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Nonlinear
Finite Element Method

e Lectures include discussion of the nonlinear finite element method.

* It is preferable to have completed “Introduction to Nonlinear Finite Element Analysis”
available in summer session.

* If not, students are required to study on their own before participating this course.
Reference: Toshiaki. ,Kubo. “Introduction: Tensor Analysis For Nonlinear Finite Element
Method” (Hisennkei Yugen Yo0so no tameno Tensor Kaiseki no Kiso),Maruzen.

* Lecture references are available and downloadable at http://www.sml.k.u-
tokyo.ac.jp/members/nabe/lecture2004 They should be posted on the website by the
day before scheduled meeting, and each students are expected to come in with a copy
of the reference.

sLecture notes from previous year are available and downloadable, also at
http://www.sml.k.u.tokyo.ac.jp/members/nabe/lecture2003 You may find the course
title, "Advanced Finite Element Method” but the contents covered are the same | will
cover this year.

* | will assign the exercises from this year, and expect the students to hand them in during
the following lecture. They are not the requirements and they will not be graded,
however it is important to actually practice calculate in deeper understanding the finite
element method.

» For any questions, contact me at nabe@sml.k.u-tokyo.ac.jp



http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture2004
http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture2004
http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture2004
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Nonlinear Finite Element Method
Lecture Schedule

10/ 4 Finite element analysis in boundary value problems and the differential equations
10/18 Finite element analysis in linear elastic body
10/25 Isoparametric solid element (program)

11/ 1 Numerical solution and boundary condition processing for system of linear
equations (with exercises)

11/ 8 Basic program structure of the linear finite element method(program)

. 11/15 Finite element formulation in geometric nonlinear problems(program)
7.

11/22 Static analysis technique. hyperelastic body and elastic-plastic material for
nonlinear equations (program)

11/29 Exercises for Lecture?
12/ 6 Dynamic analysis technique and eigenvalue analysis in the nonlinear equations

10. 12/13 Structural element
11. 12/20 Numerical solution— skyline method. iterative method for the system of linear

equations

12. 1/17 ALE finite element fluid analysis
13. 1/24 ALE finite element fluid analysis



Boundary Value Problem For
Linear Elastic Body

Consider, a boundary value problem[B] for a linear elastic body A found in the figure below. &
is a region occupied by [B] , and the body A § has its boundary 8 §. A displacement boundary
condition is given on its subset @ §2D. When surface force t, body force ©g are acted on such
systems, find the displacement u €V that satisfies the equilibrium condition. Density 0,
gravitational acceleration g and displacement V are considered as a set of all solution candidates

that satisfy the admissible function for the displacements, or the displacement boundary

condition, in other words. -
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-Linear elastic body obeys the Hooke’s law. The microscopic transformation of such substance,
the iron and the rubber, for example, are commonly known as isotropic, and its internal stress
all depend on the displacement. The substance can be made a model.

- Displacement boundary condition or the surface force are given at all points on the surface of
substance 4 £. Which implies the surface force is being provided at all points but & D . Itis

often omitted in a case in which the boundary value takes 0, therefore should be carefully
observed.



Definitions of Symbols

- We define a configuration of the substance at nominal time to as a nominal
configuration, and express the position vector at each substance point as X

 Position vector of a mass point X at the present time t is expressed as x

» Displacement vector for the substance point from tO to t is expressed as u

u—=x — X (1)
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Strong Formulation 1

This problems can be formulated by the following.

[B] Where t, g are given, find u €V that satisfies the following:

[1 ] Balance equation(Cauchy’ equation of motion)

V, T+ pg=>0

[2 ] Boundary condition equation

u=u on J2p

T . n=t on 92— 00

[3 ] Displacement-strain relational expression

N ( ) o 1 8u..,.-_ n é)uj
"I =5\ ox; T ax,

[4 ] Stress-strain relational expression(constructive equation)

T;; = k(divau)d;; + QGSg(u)

* In any problems, [1] and [2] are congruent. ( possibly reformed in equivalent
expressions if necessary.) [4] depends on its substance model, and [3] is determined in
correspond to [4]



Definition of Symbols

This problem can be formulated as in the following:
[B] With given t and g, obtain u €V that satisfies the following equations.
V, T+ pg=>0
T .=t

() 1 [ Ou, n du
Ef u) — = o~ - s r
J 2 (j/X) CLX i

T, = r(divu)o;; + QCGS(U)

* A set of all admissible function of the displacement V

» T Cauchy stress

* 4, G bulk modulus, modulus of rigidity (physical property)
* 4;; Kronecker delta symr

- =5, =4 linear strain, deviator strain

- )_1 du; . Buj
M=o\ ox, T oy,

1 [/ Ou; O ; 1 O o Ous O
D i j . . . i 1 2 3
£ = = - = — —=(div (3;. liv — T — = gy — = i1 (&5
Y (u) 2 (d)(] + ()xYE ) ‘_)) (C A u) J v ()le ()xXl Jr ())& 2 + ())& 3 g ( J)

(8)
(9)
(10)



Weak Formulation

- As we stated earlier, the finite element method is associated with the approximate

analysis of the weak form of the differential equations.
* [V] represents the weak form corresponding to [B |.

[V ] With the surface force t and the body force ,0g given, obtain u €V that satisfies the

following.

/Tu( ) €ii(0u) 1(2:/ 5u-t(15+/p5u-gdﬂ YoueV  (14)
0 00 0

e summation convention is used for Tij(v) £ij( Ju)

Tij(v)e;j(v) = ZZTU )ij(v)

=1 j=1
= Tn(v)en(v) +T(v)cp(v) + Ti3(v) c13(v)
+ 15 (’U) 621(’0) + TQQ(U) 622(’0) + TQg(’U) 823(’0)
+ T31(v) £31 (V) + T32(v) €32(v) + T33(v) £33(V)

* Therefore.



Discretization and Dividing Finite Element 1

«In the finite element method, the region § , the analysis object is divided in the elements
with the finite magnitude. Which is expressed in the following formulation,

Z2=> a2 (16)

«Therefore, the regional integration along with the boundary integration may be gained

by: . :
102 = 102 17
fae=3 [ @
dS = / .S 18
[, as=3 (1)

D02,

* Thus, the o -
Z [/ j”(u) CU((S”UL) ds?
— LJ .
{—/ (5u~tdS—/ péu~gd!2] =0 You € V (19)
Jag, J 0,
We assume x and u, whic z; = iNr(j)x(_j) (20) tions

within each element.

—_— =

w; = NV ) (21)

-



Matrix Notation

* We utilize the matrix notations for the convenience in the
calculations.

* The matrix notations we show in the following are
fundamentally introduced as a procedural means, and
which contains no intrinsic implications, therefore, each

programmer may arrange his/her own way to meet the
needs.

