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Abstract 

 

A new formulation is presented of the nonlinear loads exerted on floating bodies by steep 

irregular surface waves. The forces and moments are expressed in terms of the time derivative of 

the fluid impulse which circumvents the time consuming computation of the temporal and spatial 

derivatives in Bernoulli’s equation. The nonlinear hydrostatoc force on a floating body is shown 

to point vertically upwards and the nonlinear Froude-Krylov force and moment are derived as the 

time derivative of an impulse that involves the time derivative of a simple integral of the ambient 

velocity potential over the time dependent body wetted surface. The nonlinear radiation and 

diffraction forces and moments are expressed as time derivatives of two impulses, a body 

impulse and a free impulse that represents higher order wave loads acting along body waterline. 

Applications discussed include the nonlinear seakeeping of ships and offshore platforms and the 

extreme wave loads and responses of offshore wind turbines. 
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1. Introduction 

 

The momentum conservation principle been widely used in fluid mechanics for the evaluation of 

steady and unsteady forces and moments acting on bodies in lifting and non-lifting  flows. 

Examples include the derivation of expressions for the unsteady potential flow forces on a body 

undergoing an arbitrary motion in an infinite fluid and of the induced drag on a three-

dimensional lifting surface in terms of the free vorticity downstream on the Treftz plane. Distinct 

advantages of such expressions for the forces is that they circumvent the computation of the 

hydrodynamic pressure over the body boundary from Bernoulli's equation which is 

computationally demanding, they are exact, easy to implement and offer valuable insights of the 

fluid flow physics responsible for the force and moments exerted on the body. 

 

The momentum conservation principle has found little use for the derivation of expressions for 

the nonlinear loads exerted on floating bodies by steep irregular waves. The Bernoulli equation is 

used instead to obtain the hydrodynamic pressure over the instantaneous body wetted surface 

which upon integration leads to the force and moment acting on the body. A drawback of this 

approach is that the computation of the partial time derivative and spatial gradients of the 

velocity potential over the instantaneous body wetted surface is computationally challenging 

leading to small time steps, fine meshing and large computational efforts. The proper application 

of the momentum conservation principle for such problems would circumvent these 

computational shortcomings of the Bernoulli equation and lead to expressions for the time 

dependent force and moment that do not require the evaluation of the time or space derivatives 

on the body boundary. A classical example is the expression for the exact force and moment 

acting on a body in an infinite potential flow in terms of the time derivative of the flow impulse 

which is a simple integral of the velocity potential over the body boundary. 

 

The concept of the impulse in fluid flow dates back to Kelvin (1868). It arises from the insight 

that an inviscid flow field governed by the Euler equations may be started from rest if an impulse 

is applied instantaneously in the fluid domain in the form a local push over the body boundary or 

a twist in parts of the fluid domain where vorticity is shed. This topic is discussed in Lamb 

(1932) where the impulsive form of Euler's equations are derived and expressions are obtained 
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for the forces and moments acting on bodies as time derivatives of impulses in potential and 

vortical flows. In the absence of vorticity the potential flow around a rigid body in a domain of 

infinite extent may be started from rest by imparting an impulse on its boundary equal to the 

velocity potential multiplied by the unit normal vector. In lifting flows with shed wakes the 

impulse also includes an integral over the domain of free vorticity in the fluid domain. Its time 

derivative provides expressions for the lifting forces and moments generalizations of the Kutta-

Joukowski theorem [Lighthill (1986)]. The time derivative of the impulse provides the forces and 

moments exerted on the rigid body in terms of the time invariant added mass tensor leading to 

the generalized equations of motion of a rigid body in an ideal fluid [Newman (1977)]. 

