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PRESENTATION OVERVIEW 

• Some milestones in strange attractor theory history  
 

• Notation, definitions, preliminaries and some basic 
results on strange attractors 

 

• Some new theorems on radial strange attractors 
and multihorseshoe attractors 

 

• Applications in population, granular flow, walking 
droplet and reaction-diffusion dynamics 

 

• Concluding remarks and work-in-progress 
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1 Milestones in Strange Attractor Research 
1963. Focused strange attractor research begins as a result of 
Lorenz’s investigation of his simplified ODE model of his chaotic 
atmospheric equations (Fig. 1) 
 

1976. Hénon introduces his planar map as an approximate model of a 
Poincaré section of the Lorenz equations (Fig. 2) 
 

1978. Lozi devises a simplified piecewise linear analog of the Hénon 
map (Fig. 3) 
 

1980. M. Misiurewicz proves that the Lozi map has a chaotic strange 
attractor for certain parameters (Annals of NYAS) 
 

1991. M. Benedicks & L. Carleson prove the Hénon map has a 
chaotic strange attractor (Annals of Math.) 
 
2001-2008. Q. Wang & L-S. Young extend and generalize the work of 
Benedicks & Carleson in their rank-one theory  (Commun. Math. Phys. 
– Annals of Math.)   
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Fig.1. The Lorenz attractor for σ = 10, r = 28 and b = 8/3.    
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2( , ) : 1 , , 1.4, 0.3.( )H x y ax y bx a b= − + = =

Fig.2. The Hénon attractor for   



NJIT ( , ) : (1 , ), 1.7, b 0.5L x y a x y bx a= − + = =
Fig.3 .The Lozi attractor for   
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We focus on continuous maps (sometimes with 
additional smoothness) and the associated discrete 
(semi-) dynamical system of their iterates of the form 

2  Preliminaries and Basic Results 

1: , : : .m m n n m mf f f f−→ = →R R R R(1) 

Definition 1 
If  A  is a (positively) invariant subset of        , then    mR

:f A A→
is chaotic if it is (i) topologically transitive, i.e. U and V 
open in A                                                      (ii) The set of 
periodic points, Per(f), is dense in A.  

( ) for some .kf U V k⇒ ∩ ≠∅ ∈N
( sensitivedependence (Banks ))et al.⇒
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Definition 2 

Definition 3 

A is an attracting set for the map (1) if : 

(AS1) It is nonempty, closed and (positively) invariant; 

(AS2) There is an open set U containing A such that  

( ), .0as( )nx U d f x A n∈ ⇒ → →∞

An attracting set is a semichaotic attracting set if: (SCAS1) 
it is compact; and (SCAS2) the map is differentiable almost 
everywhere on a nonempty invariant subset A*  on which it 
is sensitively dependent on initial conditions as  

1 1 1
*1

log ( ) log 0 ( , ) .( )( ) ( )nn k
k

n f x n f f x l x n A− − −
=

′= ≥ > ∀ ∈ ×′ ∑ N



NJIT 

Definition 4 
An attracting set A for (1) is a chaotic attracting set if: 
(CAS1) it is an attracting set; and (CAS2) there is a 
nonempty closed invariant subset, A*, of A such that the 
restriction                     is chaotic. 

*| * *:Af A A→

Definition 5 
An attracting set A for (1) is an attractor if it is minimal 
with respect to properties (AS1) and (AS2). 
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Definition 6 
A is a strange attractor for (1) if: (SA1) it is an attractor; 
and (SA2) it is fractal, with a noninteger fractal (Hausdorff) 
dimension. 

Definition 6 
A is a chaotic strange attractor for (1) if: (CSA1) it is a 
strange attractor; and (CSA2) it is a chaotic attracting set.  

Definition 7 
A is a semichaotic strange attractor for (1) if: (SCSA1) it 
is a strange attractor; and (SCSA2) it is a semichaotic 
attracting set.  

We note here that there are strange attractors that are not 
chaotic (see e.g. Grebogi et al., Physica D 13 (1984). 
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The following types of maps are quite ubiquitous when it 
comes to modeling – especially in population dynamics. 

2.1  Basic dynamical properties of special maps  

Definition 8 

Definition 9 

The map (1) is asymptotically zero (AZ) if  
.( ) 0f x as x→ →∞

We shall also consider the following special AZ maps. 

