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• Lectures include discussion of the nonlinear finite element method.
• It is preferable to have completed “Introduction to Nonlinear Finite Element Analysis”

available in summer session.
• If not, students are required to study on their own before participating this course. 

Reference:Toshiaki.,Kubo. “Introduction: Tensor Analysis For Nonlinear Finite Element 
Method” (Hisennkei Yugen Yoso no tameno Tensor Kaiseki no Kiso),Maruzen.

• Lecture references are available and downloadable at http://www.sml.k.u-
tokyo.ac.jp/members/nabe/lecture2004 They should be posted on the website by the 
day before scheduled meeting, and each students are expected to come in with a copy 
of the reference.

•Lecture notes from previous year are available and downloadable, also at 
http://www.sml.k.u.tokyo.ac.jp/members/nabe/lecture2003 You may find the course 
title, ”Advanced Finite Element Method” but the contents covered are the same I will 
cover this year.

• I will assign the exercises from this year, and expect the students to hand them in during 
the following lecture. They are not the requirements and they will not be graded, 
however it is important to actually practice calculate in deeper understanding the finite 
element method.

• For any questions, contact me at  nabe@sml.k.u-tokyo.ac.jp

http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture2004
http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture2004
http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture2004


Nonlinear Finite Element Method 
Lecture Schedule

1. 10/ 4 Finite element analysis in boundary value problems and the differential equations
2. 10/18 Finite element analysis in linear elastic body
3. 10/25 Isoparametric solid element (program)
4. 11/ 1 Numerical solution and boundary condition processing for system of linear 

equations （with exercises）
5. 11/ 8 Basic program structure of the linear finite element method(program)
6. 11/15 Finite element formulation in geometric nonlinear problems(program)
7. 11/22 Static analysis technique、hyperelastic body and elastic-plastic material for 

nonlinear equations (program)
8. 11/29 Exercises for Lecture7
9. 12/ 6 Dynamic analysis technique and eigenvalue analysis in the nonlinear equations
10. 12/13 Structural element
11. 12/20 Numerical solution— skyline method、iterative method for the system of linear 

equations
12. 1/17 ALE finite element fluid analysis
13. 1/24 ALE finite element fluid analysis



Boundary Value Problem For
Linear Elastic Body                         

Consider, a boundary value problem[B] for a linear elastic body A found in the figure below. Ω
is a region occupied by [B] , and the body A Ω has its boundary∂Ω. A displacement boundary 
condition is given on its subset∂ΩD. When surface force t, body forceρg are acted on such 
systems, find the displacement u ∈ V that satisfies the equilibrium condition. Density ρ, 
gravitational acceleration g and displacement V are considered as a set of all solution candidates 
that satisfy the admissible function for the displacements, or the displacement boundary 
condition, in other words.

・Linear elastic body obeys the Hooke’s law. The microscopic transformation of such substance, 
the iron and the rubber, for example, are commonly known as isotropic, and its internal stress 
all depend on the displacement. The substance can be made a model.

・Displacement boundary condition or the surface force are given at all points on the surface of 
substance∂Ω. Which implies the surface force is being provided at all points but ∂ΩD . It is 
often omitted in a case in which the boundary value takes 0, therefore should be carefully 
observed.



Definitions of Symbols
・ We define a configuration of the substance at nominal time t0 as a nominal 

configuration, and express the position vector at each substance point as X
• Position vector of a mass point X at the present time t is expressed as x
• Displacement vector for the substance point from t0 to t is expressed as u



Strong Formulation 1

This problems can be formulated by the following.
[B] Where t, g are given, find u ∈ V that satisfies the following:
[1 ] Balance equation(Cauchy’ equation of motion)

[2 ] Boundary condition equation

[3 ] Displacement・strain relational expression

[4 ] Stress・strain relational expression(constructive equation)

• In any problems, [1] and  [2]  are congruent. ( possibly reformed in equivalent 
expressions if necessary.) [4] depends on its substance model, and [3] is determined in 
correspond to [4] 



Definition of Symbols
This problem can be formulated as in the following:
[B] With given t and g, obtain u ∈ V that satisfies the following equations.

• A set of all admissible function of the displacement V
• T Cauchy stress
• κ, G bulk modulus, modulus of rigidity (physical property)
• Kronecker delta symbol

・ linear strain, deviator strain



Weak Formulation

• As we stated earlier, the finite element method is associated with the approximate 
analysis of the weak form of the differential equations.
• [V] represents the weak form corresponding to [B ]．

[V ] With the surface force t and the body force ρg given, obtain u ∈ V that satisfies the 
following.

