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Abstract

These notes provide a brief introduction to the theory of noncooperative differential
games. After the Introduction, Section 2 reviews the theory of static games. Different
concepts of solution are discussed, including Pareto optima, Nash and Stackelberg equi-
libria, and the co-co (cooperative-competitive) solutions. Section 3 introduces the basic
framework of differential games for two players. Open-loop solutions, where the controls
implemented by the players depend only on time, are considered in Section 4. It is shown
that Nash and Stackelberg solutions can be computed by solving a two-point boundary
value problem for a system of ODEs, derived from the Pontryagin maximum principle.

Section 5 deals with solutions in feedback form, where the controls are allowed to
depend on time and also on the current state of the system. In this case, the search
for Nash equilibrium solutions usually leads to a highly nonlinear system of Hamilton-
Jacobi PDEs. In dimension higher than one, this system is generically not hyperbolic
and the Cauchy problem is thus ill posed. Due to this instability, closed-loop solutions
to differential games are mainly considered in the special case with linear dynamics and
quadratic costs.

In Section 6, a game in continuous time is approximated by a finite sequence of static
games, by a time discretization. Depending of the type of solution adopted in each static
game, one obtains different concept of solutions for the original differential game.

Section 7 deals with differential games in infinite time horizon, with exponentially
discounted payoffs. In this case, the search for Nash solutions in feedback form leads to a
system of time-independent H-J equations. Section 8 contains a simple example of a game
with infinitely many players. This is intended to convey a flavor of the newly emerging
theory of mean field games.

Modeling issues, and directions of current research, are briefly discussed in Section 9.
Finally, the Appendix collects background material on multivalued functions, selections
and fixed point theorems, optimal control theory, and hyperbolic PDEs.
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1 Introduction

A basic problem in optimization theory is to find the maximum value of a function:

max
x∈X

φ(x) . (1.1)

Typically, φ is a continuous function and the maximum is sought over a closed, possibly
unbounded domain X ⊆ IRm. An extensive mathematical theory is currently available on
the existence of the maximum, on necessary and sufficient conditions for optimality, and on
computational methods. Interpreting φ as a payoff function, one can regard (1.1) as a decision
problem. Among all possible choices x ∈ X, we seek the one that provides the maximum
possible payoff.

As in (1.1), optimization theory deals with the case where there is only one individual,
making a decision and achieving a payoff. Game theory, on the other hand, is concerned
with the more complex situation where two or more individuals, or “players” are present.
Each player can choose among a set of available options. His payoff, however, depends also
on the choices made by all the other players.

For simplicity, consider the case of two players. Player 1 can choose a strategy x1 ∈ X1, while
Player 2 can choose x2 ∈ X2. For i = 1, 2, the goal of Player i is

maximize: φi(x1, x2) . (1.2)

In contrast with (1.1), it is clear that the problem (1.2) does not admit an “optimal” solution.
Indeed, in general it will not be possible to find a couple (x̄1, x̄2) ∈ X1×X2 which at the same
time maximizes the payoff of the first player and of the second player, so that

φ1(x̄1, x̄2) = max
x1,x2

φ1(x1, x2) , φ2(x̄1, x̄2) = max
x1,x2

φ2(x1, x2) .

For this reason, various alternative concepts of solutions have been proposed in the literature.
These can be relevant in different situations, depending on the information available to the
players and their ability to cooperate.

For example, if the players have no means to talk to each other and do not cooperate, then an
appropriate concept of solution is the Nash equilibrium, defined as a fixed point of the best
reply map. In other words, (x∗1, x

∗
2) is a Nash equilibrium if

(i) the value x∗1 ∈ X1 is the best choice for the first player, in reply to the strategy x∗2 adopted
by the second player. Namely

φ1(x
∗
1, x

∗
2) = max

x1∈X1

φ1(x1, x
∗
2),

(ii) the value x∗2 ∈ X2 is the best choice for the second player, in reply to the strategy x∗1
adopted by the first player. Namely

φ2(x
∗
1, x

∗
2) = max

x2∈X2

φ2(x
∗
1, x2).
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On the other hand, if the players can cooperate and agree on a joint course of action, their
best strategy (x∗1, x

∗
2) ∈ X1 ×X2 will be one which maximizes the sum:

φ1(x
∗
1, x

∗
2) + φ2(x

∗
1, x

∗
2) = max

x1,x2

[
φ1(x1, x2) + φ2(x1, x2)

]
.

In general, in order to be acceptable to both players, this strategy will also require a side
payment to compensate the player with the smaller payoff.

The situation modeled by (1.2) represents a static game, sometimes also called a “one-shot”
game. Each player makes one choice xi ∈ Xi, and this completely determines the payoffs. In
other relevant situations, the game takes place not instantaneously but over a whole interval
of time. This leads to the study of dynamic games, also called “evolutionary games”. In this
case, the strategy adopted by each player is described by a function of time t $→ ui(t). Here
the time variable t can take a discrete set of values, or range over a whole interval [0, T ].

We recall that, in the standard model of control theory, the state of a system is described
by a variable x ∈ IRn. This state evolves in time, according to an ODE

ẋ(t) = f(t, x(t), u(t)) t ∈ [0, T ] . (1.3)

Here t $→ u(t) ∈ U is the control function, ranging within a set U of admissible control values.

Given an initial condition
x(0) = x0 , (1.4)

a basic problem in optimal control is to find a control function u(·) which maximizes the payoff

J(u) = ψ(x(T ))−
∫ T

0
L(t, x(t), u(t)) dt . (1.5)

Here ψ is a terminal payoff, while L accounts for a running cost.

Differential games provide a natural extension of this model to the case where two or more
individuals are present, and each one of them seeks to maximize his own payoff. In the case
of two players, one thus considers a system whose state x ∈ IRn evolves according to the ODE

ẋ(t) = f(t, x(t), u1(t), u2(t)) t ∈ [0, T ] . (1.6)

Here t $→ ui(t) ∈ Ui, i = 1, 2, are the control functions implemented by the two players.

Given the initial condition (1.4), the goal of the i-th player is

maximize: Ji = ψi(x(T )) −
∫ T

0
Li(t, x(t), u1(t), u2(t)) dt . (1.7)

As in the case of one-shot games, various concepts of solution can be considered. In addition,
one can further distinguish between open-loop strategies ui = ui(t), depending only on the
time variable, and feedback strategies ui = ui(t, x), depending also on the current state of the
system. In a situation where each player has knowledge only of the initial state of the system,
it is natural to consider open-loop strategies. On the other hand, if the players can observe
the current state of the system, it is more appropriate to consider feedback strategies.
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In the literature, a first, well known example of a non-cooperative game in economics appeared
in [18]. Within this monograph, Cournot studied a duopoly, where two firms selling the same
product seek to adjust their production levels in order to maximize profits. His solution can
be interpreted as the fixed point of a best reply map.

The classic book [37] by von Neumann and Morgenstern is widely regarded as the starting
point of the mathematical theory of games. While this book focuses on two-players, zero-sum
games, the later paper of Nash [30] provided a concept of solution for general non-cooperative
games for N players. The monograph by Stackelberg [35] provided a further contribution to
the theory of games, motivated by the analysis of market economy.

The theory of differential games was first developed by Isaacs [25], followed by other authors;
see [22, 27]. A comprehensive presentation of dynamic games, with applications to economic
models, can be found in [9, 19].

Aim of the present notes is to provide a concise introduction to the mathematical theory of
games for two players. The first chapter deals with static games, while the remaining chapters
deal with dynamic games.

For static games, the existence of Nash equilibrium solutions is proved by an application of
the Kakutani fixed point theorem for multivalued maps. Using the approximate selection
theorem of Cellina, this can be derived as an easy consequence of the classical Brouwer fixed
point theorem. Specializing to zero-sum games, some basic results by von Neumann can then
be deduced as corollaries.

The analysis of differential games relies heavily on concepts and techniques of optimal control
theory. Equilibrium strategies in open-loop form can be found by solving a two-point boundary
value problem for an ODE derived from the Pontryagin maximum principle. On the other
hand, equilibrium strategies in feedback form are best studied by looking at a system of
Hamilton-Jacobi-Bellman PDEs for the value functions of the various players, derived from
the principle of dynamic programming.

A review of background material on multifunctions, fixed point theorems, and control theory,
is provided in the Appendix to these lecture notes. An excellent introduction to static games
can be found in [38]. See also [1] for a rich compendium of functional analytic techniques,
applied to optimization and game theory.

2 Static Games

In its basic form, a game for two players, say ‘Player A” and “Player B”, is given by:

• The two sets of strategies: A and B, available to the players.

• The two payoff functions: ΦA : A×B $→ IR and ΦB : A×B $→ IR.

5



If the first player chooses a strategy a ∈ A and the second player chooses b ∈ B, then the payoffs
achieved by the two players are ΦA(a, b) and ΦB(a, b), respectively. The goal of each player
is to maximize his own payoff. We shall always assume that each player has full knowledge of
both payoff functions ΦA,ΦB , but he may not know in advance the strategy adopted by the
other player.

If ΦA(a, b) + ΦB(a, b) = 0 for every pair of strategies (a, b), the game is called a zero sum
game. Clearly, a zero-sum game is determined by one single payoff function Φ = ΦA = −ΦB.

Throughout the following, our basic assumption will be

(A1) The sets A and B are compact metric spaces. The payoff functions ΦA,ΦB are continuous
functions from A×B into IR.

The simplest class of games consists of bi-matrix games, where each player has a finite set
of strategies to choose from. Say,

A
.
= {a1, a2 , . . . , am} , B

.
= {b1, b2 , . . . , bn} . (2.1)

In this case, each payoff function is determined by its m× n values

ΦA
ij

.
= ΦA(ai, bj) , ΦB

ij
.
= ΦB(ai, bj) . (2.2)

Of course, these numbers can be written as the entries of two m× n matrices. The game can
also be conveniently represented by an m × n “bi-matrix”, where each entry consists of the
two numbers: ΦA

ij , ΦB
ij, see figures 3, 4. 5.

2.1 Solution concepts

In general, one cannot speak of an “optimal solution” of the game. Indeed, an outcome that
is optimal for one player can be very bad for the other one. We review here various concepts
of solutions. These can provide appropriate models in specific situations, depending on the
information available to the players and on their willingness to cooperate.

I - Pareto optimality. A pair of strategies (a∗, b∗) is said to be Pareto optimal if there
exists no other pair (a, b) ∈ A×B such that

ΦA(a, b) > ΦA(a∗, b∗) and ΦB(a, b) ≥ ΦB(a∗, b∗)

or
ΦB(a, b) > ΦB(a∗, b∗) and ΦA(a, b) ≥ ΦA(a∗, b∗) .

In other words, it is not possible to strictly increase the payoff of one player without strictly
decreasing the payoff of the other.
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In general, a game can admit several Pareto optima (see Fig. 6). In order to construct a pair of
strategies which is Pareto optimal, one can proceed as follows. Choose any number λ ∈ [0, 1]
and consider the optimization problem

max
(a,b)∈A×B

λΦA(a, b) + (1− λ)ΦB(a, b) . (2.3)

By the compactness and continuity assumptions (A1), an optimal solution does exist. Any
pair (a∗, b∗) where the maximum is attained yields a Pareto optimum.

Further concepts of solution can be formulated in terms of the best reply maps. For a given
choice b ∈ B of player B, consider the set of best possible replies of player A:

RA(b)
.
=
{
a ∈ A ; ΦA(a, b) = max

ω∈A
ΦA(ω, b)

}
. (2.4)

Similarly, for a given choice a ∈ A of player A, consider the set of best possible replies of
player B:

RB(a)
.
=
{
b ∈ B ; ΦB(a, b) = max

ω∈B
ΦB(a,ω)

}
. (2.5)

By the assumption (A1), the above sets are non-empty. However, in general they need not be
single-valued. Indeed, our assumptions imply that the maps a $→ RB(a) and b $→ RA(b) are
upper semicontinuous, with compact values.

II - Stackelberg equilibrium. This models a situation with asymmetry of information.
We assume that player A (the leader) announces his strategy in advance, and then player B
(the follower) makes his choice accordingly.

In this case, the game can be reduced to a pair of optimization problems, solved one after the
other. In connection with the strategy a adopted by the first player, the second player needs
to maximize his payoff function b $→ ΦB(a, b). He will thus choose a best reply b∗ ∈ RB(a).
Assuming that this reply is unique, say b∗ = β(a), the goal of Player A is now to maximize
the composite function a $→ ΦA(a, β(a)).

More generally, we shall adopt the following definition, which does not require uniqueness of
the best reply map. In case where player B has several best replies to a value a ∈ A, we take
here the optimistic view that he will choose the one which is most favorable to Player A.

A pair of strategies (aS , bS) ∈ A × B is called a Stackelberg equilibrium if bS ∈ RB(aS)
and moreover

ΦA(a, b) ≤ ΦA(aS , bS) for every pair (a, b) with b ∈ RB(a).

Under the assumption (A1), it is easy to check that a Stackelberg equilibrium always exists.
Indeed, consider the domain

R
.
= {(a, b) ; b ∈ RB(a)} ⊆ A×B .
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By the compactness of A,B and the continuity of ΦB, the set R is closed, hence compact.
Therefore, the continuous function ΦA attains its global maximum at some point (aS , bS) ∈ R.
This yields a Stackelberg equilibrium.

Q

B

A

Sb

Sa

β(a)

Φ  =
B constant

Φ  =
A

constant

P

Figure 1: The figure shows the level curves of the two payoff functions. Here player A chooses the
horizontal coordinate, player B the vertical coordinate. The payoff function ΦA attains its global
maximum at P , while ΦB attains its maximum at Q. If the first player chooses a strategy a ∈ A,
then β(a) ∈ B is the best reply for the second player. The pair of strategies (aS , bS) is a Stackelberg
equilibrium. Notice that at this point the curve b = β(a) is tangent to a level curve of ΦA.

III - Nash equilibrium. This models a symmetric situation where the players have no
means to cooperate and do not share any information about their strategies.

The pair of strategies (a∗, b∗) is a Nash equilibrium of the game if, for every a ∈ A and
b ∈ B, one has

ΦA(a, b∗) ≤ ΦA(a∗, b∗) , ΦB(a∗, b) ≤ ΦB(a∗, b∗) . (2.6)

In other words, no player can increase his payoff by single-mindedly changing his strategy, as
long as the other player sticks to the equilibrium strategy. Observe that a pair of strategies
(a∗, b∗) is a Nash equilibrium if and only if it is a fixed point of the best reply map:

a∗ ∈ RA(b∗) , b∗ ∈ RB(a∗) .

The following examples show that:

(i) in general, a Nash equilibrium may not exist,
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b

A

= constantΦ
A

Φ
B= constant

Q

P

B

aNash

Nash

Figure 2: Here player A chooses the horizontal coordinate, player B the vertical cooordinate. The
payoff function ΦA attains its global maximum at P , while ΦB attains its global maximum at Q. The
pair of strategies (aNash , bNash) is a Nash equilibrium. Notice that at this point the level curve of ΦA

has horizontal tangent while the level curve of ΦB has vertical tangent.

(ii) the Nash equilibrium need not be unique,

(iii) different Nash equilibria can yield different payoffs to each player,

(iv) a Nash equilibrium may not be a Pareto optimum.

Example 1. Assume that each player draws a coin, choosing to show either head or tail. If
the two coins match, player A earns $1 and player B loses $1. If the two coins do not match,
player B earns $1 and player A loses $1.

This is a zero-sum game, described by the bi-matrix in Figure 3. By direct inspection, one
checks that it does not admit any Nash equilibrium solution.

T

T

1
−1 1

1
1

−1

−1
−1

1

1

−1

−1

H

H

T

T

Player B

 APlayer 

H

H

Figure 3: The bi-matrix of the payoffs for the “head and tail” game. Since this is a zero-sum game,
it can be represented by a single matrix (right), containing the payoffs for the first player.

Example 2. Consider the game whose bi-matrix of payoffs is given in Figure 4. The pair of
strategies (a1, b3) is a Nash equilibrium, as well as a Pareto optimum. On the other hand, the
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pair of strategies (a2, b1) is a Nash equilibrium but not a Pareto optimum. Indeed, (a1, b3) is
the unique Pareto optimum.

1

3

5

3

0
0

0
0

0
0

4

0
0

a

a

1

2

b2 b
3b

Figure 4: A bi-matrix of payoffs, with two Nash equlibrium points but only one Pareto optimum.

Example 3 (prisoners’ dilemma). Consider the game with payoffs described by the bi-
matrix in Figure 5. This models a situation where two prisoners are separately interrogated.
Each one has two options: either (C) confess and accuse the other prisoner, or (N) not confess.
If he confesses, the police rewards him by reducing his sentence. None of the prisoners, while
interrogated, knows about the behavior of the other.

B

Player  A
C

N

C N

−6
−6

−1
−1

−8
0

0
−8

Player 

Figure 5: The bi-matrix of payoffs for the “prisoners’ dilemma”.

The negative payoffs account for the number of years in jail faced by the two prisoners,
depending on their actions. Taking the side of player A, one could argue as follows. If player
B confesses, my two options result in either 6 or 8 years in jail, hence confessing is the best
choice. On the other hand, if player B does not confess, then my two options result in either
0 or 1 years in jail. Again, confessing is the best choice. Since the player B can argue exactly
in the same way, the outcome of the game is that both players confess, and get a 6 years
sentence. In a sense, this is paradoxical because an entirely rational argument results in the
worst possible outcome: the total number of years in jail for the two prisoners is maximal.
If they cooperated, they could both have achieved a better outcome, totaling only 2 years in
jail.

Observe that the pair of strategies (C,C) is the unique Nash equilibrium, but it is not Pareto
optimal. On the other hand, all three other pairs (C,N), (N,C), (N,N) are Pareto optimal.

Example 4. Let A = B = [0, 4] and consider the payoff functions (see figure 6)

ΦA(a, b) = 2a+ 2b−
a2

2
, ΦB(a, b) = a+ b−

b2

2
. (2.7)
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a

b

Φ
A

B
Φ

0

Pareto optimaNash equilibrium
4

4

1

20

Figure 6: The payoff map (a, b) $→ (ΦA,ΦB) for the game (2.7). The Nash equilibrium is (2, 1), which
does not yield a Pareto optimum.

If (a∗, b∗) is a Nash equilibrium, then

a∗ = argmax
a∈A

{
2a+ 2b∗ −

a2

2

}
= 2 ,

b∗ = argmax
b∈B

{
a∗ + b−

b2

2

}
= 1 .

Hence (2, 1) is the unique Nash equilibrium solution. This is not a Pareto optimum. Indeed,

ΦA(2, 1) = 4 , ΦB(2, 1) =
5

2
,

while the pair of strategies (3, 2) yields a strictly better payoff to both players:

ΦA(3, 2) =
11

2
, ΦB(3, 2) = 3 .

To find Pareto optimal points, for any 0 < λ < 1 we consider the optimization problem

max
(a,b)∈A×B

{
λΦA(a, b) + (1− λ)ΦB(a, b)

}
= max

a,b∈[0,4]

{
(λ+1)a+ (λ+1)b−

λa2 + (1− λ)b2

2

}
.

This yields the Pareto optimal point (aλ, bλ), with

aλ = arg max
a∈[0,4]

{
(λ+ 1)a−

λa2

2

}
= min

{
1 +

1

λ
, 4

}
,

bλ = arg max
b∈[0,4]

{
(λ+ 1)b−

(1− λ)b2

2

}
= min

{1 + λ

1− λ
, 4

}
.

2.2 Existence of Nash equilibria

We now state a basic existence theorem for a Nash equilibrium, valid under suitable continuity
and convexity assumptions. The proof is a straightforward application of Kakutani’s fixed
point theorem.
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Theorem 1 (existence of Nash equilibria). Assume that the sets of strategies A,B are
compact, convex subsets of IRn. Let the payoff functions ΦA,ΦB be continuous and assume
that

a $→ ΦA(a, b) is a concave function of a, for each fixed b ∈ B,
b $→ ΦB(a, b) is a concave function of b, for each fixed a ∈ A.

Then the non-cooperative game admits a Nash equilibrium.

Proof. Consider the best reply maps RA, RB , defined at (2.4)-(2.5).

1. The compactness of B and the continuity of ΦB imply that the function

a $→ m(a)
.
= max

b∈B
ΦB(a, b)

is continuous. Therefore, the set

graph(RB) =
{
(a, b) ; b ∈ RB(a)

}
=

{
(a, b) ; ΦB(a, b) = m(b)

}

is closed. Having closed graph, the multifunction a $→ RB(a) ⊆ B is upper semicontinuous.

2. We claim that each set RB(a) ⊆ B is convex. Indeed, let b1, b2 ∈ RB(a), so that

ΦB(a, b1) = ΦB(a, b2) = m(a)

and let θ ∈ [0, 1]. Using the concavity of the function b $→ ΦB(a, b) we obtain

m(a) ≥ ΦB(a , θb1 + (1− θ)b2) ≥ θΦB(a, b1) + (1− θ)ΦB(a, b2) = m(a).

Since B is convex, one has θb1 + (1− θ)b2 ∈ B. Hence θb1 + (1− θ)b2 ∈ RB(a), proving our
claim.

3. By the previous steps, the multifunction a $→ RB(a) ⊆ B is upper semicontinuous, with
compact, convex values. Of course, the same holds for the multifunction b $→ RA(b) ⊆ A.

We now consider the multifunction on the product space A×B, defined as

(a, b) $→ RA(b)×RB(a) ⊆ A×B.

By the previous arguments, this multifunction is upper semicontinuous, with compact convex
values. Applying Kakutani’s fixed point theorem, we obtain a pair of strategies (a∗, b∗) ∈(
RA(b∗), RB(a∗)

)
, i.e. a Nash equilibrium solution.