The map (1) is eventually zero (EZ) if  
1such that { : 0} { .0}( )mR f x x R−∃ ∈ ≥ > =R
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  Lemma 1 

Proof Sketch. For every R ≥ M,   

(2) 

(1) , ( 0) ,

(0) : { : }; ,

m

n

m
M

If is an AZ map so that f M M on then f and

all of its iterates f have their fixed points in the compact ball
B x x M in fact they are contained in the
globally contracting set

≤ >

= ∈ ≤

R

R

1
: ( (0)) (0 .)n

M Mn
A f B B∞

=
= ⊂


( (0)) (0) (0) , ,n
R M Rf B B B R M n⊂ ⊂ ∀ ≥ ∈N

so the first part follows from Brouwer’s fixed point theorem, 
while (2) is a consequence of the definitions. 
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Lemma 2 
, 1,

: (i) (0) 0; (ii) ( )

0 : max{ : ( ) }. {0}
.
M

Let f M and A be as in Lemma and suppose f satisfies the
the additional properties f and f x x

when x R x f x M Then is a global
attractor for f

= <

< ≤ = =

Proof Sketch. By hypothesis, it suffices to consider the 
case for which the initial point and none of its iterates are 
equal to zero. Then |xk|: = | f k (x0)| is strictly decreasing 
and must have limit zero in view of (ii). 
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Here we prove two theorems on strange attractors that 
have distinctive radial characteristics (cf. Figs. 5, 6, 7 and 
12). 

3  Radial Strange Attractors 

3.1  Attractors for EZ maps expanding at 0   

Our first theorem has a rather lengthy list of hypotheses, 
but as we shall see they can readily be distilled to fairly 
simple criteria that are easily checked for applications. 
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Theorem 1 

1

1 1

1

: ,
2, :

(i) ({0}) {0} , : { :| | ( / | |) 0},
: ( )

: {

m m
M

m

m
M

m m

Let f be a continuous EZ map with M and R as in
Lemma satisfying the following additional properties

f Z where Z x x x x
is a C function satisfying R u M for all

u u

ζ

ζ ζ

−

−

−

→

= ∪ = ∈ ≥ >

→ < <

∈ = ∈

R R

R
S R
S R

1
*

1 1 1

1

:| | 1} ( 1) .
(ii) : ( ) { : 0 ( / | |) | | ( / | |)},

, : , 0 ( ) ( ) ( ) .
(iii) ( : { : 0 | | ( / | |)}) ( )

\{ : 0 ( /

m

m m

m

m

u the unit m sphere
S f Z x x x x x x where

are C positive and u u u on
f C D x x x x and f x is invertible

on D x x

α β

α β β α ζ

ζ

α

−

− −

= − − −

= = ∈ < ≤ ≤

→ < − <

′∈ = ∈ < <

∈ <

R
S R S

R
R *| |) | | ( / | |)} \ .x x x x D Sβ≤ ≤ =
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1

(iv) | | ( ) : | | ( ), / | | ,
, , /

| | ( ) { : 0 | | ( / | |)}
| | ( ) { : ( / | |) | | ( / | |)}.

min{ ( ) : }

r

m
r

m
r

m

The radial derivative f x f x x x when it
exists is such that with for which

f x x x x x x and
f x x x x x x x x Here

u u

λ µ λ µ λ

µ α µ

λ β ζ

α −

∂ = ∇

∃ < < ≤

∂ ≤ ∀ ∈ ∈ < < − ≤

∂ ≤ − ∀ ∈ ∈ < <

= ∈

R
R

S

M m

m

*

1

1

max{ (

: \ (

) : }.

,
, , .

)n o

m

n

o

and u u
Then

is a compact semichaotic strange globally attracting set of m
dimensional Lebesgue measure zero where E and E denote the
closure and interior respectively of a s

f

e

S

t E

D

β

∞ −

−

=
Λ =

= ∈

−


SM

(3) 
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*
oSProof Sketch. It follows from the hypotheses that     is (hom- 

eomorphic to) an open (m-1)-spherical shell enclosing 0 and  

1
* 0 1\ ( ) ,oD f S− = Σ ΣV

where Σ0  is a closed m-ball and Σ1 is a closed (m-1)-
spherical shell. Whence, we obtain the disjoint union of a 
closed m-ball and three closed (m-1)-spherical shells          

1 2
* * 00 01 10 11\ ( ) ( ) .o oD f S f S− −∪ = Σ Σ Σ ΣV V V

If this is continued, we see it is just the inductive 
construction of a Cantor set, so            

* 21
: \ ( ) , (2 : { : : {0,1}}).n o

ssn
D f S s s∞ −

∈=
Λ = = Σ = →


N

N NV
This implies that that this set is homeomorphic to the fractal 
‘cone’ pinched at the origin; namely,            
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1 1( ) / ( 0),m mC− −Λ ≅ × ×S S(4) 

where C is the standard two-component Cantor set on the 
unit interval [0,1]. Hence, (4) is fractal. For sensitive 
dependence, we compute that for all x in D           

1 1 1
1

1 1
1

1

log || ( ) || log || ( )

log | | | ( ) | log 0

liminf log || ( ) || 0,

( ) ( ) ||

( )

( )

nn k
k
n k

rk
n

n

n f x n f f x

f f x

n f x

n λ

− − −
=

− −
=

−

′=

∂ ≥ >

⇒ >

′

≥

′

∑
∑

so sensitive dependence on initial conditions is established 
and the proof sketch is complete.           
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Using standard constructions from symbolic dynamics, we 
get the following result from (the proof of) Theorem 1.            

