideal recurrence to reconstruct the sharp image.

When an image is downscaled by a factor of α it be-
comes α-times sharper. For example, an edge smeared over
10 pixels in the original image, would be smeared over only

5 pixels in an image which is half the scale (α = 2). Be-
cause small patches recur across scales in sharp natural im-
ages, this implies that patches of the unknown sharp image
surface out in coarser scales of the blurry image. Michaeli
and Irani [15] used this observation in the case of uniform
blur. They gradually constructed the sharp image Îs from a
pool of α-times sharper patches extracted from an α-times
downscaled version of the image Îs

α
. Their iterative pro-

cess minimizes the degree of dissimilarity between patches
in Îs and their Nearest Neighbor patches (NNs) in Îs

α
.

Since in the downscaled version of the image the patches
are only α times sharper, they serve as an evolving image
specific prior for the gradually reconstructed sharp image,
which is better than a fixed prior learned externally on sharp
patches [25, 20]. We next show how to extend this idea to
the case of non uniform blurs.

Maximizing the patch-recurrence property within and
across scales (non-uniform blur case): The non-uniform
blur case is different from the uniform one, because even
though patches in the downscaled version are sharper than
the original scale patches, each patch will not necessarily
find its Nearest Neighbor (NN) in its sharper version. For
example, consider two identical sharp patches in Is under-
going different blurs, one of length r (denoted by P1), and
the other of length α · r (denoted by P2). In the α-times
downscaled image, the blurry patch P1 will be able to find
a blurry patch identical to itself in the down scaled version
of the blurry patch P2. This would be a better NN than its
own sharper downsacled version. This complicates things
and makes the construction algorithm of [15] inapplicable
to the non uniform blur case. On the other hand, in the
case of non-uniform blur, a patch might find a sharper ver-
sion of itself inside the same scale. For example, the blurry
patch P1 is an α-times sharper version of the blurry patch
P2 within the same image scale. This means that in the non-
uniform case, unlike [15], we do not want to maximize the
similarity between patches in Îs and their NNs in Îs

α
.

Instead, we want to maximize the similarity between
patches in Îs and an internal database of patchesDB(Îs, α)
extracted from the same scale and coarser scales, which are
guarantied to be α times sharper. Because the current esti-
mate K̂ is given, for each patch we know where to look for
within and across scales of the image for potentially sharper
NNs. Therefore, the recurrence prior, ρ(Îs, DB(Îs, α)),
measures the degree of dissimilarity between patches in Îs
and the internal database of at least α-times sharper patches
(as defined by K̂).

Direct optimization of Eq. 14 is intractable since ρ is not
convex. As in [25, 15], we adopt the “Half Quadratic Split-
ting” method [4], which solves the problem iteratively. In
each iteration the current estimate Îs is constructed from
patches in DB(Îs, α) to produce an intermediate sharper



image z. The data term is then enforced using the constraint
that the recovered image should be close to z. This gives
a new estimate Îs, used to construct an updated database
DB(Îs, α). This procedure is described in detail in [15]. In
the latter internal step (enforcing the data term), we add the
sparse gradient prior [14, 12], which minimizes

∑
i |∇Îs|γ

where γ < 1. This helps reduce ringing artifacts, especially
in cases of overestimation errors in K̂.

5. The Blind Deblurring Algorithm
Eq. 3 is not convex (due to the nature of the patch-

recurrence prior and the matrix K), hence has no closed-
form solution. We minimize it using an alternating iterative
minimization procedure. Our initial estimate of the non-
uniform blur-field û is computed directly from the blurry
image Ib, using the Re-blurring method (see Sec. 3). This
is used to generate our initial blur matrix K̂(u) (see Eq. 5).
The algorithm then proceeds to alternate between estimat-
ing a sharper image Îs and refining the blur field estimate
û, as described in Algorithm 1.

When estimating the blur field, we Re-blur the input im-
age with blurs of various magnitudes. The maximal blur
magnitude we use is a parameter of our algorithm, set to
75 pixels in our current simulations. Setting this maxi-
mal radius induces a (half) circle of possible blurs, which
is sampled every half a pixel. We then calculate and com-
pare MSEs on images Re-blurred with all these blur kernels,
following the description in Sec. 3.

In order to cope with large motion blurs, the algorithm is
performed coarse-to-fine, starting from a downscaled ver-
sion of Ib (~10 times smaller than the input). We typically
use a patch of size 30× 30 for estimating the blur-field. We
typically perform 7 iterations at each scale, and then up-
scale the sharpened image Îs by a factor of 4

3 to the next
finer level, where we use it to initialize the process.