2.3 Randomized strategies

If the convexity assumptions fail, the previous theorem does not apply. Clearly, the above
result cannot be used if one of the players can choose among a finite number of strategies.
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As shown by Example 1, there are games which do not admit any Nash equilibrium solution.
To achieve a general existence result, one needs to relax the definition of solution, allowing
the players to choose randomly among their sets of strategies.

Definition. A randomized strategy for player A is a probability distribution µ on the his
set of strategies A. Similarly, a randomized strategy for player B is a probability distribution
ν on the set B.

Given two randomized strategies µ, ν for players A and B respectively, the corresponding payoff
functions are defined as

Φ̃A(µ, ν)
.
=

∫

A×B
ΦA(a, b) dµ⊗ dν . Φ̃B(µ, ν)

.
=

∫

A×B
ΦB(a, b) dµ⊗ dν . (2.8)

Remark 1. The above quantities Φ̃A(µ, ν) and Φ̃B(µ, ν) are the expected values of the
payoffs, if the two players choose random strategies, independent of each other, according to
the probability distributions µ, ν, respectively.

In the following, by P(A),P(B) we denote the family of all probability measures on the sets A,
B, respectively. Notice that to each a ∈ A there corresponds a unique probability distribution
concentrating all the mass at the single point a. This will be called a pure strategy. Pure
strategies are a subset of all randomized strategies.

Remark 2. If A = {a1, a2, . . . , am} is a finite set, a probability distribution on A is uniquely
determined by a vector x = (x1, . . . , xm) ∈ ∆m, where

∆m
.
=

{

x = (x1, . . . , xm) ; xi ∈ [0, 1] ,
m∑

i=1

xi = 1

}

. (2.9)

Here xi is the probability that player A chooses the strategy ai.

Given the bi-matrix game described at (2.1)-(2.2), the corresponding randomized game can
be represented as follows. The two players choose from the sets of strategies

Ã
.
= ∆m , B̃

.
= ∆n . (2.10)

Given probability vectors x = (x1, . . . , xm) ∈ ∆m and y = (y1, . . . , yn) ∈ ∆n , the payoff
functions are

Φ̃A(x, y)
.
=

∑

ij

ΦA
ij xiyj , Φ̃B(x, y)

.
=

∑

ij

ΦB
ij xiyj . (2.11)

The concept of Nash equilibrium admits a natural extension to the class of randomized strate-
gies. A fundamental result proved by J. Nash is that every game has an equilibrium solution,
within the family of randomized strategies.

Theorem 2 (existence of Nash equilibria for randomized strategies). Let the as-
sumptions (A1) hold. Then there exist probability measures µ∗ ∈ P(A) and ν∗ ∈ P(B) such
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that
Φ̃A(µ, ν∗) ≤ Φ̃A(µ∗, ν∗) for all µ ∈ P(A) , (2.12)

Φ̃B(µ∗, ν) ≤ Φ̃B(µ∗, ν∗) for all ν ∈ P(B) . (2.13)

Proof. The theorem will first be proved for a bi-matrix game, then in the general case.

1. Consider the bi-matrix game described at (2.1)-(2.2). We check that all assumptions of
Theorem 1 are satisfied.

The sets of randomized strategies, defined at (2.9)-(2.10), are compact convex simplexes. The
payoff functions ΦA,ΦB : ∆m ×∆n $→ IR, defined at (2.11), are bilinear, hence continuous.

For each given strategy y ∈ ∆n chosen by the second player, the payoff function for the first
player

x $→ ΦA(x, y) =
∑

i,j

ΦA
ij xiyj

is linear, hence concave. Similarly, for each x ∈ ∆m, the payoff function for the second player

y $→ ΦB(x, y) =
∑

i,j

ΦB
ij xiyj

is linear, hence concave.

We can thus apply Theorem 1 and obtain the existence of a Nash equilibrium solution (x∗, y∗) ∈
∆m ×∆n .

2. In the remainder of the proof, using an approximation argument we extend the result to the
general case where A,B are compact metric spaces. Let {a1, a2, . . .} be a sequence of points
dense in A, and let {b1, b2, . . .} be a sequence of points dense in B. For each n ≥ 1, consider
the game with payoffs ΦA,ΦB but where the players can choose only among the finite sets
of strategies An

.
= {a1, . . . , an} and Bn

.
= {b1, . . . , bn}. By the previous step, this game has

a Nash equilibrium solution, given by a pair of randomized strategies (µn, νn). Here µn and
νn are probability distributions supported on the finite sets An and Bn, respectively. Since
both A and B are compact, by possibly extracting a subsequence we can achieve the weak
convergence

µn ⇀ µ∗, νn ⇀ ν∗ as n → ∞, (2.14)

for some probability measures µ∗ ∈ P(A) and ν∗ ∈ P(B).

3. We claim that the pair (µ∗, ν∗) in (2.14) provides a Nash equilibrium solution, i.e. (2.12)-
(2.13) hold. This will be proved by showing that

∫

A×B
ΦA(a, b) dµ∗ ⊗ dν∗ = max

µ∈P(A)

∫

A×B
ΦA(a, b) dµ ⊗ dν∗, (2.15)

together with the analogous property for ΦB.
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Let ε > 0 be given. By the assumption (A1), there exists δ > 0 such that

d(a, a′) ≤ δ and d(b, b′) ≤ δ imply
∣∣∣ΦA(a, b) − ΦA(a′, b′)

∣∣∣ < ε. (2.16)

Since the sequences {ak ; k ≥ 1} and {bk ; k ≥ 1} are dense in A and B respectively, we can
find an integer N = N(δ) such that the following holds. The set A is covered by the union of
the open balls B(ai, δ), i = 1, . . . , N , centered at the points ai with radius δ > 0. Similarly,
the set B is covered by the union of the open balls B(bj , δ), j = 1, . . . , N , centered at the
points bj with radius δ > 0.

Let {ϕ1, . . . ,ϕN} be a continuous partition of unity on A, subordinated to the covering
{B(ai, δ) ; i = 1, . . . , N}, and let {ψ1, . . . ,ψN} be a continuous partition of unity on B,
subordinated to the covering {B(bj , δ) ; j = 1, . . . , N}.

Any probability measure µ ∈ P(A) can now be approximated by a probability measure µ̂
supported on the discrete set AN = {a1, . . . , aN}. This approximation is uniquely defined by
setting

µ̂({ai})
.
=
∫
ϕi dµ i = 1, . . . , N .

Similarly, any probability measure ν ∈ P(B) can now be approximated by a probability
measure ν̂ supported on the discrete set BN = {b1, . . . , bN}. This approximation is uniquely
defined by setting

ν̂({bj})
.
=
∫
ψj dν j = 1, . . . , N .

For every pair of probability measures (µ, ν), by (2.16) the above construction yields
∣∣∣∣

∫

A×B
ΦA(a, b) dµ⊗ dν −

∫

A×B
ΦA(a, b) dµ̂⊗ dν̂

∣∣∣∣

≤
∫

A×B

∑

i,j

ϕi(ai)ψj(bj)
∣∣∣ΦA(a, b) − ΦA(ai, bj)

∣∣∣ dµ⊗ dν

≤
∫

A×B
ε dµ⊗ dν = ε .

(2.17)

4. For all i, j = 1, . . . , N , as n → ∞ the weak convergence (2.14) yields

µ̂n({ai}) =
∫
ϕi dµn →

∫
ϕi dµ

∗ = µ̂∗({ai}) . (2.18)

Similarly, ν̂n({bj}) → ν̂∗({bj}).

Observe that, for every µ ∈ P(A) and n ≥ N , one has

Φ̃A(µ̂, νn) ≤ Φ̃A(µn, νn). (2.19)

Indeed, µ̂ is a probability measure supported on the finite set AN = {a1, . . . , aN} ⊆ An, and
the pair of randomized strategies (µn, νn) provides a Nash equilibrium to the game restricted
to An ×Bn. Using (2.17), (2.18), and (2.19), for every µ ∈ P(A) we obtain

Φ̃A(µ, ν∗)− ε ≤ Φ̃A(µ̂, ν̂∗) = lim
n→∞

Φ̃A(µ̂, ν̂n)

≤ lim sup
n→∞

Φ̃A(µ̂, νn) + ε ≤ lim
n→∞

Φ̃A(µn, νn) + ε = Φ̃A(µ∗, ν∗) + ε .
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Since µ ∈ P(A) and ε > 0 were arbitrary, this proves (2.12). The proof of (2.13) is entirely
similar.

2.4 Zero-sum games

Consider again a game for two players, with payoff functions ΦA,ΦB : A × B $→ IR. In the
special case where ΦB = −ΦA, we have a zero-sum game, described by a single function

Φ : A×B $→ IR . (2.20)

Given any couple (a, b) with a ∈ A and b ∈ B, we think of Φ(a, b) as the amount of money
that B pays to A, if these strategies are chosen. The goal of player A is to maximize this
payoff, while player B wishes to minimize it. As before, we assume

(A1′) The domains A,B are compact metric spaces and the function Φ : A × B $→ IR is
continuous.

In particular, this implies that the maps

b $→ max
a∈A

Φ(a, b), a $→ min
b∈B

Φ(a, b) (2.21)

are both continuous.

In a symmetric situation, each of the two players will have to make his choice without a priori
knowledge of the action taken by his opponent. However, one may also consider cases where
one player has this advantage of information.

CASE 1: The second player chooses a strategy b ∈ B, then the first player makes his choice,
depending on b.

This is clearly a situation where player A has the advantage of knowing his opponent’s strategy.
The best reply of player A will be some α(b) ∈ A such that

Φ(α(b), b) = max
a∈A

Φ(a, b) .

As a consequence, the minimum payment that the second player can achieve is

V + .
= min

b∈B
Φ(α(b), b) = min

b∈B
max
a∈A

Φ(a, b) . (2.22)

CASE 2: The first player chooses a strategy a ∈ A, then the second player makes his choice,
depending on a.

In this case, it is player B who has the advantage of knowing his opponent’s strategy. The
best reply of player B will be some β(a) ∈ B such that

Φ(a, β(a)) = min
b∈B

Φ(a, b) .
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As a consequence, the maximum payment that the first player can secure is

V − .
= max

a∈A
Φ(a, β(a)) = max

a∈A
min
b∈B

Φ(a, b) . (2.23)

Lemma 1. In the above setting, one has

V − .
= max

a∈A
min
b∈B

Φ(a, b) ≤ min
b∈B

max
a∈A

Φ(a, b)
.
= V + . (2.24)

Proof. Consider the (possibly discontinuous) map a $→ β(a), i.e. the best reply map for
player B. Since

V − = sup
a∈A

Φ(a, β(a)),

given any ε > 0 there exists aε ∈ A such that

Φ(aε, β(aε)) > V − − ε . (2.25)

In turn, this implies

V + = min
b∈B

max
a∈A

Φ(a, b) ≥ min
b∈B

Φ(aε, b) = Φ(aε, β(aε)) > V − − ε .

Since ε > 0 was arbitrary, this proves the lemma.

In general, one may have the strict inequality V − < V +. In the case where equality holds, we
say that this common value V

.
= V − = V + is the value of the game.

Moreover, if there exist strategies a∗ ∈ A and b∗ ∈ B such that

min
b∈B

Φ(a∗, b) = Φ(a∗, b∗) = max
a∈A

Φ(a, b∗) , (2.26)

then we say that the pair (a∗, b∗) is a saddle point of the game. Calling V the common value
of the two quantities in (2.26), the following holds:

- If A adopts the strategy a∗, he is guaranteed to receive no less than V .

- If B adopts the strategy b∗, he is guaranteed to pay no more than V .

For a zero-sum game, the concept of saddle point is thus the same as a Nash equilibrium.

Theorem 3 (value and saddle point). Under the assumptions (A′), the zero-sum game
(2.20) has a value V if and only if a saddle point (a∗, b∗) exists. In the positive case, one has

V = V − = V + = Φ(a∗, b∗) . (2.27)

Proof. 1. Assume that a saddle point (a∗, b∗) exists. Then

V − .
= max

a∈A
min
b∈B

Φ(a, b) ≥ min
b∈B

Φ(a∗, b) = max
a∈A

Φ(a, b∗) ≥ min
b∈B

max
a∈A

Φ(a, b)
.
= V +.
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By (2.24) this implies V
.
= V − = V +, showing that the game has a value.

2. Next, assume V
.
= V − = V +. Let a $→ β(a) be the best reply map for player B. For each

ε > 0 choose aε ∈ A such that (2.25) holds. Since the sets A and B are compact, we can
choose a subsequence εn → 0 such that the corresponding strategies converge, say

aεn → a∗ , β(aεn) → b∗.

We claim that (a∗, b∗) is a saddle point. Indeed, the continuity of the payoff function Φ yields

Φ(a∗, b∗) = lim
n→∞

Φ(aεn , β(aεn)).

From
V − − εn < Φ(aεn , β(aεn)) ≤ sup

a∈A
Φ(a, β(a)) = V +,

letting ε→ 0 we conclude

V − ≤ lim
n→∞

Φ(aεn , β(aεn)) = Φ(a∗, b∗) ≤ V +.

Since we are assuming V − = V +, this shows that (a∗, b∗) is a saddle point, concluding the
proof.

Remark 3. As noted in Example 2, a non-zero-sum game may admit several Nash equilibrium
solutions, providing different payoffs to each players. However, for a zero-sum game, if a Nash
equilibrium exists, then all Nash equilibria yield the same payoff. Indeed, this payoff (i.e., the
value of the game) is characterized as

V = min
b∈B

max
a∈A

Φ(a, b) = max
a∈A

min
b∈B

Φ(a, b) .

By applying Theorem 1 to the particular case of a zero-sum game we obtain

Corollary 1 (Existence of a saddle point). Consider a zero-sum game, satisfying the
conditions (A1′). Assume that the sets A,B are convex, and moreover

a $→ Φ(a, b) is a concave function of a, for each fixed b ∈ B,
b $→ Φ(a, b) is a convex function of b, for each fixed a ∈ A.

Then the game admits a Nash equilibrium, i.e. a saddle point.

More generally, as stated in Theorem 2, a game always admits a Nash equilibrium in the class
of randomized strategies. Specializing this result to the case of zero-sum games one obtains

Corollary 2 (Existence of a saddle point in the class of randomized strategies).
Under the assumptions (A1′), a zero-sum game always has a value, and a saddle point, within
the class of randomized strategies.

Otherwise stated, there exists a pair (µ∗, ν∗) of probability measures on A and B respectively,
such that

∫

A×B
Φ(a, b) dµ ⊗ dν∗ ≤

∫

A×B
Φ(a, b) dµ∗ ⊗ dν∗ ≤

∫

A×B
Φ(a, b) dµ∗ ⊗ dν ,
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for every other probability measures µ ∈ P(A) and ν ∈ P(B).

If the game already has a value with in the class of pure strategies, the two values of course
coincide.

We now specialize this result to the case of a matrix game, where A = {a1, . . . , am} and
B = {b1, . . . , bn}. The sets of randomized strategies can now be identified with the simplexes
∆m, ∆n defined at (2.9). Let Φij

.
= Φ(ai, bj). According to Corollary 2, there exist x∗ ∈ ∆m

and y∗ ∈ ∆n such that

max
x∈∆m

⎛

⎝
∑

i,j

Φijxiy
∗
j

⎞

⎠ ≤
∑

i,j

Φij x
∗
i y

∗
j ≤ min

y∈∆n

⎛

⎝
∑

i,j

Φij x
∗
i yj

⎞

⎠ .

To compute the optimal randomized strategies x∗, y∗ we observe that any linear function on a
compact domain attains its global maximum or minimum at an extreme point of the domain.
Therefore

max
x∈∆m

⎛

⎝
∑

i,j

Φij xiyj

⎞

⎠ = max
i∈{1,...,m}

⎛

⎝
∑

j

Φij yj

⎞

⎠ ,

min
y∈∆n

⎛

⎝
∑

i,j

Φij xiyj

⎞

⎠ = min
j∈{1,...,n}

(
∑

i

Φij xi

)

.

The value x∗ = (x∗1, . . . , x
∗
m) ∈ ∆m is thus the point where the function

x $→ Φmin(x)
.
= min

j

(
∑

i

Φij xi

)

(2.28)

attains its global maximum. Similarly, the value y∗ = (y∗1 , . . . , y
∗
n) ∈ ∆n is thus the point

where the function

y $→ Φmax(y)
.
= max

i

⎛

⎝
∑

j

Φij yj

⎞

⎠ (2.29)

attains its global minimum.

A P

R

R P S
Player   B

Player   −1

−1

1

S 1 0

0

−10 1

Figure 7: The matrix describing the “rock-paper-scissors” game. Its entries represent the payments
from player B to player A.

Example 5 (rock-paper-scissors game). This is a zero-sum matrix game. Each player has
a set of three choices, which we denote as {R,P, S}. The corresponding matrix of payoffs for
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player A is given in Figure 7. The upper and lower values of the game are V + = 1, V − = −1.
No saddle point exists within the class of pure strategies. However, the game has a saddle
point within the class of randomized strategies, where each player chooses among his three

options with equal probabilities
(
1
3 ,

1
3 ,

1
3

)
. In this case, the value of the game is V = 0.

(y)
b1 b2

0

1

3

0
Player  A

a1

a2

Player  B

0 1

3

1
3/4

1

3

0 1
2

y
2

x
Φ

min(x)

Φ
max

Figure 8: Left: the payoff matrix for the zero-sum game described in Example 6. Center and right:
the thick lines represent the graphs of the functions Φmin and Φmax.

Example 6. Player B (the defender) has two military installations. He can defend one,
but not both. Player A (the attacker) can attack one of the two. An installation which is
attacked but not defended gets destroyed. The first installation is worth three times more than
the second one. Each player must decide which installation to attack (or defend), without
knowledge of the other player’s strategy.

This situation can be modeled as a zero-sum game, where the payoff matrix is given in Figure
8, left. Still in Fig. 8, center and right, are the graphs of the functions in (2.28)-(2.29), namely

Φmin(x) = min
j=1,2

(
Φ1j x1 + Φ2j x2

)
= min

{
3x1 , x2

}
, (x1 = 1− x2),

Φmax(y) = max
i=1,2

(
Φi1 y1 + Φi2 y2

)
= max

{
y1 , 3y2

}
, (y1 = 1− y2).

A saddle point, in randomized strategies, is provided the pair (x∗, y∗), where

x∗ =
(
1

4
,
3

4

)
, y∗ =

(
3

4
,
1

4

)
.

In other words, Player B should favor defending his first (and more valuable) installation with
odds 3 : 1. Player A should favor attacking the second (less valuable) installation with odds
3 : 1. The more valuable installation is destroyed with probability 1/16, while the less valuable
one gets destroyed with probability 9/16. The value of the game is 3/4.

2.5 The co-co solution

Consider again a general non-zero sum game, described by the payoff functions

ΦA : A×B $→ IR , ΦB : A×B $→ IR , (2.30)
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under the assumptions (A1). If the two players can talk to each other and cooperate, they
can adopt a pair of strategies (a♯, b♯) which maximizes their combined payoffs:

V ♯ .
= ΦA(a♯, b♯) + ΦB(a♯, b♯) = max

(a,b)∈A×B

{
ΦA(a, b) + ΦB(a, b)

}
. (2.31)

This choice, however, may favor one player much more that the other. For example, one
may have ΦB(a♯, b♯) << ΦA(a♯, b♯), an outcome which may not be agreeable to Player B. In
this case Player A needs to provide some incentive, in the form of a side payment, inducing
Player B to adopt the strategy b♯.

In general, splitting the total payoff V ♯ in two equal parts will not be acceptable, because it
does not reflect the relative strength of the players and their personal contributions to the
common achievement. A more realistic procedure to split the total payoff among the two
players, recently proposed in [26], goes as follows.

Given the two payoff functions ΦA,ΦB , define

Φ♯(a, b)
.
=

ΦA(a, b) + ΦB(a, b)

2
, Φ♭(a, b)

.
=

ΦA(a, b)− ΦB(a, b)

2
. (2.32)

Observing that
ΦA = Φ♯ +Φ♭ , ΦB = Φ♯ − Φ♭,

we can split the original game as the sum of a purely cooperative game, where both players
have exactly the same payoff Φ♯, and a purely competitive (i.e., zero-sum) game, where the
players have opposite payoffs: Φ♭ and −Φ♭.

Let V ♯ be as in (2.31) and let V ♭ be the value of the zero-sum game. This value is always well
defined, possibly in terms of randomized strategies. The cooperative-competitive value
(or co-co value, in short) of the original game (2.30) is then defined as the pair of payoffs

(
V ♯

2
+ V ♭ ,

V ♯

2
− V ♭

)

. (2.33)

A cooperative-competitive solution (or co-co solution, in short) of the game described
at (2.30) is defined as a pair of strategies (a♯, b♯) together with a side payment p from Player B
to Player A, such that

ΦA(a♯, b♯) + p =
V ♯

2
+ V ♭, ΦB(a♯, b♯)− p =

V ♯

2
− V ♭.

Here V ♯ is maximum combined payoff defined at (2.31), while V ♭ is the value of the zero-sum
game with payoff Φ♭ defined at (2.32).

The concept of co-co solution models a situation where the players join forces, implement a
strategy (a♯, b♯) which achieves their maximum combined payoff. Then one of the two makes
a side payment to the other, so that in the end the payoffs (2.33) are achieved.