Corollary 1.1 

1 2 3

1 1

2 3

1 1

4

ˆ : 2 / 0 2 /

1

:
.

0

) ,

( ) ( ) ( ) ( ),

ˆ ( , ) : ( ( , ), ( ))
, ( ) .

,
( .

m m m m

The hypotheses of Theorem imply that f on is conjugate to

a a a a and is
continu

f

ous

f x s x

where

is the shift map s a a
s s

νσ σ
σ

σ
ν

− − − −

=

× ×

Λ

× ×→

=
=  

N NS S S S

The proof of Theorem can actually be used to obtain the 
following estimate for the fractal dimension of (4):            

1 log 2 / log(1 ) 1 log 2 / log(1 )( ) dim ( .) ( )Hm mµ λ− + + Λ − + +≤ ≤(5) 
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Corollary 1.2 

To improve Theorem 1 so as to obtain a chaotic strange 
attractor, we need further assumptions on the map that imply 
topological transitivity and the density of Per(f), such as            

1
1

*

1:
{ , , } :

( ) 0 .
( ) .
( ) ( )

k

i

j j

Suppose that in addition to the hypotheses of Theorem There
exists a set of C curves such that
a Each begins at and ends at a distinct point of D
b The curves are all transverse to S and all its preimages
c f

γ γ

γ

γ γ +

∂
∂

=



1 1

1

,1 1, ( ) .
( ) : { , , }

( 0) ( ), 0.

: .
:

( )

k

k
n

j k and f
d E is in that there is a conical

open set W pinched at such that x W d f x E
Then the following set is a chaotic strange global attractor

E

γ γ

γ γ

≤ ≤ − =

=

∈ ⇒ →

= Λ∩



A

conically attracting

(6) 
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Proof Sketch. It follows from the hypotheses that ν in 
Corollary 1.2 restricted to A is periodic in x. Consequently, 
the periodic density and transitivity properties of the shift 
map imply the same holds true for   .      f̂

3.2  Attractors for AZ maps contracting at 0  

There are analogs of Theorem 1, its corollaries and 
formulas for AZ maps contracting at the origin, which, for 
example, are common in discrete dynamical models of 
ecological phenomena associated with what are known as 
climax species. The proofs of all these results can be 
obtained by straightforward modification of the proofs in 
3.2, so we shall just state our main theorem.           
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Theorem 2 
1

1

0
1 1

0

: , 2,
:

(i) ({0}) {0}, || (0) || 1 {0}
(0) : { : 0 | | ( / | |)},

:

m m
M

m

m

Let f be a C AZ map with M and R as in Lemma
satisfying the following additional properties

f f and has a basin of attraction
B x x x x

where is a positive C funct
α

α

−

−

→

′= <

= ∈ ≤ ≤

→

R R

R
S R 1

1 1 1

1
*

*

( (0))
( 1)
: { : ( / | |) | |},

: ( ) .
(ii) : ( ) ( 1)

{ : 0 ( / | |)

m

m m
M

m

ion and f B is a
semi infinite m spherical shell of the form

Z x x x x
where is a C function such that R u M on
S f Z is an m spherical shell of the form

S x x x

ζ

ζ ζ

α

−

− −

−

− − −

= ∈ <

→ < <

= − −

= ∈ < ≤

R
S R S

R
1 1 1

| | ( / | |)},
, : , 0 0 ( ) ( ) ( ) .

(iii) ( ) \{ : 0 ( / | |) | | ( / | |)}.

m m

m

x x x
where are C and u u u on

f x is invertible on D x x x x x x

β

α β β α ζ

α β

− −

≤

→ > < − <

′ ∈ < ≤ ≤

S R S
R
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1

(iv) | | ( ) : | | ( ), / | | ,
, , /

| | ( ) { : 0 | | ( / | |)}
| | ( ) { : ( / | |) | | ( / | |)}.

min{ ( ) : }

r

m
r

m
r

m

The radial derivative f x f x x x when it
exists is such that with for which

f x x x x x x and
f x x x x x x x x Here

u u

λ µ λ µ λ

µ α µ

λ β ζ

α −

∂ = ∇

∃ < < ≤

∂ ≤ ∀ ∈ ∈ < ≤ − ≤

∂ ≤ − ∀ ∈ ∈ < <

= ∈

R
R

S

M m

m

1

1

*

max{ (

: {0} ,

\ ( )

) : }.

