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Vegetation Pattern Formation

Bushy vegetation in Niger Mitchell grass in Australia
(Western New South Wales)

Banded vegetation patterns are found on gentle slopes in
semi-arid areas of Africa, Australia and Mexico

First identified by aerial photos in 1950s

Plants vary from grasses to shrubs and trees
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Mechanisms for Vegetation Patterning

Basic mechanism: competition for water
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Mechanisms for Vegetation Patterning

Basic mechanism: competition for water

Possible detailed mechanism: water flow downhill causes
stripes

The stripes move uphill (very slowly)
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Two Key Ecological Questions

How does the spacing of the vegetation bands depend on
rainfall, herbivory and slope?

At what rainfall level is there a transition to desert?
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Mathematical Model of Klausmeier

Rate of change = Rainfall – Evaporation – Uptake by + Flow
of water plants downhill

Rate of change = Growth, proportional – Mortality + Random
plant biomass to water uptake dispersal

∂w/∂t = A − w − wu2 + ν∂w/∂x

∂u/∂t = wu2 − Bu + ∂2u/∂x2
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Mathematical Model of Klausmeier

Rate of change = Rainfall – Evaporation – Uptake by + Flow
of water plants downhill

Rate of change = Growth, proportional – Mortality + Random
plant biomass to water uptake dispersal

∂w/∂t = A − w − wu2 + ν∂w/∂x

∂u/∂t = wu2 − Bu + ∂2u/∂x2

The nonlinearity in wu2 arises because the presence of roots
increases water infiltration into the soil.
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Mathematical Model of Klausmeier

Rate of change = Rainfall – Evaporation – Uptake by + Flow
of water plants downhill

Rate of change = Growth, proportional – Mortality + Random
plant biomass to water uptake dispersal

∂w/∂t = A − w − wu2 + ν∂w/∂x

∂u/∂t = wu2 − Bu + ∂2u/∂x2

Parameters: A: rainfall B: plant loss ν: slope
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Homogeneous Steady States

For all parameter values, there is a stable “desert” steady
state u = 0, w = A

When A ≥ 2B, there are also two non-trivial steady states,
one of which is unstable to homogeneous perturbations

Patterns develop when the other steady state (us, ws) is
unstable to inhomogeneous perturbations
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Approximate Conditions for Patterning

Look for solutions (u, w) = (us, ws) + (u0, w0) exp{ikx + λt}

The dispersion relation Re[λ(k)] is algebraically complicated
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Approximate Conditions for Patterning

Look for solutions (u, w) = (us, ws) + (u0, w0) exp{ikx + λt}

The dispersion relation Re[λ(k)] is algebraically complicated

An approximate condition for pattern formation is

A < ν1/2 B5/4/ 81/4
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Approximate Conditions for Patterning

Look for solutions (u, w) = (us, ws) + (u0, w0) exp{ikx + λt}

The dispersion relation Re[λ(k)] is algebraically complicated

An approximate condition for pattern formation is

2B < A < ν1/2 B5/4/ 81/4

One can niavely assume that existence of (us, ws) gives a
second condition
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An Illustration of Conditions for Patterning

The dots show parameters for
which there are growing
linear modes.
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An Illustration of Conditions for Patterning

Numerical simulations show
patterns in both the dotted
and green regions of
parameter space.
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Predicting Pattern Wavelength

Pattern wavelength is the most accessible property of
vegetation stripes in the field, via aerial photography.
Wavelength can be predicted from the linear analysis.
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Predicting Pattern Wavelength

Pattern wavelength is the most accessible property of
vegetation stripes in the field, via aerial photography.
Wavelength can be predicted from the linear analysis.

However this prediction
doesn’t fit the patterns
seen in numerical
simulations.
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Shortcomings of Linear Stability Analysis

Linear stability analysis fails in two ways:

It significantly over-estimates the minimum rainfall level for
patterns.

Close to the maximum rainfall level for patterns, it
incorrectly predicts a variation in pattern wavelength with
rainfall.
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Travelling Wave Equations

The patterns move at constant shape and speed
⇒ u(x , t) = U(z), w(x , t) = W (z), z = x − ct

d2U/dz2 + c dU/dz + WU2 − BU = 0

(ν + c)dW/dz + A − W − WU2 = 0

The patterns are periodic (limit cycle) solutions of these
equations
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When do Patterns Form?
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Pattern Formation for Low Rainfall

Patterns are also seen for
parameters in the green
region.
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Pattern Formation for Low Rainfall
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Minimum Rainfall for Patterns
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The Eigenvalue Problem

PDE model: ut = uzz + cuz + f (u, w)

wt = νwz + cvz + g(u, w)

Periodic wave satisfies: 0 = Uzz + cUz + f (U, W )

0 = νWz + cWz + g(U, W )

Consider u(z, t) = U(z) + eλtu(z) with |u| ≪ |U|

w(z, t) = W (z) + eλtw(z) with |w | ≪ |W |

⇒ Eigenfunction eqn: λu = uzz + cuz + fu(U, W )u + fw (U, W )w

λw = νwz + cwz + gu(U, W )u + gw (U, W )w

Boundary conditions: u(0) = u(L)eiγ (0 ≤ γ < 2π)

w(0) = w(L)eiγ (0 ≤ γ < 2π)
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The Eigenvalue Problem