* We introduce the most common and applicable
procedures in the following.



Stress-Strain Matrix([D] Matrix) 1

-[Ve] The integrands Tij (u) £ij( du) in the left hand side in the first term may be
expressed as the following if the summation convention was not being used.

> [/O Tij(w) e (du) d2

e

[—/ 5u-tdS—/ pc?u-gd!!] =0 You € V
J oS, J L2

Tfj (’LL) S.gj(éu) = TM(U) 511(51&) —+ Tlg(’u,) 512(511,) + Tl;g(’u,) 513(51,6)

« Using the symmetry property of Tij and <£ij about | and j, organize the equations in

order to have the least operation times
Ly (w) & (0u)
= Tii(w)e(0w) + Too(w)con(dw) + Thz(w)csz(du)
+ 2710 (w) c12(0w) + 2153(w) ca3(0w) + 2151 (w) £31(0u)
= {=(0u) ' {T'(u)}

(22)

(23)



o { £(V)}, {T(v)} is defined by the following equations.
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Stress-Strain Matrix([D] Matrix) 2

- Relational expression for the stress Tij and the strain £ij can be,
I8 B 1: N 4 D DT
T3 = k(divu)d;; + 2Ge;(u) (26)

Based on the relational expression, have {T(v)} and { £(v)} correlate with the matrix and
the vector product formulations.

{T'(v)} = [D|{e(v)} (27)

« This matrix [D] is often called the stress-strain matrix, or simply called [D] matrix.
* We can write out the components of Tij found in {Tij(v)},

26

T = Kk (e11 + €22 +£33)+2Gen — 5 (E11+Ex2 + £€33) (28)
. , 2G
Tho = k(€11 + €22 + €33)+2Geag — —— (€11 + £22 + €33) (29)
l)
2G

153 = k(211 + €22 + €33)+2Ge33 — (11 + €22 + £33)

3 (

Tio = 2Geq2 (

Tos = 2G£23 (32
(

131 = 2Ge 31



Stress-Strain Matrix([D] Matrix) 3

« It might look a little pressing to bring then into the matrix expressions though, we

obtain the following.

T4 [k K &
T5o KoK H
Ths K K ¢
(T

153 ()
131 L

11
€22
€33
2519
2?23
2531

 Now we define [Dv], [Dd] in the next step.

* Using the matrix notation obtained in above, [D] is defined by

F A 2 2
§CT _§C7 §
2 4 2
—fF o —
3 3 3
+| 2., 2., 4
—5& —g¥ 3
4
2 22
3 3
2 4
—Za
3 3
2 2
[Dad] —Zo =@
3 3
0

~
NJd

0
N

o
NJ<

—G

11
0 |[=
£33
2e12
& 2¢23
G 2231
(?_
2, 2, ‘
3
2 Y
—3C 0
4 Y
§(I
(&
d
G

(34)

(35)

(36)



«. Furthermore, the integrands Tij(u) £ij( Ju) found on the left hand side in the first term [Ve] can be
expressed as

Lij(w) 255 (0u) =



Node Displacement-Strain Matrix([B] Matrix) 1

» Displacement and linear strain

1 /[ Ou; Ou
silw) =3 (an T ox, (38)
» Displacement and the node displacement
u; = N(j)ugj) (39)

 Collecting all together, the linear strains and the node displacements are
correlated with the following matrix and vector product formulations

» This matrix [B] is called the node displacement-strain matrix, or simply [B]
matrix. n represents the number of the nodes found in the single element.

{e(u)} = [Bl{u}"} (40)

* {u(n)i } is defined by the following equation.

2

N \ 8T
- - ¢ 9 4 -
{ u.gn}} = {ui”. ué”.ué“, u.(f). u..(z‘). ug'). e u(l”). u.g”), ug”} (41)



Node Displacement-Strain Matrix([B] Matrix) 2

* Since -"L. needed in the calculation of the strain represents the quantity of which the node
displacement does not depend on the position vector X, we can write as,

(-)“f' _ t)'\'i“] (1) {—l-)
oX,  OX, “
* Moreover, )
0w (43)
é)u.o
{_—-:‘ — = *J:“l
29 T ( )
@’U,-g
33 9 X ( ’)
é)u.l aug
2619 = 46
= o | B, 28)
o au‘g
2893 = - ' A7
8= o O 47)
a’ll-:g 8’&1 .
2e31 = — + 48
1T 0x, T 90X, (43)

In considering the above,



Node Displacement-Strain Matrix([B] Matrix) 3

- Specifically, the components are,

ON® ON®) N

€11 = T -u.gn -+ W -qu) Tems 8 2 T ugn)
Paul “Aq A1

ONW oy ON®

= —_— Uy f m—tUy e —
UK, oy ¢ 0X, *?
ONM) ON?) ON®
. iy, o (2) - (n)
Eaqq — — i -+ — U + .- — ;
B=3x, BT ax, toox, U
ANV 4, ON®) IN™
219 = all + = D e e — g
T PR T i A =
OND 4y ON@D ON®
teG e tag M Tt e M
ON®Y .,  ON® IN™
TR M ) N B S ()
B C T C " Oy S
ONW ONQ®) ON®
() C RS s A
TN Tox e T
AN AN®3 ON™
Deig — (1 9V @, . . (n)
“N=5x%, 1 Tex; M Tt ax, M
AN ON2) AN® _
(1) (2) i + (n) (49)

TG Tam 8 T g .



-Based on the components studied in the previous, [B] matrix can be represented in the
6 x 3 submatrix (B,

TON (K i
aX,
ON R
DX
ON )
(9_5&-3
[BW] = |aN®  aN® (50)

IXy  OX,
ONE) N )
0Xs 09Xy
ONF) ON (k)
L OX, oX;
[B] = [[BW].[B], ... [B™] (51)




Element Stiffness Matrix

e By using [B], the integrands Tij(u) £ij( du) found in the first term in [Ve] may be expressed by,
T (w) 2,5(8u) = {=(6w)} {T(u)}

= {=(0w)}' [D]{z(w)}

= {ou" " [B)" [D] [B] {u;"} (52)

n)
o 19w} {4} are the values at the nodal points, and which do not depend on the regional
integration because they become constant under the region, thus, we may take them out from the

integrals. '
/ Tij(u)e;ij(ou)ds?

/ (ouY" 18] (D] (B] {u{"'} 42
= 5ul”)y" UE[B]T[ 1B ae] () &

* This integrated matrix is called the element stiffness matrix.

K] = /( B” [D][B]d0 (54)



External Force Vector

*  For the second and third terms in the left hand side [Ve], we prepare for the vectors in the node
displacements to have them singled out from the integrals.