.

m

C

n o
C n

and u u
Then

where

is a compact semichaotic strange minimal globally attracting set of
m dimensional Lebesgue measure zero

D f S

β

∞

=

−

−

= ∈

=

−

Γ = Γ

Γ


SM

V(7) 
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The lynchpin of the results for these kinds of attractors is 
the definition of an attracting 1  (m-1)-horseshoe at p 
for f, which is simple, but lengthy, to describe, so we just 
do it with a picture; namely Fig. 4. 

Moreover, we shall also sketch the proofs of our main 
theorems using the same picture. This definition and 
proofs by picture turn out to be a simple, yet very 
effective way of sketching the rather detailed 
descriptions needed for a precise definition and rigorous 
proofs – indeed, a picture turns out to be literally worth 
several hundred words. 

4  Multihorseshoe Strange Attractors 

×
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Fig.4. An attracting horseshoe  
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Theorem 3 

1

1: .
1 ( 1)

: ( ) ( )

,
n u

m

n
f H

Let f E E be a C map of a connected open subset of
If f has an attracting m horseshoe H at p E then

is a chaotic strange attractor of f with basin of attraction
containing H and is homeomorphi

W

c

p

to the quotient

∞

=
= =

→
× − − ∈



R

A

A

( [0,1]) / ( {0,1}),
.

space

where K is a two component Cantor sp
K

ce
K

a
× ×

−

(8) 



NJIT 

Theorem 4 
1

1: ( ) ( ) ( )

:
( 1)

1 ( 1)
,

( ) ( )u

m

k

u k u

Let f E E be a C map of a connected open subset of
that has a k cycle of distinct points with k and f has an
attracting m horseshoe H at on

W p f W

e of the points p in the
cycle then

is a chaotic str
p f

a
W p

nge

−

→

− >
× − −

= ∪ ∪ ∪

R

A

1( ) ( ).k

attractor of f with basin of attracti

H f H

on
contai n

H
n

f
i g

−∪ ∪ ∪

(9) 

Proof Sketches. The proofs of Theorems 3 and 4 follow 
directly from Fig. 4.   
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5  Examples and Simulations 

We now illustrate our results by applying them to planar 
AZ maps that have proven quite effective in modeling 
ecological population dynamics. The dynamics in each 
case is illustrated by direct simulations of the iterates. 

5.1  Radial chaotic strange attractors   

Consider the map                          defined as  2 2: ,f →� � �

which is just a rotated version of a standard discrete 
dynamical systems model for competing pioneer species. 

(10) 2 2

( , ) ( , ; ) :

cos(2 ) sin(2 ), sin(2 ) cos(2 ) ,( )x y

f x y f x y a

ae x y x yπθ πθ πθ πθ− −

= =

− +
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We shall consider three cases for (10) corresponding to 
the quasiperiodic rotations associated with the following 
cases: 
 

(i) θ = (1 + √5)/2, the golden mean;  
 

(ii) θ = e, the base of the natural logarithm;  
 

(iii) θ = 1/√11 . 
 

In each case we vary a from a = 2.7 to a = 6 in increments 
of Δa = 0.3.  The simulations for (i), (ii) and (iii) are shown 
in Figs. 5, 6 and 7, respectively.   
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5.2  Multihorseshoe chaotic strange attractors   

Here we consider the dynamical systems model for an 
ecological pair comprised of a pioneer and climax species 
given by a planar AZ map                        of the form 2 2: ,f →� � �

0.8 0.2 0.2 0.8( , ) ( , ; , ) : , (0.2 0.8 ) ,( )a x y b x yf x y f x y a b xe y x y e− − − −= = +(11) 

In Fig. 8, we see that this map has an attractor comprised of 
a 6-cycle when a = 2.4 and b = 2.5, so the dynamics is quite 
regular. As a and b are increased there is a global 
bifurcation so that when a = b = 3, there is a very interesting 
chaotic strange multihorseshoe attractor as shown in Fig. 9. 



NJIT 

Another chaotic strange multihorseshoe attractor, this 
time for the planar map (representing pioneer and climax 
species).   

