Nonlinear Equations

How can we solve these equations?

- Spring force:
$F=k x$

What is the displacement when $F=2 \mathrm{~N}$?

How can we solve these equations?

- Drag force:
$F=0.5 C_{d} \rho A v^{2}=\mu_{d} v^{2}$
What is the velocity when $F=20 \mathrm{~N}$?

$$
f(v)=\mu_{d} v^{2}-F=0
$$

Find the root (zero) of the nonlinear equation $f(v)$

Nonlinear Equations in 1D

Goal: Solve $f(x)=0$ for $f: \mathcal{R} \rightarrow \mathcal{R}$
Often called Root Finding

Bisection method

Bisection method

Convergence

An iterative method converges with rate r if:
$\lim _{k \rightarrow \infty} \frac{\left\|e_{k+1}\right\|}{\left\|e_{k}\right\|^{r}}=C, \quad 0<C<\infty \quad r=1$: linear convergence

Linear convergence gains a constant number of accurate digits each step (and $C<1$ matters!)

For example: Power Iteration

Convergence

An iterative method converges with rate r if:
$\lim _{k \rightarrow \infty} \frac{\left\|e_{k+1}\right\|}{\left\|e_{k}\right\|^{r}}=C, \quad 0<C<\infty$
$r=1$: linear convergence
$r>1$: superlinear convergence
$r=2$: quadratic convergence
Linear convergence gains a constant number of accurate digits each step (and $C<1$ matters!)

Quadratic convergence doubles the number of accurate digits in each step (however it only starts making sense once $\left\|e_{k}\right\|$ is small (and C does not matter much)

Convergence

- The bisection method does not estimate x_{k}, the approximation of the desired root \boldsymbol{x}. It instead finds an interval smaller than a given tolerance that contains the root.

Example:

Consider the nonlinear equation

$$
f(x)=0.5 x^{2}-2
$$

and solving $f(x)=0$ using the Bisection Method. For each of the initial intervals below, how many iterations are required to ensure the root is accurate within 2^{-4} ?
A) $[-10,-1.8]$
B) $[-3,-2.1]$
C) $[-4,1.9]$

Bisection method

Algorithm:

1. Take two points, a and b, on each side of the root such that $f(a)$ and $f(b)$ have opposite signs.
2. Calculate the midpoint $m=\frac{a+b}{2}$
3. Evaluate $f(m)$ and use m to replace either a or b, keeping the signs of the endpoints opposite.

Bisection Method - summary

\square The function must be continuous with a root in the interval $[a, b]$
\square Requires only one function evaluations for each iteration!

- The first iteration requires two function evaluations.
\square Given the initial internal $[a, b]$, the length of the interval after k iterations is $\frac{b-a}{2^{k}}$
\square Has linear convergence

Newton's method

- Recall we want to solve $f(x)=0$ for $f: \mathcal{R} \rightarrow \mathcal{R}$
- The Taylor expansion:

$$
f\left(x_{k}+h\right) \approx f\left(x_{k}\right)+f^{\prime}\left(x_{k}\right) h
$$

gives a linear approximation for the nonlinear function f near x_{k}.

Newton's method

Example

Consider solving the nonlinear equation

$$
5=2.0 e^{x}+x^{2}
$$

What is the result of applying one iteration of Newton's method for solving nonlinear equations with initial starting guess $x_{0}=0$, i.e. what is x_{1} ?
A) -2
B) 0.75
C) -1.5
D) 1.5
E) 3.0

Newton's Method - summary

Must be started with initial guess close enough to root (convergence is only local). Otherwise it may not converge at all.
\square Requires function and first derivative evaluation at each iteration (think about two function evaluations)
\square Typically has quadratic convergence

$$
\lim _{k \rightarrow \infty} \frac{\left\|e_{k+1}\right\|}{\left\|e_{k}\right\|^{2}}=C, \quad 0<C<\infty
$$

\square What can we do when the derivative evaluation is too costly (or difficult to evaluate)?