Z [/ Tij(we) s (dan) A2 — / A - EdS — / p o gd_"?:| =0 YVdu e V (55)
p 2, Jars, J 12,
/ oy - t; dS = / {ou"" YT NI {t} dsS
agl, avl,
— {r_sutl“’}'f'/ N {trds (56)
102,
j pou; - g;df2 = / ploul M N {g} de2
2, 02,
= {su"}T / p[NT {g} de2? (57)
J a2,
* Provided that,
N N®@) N )
[N] = N N® . N®) (58)
N N(©2) N ()
t1 g1
{th=<tap. {9} =149 (59)
t3 g3

. Based on above, the external force vectol {F©} is defined as following,

pINT" {9} d®2 (60)

{(F) = / N {ryas+ |

“e



Total Stiffness Matrix 1

 To putin order,

> U 'ﬂ-j(u)fij(du)dﬂ—/ a‘u-tds—/ pdu-gd!?} =0 VYiueV (61)
J 02, Jan, J 0,

e

Which can be modified by,
> {0 Y (KO ™} = {F)] = 0 (62)
M)y g,
. Without touching the left hand side, modify 9% 1"} to the forms, in which the

nodal point numbers are provided out of the total numbers instead by the numbers
of each element,

K Kie ... K, (251
- . o o, : 2
{0u1,0us, - -+ ,0u, } X_zl 2
I{nl = oo ]{nn Uy
Iy
. . o L
= {0uy,0us, -+ ,0u, } '2 (63)
F?I

« Unifying the both equations then yield the following,

i —]XVM ]\712 - IXVIH— i (5} i i Fl 1)
_ o Ky : us F: _
{0uy, dug, - -+, Oy } § l.zl |l S _2 fi= _2 y po= {0} (64)
K - Uy, H
. L sl \ / \ 7/




Total Stiffness Matrix 2

In order for the equation to form with the arbitrary Jdu,

( _Ifll Ko ... [f}n_ ( Uy ) ( Fl 1)
{(Suy. Sug, -+ Suy 4 |2 R R Gl B ! (65)

[{nl - .. [{nn Unp Ez

. L . \ J \ s/

The following equation must be established.

_ffu fflg Ce Ifln_ ( U1 ) ( FL )

Ko : Uy F -
! S =0 (66)

]fnl ce ]{mz k'uﬂ ) kEl )

Thus, the solutions obtained from the following system of linear equations should be
the approximate solutions.

o ~ T 3\ 3

K 11 K 12 - .- K 1n U1 Fl

Aoy : U9 F5 o
. . (T . (67)

Ii-nl SRR -Rr'm Unp J Ea J

In contructual analysis, this equations are often called the stiffness equations, and its
matrix is called the total stiffness matrix.



Numerical Integration

It is necessary to conduct either volume or area integration in obtaining the
matrix.

However, it is almost impossible to analytically conduct integration because
the integrand becomes complicated.

Thus we conduct numerical integration instead, and Newton-Coate
Integration along with Gauss integrations are among the most common
methods.

Both integrations approximate the integrand by Lagrange polynomials
based on the characteristics of Lagrange polynomials to obtain integration
numerically.



Lagrange Polynomials 1

» Approximate f(x), (a <x <b) by polynomials.
« Lagrange polynomials take the sampling points including both extremes of doi{zn},(a =11 < 13 <
- < T ="0) tobe approximated by foIIowing

(Jn Zf lk’ Hk (68)

oyl —m)(x—x) .. (‘1.—,11%)(‘1,—tz,[ﬂ)...(;r—:rﬂ) .
Hilw) = (25 —x1) (i — x2) (2 — 2im1) (25 — 1) o (20 — 2p) (69)

o Hejsn —1th order function that takes 1 at the sampling points, and 0 at any other points.

() — 1 k=i (70
A T "
* Thus the sampling points xk ,
flay) = Qnlar) (71)
-Qn(x) is n — 1th order function, which coincides with f(x) with n sampling points i(i=1, - = -, n).
* For example, when n =2 we have x1 =(a, X2=Db o
Hy(z) = ; _ b’ Hy(z) = ; :(‘j (72)

(Jn Zf ’k: HR’

a

= f(a) +f( )z (73)
This represents a straight line connected by the end pomts
oIfwetake x1=—-1,x2=1
Hi(x) = 3(1 =), Hox) = 2(1+7) (74

Then we obtain the above, which coincide with the previous interpolation function in the single order.



Lagrange Polynomials 2

* Basic facts: When two nth- order polynomialsf(x), g(x) coincide with another n + 1points xi(i=1, - = -,
n+ 1), then f coincide with g, as well.
Proof: Suppose we have h(x) = f(x) —g(x) then h(x) takes n th order polynomials. Now, under xi(i =
1, - - -, n+1),if f(X) coincides with g(x) ,
flri)=9g(x;) (i=1,---.n+1)
hiz;)) = f(x;) —glx;) =0 (i=1,--- . n+1)

a(lr —x)(x —x2) - (x — xps1) =0 (75)

Where a is an arbitrary coefficient. Hence, h(x) becomes n + 1 th order function and there appears a
contradiction.

« If we take f(x) as n th order polynomials to approximate by Lagrange polynomials. For each Hk(x) n th
order function is taken with n+1 sampling points, Qn+1(x) becomes n th order function. Based on the
facts, f(x) and Qn+1(x) coincide regardless of how the sampling points are taken.



Basics to Numerical Integration

* Newton-Coate integration and Gauss integration are the method of numerically obtaining the
integration based on the approximation by Lagrange polynomials.

b b
/ f(.-r.)drﬁ:/ Qnl(x)dx

= / Z flar)Hi(x)dx
¢ k=1

:Zf(lk)f Hi(x)dx (76)
k=1 @

* The following integration value is gained regardless of f(x), but rather gained based on the
information of the sampling points, and which is called the heaviness corresponding to the
sampling points xk.

b
ufk,_/ Hy(x)dx (77)

Therefore, we can obtain the approximation by multiplying the heaviness, corresponding to the
alue at sampling points f(xk) and the point xk, to the integration of f(x) then add them all together.

b b n
[ flz)dr ~ / Qn(z)dr = Z flxg)wg (78)
va “ k=1

Since integrand is approximated by Lagrange polynomials, we gain more accuracy with greater the
number of the sampling points.However when integrand is n th polynomials, the solution coincides with
analytical integration by taking the n + 1sampling points. And we observe no difference by taking more

than n + 2 sampling points.
e X = %{1—T1+&{1+r1 hen.

. . 1
f Fla)dr = / fla d—l(h— / f(.-:_-(-;-))b__)“dr—b;“ Fla(r))dr (79)




Thus,

(J (r)dr

j[ v)dr = _(Ij[ flz(r))dr ~

b —
= 5 a Z f(lk(:’] )Hg d? = —“ Z f T (7 )(il‘ (80]

-1 k=1

Discussion follows with a set integration interval from—1 tol.