   

The present article derives expressions for the impulses in the nonlinear interaction of steep and 

irregular surface waves with floating bodies the time domain. The force and moment acting on 

the body follow at time derivatives of the impulses which involve simple integrals of the velocity 

potentials over the body boundary and the nonlinear ambient wave profile assumed known a 

priori. The ambient waves are assumed irregular of large amplitude and modeled by potential 

flow theory using a perturbation or a nonlinear method. A floating body interacting with the 

ambient waves is allowed to undergo large amplitude motions and the radiation and diffraction 

wave disturbances induced by the body are also governed by potential flow theory. Expressions 

are obtained of components of the impulse, including the Froude-Krylov (FK) Impulse and the 

impulse due to the Radiation-Diffraction (RD) wave disturbances.  The nonlinear wave force 

acting on the body is shown to be the sum of a nonlinear hydrostatic force which points 

vertically upwards at all times and of the time derivative of the Froude-Krylov and the 

Radiation-Diffraction Impulses which involve simple integrals of the velocity potentials over the 

instantaneous body boundary. Expressions are also derived for the corresponding moment 

impulses. The use of the Bernoulli’s equation is circumvented mitigating the time consuming 

computation of time and space derivatives of the velocity potential known to be an impediment 

of the efficiency of nonlinear wave body computations. 

 

Viscous effects are neglected. In certain applications they are important and may be accounted 

for as additive forces nonlinear functions of the ambient flow kinematics as in Morison’s 

equation. The application of the new expressions for the nonlinear wave forces is discussed for 



 

4 

 

the evaluation of the large amplitude motion and nonlinear loads of ships, large volume offshore 

platforms and small volume offshore wind turbines either bottom mounted or supported by 

floaters. 

 

2. Boundary Value Problem and Nonlinear Forces 

 

Figure 2.1 illustrates a body floating on a free surface interacting with a nonlinear ambient wave 

which is assumed irregular. The reference coordinate system (X,Y,Z) is fixed in space with its 

origin located on the calm water surface and the positive Z-axis pointing upwards. The free 

surface elevation due to the ambient wave is denoted by the dashed line and the free surface 

elevation that includes the radiation and diffraction wave disturbances by the solid line. 

 

Denote the total velocity potential by φ(X,Y,Z,t), the ambient wave potential by I and the 

disturbance potential by D . They are all subject to the Laplace equation in the fluid domain 

 

 

(2.1) 

 

 

 

On the body boundary the normal velocity of the total potential is equal to the normal velocity of 

the body boundary 

 

 

(2.2) 
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(2.3) 

 

 

 

The ambient wave potential by I also satisfies (2.3) on the ambient wave free surface 

( , , )IZ X Y t
 

 

 

 

(2.4) 

 

 

It is hereafter assumed that the nonlinear ambient wave velocity potential and free surface 

elevation are known. They may be determined by a perturbation method or by a nonlinear 

numerical algorithm.  In many applications second order theory has been found to be adequate 

for the description of unidirectional or spread seas.  In the remainder of the article the ambient 

waves are assumed to be irregular and of finite amplitude. 

 

The definition of hydrodynamic force and moment acting on the body follows from the 

integration of the hydrodynamic pressure obtained form Bernoulli’s equation over the 

instantaneous body wetted surface SB(t) 
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At a large distance from the body the ambient wave and radiation-diffraction wave elevations are 

assumed to vanish. The decay of the ambient wave disturbance at infinity is physically 

equivalent to the transition to the calm water region outside a seastate of finite spatial extent.  

 

Denote by V(t) the fluid volume enclosed by the nonlinear free surface ( , )TZ Y t  the body 

wetted surface SB(t) and a control surface at infinity. By virtue of the transport theorem 
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decay of the radiation-diffraction disturbance at large radial distances is dipole like and leads to 

the vanishing of all surface integrals over a control surface at infinity. Therefore reference to that 

surface is hereafter omitted. In (2.6) 
nU U n

n
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
 is the normal velocity of the flow of the 

over the free surface and the body wetted surface and is equal to the normal velocity of the 

respective surfaces. 

 

Applying Gauss’s theorem in the left hand side and the first term in the right hand side of (2.6), 

and exchanging the time derivative with the gradient under the integral sign 

 

(2.7) 

 

Adding the quadratic term in Bernoulli’s equation on both sides of (2.7) we obtain after a simple 

rearrangement of terms 
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The following identity holds for any velocity potential over a closed surface S(t)  
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the hydrodynamic pressure vanishes. The left hand side of (2.10) multiplied by   is the total 

nonlinear hydrodynamic force acting on the floating body. The right-hand side involves no 

spatial or time derivatives under the integral sign and is the starting point for the derivation of the 

impulses and the new expressions for the forces below.  