Secant method

Also derived from Taylor expansion, but instead of using $f^{\prime}\left(x_{k}\right)$, it approximates the tangent with the secant line:

$$
x_{k+1}=x_{k}-f\left(x_{k}\right) / f^{\prime}\left(x_{k}\right)
$$

Secant Method - summary

Still local convergence
\square Requires only one function evaluation per iteration (only the first iteration requires two function evaluations)
\square Needs two starting guesses
\square Has slower convergence than Newton's Method - superlinear convergence

$$
\lim _{k \rightarrow \infty} \frac{\left\|e_{k+1}\right\|}{\left\|e_{k}\right\|^{r}}=C, \quad 1<r<2
$$

1D methods for root finding:

Method	Update	Convergence	Cost
Bisection	Check signs of $f(a)$ and $f(b)$ $t_{k}=\frac{\|b-a\|}{2^{k}}$	Linear ($r=1$ and $\mathrm{c}=0.5$)	One function evaluation per iteration, no need to compute derivatives
Secant	$\begin{gathered} x_{k+1}=x_{k}+h \\ h=-f\left(x_{k}\right) / d f a \\ d f a=\frac{f\left(x_{k}\right)-f\left(x_{k-1}\right)}{\left(x_{k}-x_{k-1}\right)} \end{gathered}$	Superlinear ($r=1.618$), local convergence properties, convergence depends on the initial guess	One function evaluation per iteration (two evaluations for the initial guesses only), no need to compute derivatives
Newton	$\begin{gathered} x_{k+1}=x_{k}+h \\ h=-f\left(x_{k}\right) / f^{\prime}\left(x_{k}\right) \end{gathered}$	Quadratic ($r=2$), local convergence properties, convergence depends on the initial guess	Two function evaluations per iteration, requires first order derivatives

Nonlinear system of equations

Robotic arms

(d) Jointed-arm

https:/ / www.youtube.com/watch?v=NRgNDlVtmz0 (Robotic arm 1)
https: / / www.youtube.com/watch?v=9DqRkLQ5Sv8 (Robotic arm 2)
https:/ / www.youtube.com/watch?v=DZ ocmY8xEI (Blender)

Inverse Kinematics

Nonlinear system of equations

Goal: Solve $\boldsymbol{f}(\boldsymbol{x})=\mathbf{0}$ for $\boldsymbol{f}: \mathcal{R}^{n} \rightarrow \mathcal{R}^{n}$

Newton's method

Approximate the nonlinear function $\boldsymbol{f}(\boldsymbol{x})$ by a linear function using Taylor expansion:

Newton's method

Algorithm:

Convergence:

- Typically has quadratic convergence
- Drawback: Still only locally convergent

Cost:

- Main cost associated with computing the Jacobian matrix and solving the Newton step.

Example

Consider solving the nonlinear system of equations

$$
\begin{gathered}
2=2 y+x \\
4=x^{2}+4 y^{2}
\end{gathered}
$$

What is the result of applying one iteration of Newton's method with the following initial guess?

$$
x_{0}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Newton's method

$$
\boldsymbol{x}_{0}=\text { initial guess }
$$

For $k=1,2, \ldots$

Evaluate $\mathbf{J}=\boldsymbol{J}\left(\boldsymbol{x}_{k}\right)$
Evaluate $\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{k}}\right)$
Factorization of Jacobian (for example $\mathbf{L} \mathbf{U}=\boldsymbol{J}$)
Solve using factorized J (for example $\mathbf{L U} \boldsymbol{s}_{k}=-\boldsymbol{f}\left(\boldsymbol{x}_{k}\right)$
Update $\boldsymbol{x}_{k+1}=\boldsymbol{x}_{\boldsymbol{k}}+\boldsymbol{s}_{k}$

Newton's method - summary

\square Typically quadratic convergence (local convergence)
\square Computing the Jacobian matrix requires the equivalent of n^{2} function evaluations for a dense problem (where every function of $\boldsymbol{f}(\boldsymbol{x})$ depends on every component of \boldsymbol{X}).
\square Computation of the Jacobian may be cheaper if the matrix is sparse.
\square The cost of calculating the step \boldsymbol{S} is $O\left(n^{3}\right)$ for a dense Jacobian matrix (Factorization + Solve)
\square If the same Jacobian matrix $\boldsymbol{J}\left(\boldsymbol{x}_{\boldsymbol{k}}\right)$ is reused for several consecutive iterations, the convergence rate will suffer accordingly (trade-off between cost per iteration and number of iterations needed for convergence)

Inverse Kinematics