Newton-Coate Integration 1

* In Newton-Coate integration, the end points are included in selecting equal intervals of n sampling
points.

* For n =2 it is commonly called the trapezoidal rule, while n = 3, it is called Simpson integration.

* For the Trapezoidal rule,

Hy(x) = %(1 — ), Ho(x) = %(1 + ) (31)

Therefore obtained by following,

1 e
wy = / Hi(x)dx = Z / (1 —a)dr =1
J—1 S —

1

1 1
1
Wy = / Hs(x)dx = > / (14+x)de =1 (82)
J-1 J -

1



Newton-Coate Integration 2

* In Simpson integration,
Hi(r)= %;l’(;l’ —1)
Hy(x) =1 —2?

1
Hy(x) = 5;1‘(;1‘ + 1) (83)
Therefore obtained by following
-1 .1 1
wy = H;(I)dl—/ Ez(z—l)dz:_

1 1 1 1 )
wy = Hs(x)dr = 541’(1‘ + 1)dr = 3 (84)

*  Obviously, when we obtain the integrand with n —1polynomials, the integrals can be achieved by
taking more than n sampling points.

. In considering the odd function to have its integrals 0, (2n—1) polynomials can be accurately
obtained if (2n —1) sampling points are taken.

* Thus in conducting Newton-Coate integration, often odd numbers of sampling points are taken.



Gauss Integration 1

* In Gauss integration, integrand is approximated by (2n —1) order function.

T

f(5 )~ Bn Z f JF(I( ) z (11.‘371“_1

k=1

g

W

Qn(r)

ak takes an arbitrary coefficient, and q(x) expresses the following n polynomials.

g(z) = (r —x1)(x —x2) - - - (T — Tp)
« At sampling point @n(zk) = f(kx. ). q(zr) =0 thus,
f(xzr) = Ry(xy)

« Here the position of sampling points zk(k = 1,--- . n) is expressed by

1
/ g(z)"tdr =0
J-1

(88)



In order to satisfy the above,

] A
F(x)dr ~ / R, (z)d

J—1 —1

=3 wnf () (89)

 Implying that integral of the integrand f(x) is approximated as an integral of 2n
—1 th order function at n sampling points.



Gauss Integration 2

* Let us now find the specific positions for sampling points.

*Whenn=1 ‘
/ (x — 1)z ldx ﬁ/ —x1dx

= 245y — (90)

From which to obtain the heaviness that corresponds to x1 = 0,

hi(x) =1
. .1
/1 hi(x)dr = /l ldx = 2 (91)
* Whenn=2,
: 1-1 2
(T — 2 )2 — B2)T a2 = 5+ 281 =1
—1 )
: 2
/ (x — z1)(z — 2o)2* 1dx = —=(x1 +22) =0 (92)
1 b



— —
]

Then obtain weight corresponding to ! _'IL-"II:_!’.""'H V3




Find the weight that correlates with ' = ~V

Gauss Integration 3

1
/ (2 — x)(x — 20) (2 — 23)2  da

1

2 _
= —=(r1 + 29+ 23) — 2(x1w0m3) =0
e )
.1 )
/ (22— 1) (2 — 29) (2 — a3)a* N
J-1
2 2
=—-+ §(;1‘-| To + xous + w3wq) =0
5] .
.l I
/ (2 — x1)(x — 29) (2 — 23)2° Lda
J 1

= —=(x1 + 29+ 13) — =(112023) =0
)

e






Sampling Points in Actual Numerical Integration

» Obviously, the more we have the sampling points, the more accurate the solution we obtain.

* However, the more we have the sampling points, greater the amount of time spent on the
calculation.

» Usually, in the first-order element, 2points taken by Gauss integration and 3points by Newton-Coate
integration. In the second-order element, 3points used in Gauss integration and 5points used in
Newton-Coate integration.

YT T T w;
0 2
35 02691 89626 1
59 66692 41483 | 0.55555 55555 55556
0 0.88888 88888 88889
86113 63115 94053 | 0.34785 48451 37454
33998 10435 84856 | 0.65214 51548 62546
90617 98459 386G64 | 0.23692 68850 56189
53846 93101 05683 | 0.47862 86704 99366
0 0.56888 88888 88889
6 +0.93246 95142 03152 | 0.17132 44923 79170
+0.66120 93864 66265 | 0.36076 15730 48139
+0.23861 91860 83197 | 0.46791 39345 72691

VR IR

).B7T
+0.774

4 +C
+(
+C
=+

ot

)
).
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4 Noded Quadrilateral Solid Element

In one-dimensional space, divide the domain of integration into n-interval then conduct the coordinate
transformation at each interval of x coordinates in a linear segment of line to r(—1 <r <1), using

interpolation function. |

, 1 .
NO=2(1-r), N®=z(1+r) (96)

* Now, what do we find under two-dimensional space?

* First, divide domain of integration by rectangular with its apexes at (—1,—1), (1,—1), (1, 1),and (-1, 1), then
conduct coordinate transformation using two parameters .7 (-1 <r <1,-1 <r, <1),

» Therefore, in physical coordinate systems, the nodal points under such configuration in the figure on the
left is made to correlate with what it shows in the figures on the right. This implies that a tetrahedron in
the physical coordinate system is being projected to a square in m- ™2 coordinate system.
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Interpolation Function

e« Interpolation functions takes forms in the following,
1

N = - =) (97)
N® = %(1 +r1)(1—79) (98)
N® = %(1 +7r1)(1+19) (99)
NW = %(1 —7r)(1+79) (100)

* In respect with one-dimensional space,
AT(1) 1 AT(2) 1

 Values at corresponding nodal points are found as 1, but in other nodal points, found as O.
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Differentials in Discrete Value Expression 1

Differentials of ui about xj, which are needed in calculating a strain, can be
evaluated with chain rule in the following.

ou; ON™ ON"™9ry  ON™ Ory _
AP e Y AL T CARRAL Y0 (102)
0z; O; dry d%;  drs 0y

('_-)‘_\FII:H]
© gp, can be obtained also, with chain rule.

e Jacobian matrix [J] may be found as

O IN ) [Ozcl Do IS BAVASED
f)?"l é)'rl 6)‘?"1 ()1’3‘1 . ey
SN () o Daq @ Vs DAVASED) (105)
Dro L Dra Dro J Do
DIV ()
D -
= [J] aN<1"> (101)




Differentials in Discrete Value Expression 2

. Each component of this Jacobian matrix — is given by,
( f]
8(1:.3- aﬂfr(”) (n)
— €y 105
é)rj é)r_]- ‘ ( ))
. ON™ s evaluated as,
(.-}:I"J
NV () OV (1)
oxt | =1 | .2m (106)
I ) O IN (1) \
Dwa Oro

. In addition, the regional integration can be expressed by,
. -1 -1
/ A2 = / / det[.J]dry drs (107)
J 02, J—-1.J-1

This integration is usually conducted by numerical integration method such as Gauss
integration. Here, we use a doubled Gauss integration in one-dimensional space.