Eigenfunction eqn: λu = uzz + cuz + fu(U, W )u + fw (U, W )w

λw = νwz + cwz + gu(U, W )u + gw (U, W )w

Here 0 < z < L, with (u, w)(0) = (u, w)(L)eiγ (0 ≤ γ < 2π)
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The Eigenvalue Problem

Eigenfunction eqn: λu = uzz + cuz + fu(U, W )u + fw (U, W )w

λw = νwz + cwz + gu(U, W )u + gw (U, W )w

Here 0 < z < L, with (u, w)(0) = (u, w)(L)eiγ (0 ≤ γ < 2π)

Re(λ) < 0

→
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The Eigenvalue Problem

Eigenfunction eqn: λu = uzz + cuz + fu(U, W )u + fw (U, W )w

λw = νwz + cwz + gu(U, W )u + gw (U, W )w

Here 0 < z < L, with (u, w)(0) = (u, w)(L)eiγ (0 ≤ γ < 2π)

Re(λ) > 0

→
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Numerical Calculation of Eigenvalue Spectrum
(based on Jens Rademacher, Bjorn Sandstede, Arnd Scheel Physica D 229 166-183, 2007)

1 solve numerically for the periodic wave
by continuation in c from a Hopf bifn
point in the travelling wave eqns

0 = Uzz + cUz + f (U, W )

0 = νWz + cWz + g(U, W ) (z = x − ct)
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Numerical Calculation of Eigenvalue Spectrum
(based on Jens Rademacher, Bjorn Sandstede, Arnd Scheel Physica D 229 166-183, 2007)

1 solve numerically for the periodic wave
by continuation in c from a Hopf bifn
point in the travelling wave eqns

2 for γ = 0, discretise the eigenfunction
equations in space, giving a (large)
matrix eigenvalue problem

λu = uzz + cuz + fu(U, W )u + fw (U, W )w , u(0) = u(L)eiγ

λw = νwz + cwz + gu(U, W )u + gw (U, W )w , w(0) = w(L)eiγ
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Numerical Calculation of Eigenvalue Spectrum
(based on Jens Rademacher, Bjorn Sandstede, Arnd Scheel Physica D 229 166-183, 2007)

1 solve numerically for the periodic wave
by continuation in c from a Hopf bifn
point in the travelling wave eqns

2 for γ = 0, discretise the eigenfunction
equations in space, giving a (large)
matrix eigenvalue problem

3 continue the eigenfunction equations
numerically in γ, starting from each of
the periodic eigenvalues

λu = uzz + cuz + fu(U, W )u + fw (U, W )w , u(0) = u(L)eiγ

λw = νwz + cwz + gu(U, W )u + gw (U, W )w , w(0) = w(L)eiγ
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Numerical Calculation of Eigenvalue Spectrum
(based on Jens Rademacher, Bjorn Sandstede, Arnd Scheel Physica D 229 166-183, 2007)

1 solve numerically for the periodic wave
by continuation in c from a Hopf bifn
point in the travelling wave eqns

2 for γ = 0, discretise the eigenfunction
equations in space, giving a (large)
matrix eigenvalue problem

3 continue the eigenfunction equations
numerically in γ, starting from each of
the periodic eigenvalues

This gives the eigenvalue spectrum, and hence (in)stability
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Numerical Calculation of Eigenvalue Spectrum
(based on Jens Rademacher, Bjorn Sandstede, Arnd Scheel Physica D 229 166-183, 2007)

STABLE

Eckhaus
instability

UNSTABLE

This gives the eigenvalue spectrum, and hence (in)stability
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Stability in a Parameter Plane

By following this procedure at each point on a grid in parameter
space, regions of stability/instability can be determined.

In fact, stable/unstable boundaries can be computed accurately
by numerical continuation of the point at which

Reλ = Imλ = γ = ∂2Reλ/∂γ2 = 0

(Eckhaus instability point)
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Stability in a Parameter Plane
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Pattern Stability: The Key Result

Key Result

Many of the possible patterns are
unstable and thus will never be seen.

However, for a wide range of rainfall
levels, there are multiple stable
patterns.
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Hysteresis
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The existence of multiple stable
patterns raises the possibility of
hysteresis

We consider slow variations in the
rainfall parameter A

Parameters correspond to grass,
and the rainfall range corresponds to
130–930 mm/year
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Wavelength vs Rainfall
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Predictions of Pattern Wavelength

In general, pattern wavelength depends on initial
conditions

When vegetation stripes arise from homogeneous
vegetation via a decrease in rainfall, pattern wavelength
will remain at its bifurcating value.
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Predictions of Pattern Wavelength

In general, pattern wavelength depends on initial
conditions

When vegetation stripes arise from homogeneous
vegetation via a decrease in rainfall, pattern wavelength
will remain at its bifurcating value.

Wavelength =

√

8π2

Bν
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