Nonlinear Equations

How can we solve these equations?

• Spring force: F = k x

What is the displacement when F = 2N?

How can we solve these equations?

• Drag force: $F = 0.5 C_d \rho A v^2 = \mu_d v^2$

What is the velocity when F = 20N?

Nonlinear Equations in 1D

Goal: Solve f(x) = 0 for $f: \mathcal{R} \to \mathcal{R}$

Often called Root Finding

Convergence

An iterative method **converges with rate** *r* if:

 $\lim_{k \to \infty} \frac{||e_{k+1}||}{||e_k||^r} = C, \qquad 0 < C < \infty \qquad r = 1: \text{linear convergence}$

Linear convergence gains a constant number of accurate digits each step (and C < 1 matters!)

For example: Power Iteration

Convergence

An iterative method **converges with rate** *r* if:

$$\lim_{k \to \infty} \frac{||e_{k+1}||}{||e_k||^r} = C, \qquad 0 < C < \infty$$

- r = 1: linear convergence r > 1: superlinear convergence r = 2:
- r = 2: quadratic convergence

Linear convergence gains a constant number of accurate digits each step (and C < 1 matters!)

Quadratic convergence doubles the number of accurate digits in each step (however it only starts making sense once $||e_k||$ is small (and C does not matter much)

Convergence

• The bisection method does not estimate x_k , the approximation of the desired root x. It instead finds an interval smaller than a given tolerance that contains the root.

Example:

Consider the nonlinear equation

$$f(x) = 0.5x^2 - 2$$

and solving f(x) = 0 using the Bisection Method. For each of the initial intervals below, how many iterations are required to ensure the root is accurate within 2^{-4} ?

A) [−10, −1.8] *B)* [−3, −2.1] *C)* [−4, 1.9]

Algorithm:

1. Take two points, a and b, on each side of the root such that f(a) and f(b) have opposite signs.

2.Calculate the midpoint $m = \frac{a+b}{2}$

3. Evaluate f(m) and use m to replace either a or b, keeping the signs of the endpoints opposite.

Bisection Method - summary

- \square The function must be continuous with a root in the interval [a, b]
- Requires only one function evaluations for each iteration!
 The first iteration requires two function evaluations.
- Given the initial internal [a, b], the length of the interval after k iterations is $\frac{b-a}{2^k}$
- **Has linear convergence**

Newton's method

- Recall we want to solve f(x) = 0 for $f: \mathcal{R} \to \mathcal{R}$
- The Taylor expansion:

$$f(x_k + h) \approx f(x_k) + f'(x_k)h$$

gives a linear approximation for the nonlinear function f near x_k .

Example

Consider solving the nonlinear equation

$$5 = 2.0 e^x + x^2$$

What is the result of applying **one iteration** of Newton's method for solving nonlinear equations with initial starting guess $x_0 = 0$, i.e. what is x_1 ?

A) −2
B) 0.75
C) −1.5
D) 1.5
E) 3.0

Newton's Method - summary

- Must be started with initial guess close enough to root (convergence is only local). Otherwise it may not converge at all.
- Requires function and first derivative evaluation at each iteration (think about two function evaluations)
- Typically has quadratic convergence $\lim_{k \to \infty} \frac{||e_{k+1}||}{||e_k||^2} = C, \qquad 0 < C < \infty$
- ❑ What can we do when the derivative evaluation is too costly (or difficult to evaluate)?

Secant method

Also derived from Taylor expansion, but instead of using $f'(x_k)$, it approximates the tangent with the secant line:

 $x_{k+1} = x_k - f(x_k) / f'(x_k)$

Secant Method - summary

□ Still local convergence

Requires only one function evaluation per iteration (only the first iteration requires two function evaluations)

Needs two starting guesses

Has slower convergence than Newton's Method – superlinear convergence

$$\lim_{k \to \infty} \frac{||e_{k+1}||}{||e_k||^r} = C, \qquad 1 < r < 2$$

1D methods for root finding:

Method	Update	Convergence	Cost
Bisection	Check signs of $f(a)$ and f(b) $t_k = \frac{ b-a }{2^k}$	Linear ($r = 1$ and $c = 0.5$)	One function evaluation per iteration, no need to compute derivatives
Secant	$x_{k+1} = x_k + h$ $h = -f(x_k)/dfa$ $dfa = \frac{f(x_k) - f(x_{k-1})}{(x_k - x_{k-1})}$	Superlinear ($r = 1.618$), local convergence properties, convergence depends on the initial guess	One function evaluation per iteration (two evaluations for the initial guesses only), no need to compute derivatives
Newton	$x_{k+1} = x_k + h$ $h = -f(x_k)/f'(x_k)$	Quadratic $(r = 2)$, local convergence properties, convergence depends on the initial guess	Two function evaluations per iteration, requires first order derivatives

Nonlinear system of equations

Inverse Kinematics

Nonlinear system of equations

Goal: Solve f(x) = 0 for $f: \mathbb{R}^n \to \mathbb{R}^n$

Newton's method

Approximate the nonlinear function f(x) by a linear function using Taylor expansion:

Newton's method

Algorithm:

Convergence:

- Typically has quadratic convergence
- Drawback: Still only locally convergent

Cost:

• Main cost associated with computing the Jacobian matrix and solving the Newton step.

Example

Consider solving the nonlinear system of equations

$$2 = 2y + x$$
$$4 = x^2 + 4y^2$$

What is the result of applying one iteration of Newton's method with the following initial guess?

$$\boldsymbol{x}_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Newton's method

 $x_0 = initial guess$

For k = 1, 2, ...

Evaluate $\mathbf{J} = \mathbf{J}(\mathbf{x}_k)$

Evaluate $f(x_k)$

Factorization of Jacobian (for example LU = J)

Solve using factorized J (for example LU $s_k = -f(x_k)$)

Update $x_{k+1} = x_k + s_k$

Newton's method - summary

- **Typically quadratic convergence (local convergence)**
- Computing the Jacobian matrix requires the equivalent of n^2 function evaluations for a dense problem (where every function of f(x) depends on every component of x).
- Computation of the Jacobian may be cheaper if the matrix is sparse.
- The cost of calculating the step s is $O(n^3)$ for a dense Jacobian matrix (Factorization + Solve)
- If the same Jacobian matrix $J(x_k)$ is reused for several consecutive iterations, the convergence rate will suffer accordingly (trade-off between cost per iteration and number of iterations needed for convergence)

Inverse Kinematics