.1 .1
[ reapdedy =SS wif i) (108)
J—1 J—1 : J



Interpolation Functions in Triangle Element 1

* Interpolation functions in triangle element are expressed in the area coordinates defined by the
following.

» Area coordinates represent the coordinates consisted of the area of element A ,and the given points
within the element. In addition, the area of triangles are given A1,A2 and A3(triangles made by the
corresponding opposite sides of nodal points and its points)

Ey = Ay A
Ly = Ay/A
L;g — 4'—’13/14 (100)
6))
Ls

it Bo B (110)



Interpolation Functions in Triangle Element 2

* Interpolation functions in single dimension with 3 nodal points

NO =14 (111)
N® = L, (112)
N® = L, (113)

* Interpolation functions in the two-dimensional 6 nodes,

NY =1,2L; - 1) (114)
N@ = [5(2Ly — 1) (115)
N® = L5203 — 1) (116)
N® =4L,L4 (117)
N®) =4[54 (118)
N® =4r1,L, (119)

» We can obtain the 6 nodes interpolation functions through 3 nodes functions.



Numerical Integration and Interpolation Functions
In Triangular Element 1

* In actual calculations for element stiffness matrix, the numerical integration is necessary.

* Numerical integration is conducted by reflecting the area coordinates Ly, La, L3 and the natural
coordinates system 71, T2 in the way shows in the following.

r1 =1y (120)
ro = Lo (121)
1 — i — s = L;;; (122)

. Domain for the triangle internal corresponds to the domain for the natural coordinates system
appears in the figure below.

7o A ®
1|2

@ L, @ @
0 1 .

™
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Numerical Integration and Interpolation Functions

In Triangular Element 2

Under physical space, integral Jy- €V transforms into the natural coordinates system by Jacobian

matrix, in the same way we evaluated for the rectangular element.

or | ora 9r doy
ONG@ | |Ox1 Oxs ON (@)
| Ors | LIrs Ors | | Oxa |
b
[/]
Thus,
ONG) HN)
ox- _- or
l. —. [] 1] 1.
AN ON®
| Oxa | | Ora |
33:;—
Jacobian matrix component g_ﬁ
following.

axj_ L ai\r(”) T(n)

or j or b o

(124)

becomes what we obtained for the rectangular element in the

(125)



Numerical Integration and Interpolation Functions
In Triangular Element 3

for shape functions by natural coordinates appears,

(i)

4

Here, a differential 5

Tj
ro= L, (126)
ro = Lo (127)
1 — 1 — To = L;g (128)

Based on the functions above, reflect with the area coordinates to obtain,

84\”3) (()4\}'(3) (()Ll 84\’?'(3) (()LQ (()_L\’T(E) (()L}

Ori | DL Or | 0Ly Or1 | OLs Or (129)
_ONY OGN (130)
-~ OL1  OLs 2
ONY ONYIL, N ONY Lo N AN Ly (131)
C()T‘Q C()Ll E)')"Q C()Lg a'f‘g aLg E)T‘Q
_ONW 9N (132)

Lo L3



Numerical Integration and Interpolation Functions
In Triangular Element 4

In respect, conduct [, dV = f{}l f{}l_rl det J drodry .

Apparently in the form [[ F dridra = 35" wiF(zi, i) |

ro & @
1|2

® @, @ ®)
0 Ly

X 4: = TEEZRO IR & ki



Numerical Integration and Interpolation Functions
In Triangular Element 5

Integration | Degree of r-coordinates s-coordinates Weights
order precision
r1 = 0.16666 66666 66T 51 =1 wy = 0.33333 33333 333
3-point 2 ro = 0.66666 66666 667 s =7 wy = uwq
rs =7y s3 =72 wy = wy
ry = 0.10128 65073 235 s1 =i wy = 0.12593 91805 448
ro = 0.79742 69853 531 59 =Ty Wwe = U1
Ta =4 S3 =T ws = un
T-point 5 rqg = 0.47014 20641 051 sS4 =Tg wy = 0.13239 41527 885
rs =14 s5 =Ty ws = wy
re¢ = 0.05971 58717 898 Sg — T4 Wwe = Wy
r7 = 0.33333 33333 333 s7 =71y wy = 0.225
ry = 0.06513 01029 002 s1 =i wy; = 0.05334 72356 008
ro = 0.86973 97941 956 S5 =i Wy = W
Fs — g S3 = T9 ws = w1
ry = 0.31286 54960 049 54 =T¢ wy = 0.07711 37608 903
rs = 0.63844 41885 698 S5 =13 Wy = Wy
r¢ = 0.04869 03154 253 sg =75 wg = Wy
13-point 7 rT =15 s7 =7Tg wy = Wy
rg = T4 S8 =7T5 wg = Wy
g =Te6 S9 =T4 wy = Wy
rio = 0.26034 59660 790 810 =T10 wip = 0.17561 52574 332
r11 = 0.47930 80678 419 S11 =T10 wii = wio
T2 = T10 s12 =711 w1z = wio
r1a = 0.33333 33333 333 513 =713 wys = —0.14957 00444 67

&1, > L5
L2 3




Finite Element Analysis Code Prototype

* Finite element method programming structure can be,

( start )

mmput data

l

itialize variables

|
v

element matrix

l

merge element matrix to

global matrix

|
v

bound operation

l

solve linear equations

|

display results

( end )

* Basically, in linear finite method analysis coding, structure of the program stays the same.
For dynamic analysis and the nonlinear analysis, the programs are based on this structure.




Input Data

« Maximum nodal points: MXNODE (1000)

* Maximum elements: MXELEM (1000)

 Maximum degree of freedom per 1 nodal point: MXDOFN (3)
 Maximum nodal points per 1 element. MXNOEL (8)

 Total nodal points: nnode

» Nodal points coordinates: coords(MXDOFN,MXNODE) 1

» Total elements: nelem

* Number of nodal points at each element: ntnoel(MXELEM)
« Connectivity: Inods(MXNOEL,MXELEM) 1

» Degrees of freedom per 1 nodal point: ndofn

» Total degree of freedom: ntotdf=nnode xndofn

* Number of nodal points at each element: ntnoel (MXELEM)



N

Drawing Element Stiffness Matrix

To categorize the bugs occur in element stiffness programming,

. Matrix[D] and [B]
. Jacobian Matrix
. Numerical integration

A technigue employed in verification of 2. and 3, is done by obtainng the volume of element in
physical space and make a comparison with the actual volume.