Example 7. Consider the bi-matrix game described in Fig. 9. In this case we have V ♯ = 12,
V ♭ = 2. Observe that (a2, b2) is a saddle point for the corresponding zero-sum game.
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In a co-co solution of the game, the players should receive the payoffs V ♯ + V ♭ = 8 and
V ♯ − V ♭ = 4 respectively. A co-co solution is thus provided by the pair of strategies (a1, b2)
together with the side payment p = 5 (from Player B to Player A). A second co-co solution is
given by (a2, b1), with side payment p = −1 (i.e. with side payment 1 from A to B).

3
Player  A

b

a

a

1

2

Player B
b

2
2

3
9

3
9

5

1 2
cooperative game zero−sum game

2 6

6

0 −3

31 2

Figure 9: Left: the payoffs of a bi-matrix game, where each player has two options. This can be
represented as the sum of a cooperative game where both players have exactly the same payoff, plus a
zero-sum game. In the center is the matrix of payoffs Φ♯, on the right is the matrix of payoffs Φ♭.

Example 8 (co-co solution of the prisoners’ dilemma). For the game with payoff matrix
given in Fig. 5, the co-co solution is (N,N). Since the game is symmetric, the corresponding
zero-sum game has value V ♭ = 0 and no side payment is needed.

Problems

1. Consider a variation of the rock-paper-scissors game. Assume that player A has all three
options, but player B can only choose rock or paper, i.e. the choice “scissors” is not available
to him. Find a pair of randomized strategies yielding a Nash equilibrium, and compute the
corresponding value of the game.

2. Consider a zero-sum game where the set of strategies for the two players are A = B = [0, 1],
with payoff function Φ(a, b) = |a−b|. Compute the upper and lower value of the game. Find a
pair of randomized strategies yielding a Nash equilibrium. Compute the corresponding value
of the game.

3. Let x1, x2 ∈ IR be the strategies implemented by the two players, and let the corresponding
payoffs be

ΦA(x1, x2) = a1x1 + a2x2 −
[

a11
x21
2

+ a12x1x2 + a22
x22
2

]

,

ΦB(x1, x2) = b1x1 + b2x2 −
[

b11
x21
2

+ b12x1x2 + b22
x22
2

]

,

with a11 > 0, b22 > 0.

(i) Compute the best reply maps.
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(ii) Compute a Nash equilibrium solution.

(iii) Compute a Stackelberg equilibrium solution.

(iv) For which values of the coefficients is the Stackelberg equilibrium better than the Nash
equilibrium, for Player A?

3 Differential Games

From now on we consider games in continuous time. Let x ∈ IRN describe the state of the
system, evolving in time according to the ODE

ẋ(t) = f(t, x, u1, u2) t ∈ [0, T ] , (3.1)

with initial data
x(0) = x0 . (3.2)

Here u1(·), u2(·) are the controls implemented by the two players. We assume that they satisfy
the pointwise constraints

u1(t) ∈ U1 , u2(t) ∈ U2 , (3.3)

for some given sets U1, U2 ⊆ IRm.

For i = 1, 2, the goal of the i-th player is to maximize his own payoff, namely

Ji(u1, u2)
.
= ψi(x(T )) −

∫ T

0
Li(t, x(t), u1(t), u2(t)) dt . (3.4)

Here ψi is a terminal payoff, while Li accounts for a running cost.

In order to completely describe the game, it is essential to specify the information available
to the two players. Indeed, the strategy adopted by a player depends on the information
available to him at each time t. Therefore, different information structures result in vastly
different game situations.

In the following, we shall assume that each player has perfect knowledge of

• The function f determining the evolution of the system, and the sets U1, U2 of control
values available to the two players.

• The two payoff functions J1, J2.

• The instantaneous time t ∈ [0, T ] (i.e. both players have a clock).

• The initial state x0.

However, we shall consider different cases concerning the information that each player has,
regarding: (i) the current state of the system x(t), and (ii) the control u(·) implemented by
the other player.
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CASE 1 (open loop strategies): Apart from the initial data, Player i cannot make any
observation of the state of the system, or of the strategy adopted by the other player.

In this case, his strategy must be open loop, i.e. it can only depend on time t ∈ [0, T ]. The
set Si of strategies available to the i-th player will thus consist of all measurable functions
t $→ ui(t) from [0, T ] into Ui.

CASE 2 (Markovian strategies): Assume that, at each time t ∈ [0, T ], Player i can observe
the current state x(t) of the system. However, he has no additional information about the
strategy of the other player. In particular, he cannot predict the future actions of the other
player.

In this case, each player can implement a Markovian strategy (i.e., of feedback type): the
control ui = ui(t, x) can depend both on time t and on the current state x. The set Si of
strategies available to the i-th player will thus consist of all measurable functions (t, x) $→
ui(t, x) from [0, T ] × IRn into Ui.

CASE 3 (hierarchical play): Player 1 (the leader) announces his strategy in advance. This
can be either open loop u1 = u♣1 (t), or feedback u1 = u♣1 (t, x). At this stage, the game yields
an optimal control problem for Player 2 (the follower). Namely

maximize: ψ2(x(T )) −
∫ T

0
L2

(
t, x(t), u♣1 (t, x(t)), u2(t)

)
dt , (3.5)

subject to
ẋ(t) = f(t, x, u♣1 (t, x) , u2) x(0) = x0 , u2(t) ∈ U2 . (3.6)

Notice that in this case the knowledge of the initial point x0 together with the evolution
equation (3.6) provides Player 2 with complete information about the state of the system for
all t ∈ [0, T ].

From the point of view of Player 1, the task is to devise a strategy u1 = u♣1 (t, x) such that
the reply u2 of the other player yields a payoff (for Player 1) as large as possible.

CASE 4 (delayed information): Assume that each player cannot observe the state x(t), but
gets information about the actions taken by the other player, with a time delay δ > 0. In other
words, assume that at each time t > 0 Player i gets to know the strategy {uj(s) ; s ∈ [0, t−δ]}
adopted earlier by the other player.

This is a situation where cooperative agreements among the two players can be implemented,
using strategies that trigger a punishment for the player who “cheats”, deviating from the
agreed course of action. For example, assume that the players agree in advance to adopt the
controls t $→ u♥1 (t), t $→ u♥2 (t), yielding a Pareto optimum. However, assume that after time
τ Player 2 changes his mind and adopts a different control, say

t $→ u♠2 (t) ̸= u♥2 (t) t > τ.

Here u♠2 can be a control that increases the payoff of Player 2 at the expense of Player 1. After
time t = τ + δ, Player 1 discovers that he has been cheated. He can then punish his partner,
choosing a new control t $→ u♠1 (t) yielding a very low payoff to Player 2.

24



Remark 4. At first sight, the threat of a punishment should induce both players to stick to
their original agreement and implement the cooperative strategies (u♥1 , u

♥
2 ) during the entire

time interval t ∈ [0, T ]. However one should keep in mind that, by punishing Player 2 if he
cheats, also Player 1 may have to reduce his own payoff as well. Since delivering a punishment
can be very costly, in each given situation one should carefully evaluate whether the threat of
punishment by one player to the other is credible or not.

4 Open loop strategies

In this section we consider solutions to the differential game (3.1)–(3.4), in the case where the
strategies implemented by the players must be functions of time alone.

4.1 Open-loop Nash equilibrium solutions

Definition (open-loop Nash equilibrium). A pair of control functions t $→ (u∗1(t), u
∗
2(t))

is a Nash equilibrium for the game (3.1)–(3.4) within the class of open-loop strategies if the
following holds.

(i) The control u∗1(·) provides a solution to the optimal control problem for Player 1:

maximize: J1(u1, u
∗
2) = ψ1(x(T ))−

∫ T

0
L1

(
t, x(t), u1(t), u

∗
2(t)

)
dt . (4.1)

over all controls u1(·), for the system with dynamics

x(0) = x0 ∈ IRN , ẋ(t) = f(t, x, u1, u
∗
2(t)) , u1(t) ∈ U1 t ∈ [0, T ] . (4.2)

(ii) The control u∗2(·) provides a solution to the optimal control problem for Player 2:

maximize: J2(u
∗
1, u2) = ψ2(x(T ))−

∫ T

0
L2

(
t, x(t), u∗1(t), u2(t)

)
dt . (4.3)

over all controls u2(·), for the system with dynamics

x(0) = x0 ∈ IRN , ẋ(t) = f(t, x, u∗1(t), u2(t)) , u2(t) ∈ U2 t ∈ [0, T ] . (4.4)

To find Nash equilibrium solutions, we thus need to simultaneously solve two optimal control
problems. The optimal solution u∗1(·) of the first problem enters as a parameter in the second
problem, and viceversa.

Assuming that all functions f,ψ1,ψ2, L1, L2 are continuously differentiable, necessary condi-
tions for optimality are provided by the Pontryagin Maximum Principle, see Theorem A.7 in
the Appendix.

Based on the PMP, we now describe a procedure for finding a pair of open-loop strategies
t $→ (u∗1(t), u

∗
2(t)) yielding a Nash equilibrium. Toward this goal, we need to assume that a

family of pointwise maximization problems can be uniquely solved. More precisely, we assume
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(A2) For every (t, x) ∈ [0, T ] × IRN and any two vectors q1, q2 ∈ IRN , there exists a unique

pair (u♯1, u
♯
2) ∈ U1 × U2 such that

u♯1 = argmax
ω∈U1

{
q1 · f(t, x,ω, u♯2)− L1(t, x,ω, u

♯
2)
}
, (4.5)

u♯2 = argmax
ω∈U2

{
q2 · f(t, x, u♯1,ω)− L2(t, x, u

♯
1, ω)

}
. (4.6)

The corresponding map will be denoted by

(t, x, q1, q2) $→
(
u♯1(t, x, q1, q2) , u♯2(t, x, q1, q2)

)
. (4.7)

The assumption (A2) can be interpreted as follows. For any given (t, x, q1, q2) ∈ [0, T ]× IRN ×
IRN × IRN , consider the “one-shot” game where the players choose strategies ui ∈ Ui in order
to maximize their instantaneous payoffs

Φi(u1, u2) = qi · f(t, x, u1, u2)− Li(t, x, u1, u2) i = 1, 2 . (4.8)

According to (A2), for every t, x, q1, q2 this one-shot game has a unique Nash equilibrium
solution. Notice that, if the sets U1, U2 of control values are compact, from this uniqueness
property it follows that the map in (4.7) is continuous. We now describe an important class
of problems where this assumption is satisfied.

Lemma 2. Assume that the dynamics and the running costs take the decoupled form

f(t, x, u1, u2) = f0(t, x) +M1(t, x)u1 +M2(t, x)u2 , (4.9)

Li(t, x, u1, u2) = Li1(t, x, u1) + Li2(t, x, u2). (4.10)

Assume that

(i) The domains U1, U2 are closed and convex subsets of IRm, possibly unbounded.

(ii) M1,M2 are N ×m matrices, continuously depending on t, x,

(iii) The functions u1 $→ L11(t, x, u1) and u2 $→ L22(t, x, u2) are strictly convex,

(iv) For each i = 1, 2, either Ui is compact, or Lii has superlinear growth, i.e.

lim
|ω|→∞

Lii(t, x,ω)

|ω|
= +∞ .

Then the assumption (A2) holds.

Indeed, for any given (t, x, q1, q2), the control values u♯1, u
♯
2 are determined by

u♯1 = argmax
ω∈U1

{
q1·M1(t, x)ω−L11(t, x,ω)

}
, u♯2 = argmax

ω∈U2

{
q2·M2(t, x)ω−L22(t, x,ω)

}
.

(4.11)
The assumptions (i)–(iv) guarantee that the above maximizers exist and are unique.

26



Finding a Nash equilibrium using the PMP. Assume that (A2) holds, and let x∗(·),
u∗1(·), u∗2(·) be respectively the trajectory and the open-loop controls of the two players, in a
Nash equilibrium. By definition, the controls u∗1 and u∗2 provide solutions to the corresponding
optimal control problems for the two players. Applying the Pontryagin Maximum Principle
(see Theorem A.7 in the Appendix), one obtains the following set of necessary conditions.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = f(t, x, u♯1, u
♯
2),

q̇1 = − q1
∂f

∂x
(t, x, u♯1, u

♯
2) +

∂L1

∂x
(t, x, u♯1, u

♯
2) ,

q̇2 = − q2
∂f

∂x
(t, x, u♯1, u

♯
2) +

∂L2

∂x
(t, x, u♯1, u

♯
2) ,

(4.12)

with initial and terminal conditions
⎧
⎪⎨

⎪⎩

x(0) = x0 ,
q1(T ) = ∇ψ1(x(T )) ,
q2(T ) = ∇ψ2(x(T )) .

(4.13)

Notice that in (4.12) the variables u♯1, u
♯
2 are functions of (t, x, q1, q2), defined at (4.5)–(4.7).

One can use the above system in order to compute a Nash equilibrium solution to the dif-
ferential game. Notice that (4.12) consists of three ODEs in IRN . This needs to be solved
with the mixed boundary data (4.13). Here the value of variable x (the state of the system) is
explicitly given at the initial time t = 0. On the other hand, since x(T ) is not a priori known,
the values for q1, q2 (the adjoint variables) are only determined by two implicit equations at

the terminal time t = T . Together with the strong nonlinearity of the maps u♯1, u
♯
2 in (4.7),

this makes the problem (4.12)-(4.13) hard to solve, in general.

As soon as a solution t $→ (x(t), q1(t), q2(t)) to the two-point boundary value problem (4.12)-
(4.13) is found, the trajectory x∗ and the controls u∗1, u

∗
2 are determined by

x∗(t) = x(t) , u∗1(t) = u♯1(t, x(t), q1(t), q2(t)) , u∗2(t) = u♯2(t, x(t), q1(t), q2(t)) .

One should keep in mind that the Pontryagin maximum principle is only a necessary condition,
not sufficient for optimality. In other words, any pair t $→ (u∗1(t), u

∗
2(t)) of open-loop strategies

which is a Nash equilibrium must provide a solution to (4.12)-(4.13). On the other hand, being
a solution of (4.12)-(4.13) does not guarantee that the pair (u∗1, u

∗
2) is a Nash equilibrium. A

(very restrictive) setting where the PMP is actually sufficient for optimality is described in
Theorem A.9 of the Appendix.

Example 9 (duopolistic competition). Two companies sell the same product, competing
for market share. Let x1 = x(t) ∈ [0, 1] be the market share of the first company at time t, so
that x2 = 1− x(t) is the market share of the second. Calling ui(t) be the advertising effort of
firm i ∈ {1, 2} at time t, the Lanchester model is described by the dynamics

ẋ = (1− x)u1 − xu2 , x(0) = x0 ∈ [0, 1] . (4.14)
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The i-th firm should plan its strategy t $→ ui(t) in order to maximize the total payoff

Ji
.
=

∫ T

0

[

ai xi(t)− ci
u2i (t)

2

]

dt+ Sixi(T ) , (4.15)

for suitable constants ai, ci, Si > 0. Here the term aix accounts for the earnings of the i-th
company, proportional to its market share, while ciu2i /2 is the advertising cost. The value
attached by firm i to its terminal market share is described by Sixi(T ). A Nash equilibrium
solution to this differential game, in terms of open-loop controls, can be found as follows.

STEP 1: the optimal controls are determined in terms of the adjoint variables:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u♯1(x, q1, q2) = argmax
ω≥0

{

q1 · (1− x)ω − c1
ω2

2

}

= (1− x)
q1
c1

,

u♯2(x, q1, q2) = argmax
ω≥0

{

q2 · xω − c2
ω2

2

}

=
q2
c2

.

(4.16)

STEP 2: the state x(·) and the adjoint variables q1(·), q2(·) are determined by solving the
boundary value problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = (1− x)u♯1 + xu♯2 = (1− x)2
q1
c1

+ x2
q2
c2

,

q̇1 = − q1 (u
♯
1 + u♯2)− a1 = − q1

[
(1− x)

q1
c1

+ x
q2
c2

]
− a1 ,

q̇2 = − q2 (u
♯
1 + u♯2)− a2 = − q2

[
(1− x)

q1
c1

+ x
q2
c2

]
− a2 ,

(4.17)

with initial and terminal conditions
⎧
⎪⎨

⎪⎩

x(0) = x0 ,
q1(T ) = S1 ,
q2(T ) = S2 .

(4.18)

Example 10 (producer-consumer game with sticky price). Let p(t) denote the price
of a good at time t. We assume that this good can be produced by one of the players, at
rate u1(t), and consumed by the other player at rate u2(t). In a very simplified model, the
variation of the price in time can be described by the differential equation

ṗ = (u2 − u1)p , (4.19)

Here the non-negative functions t $→ u1(t) and t $→ u2(t) represent the controls implemented
by the two players. According to (4.19), the price increases when the consumption is larger
than the production, and decreases otherwise.

Let the payoffs for the two players be described by

Jprod =
∫ T

0

[
p(t)u2(t)− c(u1(t))

]
dt , (4.20)
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Jcons =
∫ T

0

[
φ(u2(t))− p(t)u2(t)

]
dt . (4.21)

The payoff for the producer is given by the profit generated by sales, minus the cost c(u1) of
producing the good at rate u1. The payoff for the consumer is measured by a utility function
φ(u2), minus the price payed to buy the good. For sake of definiteness, assume

c(s) =
s2

2
, φ(s) = 2

√
s . (4.22)

A Nash equilibrium solution for this differential game, in terms of open-loop controls, is found
as follows.

STEP 1: the optimal controls are determined in terms of the adjoint variables:

u♯1(x, q1, q2) = argmax
ω≥0

{

q1 · (−ωp)−
ω2

2

}

= − q1p ,

u♯2(x, q1, q2) = argmax
ω≥0

{
q2 · (ωp) + 2

√
ω − pω

}
=

1

(1− q2)2 p2
.

Notice that here we are assuming p > 0, q1 ≤ 0, q2 < 1.

STEP 2: the state p(·) and the adjoint variables q1(·), q2(·) are determined by solving the
boundary value problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṗ = (u♯2 − u♯1)p =
1

(q2 − 1)2 p
+ q1p

2 ,

q̇1 = −q1(u
♯
2 − u♯1)− u♯2 = − q21 p−

q1 + 1

(1− q2)2 p2
,

q̇2 = −q2(u
♯
2 − u♯1) + u♯2 = − q1q2p+

1

(1− q2)p
,

(4.23)

with initial and terminal conditions
⎧
⎪⎨

⎪⎩

x(0) = x0 ,
q1(T ) = 0 ,
q2(T ) = 0 .

(4.24)

4.2 Open-loop Stackelberg equilibrium solutions

We now assume that the strategies of the players are not chosen simultaneously, but in two
stages. First, Player 1 (the leader) chooses his strategy t $→ u1(t), and communicates it
to Player 2. In a second stage, Player 2 (the follower) chooses his control function u2(·)
maximizing his own payoff, relative to the strategy u1(·) already chosen by the first player.

Given any admissible control u♣1 : [0, T ] $→ U1 for the first player, we denote by R2(u
♣
1 ) the set

of best replies for the second player. More precisely, R2(u
♣
1 ) is the set of all admissible control
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functions u2 : [0, T ] $→ U2 for Player 2, which achieve the maximum payoff in connection with
u♣1 . Namely, they solve the optimal control problem

maximize: ψ2(x(T ))−
∫ T

0
L2

(
t, x(t), u♣1 (t), u2(t)

)
dt , (4.25)

over all control functions u2(·), subject to

ẋ(t) = f(t, x, u♣1 (t) , u2), x(0) = x0 , u2(t) ∈ U2 . (4.26)

In the following, given two control functions u1(·) and u2(·), we denote by t $→ x(t, u1, u2) the
solution of the Cauchy problem

ẋ = f(t, x, u1(t), u2(t)) , x(0) = x0 .

Definition (open-loop Stackelberg equilibrium). We say that a pair of control functions
t $→ (u∗1(t), u

∗
2(t)) is a Stackelberg equilibrium for the game (3.1)–(3.4) within the class of

open-loop strategies if the following holds.

(i) u∗2 ∈ R2(u∗1) ,

(ii) Given any admissible control u1(·) for Player 1 and every best reply u2(·) ∈ R2(u1) for
Player 2, one has

ψ1(x(T, u1, u2))−
∫ T

0
L1

(
t, x(t, u1, u2), u1(t), u2(t)

)
dt

≤ ψ1(x(T, u
∗
1, u

∗
2))−

∫ T

0
L1

(
t, x(t, u∗1, u

∗
2), u

∗
1(t), u

∗
2(t)

)
dt .

(4.27)

To find a Stackelberg solution, Player 1 has to calculate the best reply of Player 2 to each of
his controls u1(·), and choose the control function u∗1(·) in order to maximize his own payoff J1.
We are here taking the optimistic view that, if Player 2 has several best replies to a strategy
u∗1(·), he will choose the one which is most favorable to Player 1.

Necessary conditions in order that a pair of open-loop strategies (u∗1, u
∗
2) be a Stackelberg

equilibrium can be derived by variational analysis. Let t $→ x∗(t) be the trajectory of the
system determined by the controls u∗1, u

∗
2. Since u∗2(·) is an optimal reply for Player 2, the

Pontryagin maximum principle yields the existence of an adjoint vector q∗2(·) such that

⎧
⎪⎪⎨

⎪⎪⎩

ẋ∗(t) = f(t, x∗(t), u∗1(t), u
∗
2(t)) ,

q̇∗2(t) = − q∗2 ·
∂f

∂x
(t, x∗(t), u∗1(t), u

∗
2(t)) +

∂L2

∂x
(t, x∗(t), u∗1(t), u

∗
2(t)) ,

(4.28)

with boundary conditions ⎧
⎪⎨

⎪⎩

x∗(0) = x0

q∗2(T ) = ∇ψ2(x∗(T )) .
(4.29)
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Moreover, the following optimality conditions hold:

u∗2(t) ∈ argmax
ω∈U2

{
q∗2(t) ·f(t, x∗(t), u∗1(t),ω)−L2(t, x

∗(t), u∗1(t),ω)
}

for a.e. t ∈ [0, T ] .