• summation convention is used for Tij(v) εij(δu)

• Therefore,



Discretization and Dividing Finite Element 1
•In the finite element method, the regionΩ , the analysis object is divided in the elements 
with the finite magnitude. Which is expressed in the following formulation,

•Therefore, the regional integration along with the boundary integration may be gained 
by:

• Thus, the weak form is being modified (from now on we denote as [Ve] )

We assume x and  u, which included in the integrand to be expressed by the interpolation functions 
within each element.



Matrix Notation
• We utilize the matrix notations for the convenience in the 
calculations.

• The matrix notations we show in the following are 
fundamentally introduced as a procedural means, and 
which contains no intrinsic implications, therefore, each 
programmer may arrange his/her own way to meet the 
needs.

• We introduce the most common and applicable 
procedures in the following.



Stress-Strain Matrix([D] Matrix) 1

•[Ve] The integrands Tij (u) εij(δu) in the left hand side in the first term may be 
expressed as the following if the summation convention was not being used.

• Using the symmetry property of Tij and εij about I and  j, organize the equations in 
order to have the least operation times



• {ε(v)}, {T(v)} is defined by the following equations.



Stress-Strain Matrix([D] Matrix) 2

• Relational expression for the stress Tij and the strainεij can be,

Based on the relational expression, have {T(v)} and {ε(v)} correlate with the matrix and 
the vector product formulations.

• This matrix [D] is often called the stress-strain matrix, or simply called [D] matrix.
• We can write out the components of Tij found in {Tij(v)} ,



Stress-Strain Matrix([D] Matrix) 3
• It might look a little pressing to bring then into the matrix expressions though, we 

obtain the following.

• Now we define [Dv], [Dd] in the next step.

• Using the matrix notation obtained in above,  [D] is defined by



•. Furthermore, the integrands Tij(u) εij(δu) found on the left hand side in the first term [Ve] can be 
expressed as



Node Displacement-Strain Matrix([B] Matrix) 1

• Displacement and linear strain

• Displacement and the node displacement

• Collecting all together, the linear strains and the node displacements are 
correlated with the following matrix and vector product formulations

• This matrix [B] is called the node displacement-strain matrix, or simply [B] 
matrix. n represents the number of the nodes found in the single element.

• {u(n)i } is defined by the following equation.



Node Displacement-Strain Matrix([B] Matrix) 2
• Since           needed in the calculation of the strain represents the quantity of which the node 
displacement does not depend on the position vector x, we can write as,

• Moreover,

In considering the above,



Node Displacement-Strain Matrix([B] Matrix) 3

• Specifically, the components are,



•Based on the components studied in the previous, [B] matrix can be represented in the 
6× 3 submatrix .



Element Stiffness Matrix
• By using [B], the integrands Tij(u) εij(δu) found in the first term in [Ve] may be expressed by,

• are the values at the nodal points, and which do not depend on the regional 
integration because they become constant under the region, thus, we may take them out from the 
integrals.

• This integrated matrix is called the element stiffness matrix.



External Force Vector
• For the second and third terms in the left hand side [Ve], we prepare for the vectors  in the node 

displacements to have them singled out from the integrals.

• Provided that,

• Based on above, the external force vector is defined as following,



Total Stiffness Matrix 1
• To put in order,

Which can be modified by,

• Without touching the left hand side, modify                     to the forms, in which the 
nodal   point numbers are provided out of the total numbers instead by the numbers 
of each element. 

• Unifying the both equations then yield the following,



Total Stiffness Matrix 2
• In order for the equation to form with the arbitrary δu ,

• The following equation must be established.

• Thus, the solutions obtained from the following system of linear equations should be 
the approximate solutions.

• In contructual analysis, this equations are often called the stiffness equations, and its 
matrix is called the total stiffness matrix.



Numerical Integration
• It is necessary to conduct either volume or area integration in obtaining the 

matrix.
• However, it is almost impossible to analytically conduct integration because 

the integrand becomes complicated.
• Thus we conduct numerical integration instead, and Newton-Coate

integration along with Gauss integrations are among the most common 
methods.

• Both integrations approximate the integrand by Lagrange polynomials 
based on the characteristics of  Lagrange polynomials to obtain integration 
numerically.



Lagrange Polynomials 1
• Approximate f(x), (a ≤ x ≤ b) by polynomials.
• Lagrange polynomials take the sampling points including both extremes of  domain:                            

to be approximated by following,

• is n − 1th order function that takes 1 at the sampling points, and 0 at any other points.