Volume of element in physical space can be gained by following,

/_ d()—/ / / det| di;d?ﬂhz—ZZZU&@U&U det[J(rq, 74, 7¢)] (133)

a=1 b=1 ec=1

Loop in triple numerical integration can be coded as,

vol =0 (134)
for il =1~ nint (135)
for i2=1~nint (136)
for i3=1~nint (137)
rl = (sampring point 1) (138)
r2 = (sampring point 2) (139)
r3 = (sampring point 3) (140)
(ON/Or(r1,12,13)) (141)
(J. det .J) (142)



wy = (weight i1)

wy = (weight i2)

ws = (weight i3)

vol =vol +detJ - wl-w2- w3
end for
end for

end for
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Procedure of Drawing Stiffness Matrix— 4Noded
Quadrilateral 1

In finding element stiffness matrix for two-dimensional 4 noded quadrilateral element by 2 x2
Gauss integration,

Transform the domain of integration of the element stiffness matrix. (transformation of the domain
of integration by isoparametric element)

[K©)] = /” (BT [D] [B]ds?
— / 11 / i[B]T[D] |B] det[J]dradr (150)

dry  Oro
- ()?E (»-:)]_1 =
= dry Oxs bt

0-7‘9 ()72

Introduce the numerical integration to yield
.1 .1
/ / (B]” [ D] [B] det[J]dradr
J—1J—1
2 B

= Z Z wo Wy [B(Ta, 76)]T [D] [B(ra,s)] det[J (14, 73)] (152)

a=1 b=1



Procedure of Drawing Stiffness Matrix— 4Noded
Quadrilateral 2

* In specific, components of Jacobian matrix can be evaluated by setting each sampling point "a: T
in the following,

- 0;() (rasro) )
i
E){\TH) (]'a- rb) ‘1,,5'4)
or; (153)
‘)()\Ii“ - %(1 — ) (154) é');itﬂ = %(1 +r)  (158)
M laomy wm Z- lawey (s
‘)0\)(1) _ %(1 — ) (156) Ué‘;\f) - —iu +rg)  (160)
))\,H —Lany s f’;i;“ = 1a-m) (6D

Clarify all components in the matrix, and again, draw out the Jacobian matrix, then follow through
the steps to complete the calculation.



Procedure of Drawing Stiffness Matrix— 4Noded
Quadrilateral 3

* [B] Matrix components are obtained by following

[ON)] [N
dry | 1| O 5
(DA;'(H) o {]] 04\;‘(‘12) (162)
L ()13 i L 0]’2 i
* [B] Substitute each value into the correspondlng part In matrix.
[N
ox 1 S
(B9 = ONT (163)
Owxs
ONF) gNF)
| Oxo ory |
[B] = {[B“)}. (B@7, ..., [B{n)ﬂ (164)
* From above, [B(ra, rb)] det[J(ra, rb)] is gained,
[B(ra,m5)F [D][B(r,, )] det[J (rq,7)] (165)
Calculate the above then multlplv the weiaght wa wb then plua them into the configuration of the total
stiffness matrix, [ / / et[J]dridrs
—1J—=
— Z Z wo wy, [B(ra, 1)F [D] [B(ra,m3)] det[J (14, 13)] (166)

a=1 b=



Procedure of Drawing Stiffness Matrix— Triangle 1

*  For the triangle element, basically, we can take the same steps.

 Domain of integration in the element stiffness matrix is transformed as the figure indicates
(transformation of integration domain by isoparametric element)

K] = / B [D][B] d02
. L)i; -
_ [ / B (D] [B] det[]dradr (167)
JO JO
T2 4 @
o
® D, @ @
0 1

X 6: —fIEEAD TR & iR



8’?”1
8$Q

8?"2

8?"2

(168)



Procedure of Drawing Stiffness Matrix— Triangle 2

Introduce the numerical integration

1— 71
/ / TD] [B] det[J]drodry

—— Z Wab B(r‘a ?"b)] [D] [B(?”a_, T’b)] det[J('rm ’T‘b)] (169)

a.b=

Evaluate the values for each sampling point to draw the matrix, then plug them into the total
stiffness matrix.

[ /1 b D] [B] det[J]dradr

-5 Z Wab B(ra rb)] [D] [B(?"a, 'rb)] det[‘](r‘“ ’rb)] (170)

a.b=

Evaluate the values for each sampling point to draw the matrix, then plug them into the total
stiffness matrix.



Procedure of Drawing Stiffness Matrix— Triangle 3

Interpolation functions for 3 noded triangle element can be written by,

NV =L, (171)
N® = [, (172)
NG = [, (173)

Base on this relations, reflect it to the area coordinates system in the following,

8-1"1 é)Ll 87"1 aLg 87"1 aLg 8')"1
ON® N
G (175)
8L1 aLg
ON®  ON@OJL;, ONWILy ONWILs .
. 4 + (176)
({)'I"Q E)Ll (()7“2 E)Lg (()7"2 E)Lg E)rz
ON® 9N

_ _ 177
9L,  OLs (177)

For the calculation detail,

AN AN 2) AN )

¢ _1 < —o & — 1

ory Iry Iy

HN D AN N )

¢ —0 & —1 & —

dro dro dro (178)



Procedure of Drawing Stiffness Matrix— Triangle 4

f}.'rz;

Jacobian matrix components, ,f:;_j.? are,

Ory ONW ) ONE) 2 ONG) LB )
ory ory 1 ory ! dry 1 ! 1
Ory  ONT ) [ ON® o ON® o) ) @
ory or, 2 ()Il 2 ory 2 R
Ory ONW U ON® '1‘-(2) N ON) LB @B
()72 ()72 ol ()?2 ol ()12 ol ol B
a;l.g (‘:)A"Y(l) (1) (9;\7(2) (2) (C)A-‘T(B (3) (2) 3)
— = ——0y S+ ——ay F ——xy = x5 — T 179
dra Ory 2 Ory 2 Oryg 2 2 2 (179)
Ory 01y
-_— 1) 3) 1 3
J) = dry Ory _ ;1?(1 b — ;zr(l / ;1?.(2 ) _ ;zr.(2 ) (180)
Oy Oay ;17(12) — ;17(13) ;zr.(f) — ;17.(23)
(9]’2 6‘):‘2
Thus the determinant becomes twice the area of triangle element.
det[J] = Oxy Oxs B Ors Oxy
Y ory Ors dry Ory
= (2! 15’)(1) 2y = () — 2y (P — =) (181)

[f

=det[.