(4.30)

We now take the side of the first player. To derive a set of necessary conditions for optimality,
our main assumption is:

(A3) For each (t, x, u1, q2) ∈ [0, T ] × IRn × U1 × IRn, there exists a unique optimal choice
u♭2 ∈ U2 for Player 2, namely

u♭2(t, x, u1, q2)
.
= argmax

ω∈U2

{
q2 · f(t, x, u1,ω)− L2(t, x, u1,ω)

}
. (4.31)

The optimization problem for Player 1 can now be formulated as an optimal control problem
in an extended state space, where the state variables are (x, q2) ∈ IRn × IRn.

Maximize : ψ1(x(T )) −
∫ T

0
L1

(
t, x(t), u1(t), u

♭
2(t, x(t), u1(t), q2(t))

)
dt (4.32)

for the system on IR2n with dynamics
⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) = f(t, x, u1, u♭2(t, x, u1, q2)) ,

q̇2(t) = − q2 ·
∂f

∂x
(t, x, u1, u

♭
2(t, x, u1, q2)) +

∂L2

∂x
(t, x, u1, u

♭
2(t, x, u1, q2)) ,

(4.33)

and with boundary conditions

x(0) = x0, q2(T ) = ∇ψ2(x(T )) . (4.34)

This is a standard problem in optimal control. Notice, however, that the state variables (x, q2)
are not both assigned at time t = 0. Instead, we have the constraint x = x0 valid at t = 0
and another constraint q2 = ∇ψ2(x) valid at t = T . In order to apply the PMP, we need to
assume that all functions in (4.32)–(4.34) are continuously differentiable w.r.t. the new state
variables x, q2. More precisely

(A4) For every fixed t ∈ [0, T ] and u1 ∈ U1, the maps

(x, q2) $→ L̃1(t, x, u1, q2)
.
= L1

(
t, x, u1, u♭2(t, x, u1, q2)

)
,

(x, q2) $→ F (t, x, u1, q2)
.
= f(t, x, u1, u♭2(t, x, u1, q2)) ,

(x, q2) $→ G(t, x, u1, q2)

.
= − q2 ·

∂f

∂x
(t, x, u1, u

♭
2(t, x, u1, q2)) +

∂L2

∂x
(t, x, u1, u

♭
2(t, x, u1, q2)) ,

x $→ ∇ψ2(x) ,

are continuously differentiable.
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An application of the PMP to the above optimal control problem with initial and terminal
state constraints yields

Theorem 5 (necessary conditions for an open-loop Stackelberg equilibrium). Let the
assumptions (A3)-(A4) hold. Let t $→ (u∗1(t), u

∗
2(t)) be open-loop strategies yielding a Stack-

elberg equilibrium for the differential game (3.1)–(3.4). Let x∗(·), q∗2(·) be the corresponding
trajectory and adjoint vector for Player 2, satisfying (4.28)–(4.30).

Then there exists a constant λ0 ≥ 0 and two absolutely continuous adjoint vectors λ1(·), λ2(·)
(not all equal to zero), satisfying the equations

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λ̇1 = λ0
∂L̃1

∂x
− λ1

∂F

∂x
− λ2

∂G

∂x
,

λ̇2 = λ0
∂L̃1

∂q2
− λ1

∂F

∂q2
− λ2

∂G

∂q2
,

(4.35)

for a.e. t ∈ [0, T ], together with the boundary conditions

λ2(0) = 0 , λ1(T ) = λ0∇ψ1(x
∗(T ))− λ2(T )D

2ψ2(x
∗(T )) . (4.36)

Moreover, for a.e. t ∈ [0, T ] one has

u∗1(t) = argmax
ω∈U1

{
−λ0 L̃1

(
t, x∗(t), q∗2(t),ω

)
+λ1(t)·F

(
t, x∗(t), q∗2(t),ω

)
+λ2(t)·G

(
t, x∗(t), q∗2(t), ω

)}
.

(4.37)

In the ODEs (4.35), it is understood that the right hand sides are computed at
(t, x∗(t), q∗2(t), u

∗
1(t)). In (4.36), byD2ψ2(x) we denote the Hessian matrix of second derivatives

of ψ2, at the point x.

The above result follows by applying Theorem A.8 in the Appendix the the optimal control
problem (4.32)–(4.34). Observe that the initial data is constrained to the set

S0 = {(x, q2) ∈ IRn+n ; x = x0} .

Since there is no cost associated with the initial condition, the initial values of the adjoint
vector λ = (λ1,λ2) ∈ IRn+n can be any vector perpendicular to S0. Hence

λ1(0) ∈ IRn , λ2(0) = 0.

On the other hand, the terminal data is constrained to the set

ST =
{
(x, q2) ∈ IRn+n ; q2 −∇ψ2(x) = 0

}
.

A vector (v1, v2) ∈ IR2n is tangent to the manifold ST at the point (x, q2) provided that

v2 = D2
xψ2(x)v1 .

Hence a vector (n1, n2) ∈ IR2n is normal to ST provided that

n1 = −D2
xψ2(x)n2 .
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Recalling that the terminal payoff is ψ1(x(T )), from (10.29) we obtain the terminal condition

λ1(T ) = λ0 ∇ψ1(x
∗(T ))− λ2(T )D

2ψ2(x(T )) ,

for some constant λ0 ≥ 0.

Example 11 (economic growth). Let x(t) describe the total wealth of capitalists in a
country, at time t. Assume that this quantity evolves according to

ẋ = a x− u1x− u2 , x(0) = x0 , t ∈ [0, T ] . (4.38)

Here a > 0 is a constant growth rate, u2(t) is the instantaneous amount of consumption, and
u1 is the capital tax rate imposed by the government. The payoffs for the government and for
the capitalists are given by

J1 = bx(T ) +
∫ T

0
φ1
(
u1(t)x(t)

)
dt , (4.39)

J2 = x(T ) +
∫ T

0
φ2
(
u2(t)

)
dt . (4.40)

Here φ1,φ2 are utility functions. To fix the ideas, assume φi(s) = ki ln s.

We seek a Stackelberg equilibrium for this differential game, where the government is the
leader, announcing in advance the tax rate u1(·) as a function of time, and the capitalists are
the followers. For this example, the functions considered in (A3)-(A4) take the form

u♭2(x, u1, q2) = argmax
ω≥0

{
− q2ω + k2 lnω

}
=

k2
q2

,

L̃1(x, q2, u1) = φ1(u1x) = k1 ln(u1x) ,

F (x, q2, u1) = a x− u1x−
k2
q2

,

G(x, q2, u1) = − q2(a− u1) .

The government, playing the role of the leader, now has to solve the following optimization
problem.

maximize: bx(T ) +
∫ T

0
k1 ln

(
u1(t)x(t)

)
dt , (4.41)

for a system with two state variables (x, q2), with dynamics

⎧
⎪⎪⎨

⎪⎪⎩

ẋ = ax− u1x−
k2
q2

,

q̇2 = − q2(a− u1) ,

(4.42)

and boundary conditions
x(0) = x0 , q2(T ) = 1 . (4.43)

By the Pontryagin maximum principle (Theorem A.8 in the Appendix), an optimal control
can be found as follows.

33



STEP 1: For any constants λ0 ≥ 0, λ1, λ2, compute the optimal feedback control

u♯1(x, q2,λ0,λ1,λ2)
.
= argmax

ω≥0

{
λ1 (−ωx) + λ2q2ω + λ0 k1 ln(ωx)

}
=

λ0k1
λ1x− λ2q2

.

STEP 2: Solve the boundary value problem for the system of ODEs
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = (a− u♯1)x−
k2
q2

=
(
a−

λ0k1
λ1x− λ2q2

)
x−

k2
q2

,

q̇2 = −q2(a− u♯1) =
(

λ0k1
λ1x− λ2q2

− a
)
q2 ,

λ̇1 = −λ0
κ1
x

− λ1(a− u♯1) = − λ0
κ1
x

+ λ1

(
λ0k1

λ1x− λ2q2
− a

)
,

λ̇2 = −λ1
k2
q2

+ λ2(a− u♯1) = − λ1
k2
q2

+ λ2

(
a−

λ0k1
λ1x− λ2q2

)
,

with initial and terminal conditions (see figure 10)

x(0) = x0 , q2(T ) = 1 , λ1(T ) = λ0b , λ2(0) = 0 .

2

2
q

S

n

T
T
n

0

0

S

0

1

x
0 x

(x(t), q (t))

Figure 10: The initial and terminal constraints for the optimal control problem (4.41)–(4.43). Ac-
cording to (10.29), at time t = 0 one has (λ1(0), λ2(0)) = n0 for some vector n0 perpendicular to the
manifold S0 = {(x, q2) ; x = x0}. Hence λ2(0) = 0 while λ1(0) can be arbitrary. On the other hand,
at time t = T one has (λ1(T ), λ2(T )) = λ0(b, 1)+nT for some vector nT perpendicular to the manifold
ST = {(x, q2) ; q2 = 1}. Hence λ1(T ) = λ0b while λ2(T ) can be arbitrary.

5 Markovian strategies

We consider here the case where both players can observe the current state of the system.
Their strategies will thus be functions ui = ui(t, x) of time t and of the state x.

Observe that, in the open-loop case, the optimal controls ui = u∗i (t) strongly depend on the
initial data x0 in (3.2). On the other hand, in the Markovian case, it is natural to look

34



for optimal feedback strategies ui = u∗i (t, x) that are optimal for the problems (3.1), (3.4),
simultaneously for any choice of initial data

x(τ) = y, (5.1)

with τ ∈ [0, T ], y ∈ IRN .

In the following, we say that a control (t, x) $→ u(t, x) ∈ U is an optimal feedback for the
optimization problem

max
u

{

ψ(x(T )) −
∫ T

τ
L
(
t, x, u)

)
dt

}

, (5.2)

with dynamics
ẋ = f(t, x, u) , u(t) ∈ U , (5.3)

if, for every initial data (τ, y) ∈ [0, T ] × IRN , every Carathéodory solution of the Cauchy
problem

ẋ(t) = f(t, x, u(t, x)) , x(τ) = y

is optimal, i.e. it achieves the maximum payoff in (5.2).

Definition (feedback Nash equilibrium). A pair of control functions (t, x) $→
(u∗1(t, x), u

∗
2(t, x)) is a Nash equilibrium for the game (3.1), (3.3), (3.4) within the class of

feedback strategies if the following holds.

(i) The control (t, x) $→ u∗1(t, x) provides an optimal feedback in connection with the optimal
control problem for Player 1:

max
u1

{

ψ1(x(T )) −
∫ T

0
L1

(
t, x(t), u1 , u

∗
2(t, x(t))

)
dt

}

, (5.4)

for the system with dynamics

ẋ(t) = f(t, x, u1, u
∗
2(t, x)) , u1(t) ∈ U1 . (5.5)

(ii) The control (t, x) $→ u∗2(t, x) provides an optimal feedback in connection with the optimal
control problem for Player 2:

max
u2

{

ψ2(x(T )) −
∫ T

0
L2

(
t, x(t), u∗1(t, x(t)), u2)

)
dt

}

, (5.6)

for the system with dynamics

ẋ(t) = f(t, x, u∗1(t, x), u2) , u2 ∈ U2 . (5.7)

5.1 Finding feedback Nash equilibria by solving a system of PDEs.

Assume that the pair of feedback controls (u∗1, u
∗
2) provides a Nash equilibrium. Given an

initial data (τ, y) ∈ [0, T ]× IRN , call t $→ x∗(t; τ, y) the solution of

ẋ = f
(
t, x, u∗1(t, x), u

∗
2(t, x)

)
, x(τ) = y .
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We here assume that all these solutions are well defined. This is clearly true if the feedback
controls u∗1, u

∗
2 are Lipschitz continuous w.r.t. the variable x, but it is a nontrivial assumption

in general.

We can then define the corresponding value functions V1, V2 as

Vi(τ, y) = ψi(x
∗(T ))−

∫ T

τ
Li

(
t, x∗(t), u∗1(t, x

∗(t)), u∗2(t, x
∗(t))

)
dt ,

where x∗(t)
.
= x∗(t, τ, y). Notice that Vi(τ, y) is the total payoff achieved by Player i if the

game starts at y, at time τ .

Let the assumption (A2) hold. On a region where V1, V2 are C1, by the dynamic programming
principle (see Theorem A.11 in the Appendix) they satisfy the system of Hamilton-Jacobi
PDEs ⎧

⎪⎨

⎪⎩

V1,t +∇V1 · f(t, x, u♯1, u
♯
2) = L1(t, x, u

♯
1, u

♯
2) ,

V2,t +∇V2 · f(t, x, u♯1, u
♯
2) = L2(t, x, u

♯
1, u

♯
2) .

(5.8)

This system is closed by the equations

u♯i = u♯i(t, x, ∇V1, ∇V2) i = 1, 2, (5.9)

introduced at (4.7), and complemented by the terminal conditions

V1(T, x) = ψ1(x) , V2(T, x) = ψ2(x) . (5.10)

Because of the nonlinearity of the functions (t, x, q1, q2) $→ u♯i(t, x, q
1, q2), the system (5.8) is

a strongly non-linear system of two scalar PDEs, and difficult to solve. The well-posedness of
the Cauchy problem can be studied by looking at a linearized equation.

Let V = (V1, V2) be a smooth solution of (5.8), and let

V ε(t, x) = V (t, x) + εZ(t, x) + o(ε) (5.11)

describe a small perturbation. Here the Landau symbol o(ε) denotes a higher order infinites-
imal, as ε → 0. Assuming that V ε is also a solution, we can insert (5.11) in the equation
(5.8) and compute a linearized equation satisfied by the first order perturbation Z = (Z1, Z2).
Writing f = (f1, . . . , fn), q1 = (q11, . . . q1n), q2 = (q21, . . . q2n), we find

Zi,t+
n∑

α=1

fα Zi,xα+
n∑

α=1

2∑

j=1

(

∇Vi ·
∂f

∂uj
−
∂Li

∂uj

)( ∂u♯j
∂q1α

Z1,xα+
∂u♯j
∂q2α

Z2,xα

)
= 0 i = 1, 2 .

(5.12)
Observe that, if the maxima in (4.5)-(4.6) are attained at interior points of the domains Ui,
then the necessary conditions for a maximum yield

∇V1 ·
∂f

∂u1
−
∂L1

∂u1
= 0 , ∇V2 ·

∂f

∂u2
−
∂L2

∂u2
= 0. (5.13)

Therefore, these terms drop off from the right hand sides of (5.12). In matrix notation, this
homogeneous linear system can be written as

(
Z1,t

Z2,t

)

+
n∑

α=1

Aα

(
Z1,xα

Z2,xα

)

=

(
0
0

)

, (5.14)
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where the 2× 2 matrices Aα are given by

Aα =

⎛

⎜⎜⎜⎜⎜⎝

fα +
(
∇V1 ·

∂f

∂u2
−
∂L1

∂u2

)
∂u♯2
∂q1α

(
∇V1 ·

∂f

∂u2
−
∂L1

∂u2

)
∂u♯2
∂q2α

(
∇V2 ·

∂f

∂u1
−
∂L2

∂u1

)
∂u♯1
∂q1α

fα +
(
∇V2 ·

∂f

∂u1
−
∂L2

∂u1

)
∂u♯1
∂q2α

⎞

⎟⎟⎟⎟⎟⎠
. (5.15)

Fix a point (t̄, x̄), and freeze the coefficients of the above matrices at the corresponding point(
t̄, x̄, V (t̄, x̄), DxV (t̄, x̄)

)
. In this way we obtain a linear system of two first order linear

homogeneous PDEs with constant coefficients.

According to Theorem A.14, a necessary condition in order that the system (5.14) be hyper-
bolic (and hence that the linear Cauchy be well posed), is that for all ξ ∈ IRn the matrix

A(ξ) =
∑

α

Aαξα (5.16)

has real eigenvalues.

To understand whether this condition can be satisfied, consider first the simpler situation
where the dynamics and the payoff functions can be decoupled, i.e.

f = f (1)(t, x, u1) + f (2)(t, x, u2) , Li = L(1)
i (t, x, u1) + L(2)

i (t, x, u2) .

In this case the function u♯1 in (4.5) does not depend on q2, and similarly the function u♯2 in
(4.6) does not depend on q1. The 2× 2 matrix A(ξ) thus takes the simpler form

A(ξ) =
n∑

α=1

⎛

⎜⎜⎜⎜⎜⎝

fαξα

(
∇V1 ·

∂f

∂u2
−
∂L1

∂u2

)
∂u♯2
∂q2α

ξα

(
∇V2 ·

∂f

∂u1
−
∂L2

∂u1

)
∂u♯1
∂q1α

ξα fα ξα

⎞

⎟⎟⎟⎟⎟⎠
.

Consider the two vectors

v = (v1, . . . ,vn) , vα
.
=
(
∇V1 ·

∂f

∂u2
−
∂L1

∂u2

)
∂u♯2
∂q2α

, (5.17)

w = (w1, . . . ,wn) , wα
.
=
(
∇V2 ·

∂f

∂u1
−
∂L2

∂u1

)
∂u♯1
∂q1α

. (5.18)

Observe that the matrix A(ξ) in (5.16) has real eigenvalues if and only if the two inner products
satisfy

(v · ξ) (w · ξ) ≥ 0 . (5.19)

The condition (5.19) is satisfied for all ξ ∈ IRn if and only if the two vectors v,w are linearly
dependent and have the same orientation. That is, if and only if there exist scalar coefficients
a, b ≥ 0, not both zero, such that au = bw.

In any dimension n ≥ 2, this condition generically fails. Indeed, if v,w are linearly indepen-
dent, we can find a vector of the form ξ = v − θw which is perpendicular to v +w, so that
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(5.19) fails. Hence the system (5.8) is NOT hyperbolic, and the linearized Cauchy problem is
ill-posed, both forward and backward in time.

Going back to the general case (5.15), recall that a 2× 2 matrix
(
a b
c d

)
has real eigenvalues

if and only if (a− d)2 + 4bc ≥ 0. Introduce the vector

z = (z1, . . . , zn) , zα =
(
∇V1 ·

∂f

∂u2
−
∂L1

∂u2

)
∂u♯2
∂q1α

−
(
∇V2 ·

∂f

∂u1
−
∂L2

∂u1

)
∂u♯1
∂q2α

. (5.20)

This holds if and only if

(z · ξ)2 + 4(v · ξ)(w · ξ) ≥ 0 for all ξ ∈ IRn. (5.21)

In space dimension n ≥ 3, the condition (5.21) generically fails. Indeed, assume that the
vectors v,w, z are linearly independent. Then we can find a nonzero vector

ξ ∈ {z, v +w}⊥ ∩ span{v,w, z} .

With this choice, the quantity in (5.21) is strictly negative.

In space dimension n = 2, however, one may find situations where

min
ξ∈IR2, |ξ|=1

{
(z · ξ)2 + 4(v · ξ)(w · ξ)

}
> 0 .

For example, if the vectors in (5.17), (5.18), (5.20) happen to be

v = (1, 0) , w = (1, 1) , z = (0, 2) ,

then the system (5.14)-(5.15), in two space dimensions, would be locally hyperbolic. Indeed,
for any ξ = (ξ1, ξ2), one has

(z · ξ)2 + 4(v · ξ)(w · ξ) = 4ξ21 + 4ξ1(ξ1 + ξ2) = 3(ξ1 + ξ2)
2 + (ξ1 − ξ2)

2 ≥ 0.

Remark 5. In the special case of a zero-sum game, we have ψ2 = −ψ1, L2 = −L1, and
V2 = −V1. The matrices Aα in (5.15) should be computed only at points (t, x, q1, q2) where
q2 = ∇V2 = −∇V1 = −q1. By (5.13), this yields

∇V2 ·
∂f

∂u1
−
∂L2

∂u1
= −

(
∇V1 ·

∂f

∂u1
−
∂L1

∂u1

)
= 0 ,

∇V1 ·
∂f

∂u2
−
∂L1

∂u2
= −

(
∇V2 ·

∂f

∂u2
−
∂L2

∂u2

)
= 0 .

Therefore, in the case of zero sum games we simply have

Aα =
(
fα 0
0 fα

)
,

and the system is clearly hyperbolic.

38



Apart from zero-sum games, to find relevant cases where the backward Cauchy problem (5.8)–
(5.10) is well posed, one has to restrict the attention to games in one space dimension. An
existence theorem of Nash equilibria in feedback form, valid for one-dimensional noncooper-
ative games, can be found in [13]. This result is obtained differentiating the equations (5.8)
w.r.t. the space variable x. This yields a nonlinear system of conservation laws for the vari-
ables q1 = V1,x and q2 = V2,x. If this system is hyperbolic, well known PDE theory yields the
existence and uniqueness of an entropy weak solution to the Cauchy problem. In turn, this
yields a Nash equilibrium solution to the non-cooperative game, in feedback form.

5.2 Linear-quadratic differential games

A large portion of the literature on Nash feedback solutions for differential games is con-
cerned with n-dimensional games having linear dynamics and quadratic payoff functions. It
is assumed that the state of the system evolves according to

ẋ = A(t)x+B1(t)u1 +B2(t)u2 , (5.22)

while the payoff functions are given by quadratic polynomials w.r.t. the variables x, u1, u2. To
simplify the computations, we consider here a homogeneous case, with

Ji = ψi(x(T ))−
∫ T

0
Li(t, x(t), u1(t), u2(t)) dt , (5.23)

ψi(x) =
1

2
x†M ix , (5.24)

Li(t, x, u1, u2) =
|ui|2

2
+

1

2
x†Pi(t)x+

∑

j=1,2

x†Qij(t)uj , (5.25)

where the superscript † denotes transposition. Here x ∈ IRn, u1 ∈ IRm1 , u2 ∈ IRm2 are column
vectors, A is an n × n matrix, M i, Pi are n × n symmetric matrices, Qij and Bj are n ×mj

matrices.