• Thus the sampling points xk ,

・Qn(x) is n − 1th order function, which coincides with f(x) with n sampling points i(i = 1, ・ ・ ・ , n).
• For example，when n = 2 we have x1 = a, x2 = b

This represents a straight line connected by the end points.
• If we take x1 = −1, x2 = 1

Then we obtain the above, which coincide with the previous interpolation function in the single order.



Lagrange Polynomials 2
• Basic facts：When two nth- order polynomialsf(x), g(x) coincide with another n + 1points xi(i = 1, ・ ・ ・ , 

n + 1) , then f coincide with g, as well.
Proof：Suppose we have h(x) = f(x) − g(x) then h(x) takes n th order polynomials. Now, under xi(i = 
1, ・ ・ ・ , n + 1) , if f(x) coincides with g(x) ,

Where a is an arbitrary coefficient．Hence, h(x) becomes n + 1 th order function and there appears a 
contradiction.

• If we take f(x) as n th order polynomials to approximate by Lagrange polynomials. For each Hk(x) n th
order function is taken with n+1 sampling points,  Qn+1(x) becomes n th order function. Based on the 
facts, f(x) and Qn+1(x) coincide regardless of how the sampling points are taken.



Basics to Numerical Integration
• Newton-Coate integration and Gauss integration are the method of numerically obtaining the 

integration based on the approximation by Lagrange polynomials.

• The following integration value is gained regardless of f(x), but rather gained based on the 
information of the sampling points, and which is called the heaviness corresponding to the 
sampling points xk.

• Therefore, we can obtain the approximation by multiplying the heaviness, corresponding to the 
alue at sampling points f(xk) and the point xk, to the integration of f(x) then add them all together.

Since integrand is approximated by Lagrange polynomials, we gain more accuracy with greater the 
number of the sampling points.However when integrand is n th polynomials, the solution coincides with 
analytical integration by taking the n + 1sampling points. And we observe no difference by taking more
than n + 2 sampling points.
• x = then,



Thus,

Discussion follows with a set integration interval from−1 to1.



Newton-Coate Integration 1
• In Newton-Coate integration, the end points are included in selecting equal intervals of n sampling 
points.

• For n = 2 it is commonly called the trapezoidal rule, while n = 3, it is called Simpson integration.
• For the Trapezoidal rule，

Therefore obtained by following,



Newton-Coate Integration 2
• In Simpson integration，

Therefore obtained by following 

• Obviously, when we obtain the integrand with n − 1polynomials, the integrals can be achieved by 
taking more than n sampling points.

• In considering the odd function to have its integrals 0, (2n− 1) polynomials can be accurately 
obtained if (2n −1) sampling points are taken.

• Thus in conducting Newton-Coate integration, often odd numbers of sampling points are taken.



Gauss Integration 1
• In Gauss integration, integrand is approximated by (2n − 1) order function.

ak takes an arbitrary  coefficient, and q(x) expresses the following n polynomials.

• At sampling point thus, 

• Here the position of sampling points is expressed by



In order to satisfy the above,

• Implying that integral of the integrand f(x) is approximated as an integral of 2n 
− 1 th order function at n sampling points.



Gauss Integration 2
• Let us now find the specific positions for sampling points.
• When n = 1 

From which to obtain the heaviness that corresponds to x1 = 0,

• When n = 2 ,



• Then obtain weight corresponding to



Gauss Integration 3

• When n = 3,

• Find the weight  that correlates with





Sampling Points in Actual Numerical Integration
• Obviously，the more we have the sampling points, the more accurate the solution we obtain.
• However，the more we have the sampling points, greater the amount of time spent on the 

calculation.
• Usually, in the first-order element, 2points taken by Gauss integration and 3points by Newton-Coate

integration. In the second-order element，3points used in Gauss integration and 5points used in 
Newton-Coate integration.



4 Noded Quadrilateral Solid Element
In one-dimensional space, divide the domain of integration into n-interval then conduct the coordinate 
transformation at each interval of x coordinates in a linear segment of line to r(−1 ≤ r ≤ 1), using 
interpolation function.

• Now, what do we find under two-dimensional space?
• First, divide domain of integration by rectangular with its apexes at (−1,−1), (1,−1), (1, 1),and (−1, 1), then 

conduct coordinate transformation using two parameters .
• Therefore, in physical coordinate systems, the nodal points under such configuration in the figure on the 

left is made to correlate with what it shows in the figures on the right. This implies that a tetrahedron in 
the physical coordinate system is being projected to a square in coordinate system. 



Interpolation Function
•• Interpolation functions takes forms in the following,

• In respect with one-dimensional space,

• Values at corresponding nodal points are found as 1, but in other nodal points, found as 0.