(Bl det[J]dradry

B} d?’gdi"l (182)



[ON™ ]

dx 1
ON®)

ox 2

[AON®™ ]

0711
N

i ()73 il

[B] Matrix components are consisted of the series of

AN®)
lr:}:fi

, and evaluated by following,

[ON®™]

07'1
ON™

L C)Ig A

Procedure of Drawing Stiffness Matrix— Triangle 5

(183)



i

rin

are all invariables, then automatically

aN™

can be considered as invariables as well,

T ox;
[OND GN@ HN®@ ]
dry dry dxy
oNW) aN2) gNG)
| Oxo dxy Oxy |
aNd aN@ gNB)
1 [ :r.(_)g) — :1‘{23) —(:zr.g” - ;1.‘.(23))_ ory ory Iry
~ det[J] —(:z:.(lz) - 1.‘.(13)) ;1?-(11) - ;1?-(13) oNW HN@) gNB)
| Oy dro Ory
| ;17‘(22) — .'rgg) —(;z:(z” — ;1?5_,{3))_ (1 0 1-|
N det[.]] _—(;z,‘.(lm — ;1?.(13)) 'zrg” — ;1‘-(13) | 0 1 1J
1 _;zrgz) — .(23) ;1:23’ .'z,‘.g1J ;rgl) — ;zr.(,‘-) ’
~ det[.J] _:z:,(l'g) — :z:(l?) ;zr(ll) — :z:(lg) :1:(12) — ;l,‘(ll)] (184)




Procedure of Drawing Stiffness Matrix— Triangle 6

Therefore,[B] matrix components are specifically described as,

oN® oN® o oN® ]
dry ) 011 @) or1 )
B= | @ 0o 2 )\ 0 ‘))
dr (O]
aN @) u\fl NG aN®  aN® aN®)
L 0‘.1'2 dx il ()ig ()‘.!1 f).?'g (_).i.l .
| .I‘fj — J'(Qg) 0 .f’gg) — .I'gl) 0 f’él) ?[2) 0
I,(3) _ I‘(Q) ,.(2} i I.(3J I‘(l) _ I.(3} ].f3) . I’U) I‘(Q} _ I_(U (1) (
s M s - e R R M L3

Moreover, in realizing [D] matrix of being invariables, then automatically integrand all becomes
invariables as well. There is no more need for the numerical integrations.

1 pl—ry
/ / ‘BT D] [B] det[.J]drsdry
1— 11
_dC / / T B} (17 )([I 1
0
1—rq
=det[.J||B / / drodry

SdetlJ][B)" (D] (186)



External Force Vector

In actual finite element analysis, the external force vectors are needed to be obtained.

/ ou; - t; dS = / {6u!"}T [N]" {t} dsS
SO0 PXeArS
— {_(5u§”]_}"'/ IN]T {t}dsS
82,
/ pou; - q;d2 = / I {'(SHEH]}T INTT {g} A2
12 o (2
— {fsufi”]_}'f/ p[NT {g}dn
J 0,

Provided that,

N N® N
[N] = N N . N
ND) N(2) N (n)
t1 g1
{tt=9tap, {9)=4q9
t3 g3

Based on the fact, the external force vector{ F®}can be defined as,

v — [ N COINE g
(P /m (t} 1s+_/_%pm {g} e

(187)

(188)

(189)

(190)

(191)



Example of External Force 1

 Example of external force, pull by the equal force— =3  direction

0

{F9Y = [ [N]S 0 pdS (192)
Jogo, P

* Inorder to simplify, we suppose the weight loaded on the plane 5 -6 -7 -8 parallel to the planeaxl —
X2 then set the coordinates for each nodal points.

o P

&®-©/D-&//x HHll, ®-O// -
& /) o Hil,

T3 ;1‘{1(5) = ;1?(15) + a (193)
;17.(17) = 1’.(15) + a (194)

D) & ;1758) = ;1’(15) (195)

;1756) = ;1‘.(25) (196)

@ @ ;1‘.(27) = 1?.(25) + b (197)

e +® =23 4 b (198)

7o LG5k D

Hence, it is considered as rectangular by a x b . Having r3 = 1 on the plane 5 -6 -7 -8,
becomes as,



ONG)
a?'l
IN®)
0?‘2
IN®
f)?‘l
ONE)

—2(1-7y)
2(1-m)

H1—r)
.

ON®
‘C)Tl
ON
8-1‘2
ON®
0?‘1
AON®)

o~
=~
b

(]_ + ‘]'2)

= | —

(1 -+ ?‘1)

| —

(]_ —+ ?'2)

| —

e
—
|
=
H
S



Example of External Force 2

E—}.
» Based on the fact H—i can be gained by following the steps below.

ox 1

E)?'l

dx 2

(")?‘1

dx 1

(")?‘2

ox 2

0?'2

1 5 1 1 - 1
—1(1 — ?‘g);zfg )+ 1(1 — 7‘2);1?(16) + I(l + 1‘2)1?5 ) 1(1 + -rg);rgg)
Ll on® Ly ® L (a® L pe®
—I( —T2)x; +1( — ra) (] +a)+1( +7r2)(x] +a)—1( +ro)ry
a1 1 1
(1— 32);175") + —(1 — 7’2);1.‘56) + —(1+ T’Q)Ié ) _ —-(1+ rg)rgg)
4 4 4
5, 1 5 5
[1—32);1‘%)4—1(1—72)1;)—0——[1—#12)(17&)—{—!))——[1—!—12)(1‘&)4—())
1 ; | ]
—1(1—31):1‘5')——(l+11)1g6)+—(l+71)z§j+—(l—?1)zgs)
1 5 1
—1(1—31)1§)——(l+71)(1§)—I—({)+1(1—0—11)(15)4—(1)—0——(1—?1)155)
1 5 7
—1(1—31)15)——(l+11)léﬁ)+f[l+71)zgj+—(l—31)1(28)
5 5 . 5 1 5
—(1—-rl)fzg)——(l+u)ré)+—(l+r1)(rg)+b)+1(1—71)(r§)+b)

Lo o

(207)

(208)

(200)

(210)



Example of External Force 3

Thus if we define the load per unit area as P, we can find the external force at each nodal points

0
{FO} = / [N]{ 0 »dS (211)
Ele3 P
Lo [N . N®) "o b
= / f N N® 0 % dry dry (212)
St N N®| |p)
FO—_FD—0 (i=1~8) (213)
FP=0 (i=1~4) (.r3=1) (214)
5) . ! ab
Fg( = Pf f NO® — dr, dry (215)
1J-1 4
1 pl
1 b bP .
_Pf1]1 1(1—?’1)(1—?‘2)%(#1({1’2: ai (216)
11
- ab
F®=p / f NOZ gy dry (217)
-1/
| ab abP ]
—P‘/;l\/il 1(1“‘1’1)(1 —?‘Q)Idrl d.”Q: _l (218)
1
FD=p f f iwf<7>(f—b('1;~1 dry (219)
Jo1J 4
1 1
1 ab abl
= P/1 ]1 1(14»?1)(14»!2)?(1]?]_ (f?‘g = 1 (220)
11
b
F.S(S) — P/ f ;Nr(g)(lf drq drs (221)
Jo1Ja 4
Lol b bP
_P.[_l,/_l 1(1—7’1)(1—&—?9)%(11’1 dr;:aT (222)



 In summary, considering the case where uniformly distributed load is acted on the
plane of 8 noded hexahedron solid element, we can assign % of the load to each node
point of total 4 nodes.