In this model, it is important that the controls u1, u2 range over the entire spaces IRm1 , IRm2 ,
without being restricted to a compact subset. Notice that the assumption (A2) certainly

holds: the functions u♯i in (4.5)-(4.6) are explicitly computed as

u♯i(t, x, qi) = arg max
ω∈IRmi

{
qiBi(t)ω−

|ω|2

2
−x†Qii(t)ω

}
=
(
qiBi(t)−x†Qii(t)

)†
i = 1, 2 .

(5.26)

Even if the backward Cauchy problem (5.8)–(5.10) is ill-posed, in this linear-quadratic case
one can always construct a (local) solution within the class of homogeneous second order
polynomials w.r.t. the variables x = (x1, . . . , xn), namely

Vi(t, x) =
1

2
x†Mi(t)x . (5.27)

Indeed, denoting by un upper dot a differentiation w.r.t. t, let us compute

∇Vi(t, x) = x†Mi(t) , Vi,t(t, x) =
1

2
x†Ṁi(t)x , (5.28)
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u♯i(t, x,∇Vi(t, x)) =
(
x†Mi(t)Bi(t)− x†Qii(t)

)†
. (5.29)

By (5.28) and (5.29), the functions Vi in (5.27) solve the system

Vi,t = Li −∇Vi · f i = 1, 2,

if and only if the following relations are satisfied

1

2
x†Ṁix

=

[
1

2

(
x†MiBi − x†Qii

)(
x†MiBi − x†Qii

)†
+

1

2
x†Pix+

∑

j=1,2

x†Qij

(
x†MiBi − x†Qii

)†
]

−x†Mi

(

Ax+
∑

j=1,2

Bj

(
x†MjBj − x†Qjj

)†
)

.

(5.30)
Notice that both sides of (5.30) are homogeneous quadratic polynomials w.r.t. the variable
x = (x1, . . . , xn). The equality holds for every x ∈ IRn if and only if the following identity
between n× n symmetric matrices is satisfied:

1

2
Ṁi =

1

2
(MiBi −Qii)(MiBi −Qii)

† +
1

2
Pi +

1

2

∑

j=1,2

[
Qij(MiBi −Qii)

† + (MiBi −Qii)Q
†
ij

]

−
1

2
(MiA+A†Mi)−

1

2

∑

j=1,2

[
MiBj(MjBj −Qjj)

† + (MjBj −Qjj)B
†
jMi

]
.

(5.31)
The equations (5.31) represent a system of ODEs for the coefficients of the symmetric matrices
M1(t),M2(t). These ODEs need to be solved backward, with terminal conditions

M1(T ) = M1 , M2(T ) = M2 . (5.32)

This backward Cauchy problem has a unique local solution, defined for t close to T . In general,
however, a global solution may not exist because the right hand side has quadratic growth.
Hence the solution may blow up in finite time.

If the backward Cauchy problem (5.31)-(5.32) has as solution on the entire interval [0, T ], then

the formulas (5.28)-(5.29) yield the the optimal feedback controls u∗i (t, x) = u♯i(t, x,∇Vi(t, x)).

Remark 6. The above approach can be applied to a more general class of non-homogeneous
linear-quadratic games, with dynamics

ẋ = A(t)x+B1(t)u1 +B2(t)u2 + c(t) ,

and payoff functions (5.23), where

ψi(x) =
1

2
x†M ix+ āi · x+ ē ,

Li(t, x, u1, u2) =
1

2
u†iRi(t)ui +

1

2
x†Pi(t)x+

∑

j=1,2

x†Qij(t)uj +
∑

j=1,2

Sij(t)uj + bi(t) · x .
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Here one needs to assume that R1, R2 are strictly positive symmetric matrices, for all t ∈ [0, T ].
In this case, the value functions are sought within the class of (non-homogeneous) quadratic
polynomials:

Vi(t, x) = x†Mi(t)x+ ai(t) · x+ e(t) i = 1, 2.

6 Time discretizations

Based on the theory of static games, a natural approach to dynamic games is to discretize
time and approximate a dynamic game by a sequence of “one shot” games. In this section we
discuss this approach. We recall that there are several different concepts of “solution” to a
one-shot game:

• Pareto optimum

• Nash non-cooperative equilibrium

• Stackelberg equilibrium

• Co-co (cooperative-competitive) solution, with side payments.

Each concept leads to a different notion of solution, for a dynamic game in continuous time.

Consider again the differential game with dynamics (3.1) and payoff functionals (3.4). Given
an integer N ≥ 1, we partition the time interval [0, T ] into N equal subintervals, by setting

h
.
=

T

N
, τj = j h =

jT

N
, j = 1, 2, . . . , N . (6.1)

We now consider a sequence of N “one-shot” games, and value functions V1(τj, ·), V2(τj, ·),
defined as follows.

For j = N , set
Vi(τN , x)

.
= ψi(x) i = 1, 2 . (6.2)

For any given state x ∈ IRn, consider the one-shot game with payoff functions

Φi(τN , x,ω1,ω2)
.
= ψi

(
x+ h f(τN , x,ω1,ω2)

)
− hLi(τN , x,ω1,ω2) . (6.3)

Here the controls for the two players are

ω1 ∈ U1 , ω2 ∈ U2 . (6.4)

Assume that this game has a unique solution, corresponding to the controls

ω1
.
= u1(τN , x) , ω2

.
= u2(τN , x) . (6.5)

For i = 1, 2, let

Vi(τN−1, x)
.
= Φi

(
τN , x, u1(τN , x), u2(τN , x)

)

be the payoffs achieved by the two players, for this solution.
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By backward induction, assume that the value functions V1, V2 have already been determined,
for t = τj , τj+1, . . . , τN = T . We then consider the one-shot game on the subinterval [τj−1, τj],
with payoffs

Φi(τj , x,ω1,ω2))
.
= Vi

(
τj , x+ h f(τj , x,ω1,ω2)

)
− hLi(τj , x, ω1,ω2) . (6.6)

Assume that this game has a unique solution, corresponding to controls

ω1
.
= u1(τj , x) , ω2

.
= u2(τj , x) . (6.7)

For i = 1, 2, let

Vi(τj−1, x)
.
= Φi

(
τj, x, u1(τj , x), u2(τj, x)

)

be the payoffs achieved by the two players, for this solution.

Continuing this backward induction procedure, we obtain value functions V1(τj , x), V2(τj , x)
and controls u1(τj , x), u2(τj , x), defined for all j = 0, 1, . . . , N and x ∈ IRn. For convenience,
we extend these functions to the entire domain [0, T ] × IRn, by setting

V (N)
i (t, x) = V (N)

i (τj, x) , u(N)
i (t, x) = u(N)

i (τj, x) for all t ∈ [τj , τj+1[ .

Notice that we now inserted the superscript (N), to remind that these functions are obtained
via a partition of [0, T ] into N subintervals.

To study differential games in continuous time, we now take the limit as N → ∞, so that the
time step h = T/N → 0. Two natural questions arise.

(Q1) Letting N → ∞, study whether the following limits exist:

V (N)
i (t, x) → V ∗

i (t, x) , u(N)
i (t, x) → u∗i (t, x) . (6.8)

(Q2) Assuming that the limits exist, derive a system of PDEs satisfied by the value functions
V ∗
1 , V

∗
2 .

In the following we shall content ourselves with a formal analysis, deriving a system of
Hamilton-Jacobi PDEs for the value functions.

Fix an integer N ≥ 1 and consider the time step h = T/N . Assume that at a given time

t = τj the value functions x $→ V (N)
i (t, x), i = 1, 2, are continuously differentiable. According

to (6.6), to compute the values V (N)
i (t−h, x) one has to solve the one-shot game with payoffs

Φi(t, x,ω1,ω2) = V (N)
i

(
t , x+ h f(t, x,ω1,ω2)

)
− hLi(t, x, ω1, ω2)

= V (N)
i (t, x) + h∇V (N)

i (t, x) · f(t, x,ω1,ω2)− hLi(t, x, ω1, ω2) + o(h) .
(6.9)

Since V (N)
i (t, x) does not depend on ω1,ω2, neglecting higher order terms o(h), the optimal

strategies for the two players are the same as in the “instantaneous game” with payoffs

Ψi(ω1,ω2) = qi · f(t, x,ω1,ω2)− Li(t, x, ω1, ω2) i = 1, 2 , (6.10)
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with qi = ∇Vi(t, x).

Assume that, for every (t, x) ∈ [0, T ] × IRn and every couple of vectors (q1, q2) ∈ IRn × IRn,
we are given a unique solution to the game (6.10), say

ω1 = u♯1(t, x, q1, q2), ω2 = u♯2(t, x, q1, q2), (6.11)

continuously depending on the parameters t, x, q1, q2. Of course, different concepts of solution
(Pareto, Nash, Stackelberg) will lead to different functions u♯1, u

♯
2.

Denoting by o(1) a quantity that approaches zero as h → 0, we can now write

V (N)
i (t− h, x)− V (N)

i (t, x)

h
= ∇V (N)

i (t, x) · f(t, x, u♯1, u
♯
2)− Li(t, x, u

♯
1, u

♯
2) + o(1) . (6.12)

Letting N → ∞ and assuming the convergence

V (N)
i (t, x) → V ∗(t, x), ∇V (N)

i (t, x) → ∇V ∗
i (t, x) ,

V (N)
i (t, x)− V (N)

i (t− h, x)

h
→ V ∗

i,t(t, x) ,

from (6.12) we conclude

⎧
⎪⎨

⎪⎩

V ∗
1,t(t, x) +∇V ∗

1 (t, x) · f(t, x, u
♯
1, u

♯
2) = L1(t, x, u

♯
1, u

♯
2) ,

V ∗
2,t(t, x) +∇V ∗

2 (t, x) · f(t, x, u
♯
1, u

♯
2) = L2(t, x, u

♯
1, u

♯
2) ,

(6.13)

where u♯i = u♯i
(
t, x, ∇V1(t, x), ∇V2(t, x)

)
. Notice that (6.13) has exactly the same form as

(5.8). The difference lies in the functions u♯i, which reflect different was of solving the “one
shot” infinitesimal game (6.10). We examine here various types of solutions, discussing the
well posedness of the corresponding backward Cauchy problem.

6.1 Nash solutions

Let the assumptions (A2) hold. For any given t, x, q1, q2, the Nash equilibrium solution of the
one-shot game with payoffs (6.10) was considered at (4.5)-(4.6). As shown in Section 5, the
Cauchy problem for the system of Hamilton-Jacobi equations (6.13) is usually ill-posed, in
any space dimension ≥ 2.

6.2 Stackelberg solutions

For any given t, x, q1, q2, the Stackelberg solution of the one-shot game (6.10), with Player 1
as the leader and Player 2 as follower, is obtained as follows.

For each u1 ∈ U1, let

u♭2(t, x, q2, u1)
.
= arg max

ω2∈U2

{
q2 · f(t, x, u1,ω2)− L2(t, x, u1,ω2)

}
.
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Then the pair

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u♯1(t, x, q1, q2)
.
= arg max

ω1∈U1

{
q1 · f

(
t, x,ω1, u

♭
2(t, x, q2,ω1)

)
− L2

(
t, x,ω1, u

♭
2(t, x, q2,ω1)

)}
,

u♯2(t, x, q1, q2)
.
= u♭2

(
t, x, q2, u

♯
1(t, x, q1, q2)

)
,

(6.14)
provides a Stackelberg solution to the one-shot game (6.10).

We observe that, in the situation considered in (4.9)-(4.10) where the dynamics and the
running payoffs are decoupled, the Nash and the Stackelberg solutions coincide. In general,
the two definitions yield different functions (u♯1, u

♯
2). However, by the analysis in Chapter

5, the Cauchy problem (5.8)–(5.10) for the value functions V1, V2 will still be ill posed, in a
generic case.

6.3 Pareto optima

Next, we consider the case where the pair of functions (u♯1, u
♯
2) provides a Pareto optimal

solution to the one-shot games (6.10). Notice that, for a given (t, x, q1, q2), the game (6.10) will
usually have infinitely many Pareto optimal solutions. In order to select one such solution, we
introduce a function θ = θ(t, x, q1, q2) ∈ ]0, 1[ and consider the pair (u♯1, u

♯
2) which maximizes

the combined payoff θΦ1 + (1− θ)Φ2. That is

(u♯1, u
♯
2)

.
= arg max

(ω1,ω2)∈U1×U2

{
θ
(
q1 · f(t, x,ω1,ω2)− L1(t, x,ω1,ω2)

)

+(1− θ)
(
q2 · f(t, x,ω1,ω2)− L2(t, x,ω1,ω2)

)}
.

(6.15)

Next, assume that the pair of value functions (V1, V2) provide a solution to the corresponding
system of Hamilton-Jaconi equations (6.13). As in Section 5, we wish to study the hyperbol-
icity of the linearized system (5.12). Assuming that the argmax in (6.15) is attained in the
interior of the admissible set U1 × U2, the necessary conditions yield

θ
(
∇V1 ·

∂f

∂u1
−
∂L1

∂u1

)
+ (1− θ)

(
∇V2 ·

∂f

∂u1
−
∂L2

∂u1

)
= 0 , (6.16)

θ
(
∇V1 ·

∂f

∂u2
−
∂L1

∂u2

)
+ (1− θ)

(
∇V2 ·

∂f

∂u2
−
∂L2

∂u2

)
= 0 . (6.17)

For convenience, introduce the quantities

ajk
.
= ∇Vj ·

∂f

∂uk
−
∂Lj

∂uk
j, k = 1, 2 .

Observe that the identities (6.16)-(6.17) imply

a11 =
θ − 1

θ
a21 , a12 =

θ − 1

θ
a22 . (6.18)
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In matrix notation, this homogeneous linear system (5.12) can be written as
(

Z1,t

Z2,t

)

+
n∑

α=1

Aα

(
Z1,xα

Z2,xα

)

=

(
0
0

)

, (6.19)

where the 2× 2 matrices Aα are given by

Aα =

⎛

⎜⎜⎜⎜⎜⎝

fα + a11
∂u♯1
∂q1α

+ a12
∂u♯2
∂q1α

a11
∂u♯1
∂q2α

+ a12
∂u♯2
∂q2α

a21
∂u♯1
∂q1α

+ a22
∂u♯2
∂q1α

fα + a21
∂u♯1
∂q2α

+ a22
∂u♯2
∂q2α

⎞

⎟⎟⎟⎟⎟⎠
. (6.20)

By (6.18) this can be written as

Aα =

⎛

⎜⎝
fα 0

0 fα

⎞

⎟⎠+

⎛

⎜⎜⎝

θ − 1

θ

1

⎞

⎟⎟⎠

(

a21
∂u♯1
∂q1α

+ a22
∂u♯2
∂q1α

a21
∂u♯1
∂q2α

+ a22
∂u♯2
∂q2α

)

. (6.21)

Therefore, given ξ = (ξ1, . . . , ξn), we can write

A(ξ) =
n∑

α=1

ξαA
α =

(
n∑

α=1

ξαfα

)

I2 +

(
1− θ−1

1

)

⊗w(ξ) , (6.22)

where I2 denotes the 2× 2 identity matrix and

w(ξ)
.
=

n∑

α=1

ξα

(

a21
∂u♯1
∂q1α

+ a22
∂u♯2
∂q1α

a21
∂u♯1
∂q2α

+ a22
∂u♯2
∂q2α

)

.

According to (6.22), every 2× 2 matrix A(ξ) can be represented as a multiple of the identity
matrix plus a matrix of rank one. Therefore, both of its eigenvalues are real.

As observed in [14], this does not guarantee that the system (6.19) is hyperbolic, because for
some choices of ξ the two eigenvalues of A(ξ) may coincide and a basis of eigenvectors may
not exist. In any case, solutions to differential games obtained using Pareto optima should
not experience the wild instabilities found with Nash solutions, where the eigenvalues of the
corresponding matrices A(ξ) can be complex.

6.4 Cooperative-competitive solutions

Finally, we examine the case where at each step the game (6.6) is solved in terms of the co-co
solution.

The sum of the two payoffs

V (N)
+ (τj, x)

.
= V (N)

1 (τj , x) + V (N)
2 (τj, x)

is now a scalar function which can be determined by backward induction, solving the opti-
mization problems

V (N)
+ (τj−1, x) = max

(ω1,ω2)∈U1×U2

{
V (N)
+

(
τj , x+ hf(τj , x,ω1,ω2)

)
− h

∑

i=1,2

Li(τj, x,ω1,ω2)
}
.

(6.23)
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Letting N → ∞, it is well known [33] that the functions V (N)
+ converge to the value function

V+ = V+(t0, x0) for the optimal control problem

maximize:
∑

i=1,2

(

ψi(x(T ))−
∫ T

t0
Li(t, x(t), u1(t), u2(t)) dt

)

, (6.24)

subject to
x(t0) = x0 , ẋ(t) = f(t, x(t), u1(t), u2(t)) . (6.25)

The maximum combined payoff (6.24) is sought over all couples of controls (u1, u2) : [t0, T ] $→
U1 × U2.

On the other hand, the difference between the two payoffs

V (N)
− (τj, x)

.
= V (N)

1 (τj , x)− V (N)
2 (τj, x)

is a scalar function which can also be determined by backward induction. Indeed, for each j,

the value V (N)
− (τj−1, x) is the value of the zero-sum game with payoff

J = V (N)
−

(
τj , x+ hf(τj , x, u1, u2)

)
− h

[
L1(τj , x, u1, u2)− L2(τj , x, u1, u2)

]
. (6.26)

Player 1 seeks to maximize this payoff, while Player 2 wants to minimize it. We recall that
this game always has a value, within the family of mixed strategies. Letting N → ∞, the

functions V (N)
− converge to the value function V− = V−(t0, x0) for the zero-sum differential

game with payoff

J = ψ1(x(T )) − ψ2(x(T ))−
∫ T

t0

[
L1(t, x(t), u1(t), u2(t))− L2(t, x(t), u1(t), u2(t))

]
dt ,

subject to
u1(t) ∈ U1, u2(t) ∈ U2 ,

ẋ = f(t, x, u1, u2) x(t0) = x0 .

This value function can be determined by solving a scalar H-J equation

Wt +H(t, x,∇W ) = 0 W (T, x) = ψ1(x)− ψ2(x) .

Here the hamiltonian function H(t, x, q) is defined as value of the “instantaneous” zero-sum
game with payoff

J (t,x,q)(ω1,ω2)
.
=
{
q · f(t, x,ω1,ω2)− L1(t, x,ω1,ω2) + L2(t, x,ω1,ω2)

}
.

This game always has a value, within the family of randomized strategies. In the case where
a saddle point exists, the following min-max coincides with the max-min and one has the
representation

H(t, x, q)
.
= max

ω1∈U1

min
ω2∈U2

J (t,x,q)(ω1,ω2) = min
ω2∈U2

max
ω1∈U1

J (t,x,q)(ω1,ω2) .

By the previous analysis, the co-co solution to a differential game for two players can be found
by solving two scalar Hamilton-Jacobi equations. This solution (in the viscosity sense) is
unique, and stable w.r.t. perturbations.
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7 Nash equilibrium feedbacks with infinite time horizon

As shown in the previous sections, the search for Nash equilibrium solutions to a differen-
tial game on a time interval [0, T ] usually leads to an ill posed Cauchy problem, which is
mathematically intractable.

As an alternative, in this section we consider games in infinite time horizon: t ∈ [0,∞[ , with
exponentially discounted payoffs. Assume that the state of the system evolves according to

ẋ = f(x, u1, u2) u1(t) ∈ U1 u2(t) ∈ U2 , (7.1)

and that the payoff functions are

Ji =
∫ ∞

0
e−ρt φi

(
x(t), u1(t), u2(t)

)
dt . (7.2)

Here the constant ρ > 0 is a discount rate. Since the dynamics and the payoff functions do
not depend explicitly on time, it is natural to seek a Nash equilibrium solution consisting of
time-independent feedbacks.

A pair of functions x $→ u∗1(x) ∈ U1, x $→ u∗2(x) ∈ U2 will be called a Nash equilibrium
solution in feedback form to the non cooperative game (7.1)-(7.2) provided that:

(i) The map u∗1(·) is an optimal feedback, in connection with the optimal control problem for
the first player:

maximize
∫ ∞

0
e−ρt φ1

(
x(t), u1(t), u

∗
2(x(t))

)
dt (7.3)

subject to
ẋ = f(x, u1, u

∗
2(x)) u1(t) ∈ U1 . (7.4)

(ii) The map u∗2(·) is an optimal feedback, in connection with the optimal control problem for
the second player:

maximize
∫ ∞

0
e−ρt φ2

(
x(t), u∗1(x(t)), u2

)
dt (7.5)

subject to
ẋ = f(x, u∗1(x), u2) u2(t) ∈ U2 . (7.6)

A general procedure to find these equilibrium feedbacks u∗1(·), u∗2(·) relies on the computation
of the value functions. In analogy with (A2), assume:

(A2′) For any x ∈ IRn and every pair of vectors (q1, q2) ∈ IRn× IRn, there exist a unique pair

(u♯1, u
♯
2) ∈ U1 × U2 such that

u♯1(x, q1, q2) = argmax
ω∈U1

{
q1 · f(x,ω, u♯2) + φ1(x,ω, u

♯
2)
}
, (7.7)

u♯2(x, q1, q2) = argmax
ω∈U2

{
q2 · f(x, u♯1,ω) + φ2(x, u

♯
1, ω)

}
. (7.8)
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For any x0 ∈ IRn, call V1(x0) the maximum payoff for the optimal control problem (7.3)-(7.4),
given the initial state x(0) = x0. Similarly, let V2(x0) be the maximum payoff for the optimal
control problem (7.5)-(7.6), given the initial state x(0) = x0.