Differentials in Discrete Value Expression 1

• Differentials of ui about xj, which are needed in calculating a strain, can be 
evaluated with chain rule in the following.

• can be obtained also, with chain rule.

• Jacobian matrix [J] may be found as



Differentials in Discrete Value Expression 2

• Each component of this Jacobian matrix        is given by,

• is evaluated as,

• In addition, the regional integration can be expressed by,

This integration is usually conducted by numerical integration method such as Gauss 
integration. Here, we use a doubled Gauss integration in one-dimensional space.



Interpolation Functions in Triangle Element 1
• Interpolation functions in triangle element are expressed in the area coordinates defined by the 

following.
• Area coordinates represent the coordinates consisted of the area of element A ,and the given points 

within the element. In addition, the area of triangles are given A1,A2 and A3(triangles made by the 
corresponding opposite sides of nodal points and its points)



Interpolation Functions in Triangle Element 2
• Interpolation functions in single dimension with 3 nodal points

• Interpolation functions in the two-dimensional 6 nodes,

• We can obtain the 6 nodes interpolation functions through 3 nodes functions.



Numerical Integration and Interpolation Functions 
in Triangular Element 1

• In actual calculations for element stiffness matrix, the numerical integration is necessary.
• Numerical integration is conducted by reflecting the area coordinates and the natural 

coordinates system in the way shows in the following.

• Domain for the triangle internal corresponds to the domain for the natural coordinates system 
appears in the figure below.



Numerical Integration and Interpolation Functions 
in Triangular Element 2

• Under physical space, integral             transforms into the  natural coordinates system by Jacobian
matrix, in the same way we evaluated for the rectangular element.

• Thus,

• Jacobian matrix component becomes what we obtained for the rectangular element in the 
following.



Numerical Integration and Interpolation Functions 
in Triangular Element 3

• Here, a differential        for shape functions by natural coordinates appears,

Based on the functions above, reflect with the area coordinates to obtain,



Numerical Integration and Interpolation Functions 
in Triangular Element 4

• In respect, conduct                                             .  

Apparently in the form                                   .



Numerical Integration and Interpolation Functions 
in Triangular Element 5



Finite Element Analysis Code Prototype
• Finite element method programming structure can be,

• Basically, in linear finite method analysis coding, structure of the program stays the same.  
For dynamic analysis and the nonlinear analysis, the programs are based on this structure.



Input Data

• Maximum nodal points: MXNODE (1000)
• Maximum elements: MXELEM (1000)
• Maximum degree of freedom per 1 nodal point: MXDOFN (3)
• Maximum nodal points per 1 element: MXNOEL (8)
• Total nodal points: nnode
• Nodal points coordinates: coords(MXDOFN,MXNODE) 1
• Total elements: nelem
• Number of nodal points at each element: ntnoel(MXELEM)
• Connectivity: lnods(MXNOEL,MXELEM) 1
• Degrees of freedom per 1 nodal point: ndofn
• Total degree of freedom: ntotdf=nnode×ndofn
• Number of nodal points at each element: ntnoel (MXELEM)



Drawing Element Stiffness Matrix
• To categorize the bugs occur in element stiffness programming,

1. Matrix[D] and [B]
2. Jacobian Matrix
3. Numerical integration

A technique employed in verification of 2. and 3, is done by obtainng the volume of element in 
physical space and make a comparison with the actual volume.

• Volume of element in physical space can be gained by following,

• Loop in triple numerical integration can be coded as,





Procedure of Drawing Stiffness Matrix– ４Noded
Quadrilateral 1

• In finding element stiffness matrix for two-dimensional 4 noded quadrilateral element by 2×2
Gauss integration,

• Transform the domain of integration of the element stiffness matrix.（transformation of the domain 
of integration by isoparametric element)

• Introduce the numerical integration to yield



Procedure of Drawing Stiffness Matrix– ４Noded
Quadrilateral 2

• In specific, components of Jacobian matrix can be evaluated by setting each sampling point  
in the following,

Clarify all components in the matrix, and again, draw out the Jacobian matrix, then follow through 
the steps to complete the calculation.



• [B] Matrix components are obtained by following

• [B] Substitute each value into the corresponding part in matrix.

• From above, [B(ra, rb)] det[J(ra, rb)]  is gained,

Calculate the above then multiply the weight wa wb then plug them into the configuration of the total 
stiffness matrix,

Procedure of Drawing Stiffness Matrix– ４Noded
Quadrilateral 3



Procedure of Drawing Stiffness Matrix– Triangle 1

• For the triangle element, basically, we can take the same steps.
• Domain of integration in the element stiffness matrix is transformed as the figure indicates

（transformation of integration domain by isoparametric element)





Procedure of Drawing Stiffness Matrix– Triangle 2
• Introduce the numerical integration

• Evaluate the values for each sampling point to draw the matrix, then plug them into the total 
stiffness matrix.