6. Experiments
We evaluated our blind deblurring algorithm on both

synthetically blurred images and real blurry images. We
used the database created by [19], which comprises 15
images synthetically blurred by various non-uniform mo-
tion blur fields with ground-truth (GT) data. We further
added to it 30 more synthetically blurred images (uni-
form and non-uniform blurs); half of the images under-
went moderate blur (motion of up to 16 pixels), while
the other images were blurred by larger motion blur (up
to 38 pixels) – see www.wisdom.weizmann.ac.il/

˜vision/DeblurringByReblurring. We also ran
our algorithm on the real images used by [19], as well as on
additional real images with severe (unknown) blurs.

Results on real and synthetic images are compared to the
state-of-the-art CNN-based method [19]. We further com-

Input: Blurry image Ib
Output: Sharp image Îs and motion blur field û
Initialize: Îs = Ib
for t = 1, . . . ,T do

1. Estimate motion blur field (Sec. 3):

(a) Add pink noise to Îs, yielding Îs
noised

(b) Re-blur Îs
noised

to estimate û,
yielding K̂(u).

(c) Impose smoothness on û: Fix Îs and
minimize 13 w.r.t K̂(u), using K̂(u)
from step (b) as an initial guess.

2. Deblur image (Sec. 4):

(a) Construct DB(Îs, α) from patches of Îs
and its α-times downscaled version Îs

α
.

(b) Deblur image: Fix K̂ and DB(Îs, α),
and minimize 14 w.r.t Îs.

end

Algorithm 1: The blind deblurring algorithm

PSNR (db) SSIM Flow Error (pixels)

M
od

er
at

e
bl

ur

Ours 24.87 0.743 3.19
[19] 24.14 0.714 2.27
[23] 22.88 0.68 (no flow output)

L
ar

ge
bl

ur

Ours 22.01 0.624 5.74
[19] 20.84 0.56 8.64
[23] 20.47 0.54 (no flow output)

Table 1: Quantitative comparison to [19, 23]. Flow error is
presented in average End Point Error (measured in pixels).

pared our results on the synthetic database also to [23], since
the synthetic non-uniform blurs comply with their 3D cam-
era motion model assumption (the real images do not).

Figs. 1,2 and 5 show visual comparisons; Table 1 shows
quantitative comparisons. We quantify deblurring quality
by comparing the recovered sharp images with the GT sharp
images, using both the PSNR and SSIM measures. We also
compare the performance of blur field estimation by com-
paring the recovered blur field with the GT blur field, us-
ing the Average End Point Error (EPE), measured in image
pixels. It is defined as EPE =

√
(u− ugt)2 + (v − vgt)2,

where (ugt, vgt) denote the ground truth flow.
Our method performs better than [19, 23] on moderate

blurred images (+0.73dB, +2dB respectively), and does sig-
nificantly better on severely blurred ones (+1.2dB, +1.54dB
respectively). Our significant advantage over [19] on large
blurs is also clearly visible in Figs. 1, 2. Our ability to han-
dle a large range of non-uniform blurs stems from the fact
that our method does not rely on any training data, hence not

www.wisdom.weizmann.ac.il/~vision/DeblurringByReblurring
www.wisdom.weizmann.ac.il/~vision/DeblurringByReblurring


Figure 5: Visual comparison of our method to [19] on images with moderate blurs (see www.wisdom.weizmann.ac.
il/˜vision/DeblurringByReblurring for full sized images and more results).

restricted by a limited set of ‘familiar’ (trained) blur types.

Note however that on moderately blurred images, our
flow estimation yields slightly worse results than [19]. Nev-
ertheless, for these same estimated flows, our recovered
sharp images have improved PSNR and SSIM compared
to [19]. We attribute this to the fact that our flow estima-
tion is very inaccurate in uniform image regions (due to the
aperture problem). While this affects the flow error, it does
not affect the deblurring quality.

To show that the locally linear blur assumption is not
too restrictive, we ran our algorithm on the dataset of [11],
containing highly non-linear blurs obtained by general cam-
era motion. Our method yielded mean PSNR of 26.33dB,
which ranks comparably to 8 non-linear deblurring meth-
ods on this dataset (based on quantitative results reported
in [23]). This is despite the fact that all these methods are

non-linear, whereas ours is locally linear, and some (the bet-
ter ones) are inherently restricted to a pure 3D camera mo-
tion model, whereas our method can also handle non-rigid
dynamic scenes. This shows that our local linear model
does not pose a strong restriction.

7. Conclusion
We presented a method for single-image blind deblur-

ring of non-uniform blurs. Our method iterates between es-
timating the non-uniform blur-field (using the Re-blurring
method), and recovering the sharp image (using the image-
specific patch recurrence prior). Our method does not rely
on any training data, thus can handle a large variety of im-
ages and motions. Indeed we showed that it outperforms
current training-based methods, such as CNNs, especially
on large motions.

www.wisdom.weizmann.ac.il/~vision/DeblurringByReblurring
www.wisdom.weizmann.ac.il/~vision/DeblurringByReblurring
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