(12) 3 0.8 3 0.2 0.8( , ) : , (0.2 0.8 ) ,( )x x yf x y xe y x y e− − −= +

is illustrated in Fig. 10., and another such attractor for the 
planar map    

3 0.5( ) 3 0.5( )( , ) : ,0.5 ( ) ,( )x y x yf x y xe y x y e− + − += +

is illustrated in Fig. 11.    

(13) 
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Fig. 5. Case (i): θ =  ,  a = 2.7, 3.0, …, 6.0, left to right then down     
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Fig. 6. Case (ii): θ = e,  a = 2.7, 3.0, …, 6.0, left to right then down     



NJIT 
Fig. 7. Case (iii): θ = 1/√11 ,  a = 2.7, 3.0, …, 6.0, left to right then down     
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Fig.8. The iterates of map (11) for a = 2.4, b = 2.5.  
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Fig.9. The dynamics of map (11) for a = b = 3  
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Fig.10. The attractor for map (12)  
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Fig.11. The multihorseshoe attractor for the map (13).  
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6  More Applications 

We have applied and are applying our methods to several 
other areas that feature well-developed dynamical 
systems models ranging from the finite-dimensional 
discrete to the infinite-dimensional continuous. 

6.1  Gumowski--Mira strange attractors   

These attractors have been found in simulations of 
simplified discrete dynamical systems models for certain 
quantum phenomena (see Fig. 12). Notice the radial 
“symmetry”. We are in the process of generalizing our 
radial attractor theory to prove that the simulations are as 
they appear – chaotic strange attractors. 



NJIT Fig.12. Gumowski—Mira attractors  

1 1 1
2 2 2

( ) , ( ) ,
( ) : 2(1 ) 1( )

n n n n n nx f x By y f x x
f x Ax A x x
+ + +

−

= + = −

= + − +
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6.2  Tapped Granular Columns   

The motion of the column of particles shown below can 
be approximated by the iterates of a variant of the planar 
standard map. Figure 12 is a simulation of the dynamics.  

y0(t) 

(14) 
( )

   ( )( )
1 1: ,

, : , ,v v ev W vθ θ γ θ

Φ × → ×

Φ = + + +

S S� ��

 

: modv v Tθ θ ω+ = +

( )2

*
*

2 1
: ( : ./ )

a e
g g N

g
ω

γ
+

= =

cos , 0
( ) :

0, .
s s

W s
s T

π
π ω

≤ ≤
=  ≤ ≤
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Fig.13.  Attractor for tapped column model  
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6.3  Walking droplet dynamics   

Gilet developed a rather successful planar discrete 
dynamical system model for walking droplet motion:  

(15) 
( )
( )

1

1 , (0 , 1)
n n n

n n n n

w w x

x x Cw x C

µ

µ
+

+

= +Ψ  
= − Ψ ≤ ≤

where     is a typical eigenmode such as  
Ψ

( )1: cos sin 3 sin sin 5x xβ β
π

Ψ = +

We have proved that (15) has a Neimark—Sacker 
bifurcation. Moreover, as a parameter is increased there is 
a novel type of bifurcation producing a strange attractor – 
with a proof in the works (see Figs. 14 - 16). 
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Fig.14.  Invariant “circle” for    Fig.15.  Chaos for   0.913µ = 0.915µ =
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Fig.16.  Strange attractor for     0.92µ 
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6.4  Chaotic reaction-diffusion dynamics   

We are also studying chaotic regimes for reaction-
diffusion equations of the type 

( )
( )1,2

0

[0, )

, , 0

(0, ) ( )
0,

t

T

u u g t x u

u x u x W
u ×∂Ω

− ∆ + =

= ∈ Ω

=

where                                 and g is  , 1,n n LipΩ⊂ ≥ ∂Ω∈R

2
( , ),( , , ) : ( , ) ( , ).a t xg t x u a u h t x u h t xρ ρ

== + +or :

For certain initial conditions, related to the spectrum of 
the Laplacian, spatio-temporal chaos occurs on an 
attractor. 
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CONCLUSIONS & BEYOND 
We have proved new theorems for radial strange attractors 
and introduced and proved results for multihorseshoe 
chaotic strange attractors 

The new results have been applied to problems in 
ecological, granular flow and reaction-diffusion dynamics 

The radial approach has many generalizations, and may 
be applicable to Gumowski--Mira attractors (Fig. 12)   

We plan to show that the multihorseshoe approach can be 
generalized in many ways that yield higher dimensional 
attractors that are definitely not rank-one. 

New applications will be found for our theorems, e.g. a 
much simpler proof for the Hénon attractor. 

We plan to construct SRB measures for our attractors. 

♦ 

♦ 

• 

• 

• 

• 
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