• Evaluate the values for each sampling point to draw the matrix, then plug them into the total 
stiffness matrix.



Procedure of Drawing Stiffness Matrix– Triangle 3
• Interpolation functions for 3 noded triangle element can be written by,

• Base on this relations, reflect it to the area coordinates system in the following,

• For the calculation detail,



Procedure of Drawing Stiffness Matrix– Triangle 4
• Jacobian matrix components, are,

• Thus the determinant becomes twice the area of triangle element.



Procedure of Drawing Stiffness Matrix– Triangle 5

• [B] Matrix components are consisted of the series of , and evaluated by following,



Since are all invariables, then automatically can be considered as invariables as well,



Procedure of Drawing Stiffness Matrix– Triangle 6

• Therefore,[B] matrix components are specifically described as,

• Moreover, in realizing [D] matrix of being invariables, then automatically integrand all becomes 
invariables as well. There is no more need for the numerical integrations.



External Force Vector
• In actual finite element analysis, the external force vectors are needed to be obtained.

• Provided that,

• Based on the fact, the external force vector can be defined as,



Example of External Force 1
• Example of external force, pull by the equal force in direction

• In order to simplify, we suppose the weight loaded on the plane 5 -6 -7 -8 parallel to the planeax1 −
x2 then set the coordinates for each nodal points.

Hence, it is considered as rectangular by a × b . Having r3 = 1 on the plane 5 -6 -7 -8,       
becomes as,





Example of External Force 2
• Based on the fact can be gained by following the steps below.



Example of External Force 3

• Thus if we define the load per unit area as P, we can find the external force at each nodal points 



• In summary,  considering the case where uniformly distributed load is acted on the 
plane of 8 noded hexahedron solid element, we can assign ¼ of the load to each node 
point of total 4 nodes.



Boundary Condition 1
• In conducting stationary structural analysis in finite element method, the solving equation may be 

the  balance equation, thus we need to set an arbitrary fix point to solve the equation.
• For a simple pull, the two planes of the rectangular solid counterparts are simply pulled, and we 

cannot determine the position of a center point by any means.

• Let us now consider the formulation, we can realize there are three symmetrical planes in this 
formulation if we assume the central mass points to stay where it is.



Boundary Condition 1
• Suppose the coordinates of the central mass point in rectangular solid to be (0,0,0), then take out 

the the first quadrant as one of the 1/8 region divided by the three symmetrical planes, we can 
obtain the following boundary condition.



Merge
• For the bugs occur in a merge operation by adding an element stiffness to a total stiffness can be 

considered as a mistake of an index.
• Debugging of merge is carried  by  plugging  some simple values as 1, and 2 into the element 

stiffness then shift over to the total stiffness to verify the result.
• In order to have a variable degree of freedom per single node point,  we may implement  following 

coding to the merge.



Gauss Elimination
• The coefficient matrix [A] given by Gauss elimination may finally be decomposed  in to the

following equations,

• If [A] represents a symmetric matrix, then we get [U] = [LT ] . Therefore, [A]can be decomposed in 
the following equations.

• By obtaining [A] = [L][D][U] , the system of linear equation [A]{b} = {c} is solved by adopting 
inverse matrix on both sides in turn.



Boundary Condition Handling 4
• Consider now for the following system of linear equations,

• Here, we assume  the right hand side other than Cj and bj are the known. Re-write in the system 
of linear equations formulation, it is obtained by ,

• In above, the equation in the column j contains unknown quantity Cj in the right side, thus Cj is 
obtained after the ordinary unknown quantity bi(i = 1 ∼ j −1, j+1 ∼ n) are obtained based on the 
following.

For its distinct in nature compared to other equations in the column,                                                should be 
excluded from the process.



Boundary Condition Handling 5
• Consider the n − 1 equations without column j .

• In the equation above, are known value and should be transpositioned
into the right hand side.



Boundary Condition Handling 6
• To formally express in matrix, we have the following.
• Coefficient matrix consists of the matrix without column j and the row j .
• Unknown vector represents the one without column j.
• The right hand side is consisted of the initial left hand side subtracted by bj times the initial 

coefficient matrix row j without the column j.

Where is 0, the right hand side the second term can be eliminated.

• The operation above stays the same with multiple known . Suppose are 
know. From the system of linear equations, exclude the equations in column                                   .
Then  transposition the terms, which include in the left side to the right hand 
side. Based on the fact, the matrix can be obtained.
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