On an open region where the value functions V1, V2 are continuously differentiable, accord-
ing to Theorem A.13 in the Appendix these functions satisfy the system of Hamilton-Jacobi
equations: {

ρV1 = H(1)(x,∇V1,∇V2) ,
ρV2 = H(2)(x,∇V1,∇V2) ,

(7.9)

where, for i = 1, 2,

H(i)(x, q1, q2)
.
= q1 · f

(
x, u♯1(x, q1, q2), u

♯
2(x, q1, q2)

)
+ φi

(
x, u♯1(x, q1, q2), u

♯
2(x, q1, q2)

)
.

In turn, given a solution V1, V2 to the system (7.9), the corresponding feedback controls are
obtained as

u∗i (x) = u♯i(x, ∇V1(x), ∇V2(x)) i = 1, 2 .

In general, the system (7.9) is highly nonlinear and difficult to solve. Notice, however, that
in the present case we are not looking at a Cauchy problem (which can be ill posed), but at
a time-independent problem. For applications, it would already be meaningful to construct
solutions to (7.9) on some domain Ω, provided that this domain is positively invariant for the
corresponding dynamics. In other words, calling t $→ x(t, x0) the solution to

ẋ = f(x, u∗1(x), u
∗
2(x)) x(0) = x0 ,

the forward invariance property means that

x(t, x0) ∈ Ω whenever x0 ∈ Ω , t ≥ 0 . (7.10)

7.1 A perturbation approach

A general theory for systems of Hamilton-Jacobi equations of the form (7.9) is not yet available.
To make some progress, one can adopt a perturbation approach. Consider a family of games,
depending on a small parameter ε. The dynamics is now

ẋ = f(x, u1, u2; ε) , u1(t) ∈ U1 , u2(t) ∈ U2 , (7.11)

while the payoff functions are

Ji =
∫ ∞

0
e−ρt φi

(
x(t), u1(t), u2(t); ε

)
dt . (7.12)

Assume that, for ε = 0, the corresponding system (7.9) is “degenerate”, in the sense that can
be reduced to a scalar equation. Then one can study what happens in the more general case
where ε is not zero, but sufficiently small.

More precisely, assume that, for ε = 0, we are given a pair of Nash equilibrium feedbacks
solution u∗1(·), u∗2(·), defined for x in an open set Ω ⊂ IRn. Let Ω∗ ⊂ Ω be a compact subset
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with smooth boundary, which is positively invariant for the corresponding dynamics. Namely,
assume that

n(x) · f(x, u∗1(x), u∗2(x); 0) < 0 for all x ∈ ∂Ω∗. (7.13)

Here n(x) denotes the unit outer normal to the boundary ∂Ω∗ at the point x.

For ε > 0 sufficiently small, a natural question is whether there exist a unique solution (V ε
1 , V

ε
2 )

(or infinitely many solutions) of the system (7.9), defined on the same domain Ω∗ and such
that

∥V ε
1 − V1∥C0(Ω∗) → 0 , ∥V ε

2 − V2∥C0(Ω∗) → 0 as ε→ 0. (7.14)

We review here a number of cases where the system (7.9) can be reduced to a scalar equation.

1 - Uncoupled games. Assume that both the dynamics and the payoff functions are
completely uncoupled. In other words, assume that the the state variable can be split as
x = (x′, x′′), with

ẋ′ = f1(x
′, u1) , ẋ′′ = f2(x

′′, u2) ,

J1 =
∫ ∞

0
e−ρt φ1

(
x′(t), u1(t)

)
dt ,

J2 =
∫ ∞

0
e−ρt φ2

(
x′′(t), u2(t)

)
dt .

In this case, each player solves his own optimal control problem, entirely independent from
the actions of the other player. The value functions V1 = V1(x′), V2 = V2(x′′) are found by
solving two independent, scalar H-J equations.

In the context of finite time games, small perturbations of this game, introducing some weak
coupling between the players, were studied in [34].

2 - One weak player. Consider a family of games depending on a small parameter ε, with
dynamics

ẋ = f1(x, u1) + εf2(x, u2) (7.15)

and payoff functionals

Ji =
∫ ∞

0
e−ρt

(
φi1(x, u1) + φi2(x, u2)

)
dt i = 1, 2 . (7.16)

Here ε is regarded as the strength of the second player. When ε = 0, this player cannot
influence in any way the evolution of the system. His optimal strategy is thus the myopic one:

u2 = u∗2(x) = argmax
ω∈U2

φ22(x,ω) .

In this case, the non-cooperative game reduces to an optimal control problem for the first
player:

maximize
∫ ∞

0
e−ρt

(
φ11(x, u1) + φ12(x, u

∗
2(x))

)
dt , (7.17)

for a system with dynamics
ẋ = f1(x, u1). (7.18)
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As soon as the optimal feedback control u∗1(x) for the first player is found, this determines in
turn the trajectories of the system, and hence the value function for the second player.

In one space dimension, the existence and uniqueness of Nash feedback solutions, for ε > 0
small, was investigated in [10].

3 - Symmetric games. We say that the game (7.1)-(7.2) is symmetric if the two players
have an identical role, in the sense that

f(x, u1, u2) = f(x, u2, u1), U1 = U2 = U ,

φ1(x, u1, u2) = φ2(x, u2, u1) .

In this situation, it is natural to seek a symmetric solution, with u∗1(x) = u∗2(x), V1(x) =
V2(x) = V (x). The function V can be found by solving the scalar H-J equation

ρV = ∇V · f
(
x, u♯(x,∇V ), u♯(x,∇V )

)
+ φi

(
x, u♯(x,∇V ), u♯(x,∇V )

)

(choosing here i = 1 or i = 2 does not make a difference). In analogy with (A2), we assume
here the existence of a function u♯ such that

u♯(x, q)
.
= argmax

ω∈U

{
q · f(x,ω, u♯(x, q)) + φ1

(
x,ω, u♯(x, q)

)}

= argmax
ω∈U

{
q · f(x, u♯(x, q),ω) + φ2

(
x, u♯(x, q),ω

)}
.

For example, assume

ẋ = g(x, u1) + g(x, u2), u1(t), u2(t) ∈ U ,

J1 =
∫ ∞

0
e−ρt

[
φ(x, u1) + ψ(x, u2)

]
dt ,

J2 =
∫ ∞

0
e−ρt

[
φ(x, u2) + ψ(x, u1)

]
dt .

Then
u♯(x, q) = argmax

ω∈U

{
q · g(x,ω) + φ(x,ω)

}
.

Assuming that, for ε = 0 the game (7.11)-(7.12) is symmetric, an interesting problem is to
investigate the existence of Nash equilibrium feedback solutions for ε > 0 small.

4 - Fully cooperative games. Assume that, for ε = 0, the payoffs (7.12) for the two players
coincide, i.e.: φ1 = φ2 = φ(x, u1, u2). In connection with the dynamics (7.11), we can then
consider the optimal control problem

maximize: J(u1, u2) =
∫ ∞

0
e−ρtφ(x, u1, u2) dt ,

for a controller who can simultaneously choose both controls u1(·) and u2(·). A feedback
solution (u∗1(x), u

∗
2(x)) to this optimal control problem yields a Nash equilibrium solution to
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the original differential game, for ε = 0. Solutions for ε > 0 can be studied by a perturbation
approach.

5 - Zero sum games. Assume that, for ε = 0, the game (7.11)-(7.12) is zero-sum, i.e.:
φ1 = −φ2 = φ(x, u1, u2). If

max
u1∈U1

min
u2∈U2

{
q·f(x, u1, u2)+φ(x, u1, u2)

}
= min

u2∈U2

max
u1∈U1

{
q·f(x, u1, u2)+φ(x, u1, u2)

}
(7.19)

for every q ∈ IRn, then the value functions V1(x) = −V2(x) = V (x) are well defined. They
can be determined by solving the scalar Hamilton-Jacobi equation

ρV = H(x,∇V ),

where H(x, q) is the common value of the quantities in (7.19). Note that, if the identity (7.19)
fails, one can still define H(x, q) as the unique value of the zero-sum game with payoff

q · f(x, u1, u2) + φ(x, u1, u2) u1 ∈ U1 , u2 ∈ U2 .

By Corollary 2 in Section 2, this value is always well defined, within the family of randomized
strategies.

Starting with the feedbacks u∗1(·), u∗2(·), known in the case ε = 0, one may study solutions for
ε > 0 by a perturbation approach.

In the case (2) of one weak player, the existence and uniqueness of Nash solutions to the
perturbed problem has been analyzed in [10], in one space dimension. See also [34] for an
expansion of the perturbed solution in powers of ε, in the case (2) of uncoupled games on a
finite time interval. The other cases (3)–(5) remain open for investigation.

8 A game with infinitely many players

In a differential game with a small number of players, each player has the power to modify the
state of the system. For example, in an oligopolistic market with a small number of producers,
each company can affect the market price by changing its own production level.
In the search for Nash solutions in feedback form, this situation determines severe instabilities,
often leading to intractable mathematical problems.

On the other hand, when the number of players is very large, the state of the system is
determined by the average behavior: no single player has the power to change the overall
evolution of the system. This fact greatly simplifies the mathematical model, and the search
for Nash solutions to the differential game.

In recent years, a theory of mean field games has emerged, motivated by models in econ-
omy and finance, with a large number of agents. As an elementary introduction, we discuss
below a specific example, leading to a differential game with infinitely many players. For a
comprehensive presentation of mean field games, we refer to the original papers [24, 28].
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Consider a game forN competing oil producers, who adjust their production levels as functions
of time, in order to maximize their total profits. To model this situation, let us introduce the
variables

p(t) = [market price of the oil at time t],

ui(t) = [rate at which the i-th producer extracts the oil, at time t],

ci(u) = [cost incurred by the i-th producer, for extracting the oil at rate u],

Ri = [initial amount of oil in the reserves of the i-th player].

The optimization problem for the i-th player is

maximize:
∫ ∞

0
e−ρt

[
p(t)ui(t)− ci(ui(t))

]
dt , (8.1)

subject to ∫ ∞

0
ui(t) dt = Ri . (8.2)

To fix the ideas, assume that the costs ci are quadratic functions of the production rates, say

ci(u) = aiu+
bi
2
u2 . (8.3)

Moreover, assume that at each time t the price p(t) is determined by the market, in terms of
a demand function. The demand for oil at time t will be modeled as

D(t, p) = Weγtp−α

HereWeγt represents the total size of the economy, growing at a constant rate γ. The exponent
−α < 0 accounts for the elasticity of the demand, which shrinks as the price increases.
The price function

p = p

(

t,
N∑

i=1

ui

)

is now implicitly determined by the equality between supply and demand, i.e.

D(t, p(t)) =
N∑

i=1

ui(t) .

To derive the optimal strategy for the i-th player, a key observation is that, if

ui <<
N∑

j=1

uj ,

then the contribution of the i-th player to the determination of the market price is very
small. If this holds, then the i-th player can regard the price p(t) as a given function of time,
determined by the collective behavior of all other players.
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The constraint (8.2) can be taken into account by introducing a Lagrange multiplier. For a
given constant λi (to be determined later), we thus consider the problem

maximize:
∫ ∞

0

{
e−ρt

[
p(t)ui(t)− ci(ui(t))

]
− λiui(t)

}
dt . (8.4)

The pointwise optimality conditions are

ui(t) = argmax
ω≥0

{
e−ρt

(
p(t)ω − ci(ω)

)
− λiω

}

= argmax
ω≥0

{
e−ρt

(
p(t)ω − αiω −

βi
2
ω2
)
− λiω

}

=
1

βi

[
p(t)− αi − eρtλi

]

+
.

(8.5)

If ∫ ∞

0

1

βi

[
p(t)− αi

]

+
dt ≤ Ri ,

we set λi = 0. Otherwise, we determine the constant λi ≥ 0 so that

∫ ∞

0

1

βi

[
p(t)− αi − eρtλi

]

+
dt = Ri . (8.6)

Up to here, this has been a classical derivation of the optimal strategy for one of the producers,
provided that he knows in advance the oil price p(t) at all future times. We now discuss how
this market price can be predicted.

Assume that at the initial time t = 0 there is a large number of producers, of different types.
For our purposes, the “type” of a producer is described by a vector y = (α,β, R̄). This
determines his production cost c(u) = α + βu2/2 and his initial oil reserves, measured by R̄.
From the previous derivation, it is clear that, for a given price function t $→ p(t), the optimal
production strategy u(·) in (8.5) depends only on the type of the producer. We can thus write
u = u(t; y, p(·)). Similarly, the Lagrange multiplier λ = λ(y, p(·)) in (8.6) depends only on
the type y = (α,β, R) of the producer.

To describe how many producers of a given type are present, we think of a continuum of
producers, with density function m(y). In other words, given any open set Ω ⊂ IR3, the
number of producers of type y = (α,β, R) ∈ Ω is

∫

Ω
m(y) dy .

For a given price function p(·), the total oil production at time t is

U(t)
.
=

∫

IR3
u(t; y)m(y) dy . (8.7)

At each time t, the market price provides a balance between production and demand, namely

U(t) = D(t, p(t)) .

53



More explicitly, this yields the pointwise identities
∫

IR3

1

β

[
p(t)− α− eρtλ(y)

]

+
m(y) dy = W eγtp(t)−α for all t ≥ 0 . (8.8)

According to (8.6), the Lagrange multiplier λ = λ(α,β, R) ≥ is determined by the constraint
∫ ∞

0

1

β

[
p(t)− α− eρtλ(y)

]

+
dt = R for all y = (α,β, R) ∈ Supp(m) ⊂ IR3 , (8.9)

or else λ = 0 if ∫ ∞

0

1

β

[
p(t)− α

]

+
dt ≤ R .

Of course, the above identities need to be satisfied only at points y where m(y) > 0.

In the end, to solve the optimization problem we need to find two functions: λ(y) and p(t),
satisfying (8.8)-(8.9). A numerical algorithm computing an approximate solution to these
equations is as follows. Construct a family of functions depending on an additional parameter
θ ∈ [0,∞[ , such that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂

∂θ
p(t, θ) = W eγtp(t)−α −

∫

IR3

1

β

[
p(t)− α− eρtλ(y)

]

+
m(y) dy ,

∂

∂θ
λ(y, θ) =

∫ ∞

0

1

β

[
p(t)− α− eρtλ(y)

]

+
dt−R .

(8.10)

By guessing a suitable initial data

p(t, 0) = p0(t) , λ(y, 0) = λ0(y) , (8.11)

we expect that as θ → ∞ the solution to (8.10) will converge to a steady state. In other words,

p̄(t)
.
= lim

θ→∞
p(t, θ) , λ̄(y)

.
= lim

θ→∞
λ(y, θ)

should yield the solution to the problem.

Remark 7. In the previous model, as time progresses the players do change type, but only
because their reserves shrink. Indeed, the reserve of the i-th player at time t is

Ri(t) = Ri −
∫ t

0
ui(s) ds .

One could consider other ways for the players to change type:

• A player can buy more oil reserves.

• A player can invest in better technology, and reduce his production costs. In this case,
the coefficients α,β in his cost function will decrease.

In addition, one may wish to incorporate stochastic effects.

• Since each player does not know precisely the size of his own oil reserve, his assessment
of this reserve may randomly change.
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• The market demand for oil may be subject to random fluctuations, due to external
factors.

All these aspects can be taken into account, in more realistic (but more complex) models.

9 Research directions

The mathematical theory of games studies situations where two or more agents make decisions,
within the same environment, but with possibly conflicting goals. The aims of this theory are
two-folds:

• From the point of view of one of the players, one seeks to determine “optimal” or
“rational” strategies, to be implemented during actual play.

• From the point of view of an external observer, one would like to predict players’ behavior
and the outcome of the game. It also has interest to understand how, by modifying
the rules of the game, the eventual outcome can be improved, from a higher collective
standpoint.

Both of these aspects find applications to economics, and more generally in situations involving
the interaction of individuals with different goals. For example, the first point of view is of
interest to companies, who need to plan investment, production and advertising strategies in a
competitive marketplace. The second point of view can be of relevance to a government, who
wishes to regulate the market (determining lending and tax rates, ruling out cartels, etc. . .)
in order to maximize economic growth. As seen in many examples, the outcome determined
by a Nash equilibrium can be much inferior to a Pareto optimum, from a global perspective.
An outstanding task for game theory is to design additional penalties or incentives, so that
the behavior of individual players (determined by a Nash equilibrium) approaches a Pareto
optimum.

In the mathematical theory of optimal control there is one standard model, which has been
studied in a large body of literature. On the other hand, differential games come in a variety
of models, depending on the information available to the agents, their ability to communicate
and to agree on a common course of action, the possibility of side payments, the presence of
random external factors, etc. . . The development of appropriate mathematical models remains
a major issue of current research.

Among the features that a good mathematical model should have, a key one is robustness.
Namely, the strategies adopted by the players and the outcome of the game should not exhibit
sensitive dependence on the data of the problem. If a small change in the data can determine
a large change in the outcome, the model loses its predictive power, and hence most of its
interest. In addition, the computation of the strategies adopted by the various players should
not be exceedingly complex. If a model requires a solution algorithm which can be mastered
only by a handful of theoreticians, it can hardly explain actual behavior [3].

At present, various models are known, which yield tractable mathematical problems:
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• Nash, or Stackelberg equilibria in the class of open loop controls.

• Feedback solutions to zero-sum games.

• Nash solutions for linear-quadratic problems, where the feedback controls are (somewhat
artificially) restricted to the class of functions depending linearly on the state.

• Co-co (cooperative-competitive) solutions [26].

Specific applications lead to further research, studying cases with state constraints, external
perturbations, asymmetric information, etc. . . For an extensive survey of references we refer
to [9, 19].

On the other hand, in a situation where the players have information on the current state of
the system but do not cooperate with each other, the concept of Nash feedback equilibrium
generally leads to an ill posed problem, as seen in Section 5. This motivates the search
for alternative models, where some mechanism for partial cooperation, or the presence of
stochastic components, renders the solution more stable w.r.t. perturbations in the data. The
following comments briefly address this issue.

According the analysis in Section 5, the ill posedness stems from the fast amplification of
high-frequency oscillations in the value functions. In a realistic situation, however, players are
not able nor willing to measure such small scale effects, and to exploit them. Ideas related
to the regularization of ill posed problems [6] may thus be of use here. In an alternative
model, partial cooperation may be achieved based on repeated games, reaching a more stable
situation where players develop mutual trust. For a deeper discussion of modeling issues we
refer to Aumann’s papers [3, 4, 5].

Another way to achieve a robust model is to consider Nash feedback equilibria for stochastic
differential games [23], where the state evolves according to

dx = f(t, x, u1, u2) dt+ σ(t, x) dw .

Here w denotes a Brownian motion. In this case the value functions are found by solving
a Cauchy problem for a system of parabolic equations, which is well posed as soon as the
diffusion matrix σ has full rank.

An interesting class of models, whose investigation has started only recently, deals with games
with infinitely many players. In this case, no single player can affect the state of the system.
As in the example presented in Section 8, each player thus faces an optimal control problem
where the state of the system can be considered as a given function of time, determined by the
average behavior of all other players. This accounts for the robustness of the mathematical
model. See [24, 28] for a survey of recent work in this direction.

10 Appendix

For readers’ convenience, we collect here various definitions and basic results of mathematical
analysis, which were used as background material.

56



10.1 Convex sets

A set A ⊆ IRn is convex if, for any two points x, x′ ∈ A, the segment that joins them is
entirely contained in A. Otherwise stated, A is convex if

θx+ (1− θ)x′ ∈ A for every x, x′ ∈ A, θ ∈ [0, 1] .

The convex hull of a set A is the smallest convex set which contains A. It can be represented
as the set of all convex combinations of elements of A, namely

coA =

{
N∑

i=1

θixi ; N ≥ 1, xi ∈ A, θi ∈ [0, 1],
N∑

i=1

θi = 1

}

. (10.1)

In (10.1), for every integer N ≥ 1 we are choosing N elements of A and taking their convex
combinations. However, when A ⊂ IRn, taking combinations of n+ 1 elements suffices:

Theorem A.1 (Carathéodory). Let A ⊆ IRn. Then

coA =

{
n+1∑

i=1

θixi ; xi ∈ A, θi ∈ [0, 1],
N∑

i=1

θi = 1

}

. (10.2)

For a proof, see for example the Appendix in [11].

A function g : IRn $→ IR is convex if

g
(
θx+ (1− θ)y

)
≤ θ g(x) + (1− θ) g(y) for all x, y ∈ IRn , θ ∈ [0, 1] .

We say that g is concave if −g is convex.

10.2 Multifunctions

In the following, X denotes a metric space with distance d(·, ·). The distance between a point
x ∈ X and set A ⊆ X is defined as the smallest distance between x and points in A, i.e.

d(x,A)
.
= inf

a∈A
d(x, a).

The open ε-neighborhood around the set A is denoted by

B(A, ε)
.
= {x ∈ X : d(x,A) < ε}.

The Hausdorff distance between two (nonempty) compact sets A,A′ ⊂ X is defined as

dH(A,A′)
.
= max

{
d(x,A′), d(x′, A); x ∈ A, x′ ∈ A′

}
.