Boundary Condition 1

In conducting stationary structural analysis in finite element method, the solving equation may be
the balance equation, thus we need to set an arbitrary fix point to solve the equation.

For a simple pull, the two planes of the rectangular solid counterparts are simply pulled, and we
cannot determine the position of a center point by any means.

4
E
E
B

Let us now consider the formulation, we can realize there are three symmetrical planes in this
formulation if we assume the central mass points to stay where it is.



Boundary Condition 1

*  Suppose the coordinates of the central mass point in rectangular solid to be (0,0,0), then take out
the the first quadrant as one of the 1/8 region divided by the three symmetrical planes, we can
obtain the following boundary condition.

r1 — o i _ LD R
xs 1710 [E]E

ro — x3 T _E D A
Wi ﬁﬁlﬁli

rs — 1 i _E D
o J7 A

) 4 ]

S s BHGREFIL



Merge

For the bugs occur in a merge operation by adding an element stiffness to a total stiffness can be
considered as a mistake of an index.

Debugging of merge is carried by plugging some simple values as 1, and 2 into the element
stiffness then shift over to the total stiffness to verify the result.

In order to have a variable degree of freedom per single node point, we may implement following
coding to the merge.

for i=1~nelem (223)
call element (i) (224)
for j =1~ ntnoel(i) (285)

for k=1~ ndofn (226)
ip((j — 1) -ndofn + k) = (Inods(j,i) — 1) - ndofn + k (227)

end for (228)
end for (229)
for j =1 ~ntnoel(i)- - ndofn (230)
for k=1~ ntnoel(i)-ndofn (231)
Kip(j).int) = Kip(y),ip(e) + Ak (232)

end for (233)
end for (234)
)

end for (235



Gauss Elimination

The coefficient matrix [A] given by Gauss elimination may finally be decomposed in to the
following equations,

Al = [L][D][U] (236)

If [A] represents a symmetric matrix, then we get [U] = [LT ] . Therefore, [A]Jcan be decomposed in
the following equations.

Al = [Z][D][L7] = [U"][D][U] (237)
By obtaining [A] = [L][D][U] , the system of linear equation [A]{b} = {c} is solved by adopting
inverse matrix on both sides in turn.
L[D][UKb} = A{c}
[DI[UKb} = ,L e}
UI{b} = DL {c}
{0} = U DML e} (23R)




Boundary Condition Handling 4

Consider now for the following system of linear equations,

- T (. ) ()
;—111 ;—’112 NP ;'—11,-1 bl C-Yl
:1 1 : bo C*o
:Zl | < :— > — < :' > (2‘30)
4-'—1.”1 e e 4-'—'1”” \ bn ) L Cr-n )

Here, we assume the right hand side other than Cj and bj are the known. Re-write in the system
of linear equations formulation, it is obtained by,

p
A+ Apby+ -+ flljb‘j + Apb, =0
Aoy + Agobo + -+ - + Agjbj + e Agb, =0

< : : (240)
:1_}1 + flj‘_)_bg 4+ -+ _rljjbf 4+ 4 fljnb.n - (T_}

L 4‘4111 + f’lngbg +e+ iilnjbj +e iilmzbn — C*n

In above, the equation in the column j contains unknown quantity Cj in the right side, thus Cj is
obtained after the ordinary unknown quantity bi(i=1 ~j —1, j+1 ~n) are obtained based on the

following. , N
C’j = fljlbl + ;—hgbg SR fljjbj + -+ }lj”b” (2_11)

For its distinct in nature compared to other equations in the column, bi(i =1 ~ j — 1.7+ 1 ~ n) should be
excluded from the process.
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Boundary Condition Handling 5

Consider the n —1 equations without column j .

An
Asr 4+ Asby  +

+
-

=
_|_

{ iqj;ll - flj,lgbg R
14j+ll o N ;4j+lgbg -

1431 1 + A n2 b'.) T

\

+

+

+

Ay ;b;
Asjb;

Aj1;b
Ajii b

44-”‘]' bj

j

j

+

¥ 4‘41,'!()11
4 4‘42.“():1

o 14_)?1 nb-n
¢ 14‘)?1 nb-n

y i A‘n i) b-n

v

g
= C_;'H

=

In the equation above, Ayjbj, Agjby, -+, Anjbj are known value and should be transpositioned

into the right hand side.

A1+ Aqoba e rewf Ay j1bj1+ A1 jrabip
Ao + Aaobs +-o-4+ Agjabj i+ Asjiibin

Az_1 074 Ay obs +---+ _‘1_;,'_1 j—lbj—l +.A45 1 j—f—lbj—i—l
Ajri1+ Ao+t Ajpjabin+ Aj by

Api+Anmba  +-+ Anjoibii+ Anjpabin

_|_ _I_

A 1n bn =
Aopby,

flj—lnbﬂ. =
—'Jlj—l—] nbn -

Apnbn =

(-'1 = rlljbj
C':) — _Jigjbj

(Tj_l - -"lj—l jhj
Cjt1 — Aj1 305

(_rn = flnj' bj



To formally express in matrix, we have the following.

Boundary Condition Handling 6

Coefficient matrix consists of the matrix without column j and the row j .

Unknown vector represents the one without column j.

The right hand side is consisted of the initial left hand side subtracted by bj times the initial

coefficient matrix row j without the column j.

Aq

Aj11

Ajy11

L 44!11

441 j—1
Ao j—1

A41 7+1
A'_) i+1
Aj-1j-1 Ajs1jh
-"—lj-l-l j+1 44j+l j+1

4’11; g

4411- J+1

Aj—l n

14j+l n

‘4111(’ Bl

bl

/_J»)

bj-1

bjt1

I b,, )

\

(v
e

'\

h

Cj-1
C?j+l

C‘l‘

n J

Where bj is 0, the right hand side the second term can be eliminated.

The operation above stays the same with multiple known?; . Suppose bj1y, bi2) -

\

As;

Aj 1

A1y

44.““]: y

> bitm are

know. From the system of linear equations, exclude the equations in column 7(1), 7(2), ---, 4(m) |
Then transposition the terms, which include b;1).b;¢).- - - .b;imy in the left side to the right hand

side. Based on the fact, the matrix can be obtained.
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