Equivalently, dH(A,A′) can be defined as the infimum of all radii ρ > 0 such that A is contained
in the ρ-neighborhood around A′ while A′ is contained in the ρ-neighborhood around A (see
figure 11).

dH(A,A′) = inf
{
ρ > 0 ; A ⊂ B(A′, ρ) and A′ ⊂ B(A, ρ)

}
.
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Figure 11: The Hausdorff distance between the two sets A,A′ is max{ρ, ρ′}.

If X,Y are metric spaces, a multifunction F from X to Y is a map that associates to each
point x ∈ X a set F (x) ⊆ Y . We say that F is compact valued if every F (x) is a non-empty
compact subset of Y . The multifunction F is bounded if all its values are contained inside a
fixed ball B ⊂ Y . We recall here the main continuity concepts for multivalued maps.

Definition. Let X,Y be metric spaces. A multifunction F : X $→ Y with compact values is
said to be Hausdorff continuous if, for every x ∈ X,

lim
x′→x

dH(F (x′), F (x)) = 0.

We say that F is Hausdorff upper semicontinuous if, for every x ∈ X and ε > 0 there
exists δ > 0 such that

F (x′) ⊆ B(F (x), ε) whenever d(x′, x) < δ . (10.3)

We say that F is Hausdorff lower semicontinuous if, for every x ∈ X and ε > 0 there
exists δ > 0 such that

F (x) ⊆ B(F (x′), ε) whenever d(x′, x) < δ . (10.4)

Intuitively, when F is upper semicontinuous, one should think that each set F (x) is “large”,
compared with the sets F (x′) with x′ close to x. Indeed, the ε-enlargement B(F (x), ε) contains
all the nearby sets F (x′).

On the other hand, when F is lower semicontinuous, the set F (x) is “small” compared with all
nearby sets F (x′) with x′ close to x. Indeed, for all x′ in a neighborhood of x, the ε-enlargement
B(F (x′), ε) contains F (x).

Theorem A.2. A bounded multifunction F : X $→ IRN with compact values is upper semi-
continuous if and only if its graph

Graph(F ) =
{
(x, y) ; y ∈ F (x)

}

is closed.
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x0

F

x
0

F

Figure 12: Left: the graph of an upper semicontinuous function. Here F (x0) contains an entire
segment, while F (x) is single-valued for x ̸= x0 . Right: the graph of a lower semicontinuous
function. Here F (x0) consists of just one point, while F (x) is multivalued for x < x0 .

The above condition means that, if lim
k→∞

xk = x, and lim
k→∞

yk = y and yk ∈ F (xk) for every

k ≥ 1, then y ∈ F (x). For a proof we refer to [2].

Given a multifunction x $→ F (x), by a selection of F we mean a single-valued function
x $→ f(x) such that f(x) ∈ F (x) for every x.

In general, even if F is Hausdorff continuous, in general there may not exists any continuous
selection. For convex-valued multifunctions, the main selection theorems are as follows.

x

fF

Figure 13: An upper semicontinuous multifunction F with convex values, the ε-neighborhood of its
graph, and a continuous ε-approximate selection f .

Theorem A.3 (Michel). Let X be a metric space, and let F : X $→ IRN be a lower
semicontinuous multifunction with compact convex values. Then there exists a continuous
selection x $→ f(x) ∈ F (x).

For a proof we refer to [2].

Theorem A.4 (Cellina). Let X be a compact metric space, and let F : X $→ IRN be an
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upper semicontinuous multifunction with compact convex values. Then for every ε > 0 there
exists a continuous map f : X $→ IRN such that

graph(f) ⊂ B
(
graph(F ), ε

)
. (10.5)

Moreover, f takes values in the convex hull of the image F (X)
.
=
⋃

x∈X

F (x).

Proof. Let ε > 0 be given.

1. Since F is upper semicontinuous, for every x ∈ X there exists a radius 0 < r(x) < ε/2 such
that

F (x′) ⊆ B
(
F (x),

ε

2

)
whenever |x′ − x| < r(x) . (10.6)

As x ranges in X, the family of all open balls B(x, r(x)/2) forms an open covering of the
compact metric space X. We can thus choose a finite subcovering, consisting of finitely many
balls, say B(xα, rα/2), α ∈ J .

2. Let {ϕα}α∈J be a continuous partition of unity subordinated to this covering. For each
α ∈ J , we choose a point yα ∈ F (xα). Then we define

f(x)
.
=

∑

j∈J

ϕα(x) yα . (10.7)

Since this is a finite sum of continuous functions, it is clear that f is a well defined continuous
function. Moreover, f(x) ∈ co{yα ; α ∈ J}. Therefore all values of f lie in the convex hull
of the image F (X).

3. To prove (10.5), fix any x ∈ X. Call J(x) ⊆ J the set of all indices such that ϕα(x) > 0.
Choose the largest among all radii rα, α ∈ J(x), say

rβ = max
α∈J(x)

rα .

Fore every α ∈ J(x), this choice implies

|xα − x| <
rα
2

≤
rβ
2

, |xα − xβ| < rβ .

By (10.6) it thus follows

yα ∈ F (xα) ⊆ B
(
F (xβ),

ε

2

)
. (10.8)

Since fε is a convex combination of the points yα with α ∈ J(x), and the right hand side of
(10.8) is a convex set, this implies

f(x) ∈ B
(
F (xβ) ,

ε

2

)
.

We now compute the distance

d
(
(x, f(x)) , graph(F )

)
≤ d(x, xβ) + d

(
f(x) , F (xβ)

)
<

ε

2
+
ε

2
.

Since the same inequality holds for every x ∈ X, this proves (10.5).
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Figure 14: The covering used in Cellina’s approximate selection theorem. The ball B(xβ , rβ) contains
all balls B(xα, rα/2), for α ∈ J(x).

10.3 Fixed point theorems

We review here the classical fixed point theorem of Brouwer, and its multivalued extension
due to Kakutani.

Theorem A.5 (Brouwer). Let f be a continuous map from a compact, convex set K ⊂ IRn

into itself. Then there exists a point x̄ ∈ K such that

x̄ = f(x̄) . (10.9)

An elementary proof (originally proposed by Milnor) of this classical result can be found in
the Appendix of [11].

Corollary A.6 (Kakutani). Let K be any compact convex subset of IRn. Let F : K $→ IRn

be an upper semicontinuous multifunction with compact, convex values, such that F (x) ⊆ K
for every x ∈ K. Then there exists a point x̄ ∈ K such that

x̄ ∈ F (x̄) . (10.10)

Proof. For every ε > 0, by Cellina’s approximate selection theorem there exists a continuous
map fε : K $→ K such that

graph(fε) ⊂ B(graph(F ), ε).

By Brouwer’s fixed point theorem, there exists xε ∈ K such that

f(xε) = xε .
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Since K is compact, we can extract a convergent sequence, say

xεk → x̄ .

We claim that (10.10) holds. Indeed, by construction

d
(
(xεk , f(xεk)) , graph(F )

)
≤ εk

Letting εk → 0 we have

(xεk , f(xεk)) = (xεk , xεk) → (x̄, x̄) .

Therefore
d
(
(x̄, x̄) , graph(F )

)
= 0.

Hence (x̄, x̄) ∈ graph(F ), because by assumption the graph of F is closed. This implies
(10.10).

10.4 Optimal Control Problems

Here and in the following sections we review some basic definitions and results in the theory
of optimal control.

Consider a controlled system described by

ẋ = f(t, x, u), u(t) ∈ U . (10.11)

Here t is time, x ∈ IRn is the state variable, and the upper dot denotes derivative w.r.t. time.
The control function u(·) is assumed to be measurable, taking values in a compact domain
U ⊂ IRm. Throughout the following we assume

(H1) The function f is continuous w.r.t. all variables and continuously differentiable w.r.t. x.
Moreover there exists a constant C such that

|f(t, x, u)| ≤ C(1 + |x|) for all (t, x, u) ∈ [0, T ]× IRn × U. (10.12)

The above linear growth condition guarantees that solutions of the (10.11) cannot become
unbounded in finite time. Given an initial condition

x(t0) = x0 , (10.13)

let
t $→ x(t) = x(t ; t0, x0, u) (10.14)

be the corresponding trajectory of (10.11), and consider the optimization problem

maximize: J(u; t0, x0)
.
= ψ(x(T ))−

∫ T

t0
L(t, x(t), u(t)) dt . (10.15)

Here ψ describes a terminal payoff, while L(·) is a running cost. For a given initial data (t0, x0),
the payoff J should be maximized over all measurable control functions u : [t0, T ] $→ U .
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10.5 Necessary Conditions for Optimality

Let t $→ u∗(t) be an optimal control function, and let t $→ x∗(t) = x(t; t0, x0, u∗) be the
corresponding optimal trajectory. A set of necessary conditions satisfied by the functions
u∗(·), x∗(·) is provided by the Pontryagin Maximum Principle (PMP). We first consider the
basic case where the initial point is given, and the terminal point is free.

f(t, x (t), u)*

p(t)
x

0

*

x (T)*

∆p(T)=       ψ

Figure 15: An illustration of the Pontryagin maximum principle, in the case where L(t, x, u) ≡ 0. At
each time t ∈ [0, T ], among all possible velocities ẋ = f(t, x∗(t), u), u ∈ U (shaded set), the optimal
choice is the one that maximizes the inner product with the adjoint vector p(t).

Theorem A.7 (PMP, free terminal point). Let t $→ u∗(t) be an optimal control and
t $→ x∗(t) be the corresponding optimal trajectory for the maximization problem (10.11)–
(10.15). Define the vector t $→ p(t) as the solution to the linear adjoint system

ṗ(t) = − p(t)
∂f

∂x
(t, x∗(t), u∗(t)) +

∂L

∂x
(t, x∗(t), u∗(t)), (10.16)

with terminal condition
p(T ) = ∇ψ(x∗(T )). (10.17)

Then, for almost every t ∈ [t0, T ] the following maximality condition holds:

p(t)·f(t, x∗(t), u∗(t))−L(t, x∗(t), u∗(t)) = max
u∈U

{
p(t)·f(t, x∗(t), u)−L(t, x∗(t), u)

}
. (10.18)

In the above theorem, x, f, v represent column vectors, while p is a row vector. In coordinates,
the above equations (10.16)–(10.18) can be written as

ṗi(t) = −
n∑

j=1

pj(t)
∂fj
∂xi

(t, x∗(t), u∗(t)) +
∂L

∂xi
(t, x∗(t), u∗(t)), (10.19)

pi(T ) =
∂ψ

∂xi
(x∗(T )), (10.20)

n∑

i=1

pi(t)·fi(t, x∗(t), u∗(t))− L(t, x∗(t), u∗(t)) = max
u∈U

{
n∑

i=1

pi(t) · fi(t, x∗(t), u) − L(t, x∗(t), u)

}

.

(10.21)

Relying on the PMP, the computation of the optimal control can be achieved in two steps:
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STEP 1: solve the pointwise maximixation problem (10.18), obtaining the optimal control
u♯ as a function of t, x, p :

u♯(t, x, p) = argmax
u∈U

{
p · f(t, x, u)− L(t, x, u)

}
. (10.22)

STEP 2: solve the two-point boundary value problem on the interval [t0, T ] :
⎧
⎪⎪⎨

⎪⎪⎩

ẋ = f(t, x, u♯(t, x, p)) ,

ṗ = − p(t)
∂f

∂x
(t, x, u♯(t, x, p)) +

∂L

∂x
(t, x, u♯(t, x, p)) ,

⎧
⎪⎨

⎪⎩

x(t0) = x0 ,

p(T ) = ∇ψ(x(T )) .
(10.23)

Remark 8. There are two main difficulties associated with the above procedure:

• In general, the function u♯ = u♯(t, p, x) in (10.22) is highly nonlinear. It can be multi-
valued or discontinuous.

• The set of equations (10.23) is not a Cauchy problem, where all components of the
solution are explicitly given at the initial time t = t0. On the contrary, the value of x
is prescribed at the initial time t = t0, but the value of p is determined by an equation
valid at the terminal time t = T .

Numerically, the two-point boundary value problem (10.23) can be solved by a shooting
method. One needs to guess an initial value p̄ and solve the corresponding Cauchy problem,
consisting of the system of ODEs in (10.23) with initial data

x(t0) = x0 , p(t0) = p̄ .

This yields a map from IRn into IRn:

p̄ $→ Λ(p̄)
.
= p(T )−∇ψ(x(T )) .

By an iterative procedure, we then adjust the value of p̄ and try to find a zero of the map Λ.
This will provide a solution to the boundary value problem (10.23).

Remark 9. Recalling (10.22), consider the Hamiltonian function

H(t, x, p)
.
= sup

u∈U

{
p · f(t, x, u)− L(t, x, u)

}
= p · f(t, x, u♯(t, x, p)) − L(t, x, u♯(t, x, p)).

(10.24)
Assume that the functions f, L are continuously differentiable w.r.t. x, u, and assume that
the maximum u♯ in (10.22) is always attained at an interior point of U . Then the system of
differential equations in (10.23) can be written in Hamiltonian form

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ =
∂H

∂p
(t, x, p) ,

ṗ = −
∂H

∂x
(t, x, p) .

(10.25)
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Indeed, the maximality condition (10.22) implies

p ·
∂f

∂u
−
∂L

∂u
= 0.

Next, consider the more general optimization problem

maximize: J
.
= ϕ(x(0)) + ψ(x(T ))−

∫ T

0
L(t, x(t), u(t)) dt , (10.26)

assuming that both the initial and the terminal point can vary. Here ϕ is an initial payoff, ψ
is a terminal payoff, while L(·) accounts for a running cost. The payoff J has to be maximized
among all measurable control functions u : [0, T ] $→ U and all choices of an initial and terminal
data, satisfying the constraints

x(0) ∈ S0 , x(T ) ∈ ST . (10.27)

In the following, we assume that the functions f, L,ϕ,ψ are continuously differentiable, while
S0, ST ⊂ IRn are two C1 embedded manifolds. A set of necessary conditions for optimality is
provided by the following more general version of the Pontryagin Maximum Principle.

Theorem A.8 (PMP, constrained initial and terminal points). Let t $→ u∗(t) be a
bounded, optimal control function and let t $→ x∗(t) be the corresponding optimal trajectory
for the problem (10.26), with dynamics (10.11) and initial and terminal constraints (10.27).
Then the following holds.

(i) There exists an absolutely continuous adjoint vector t $→ p(t) = (p0, p1, . . . , pn)(t) which
never vanishes on [0, T ], with p0 ≥ 0 constant, satisfying

ṗi(t) = −
n∑

j=1

pj(t)
∂fj
∂xi

(t, x∗(t), u∗(t)) + p0
∂L

∂xi
(t, x∗(t), u∗(t)) i = 1, . . . , n .

(10.28)

(ii) The initial and terminal values of p satisfy
{

(p1, . . . , pn)(0) = p0 ∇ϕ(x∗(0)) + n0 ,
(p1, . . . , pn)(T ) = p0 ∇ψ(x∗(T )) + nT .

(10.29)

for some vector n0 orthogonal to manifold S0 at the initial point x∗(0)
and some vector nT orthogonal to manifold ST at the terminal point x∗(T ).

(ii) The maximality condition

n∑

i=1

pi(t) · fi(t, x∗(t), u∗(t)) − p0 L(t, x
∗(t), u∗(t))

= max
u∈U

{
n∑

i=1

pi(t) · fi(t, x∗(t), u) − p0 L(t, x
∗(t), u)

} (10.30)

holds for a.e. t ∈ [0, T ].
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For a proof, see Chapter 5 in [16].

Remark 10. In a standard situation, the sets S0, ST are described in terms of a finite number
of smooth scalar functions. For example

S0
.
=
{
x ∈ IRn ; α1(x) = 0, . . . , αk(x) = 0

}
.

Assuming that the gradients of the functions αi are linearly independent at the point x∗(0) ∈
S0, any normal vector to S0 can be represented as

n0 =
k∑

i=1

λi∇αi(x
∗(0))

for some numbers λ1, . . . ,λk ∈ IR. The first condition in (10.29) can thus be written as

(p1, . . . , pn)(0) = p0∇ϕ(x∗(0)) +
k∑

i=1

λi∇αi(x
∗(0))

for some scalar multipliers λ1, . . . ,λk.

Remark 11. In the special case where the initial point is fixed and the terminal point is free,
we have S0 = {x0} while ST = IRn. Therefore, n0 ∈ IRn can be arbitrary while nT = 0. The
boundary conditions for p become

(p1, . . . , pn)(0) arbitrary, (p1, . . . pn)(T ) = p0∇ψ(x∗(T )).

The condition that (p0, p1, . . . , pn)(T ) should be non-zero implies p0 > 0. Since p is determined
up to a positive constant, it is thus not restrictive to assume p0 = 1. The necessary conditions
in Theorem A.8 thus reduce to those stated in Theorem A.7.

10.6 Sufficient Conditions for Optimality

In general, the conditions stated by PMP are necessary but not sufficient for a control u∗(·)
to be optimal. However, under a suitable concavity condition, it turns out that every control
u∗(·) satisfying the PMP is optimal.

Consider the Hamiltonian function

H(t, x, u, p)
.
= p · f(t, x, u)− L(t, x, u) (10.31)

and the reduced Hamiltonian

H(t, x, p)
.
= max

ω∈U

{
p(t) · f(t, x,ω)− L(t, x,ω)

}
. (10.32)

Theorem A.9 (PMP + concavity =⇒ optimality). In the setting of Theorem A.7, con-
sider a measurable function t $→ u∗(t) ∈ U and two absolutely continuous functions x∗(·), p(·)
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satisfying the boundary value problem
⎧
⎪⎪⎨

⎪⎪⎩

ẋ = f(t, x, u∗(t)) ,

ṗ = − p(t)
∂f

∂x
(t, x, u∗(t)) +

∂L

∂x
(t, x, u∗(t)) ,

⎧
⎪⎨

⎪⎩

x(t0) = x0 ,

p(T ) = ∇ψ(x(T )) .
(10.33)

together with the maximality condition (10.18). Assume that the set U is convex and that the
functions

x $→ H(t, x, p(t)) x $→ ψ(x)

are concave. Then u∗(·) is an optimal control, and x∗(·) is the corresponding optimal trajec-
tory.

Proof. Let u : [t0, T ] $→ U be any measurable control function. Then

J(u)− J(u∗) = ψ(x(T )) − ψ(x∗(T ))−
∫ T

t0

[
L(t, x(t), u(t)) − L(t, x∗(t), u∗(t))

]
dt

= ψ(x(T )) − ψ(x∗(T )) +
∫ T

t0

{[
H(t, x(t), p(t), u(t)) − p(t) ẋ(t)

]

−
[
H(t, x∗(t), p(t), u∗(t))− p(t) ẋ∗(t)

]}
dt

(10.34)
Since u∗ satisfies the maximality condition (10.18), for a.e. t ∈ [t0, T ] one has

H(t, x∗(t), p(t), u∗(t)) = H(t, x(t), p(t)), H(t, x(t), p(t), u(t)) ≤ H(t, x(t), p(t)).

Using these inequalities in (10.34) we obtain

J(u)− J(u∗) ≤ ψ(x(T )) − ψ(x∗(T ))

+
∫ T

t0

{[
H(t, x(t), p(t)) − p(t) ẋ(t)

]
−
[
H(t, x∗(t), p(t)) − p(t) ẋ∗(t)

]}
dt

(10.35)
If the map x $→ H(t, x, p(t)) is differentiable, the concavity assumption implies

H(t, x(t), p(t)) ≤ H(t, x∗(t), p(t)) +
∂H

∂x
(t, x∗(t), p(t)) [x(t) − x∗(t)]

= H(t, x∗(t), p(t)) − ṗ(t) [x(t) − x∗(t)] .

The same conclusion can be reached also if H is not differentiable, using arguments from
convex analysis. Inserting the above inequality in (10.35) we finally obtain

J(u)− J(u∗) ≤ ψ(x(T ))− ψ(x∗(T ))−
∫ T

t0

{
ṗ(t)[x(t)− x∗(t)] + p(t)[ẋ(t)− ẋ∗(t)]

}
dt

= ψ(x(T ))− ψ(x∗(T ))−
{
p(T )[x(T )− x∗(T )]− p(t0)[x(t0)− x∗(t0)]

}

≤ 0 .
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Indeed, the initial and terminal conditions in (10.33), and the concavity of ψ, imply

x(t0) = x∗(t0) = x0 , ψ(x(T )) ≤ ψ(x∗(T )) +∇ψ(x∗(T ))[x(T )− x∗(T )] .

10.7 Dynamic Programming

The concavity assumptions used in Theorem A.9 are very restrictive. An alternative approach
to the derivation of sufficient optimality conditions relies on the analysis of the value function.

In the optimal control problem (10.11)–(10.15) we regarded the initial data (t0, x0) as fixed.
However, one can consider a whole family of optimization problems, with variable initial data.
Recalling the notations at (10.14)-(10.15), for each (t0, x0) ∈ [0, T ] × IRN , let

V (t0, x0)
.
= sup

u:[t0,T ] -→U
J(u; t0, x0) (10.36)

be the the maximum payoff that can be achieved starting from the state x0 at time t0. The
function V in (10.36) is called the value function for the optimization problem (10.11),
(10.15). By (10.13), when t = T one has

V (T, x) = ψ(x) . (10.37)

A basic property of this value function is:

Theorem A.10 (Principle of Dynamic Programming). For any initial data x0 ∈ IR
and 0 ≤ t0 < t1 < T , one has

V (t0, x0) = sup
u:[t0,t1] -→U

{
V
(
t1, x(t1; t0, x0, u)

)
−
∫ t1

t0
L
(
t, x(t; t0, x0, u), u(t)

)
dt
}

.

(10.38)

In other words (see fig. 16), the optimization problem on the time interval [t0, T ] can be split
into two separate problems:

• As a first step, we solve the optimization problem on the sub-interval [t1, T ], with running
cost L and terminal payoff ψ. In this way, we determine the value function V (t1, ·), at
time t1.

• As a second step, we solve the optimization problem on the sub-interval [t0, t1], with
running cost L and terminal payoff V (t1, ·), determined by the first step.

At the initial time t0, according to (10.38) the value function V (t0, ·) obtained in step 2 is the
same as the value function corresponding to the global optimization problem over the whole
interval [t0, T ].
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Figure 16: The dynamic programming principle.

Proof on Theorem A.10. Call J0 the right hand side of (10.38).

1. To prove that V (t0, x0) ≤ J0, fix ε > 0, choose a control u : [t0, T ] $→ U such that

J(u; t0, x0) ≥ V (t0, x0)− ε ,

and call x1
.
= x(t1; t0, x0, u). Observing that x(t; t0, x0, u) = x(t; t1, x1, u), we obtain

V (t0, x0)− ε ≤ J(u; t0, x0) = J(u; t1, x1)−
∫ t1

t0
L
(
t, x(t; t0, x0, u), u(t)

)
dt

≤ V (t1, x1))−
∫ t1

t0
L
(
t, x(t; t0, x0, u), u(t)

)
dt ≤ J0 .

Since ε > 0 is arbitrary, this first inequality is proved.

2. To prove that V (t0, x0) ≥ J0, fix ε > 0. Then there exists a control u0 : [t0, t1] $→ U such
that

V
(
t1, x(t1, t0, x0, u0)

)
−
∫ t1

t0
L(t, x(t; t0, x0, u0), u0(t)) dt ≥ J0 − ε . (10.39)

Call x1
.
= x(t1; t0, x0, u0). We can now find a control u1 : [t1, T ] $→ U such that

J(u1, t1, x1) ≥ V (t1, x1)− ε . (10.40)

Consider the new control u : [t0, T ] $→ U defined as the concatenation of u0, u1:

u(t)
.
=
{
u0(t) if t ∈ [t0, t1],
u1(t) if t ∈ ]t1, T ].

By (10.39) and (10.40) it now follows

V (t0, x0) ≥ J(u, t0, x0) = J(u1, t1, x1)−
∫ t1

t0
L(t, x(t; t0, x0, u0), u0(t)) dt ≥ J0 − 2ε.

Since ε > 0 can be arbitrarily small, this second inequality is also proved.
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Based on the above property, one can derive a first order PDE satisfied by the value function
V , in regions where it is differentiable.

Theorem A.11 (Hamilton-Jacobi-Bellman equation of dynamic programming).
Consider the optimal control problem (10.11)-(10.15), assuming that f, L are continuous func-
tions and that the set U of admissible control values is compact. Then, on any open domain
Ω ⊂ [0, T ] × IRn where the function V = V (t, x) is continuously differentiable, the following
equation is satisfied:

Vt +H(t, x,∇V ) = 0, (10.41)

where
H(t, x, p)

.
= max

ω∈U

{
p · f(t, x,ω)− L(t, x,ω)

}
. (10.42)

Proof. 1. Assume, on the contrary, that at a point (t0, x0) ∈ Ω one has

Vt(t0, x0) + max
ω∈U

{
∇V (t0, x0) · f(t0, x0,ω)− L(t0, x0,ω)

}
> 0 . (10.43)

By continuity, we can the find ω∗ ∈ U and θ > 0 such that

Vt(t, x) +∇V (t, x) · f(t, x,ω∗)− L(t, x,ω∗) ≥ θ > 0

for all (t, x) in a neighborhood of (t0, x0).
Consider the constant control u∗(t) ≡ ω∗, and let t $→ x∗(t) = x(t; t0, x0, u∗) be the corre-
sponding trajectory. On a sufficiently small interval [t0, t1], we have

V (t1, x∗(t1)) = V (t0, x0) +
∫ t1

t0

{
Vt(t, x

∗(t)) +∇V · f(t, x∗(t), u∗(t))
}
dt

≥ V (t0, x0) +
∫ t1

t0

{
θ + L(t, x∗(t), u∗(t))

}
dt

Hence

V (t0, x0) < V (t1, x
∗(t1))−

∫ t1

t0
L(t, x∗(t), u∗(t)) dt

against the principle of dynamic programming (10.38). This contradiction shows that (10.43)
cannot hold.

2. Next, assume that at a point (t0, x0) ∈ Ω there holds

Vt(t0, x0) + max
ω∈U

{
∇V (t0, x0) · f(t0, x0,ω)− L(t0, x0,ω)

}
< 0 . (10.44)

By continuity, it now follows

Vt(t, x) +∇V (t, x) · f(t, x,ω)− L(t, x,ω) ≤ − θ < 0

for all ω ∈ U and all (t, x) in a neighborhood of (t0, x0). If the interval [t0, t1] is sufficiently
small, for any control function t $→ u(t) ∈ U this implies

V (t1, x(t1)) = V (t0, x0) +
∫ t1

t0

{
Vt(t, x(t)) +∇V · f(t, x(t), u(t))

}
dt

≤ V (t0, x0) +
∫ t1

t0

{
L(t, x(t), u(t)) − θ

}
dt .
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Therefore, for every admissible control u(·) we have

V (t0, x0)− θ(t1 − t0) ≥ V (t1, x(t1))−
∫ t1

t0
L(t, x(t), u(t)) dt ,

reaching again a contradiction with the principle of dynamic programming (10.38). This
completes the proof.

In cases where the value function V is not C1, one can still show that the equation (10.41) is
satisfied, in a suitable viscosity sense. For a comprehensive account of the theory of viscosity
solutions we refer to [7].

The PDE of dynamic programming provides sufficient conditions for optimality, in a far more
general setting than in Theorem A.9.

Theorem A.12 (sufficient conditions for optimality). Let W : [0, T ]× IRn $→ IR be a C1

solution of the terminal value problem

Wt +H(t, x,∇W ) = 0, W (T, x) = ψ(x) . (10.45)

Then W coincides with the value function. In particular, for any given initial data (t0, x0), a
control u∗(·) that achieves the payoff J(u∗, t0, x0) = W (t0, x0) is optimal.

Proof. Let V = V (t0, x0) be the value function for the optimal control problem (10.11),
(10.15).

1. We first show that V ≤ W .

Given an initial data (t0, x0), consider any control u : [t0, T ] $→ U , and let t $→ x(t) =
x(t; t0, x0, u) be the corresponding trajectory. We claim that

J(u, t0, x0) = ψ(x(T ))−
∫ T

t0
L(t, x(t), u(t)) dt ≤ W (t0, x0) . (10.46)

Observe that

d

dt

[
W (t, x(t)) −

∫ t

t0
L(s, x(s), u(s)) ds

]

= Wt(t, x(t)) +∇W · f(t, x(t), u(t)) − L(t, x(t), u(t))

≤ Wt(t, x(t)) + max
ω∈U

{
∇W · f(t, x(t),ω) − L(t, x(t),ω)

}
= 0 .

Integrating over the time interval [t0, T ] one obtains

W (t0, x0) ≥ W (T, x(T ))−
∫ T
t0
L(t, x(t), u(t)) dt

= ψ(x(T )) −
∫ T

t0
L(t, x(t), u(t)) dt = J(u, t0, x0) .

(10.47)
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Therefore,
V (t0, x0)

.
= sup

u(·)
J(u, t0, x0) ≤ W (t0, x0) .

By assumption, the control u∗(·) yields the payoff J(u∗) = W (t0, x0). On the other hand,
(10.47) shows that any other control u(·) yields a payoff J(u) ≤ W (t0, x0). Therefore, u∗ is
optimal.

2. We shall prove the opposite inequality in a somewhat easier case, assuming that the map

(t, x) $→ u♯(t, x)
.
= argmax

u∈U

{
∇W (t, x) · f(t, x, u)− L(t, x, u)

}

is uniquely defined and continuous. In this case, given the initial condition (t0, x0), let t $→
x∗(t) be a solution to the Cauchy problem

ẋ = f(t, x, u♯(t, x)) x(t0) = x0 .

Notice that, by our assumption, the above ODE has a continuous right hand side. Hence a
solution exists. Calling u∗(t) = u♯(t, x∗(t)), we have

d

dt

[
W (t, x∗(t))−

∫ t

t0
L(s, x∗(s), u∗(s)) ds

]

= Wt(t, x∗(t)) +∇W · f
(
t, x∗(t), u♯(t, x∗(t))

)
− L

(
t, x∗(t), u♯(t, x∗(t))

)

= Wt(t, x(t)) + max
ω∈U

{
∇W · f(t, x∗(t),ω)− L(t, x∗(t),ω)

}
= 0 .

Integrating over the time interval [t0, T ] one obtains

W (t0, x0) = W (T, x∗(T ))−
∫ T

t0
L(t, x∗(t), u∗(t)) dt

= ψ(x∗(T ))−
∫ T

t0
L(t, x∗(t), u∗(t)) dt

= J(u∗, t0, x0) ≤ V (t0, x0) .

This establishes the opposite inequality W ≤ V , completing the proof, at least in the case
where the map u♯ is continuous. For a proof in more general cases we refer to [17].

10.8 Infinite horizon problems

This section deals with the time-independent control system

ẋ = f(x, u) u(t) ∈ U , t ∈ [0,∞[ . (10.48)

For a given initial data x(0) = x0 ∈ IRn and any admissible control u : [0,∞[ $→ U , let
t $→ x(t) = x(t; x0, u) be the corresponding trajectory. To ensure that this solution is well
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defined for all times, and does not becomes unbounded in finite time, we assume that f is
Lipschitz continuous w.r.t. x and satisfies the bound

|f(x, u)| ≤ C(1 + |x|) for all x ∈ IRn, u ∈ U . (10.49)

Consider the exponentially discounted payoff

J(x0, u) =
∫ ∞

0
e−ρtΦ(x(t), u(t)) dt , (10.50)

where x(t) = x(t ;x0, u) and ρ > 0 is a fixed discount rate. Moreover, define the value function

V (x0)
.
= inf

u(·)
J(x0, u) . (10.51)

A result similar to Theorem A.10, valid for infinite horizon problems, is:

Theorem A.13. Assume that the functions f,Φ are continuous and that U ⊂ IRm is a
compact set. Let the value function V be continuously differentiable on an open domain Ω ⊆
IRn. Then

ρV = H(x,∇V (x)) for all x ∈ Ω , (10.52)

where the hamiltonian function is

H(x, p)
.
= max

ω∈U

{
p · f(x,ω) + Φ(x,ω)

}
. (10.53)

Remark 12. If W (·) is a smooth function satisfying

ρW (x) = H(x, ∇W (x)) (10.54)

for all x ∈ IRn, this does not guarantee that W coincides with the value function V at (10.51).
To understand the reason, let

u = u∗(x) = argmax
u∈U

{
∇W (x) · f(x,ω) + Φ(x,ω)

}

be the corresponding optimal feedback control. For a given initial data x(0) = x0, let t $→
x(t) = x(t, x0) be the solution to

ẋ = f(x, u∗(x)) , x(0) = x0 .

The identity (10.54) implies

d

dt

[
e−ρtW (x(t)) +

∫ t

0
e−ρsΦ

(
x(s), u∗(x(s))

)
ds
]

= − ρW (x(t)) + e−ρt∇W (x(t)) · f(x(t), u∗(x(t))) + e−ρtΦ
(
x(t), u∗(x(t))

)
= 0 .

Hence for every T > 0 we have

W (x0) = e−ρTW (x(T )) +
∫ T

0
e−ρtΦ

(
x(t), u∗(x(t))

)
dt . (10.55)
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If
lim
T→∞

e−ρTW (x(T )) = 0, (10.56)

then we let T → +∞ in (10.55) and conclude

W (x0) =
∫ ∞

0
e−ρtΦ

(
x(t), u∗(x(t))

)
dt ≤ V (x0) .

Notice that limit (10.56) certainly holds if the trajectory x(·) remains bounded. However, one
can construct examples where

|x(T )| → ∞, e−ρTW (x(T )) → +∞ ,
∫ T

0
e−ρtΦ

(
x(t), u∗(x(t))

)
dt → −∞

as T → +∞. In this case, one may well have W (x0) > V (x0).

10.9 Well posedness for linear PDEs

Consider the Cauchy problem determined by a system of first order PDEs

vt = G(t, x, v,Dxv) (10.57)

together with initial conditions
v(0, x) = φ(x) . (10.58)

Here t is time, x = (x1, . . . , xn) is the spatial variable, while v = (v1, . . . , vm) is the dependent
variable. By Dx we denote the m×n Jacobian matrix of partial derivatives vi,xα

.
= ∂vi/∂xα .

A key issue in the theory of PDEs is whether this Cauchy problem is well posed. By this we
mean that the problem has a unique solution, continuously depending on the initial data φ.

x

V
~

V

0

t

Figure 17: An ill-posed Cauchy problem. Here v is a reference solution, while ṽ is a perturbed solution.
A small change in the initial data at t = 0 produces a large change in the solution at a later time t > 0.
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If m = 1, then (10.57) reduces to a scalar equation which can be studied by the classical
method of characteristics. On the other hand, if m > 1, the well-posedness of the system
(10.57) is a difficult question, especially if the function G is highly non-linear.

We describe here the method of local linearization, which often provides some useful informa-
tion.

Let v = v(t, x) be a smooth solution of (10.57), and let

vε(t, x) = v(t, x) + εZ(t, x) + o(ε) (10.59)

describe a small perturbation. Assuming that vε is also a solution, we can insert (10.59) in
the equation (10.57) and compute a system of linearized equations satisfied by Z, namely

(Zj)t =
n∑

α=1

m∑

k=1

∂Gj

∂vk,xα

Zk,xα +
m∑

k=1

∂Gj

∂vk
Zk j = 1, . . . ,m . (10.60)

Freezing the coefficients of (10.60) at a given point

(t̄, x̄, v̄, Q̄) =
(
t̄, x̄, v(t̄, x̄), Dxv(t̄, x̄)

)
∈ IR× IRn × IRm × IRm×n,

we obtain a linear system with constant coefficients, namely

Zj,t =
n∑

α=1

m∑

k=1

Aα
jk Zk,xα +

m∑

k=1

BjkZj j = 1, . . . ,m . (10.61)

with

Aα
jk =

∂Gj

∂vk,xα

(t̄, x̄, v̄, Q̄) , Bjk =
∂Gj

∂vk
(t̄, x̄, v̄, Q̄) .

Notice that each Aα = (Aα
jk) is a constant m×m matrix.

Definition. We say that the Cauchy problem for the linear homogeneous system of PDEs
(10.61) is well posed in the space L2(IRn; IRm) if the following holds.

For every initial data Z(0, ·) ∈ L2, the equation (10.61) has a unique solution t $→ Z(t, ·).
Moreover, for every fixed t ∈ IR, the map Z(0, ·) $→ Z(t, ·) is continuous linear operator from
L2 into itself.

The issue of well-posedness can be studied by means of the Fourier transform. Let Z = Z(t, x)
be a solution of (10.61) and let

Ẑ(t, ξ) =
1

(2π)n/2

∫

IRn
e−iξ·xZ(t, x) dx (10.62)

be the Fourier transform of Z w.r.t. the spatial variable x. Under suitable regularity and
integrability assumptions, taking the Fourier transform of both sides of (10.61) we derive a
family of ODEs satisfied by Ẑ(·, ξ), namely

Ẑj,t(t, ξ) =
n∑

α=1

m∑

k=1

iξαA
α
jk Ẑk(t, ξ) +

m∑

k=1

Bjk Ẑk(t, ξ) j = 1, . . . ,m . (10.63)
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Adopting a more concise vector notation, this can be written as

Ẑt(t, ξ) = (iA(ξ) +B)Ẑ(t, ξ) (10.64)

where, for every ξ = (ξ1, . . . , ξn) we set

A(ξ)
.
=

n∑

α=1

ξαA
α .

The general solution of (10.64) is given by

Ẑ(t, ξ) = et(iA(ξ)+B) Ẑ(0, ξ) . (10.65)

As usual, the exponential of an m×m matrix M is defined as

eM
.
=

∞∑

k=0

Mk

k!
.

Definition. The system (10.61) is hyperbolic if

mA
.
= sup

ξ∈IRn
∥eiA(ξ)∥ < ∞ . (10.66)

Notice that the hyperbolicity of the system depends only on the matrices Aα, not on B. This
definition is motivated by

Theorem A.14. The Cauchy problem for the linear homogeneous system with constant coef-
ficients (10.61) is well posed if and only if the system is hyperbolic.

For a detailed proof we refer to Chapter 1 in [8]. To understand the underlying idea, assume
B = 0 and fix any t ̸= 0. Since the Fourier transform is an isometry on L2, observing that
tA(ξ) = A(tξ), we compute

∥Z(t, ·)∥
L2 = ∥Ẑ(t, ·)∥

L2 ≤ ∥Ẑ(0, ·)∥
L2 · sup

ξ∈IRn
∥eiA(tξ)∥

= ∥Ẑ(0, ·)∥
L2 · sup

ξ∈IRn
∥eiA(ξ)∥ = mA · ∥Z(0, ·)∥

L2 .

2. On the other hand, if the supremum on the left hand side of (10.66) is unbounded, then
for every t > 0 and any k > 0 one can find ξ∗ ∈ IRn such that

∥eiA(tξ∗)∥ > k .

By continuity, there exists δ > 0 such that one still has

∥eiA(tξ)∥ > k whenever |ξ − ξ∗| < δ .
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We now consider an initial data Z(0, x) whose Fourier transform satisfies

Ẑ(0, ξ)

{
= 1 if |ξ − ξ∗| < δ ,
= 0 if |ξ − ξ∗| ≥ δ .

This construction yields

|Ẑ(t, ξ)|
{

> k if |ξ − ξ∗| < δ ,
= 0 if |ξ − ξ∗| ≥ δ .

Therefore
∥Z(t, ·)∥L2 = ∥Ẑ(t, ·)∥

L2 ≥ k · ∥Ẑ(0, ·)∥L2 = k · ∥Z(0, ·)∥L2 .

Since k can be chosen arbitrarily large, the Cauchy problem is not well posed.

In practice, computing the complex exponential matrix and taking the supremum in (10.66)
is a lengthy task. The next theorems provide necessary conditions and sufficient conditions
for hyperbolicity, which can be more easily checked.

Theorem A.15 (necessary condition). If the system (10.61) is hyperbolic, then for every
ξ ∈ IRm the matrix A(ξ) has a basis of eigenvectors r1, . . . , rn, with real eigenvalues λ1, . . . ,λn
(not necessarily distinct).

Theorem A.16 (sufficient condition). Assume that, for |ξ| = 1, the matrices A(ξ) can be
diagonalized in terms of a real, invertible matrix R(ξ) continuously depending on ξ. Then the
system (10.61) is hyperbolic.

For the proofs, we refer to [8].

Example 12. The Cauchy-Riemann equations yield the first order, linear system in one space
dimension {

u1,t = − u2,x ,
u2,t = u1,x .

Since the matrix
(
0 −1
1 0

)
has complex eigenvalues, for this system the Cauchy problem is

ill posed.

10.10 Probability measures

Let X be a compact metric space and let C(X) denote the Banach space of all continuous
functions f : X $→ IR, with the standard norm

∥f∥ .
= max

x∈X
|f(x)| .

Let Σ be the σ-algebra of all Borel subsets of X. A probability measure on X is a non-
negative measure µ : Σ $→ [0, 1] such that µ(X) = 1.

77



To each probability measure on X there correspond a unique linear functional on the space
C(X),

Λµ(f)
.
=

∫

X
f dµ

such that

(i) |Λµ(f)| ≤ ∥f∥,

(ii) f ≥ 0 =⇒ Λµ(f) ≥ 0,

(iii) Λµ(1) = 1.

Here by “1” we denote the constant function identically equal to 1.

We say that a sequence of probability measures (µk)k≥1 converges weakly to a probability
measure µ, and write µk ⇀ µ, if for every f ∈ C(X) one has

lim
k→∞

∫

X
fk dµ =

∫

X
f dµ for all f ∈ C(X) .

Theorem A.17 (weak compactness of the space of probability measures). Let (µj)j≥1

be a sequence of probability measures on a compact metric space X. Then there exists a
subsequence that converges weakly to some probability measure µ.

Sketch of the proof. Let (fk)k≥1 be a sequence of continuous functions, dense on C(X). We
proceed by induction.

For k = 1, by the uniform bound |Λmk
(f1)| ≤ ∥f1∥ we can extract a subsequence (µj)j∈J1

such that the sequence Λµj (f1) converges.

For k = 2, by the uniform bound |Λmk
(f2)| ≤ ∥f2∥ we can extract a subsequence (µj)j∈J2

with J2 ⊆ J1 such that the sequence Λµj (f1) converges.

Continuing the induction procedure, for every k we extract a subsequence (µj)j∈Jk with Jk ⊆
Jk−1 such that the sequence Λµj (fk) converges.

Choosing a diagonal sequence j(1) < j(2) < j(3) < · · · with j(ℓ) ∈ Jℓ for each ℓ ≥ 1, we can
define

Λµ(f)
.
= lim

ℓ→∞
Λµj(ℓ

(f) f ∈ C(X).

By construction, the above limit is well defined when f is an element of the dense set
{f1, f2, . . .}. By approximation, one checks that the limit is well defined for every f ∈ C(X),
and defines a probability measure on X. See [32] for details.
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[37] J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior. Third
edition. Princeton University Press, 1980.

[38] J. Wang, The Theory of Games. Oxford University Press, 1988.

80