 

The corresponding expression for the moment follows from the application of the following 

identity over a closed surface S(t) 

 

(2.11) 

 

The resulting expression for the moment follows a derivation analogous to that used to obtain 

(2.10) 

 

 

 

(2.12) 

 

 

If the body is allowed to shrink to a point with vanishing displacement the left-hand side of 

(2.10) reduces to 

 

 

(2.13) 

 

 

In (2.13) I  is the velocity potential and SI(t) the free surface of the ambient wave in the absence 

of a floating body. Therefore (2.13) represents an integral form of the nonlinear free surface 

condition satisfied by an irregular ambient wave. It states the balance between the time 

derivative of the impulse applied over the free surface and the restoring effect of the the ambient 

wave free surface elevation. Expression (2.13) is an alternative form of the classical nonlinear 

free surface condition (2.4) as an integral balance between inertial and restoring effects for 
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ambient wave disturbances that vanish at infinity.  A new mathematical representation of ocean 

waves that allows their decay at infinity is presented by Sclavounos (2011). 

 

The second term in the right hand side of (2.13) is shown to be a vector pointing in the vertical 

direction by virtue of Gauss' theorem applied over the volume enclosed by the free surface and 

the Z=0 plane. The horizontal components of (2.13) lead to 

 

 

 

(2.14) 

 

 

The conservation law (2.14) states that the horizontal impulses of free ambient wave 

disturbances are constant and time invariant as they are not counteracted by restoring effects. 

Any nonlinear representation of ambient waves subject to (2.4) and the Laplace equation also 

obeys (2.13) and (2.14). 
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3. Nonlinear Impulses 
 

Taking the difference between (2.10) and (2.13) and multiplying with both sides with   we 

obtain for the nonlinear force acting on the floating body 

 

 

 

 

 

 

 

 

 

 

 

(3.1) 

 

In (3.1) the ambient wave free surface interior to the body is denoted by SI
W

 and its surface 

exterior to the body is denoted by SI
E
. [Figure 2.1]. Moreover the notation is adopted that unit 

normal vectors pointing out of the fluid domain are denoted by n and unit normal vectors 

pointing into the fluid domain by n . This will facilitate the application of Gauss' theorem in the 

derivation that follows. 

 

Denote by SB
W

(t) the body wetted surface defined as the intersection of its boundary with the 

ambient wave profile. It follows that SB(t)= SB
W

(t)+dS(t), where dS(t) is the differential surface 

on around the waterline bounded by the exact free surface elevation and the free surface 

elevation of the ambient wave. Introducing this notation in (3.1) and re-grouping terms we obtain 

 

 

 

 



 

11 

 

1
2

( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( )( ) (

( )

B

W W
B I

W W
B I

E E
T TI I

B

S t

S t S t

I

S t S t

I

S t dS t S t dS tS t S

d
F t g Z n ds

dt

g Z n ds Z n ds

d
n ds n ds

dt

d
n ds n ds g Z n ds Z n ds

dt


  



  

   



 

 

   

 

 
       

 

 
   

  

 
  

  

 
    

  



 

 

  
)t

 
 
  



1
2

( )

( ) ( )

( ) ( )

( )

( ) ( ) ( )

( )

B

W W
B I

W W
B I

W
B

E
T I

B

S t

S t S t

I I

S t S t

D

S t

D D

S t dS t S t

F t g Z n ds
t

g Z n ds Z n ds

d
n ds n ds

dt

d
n ds

dt

d d
n ds n ds

dt


  



  

 

   



 

 



 



 
        

 
   

  

 
  

  

 
  

  

 
   

  



 

 



 
( )

( ) ( ) ( ) ( )( ) ( )

E
I

E E
T TI I

D

S t

I I

S t dS t S t dS tS t S t

n ds
dt

d
n ds n ds g Z n ds Z n ds

dt



   



   

 

 
 
  

   
      

      



   

 

 

 

 

 

 

 

 

 

 

 

(3.2) 

 

The total velocity potential I D     in (3.2) is the sum of the ambient wave and disturbance 

potentials. Substituting in (3.2) and re-grouping terms we obtain 
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In the fourth term on the right hand side of (3.3) the integral of the disturbance potential over the 

ambient wave surface was added and subtracted. The reason is that the surfaces 

ST(t)+dS(t)+S
E

I(t) define a closed differential volume [see Figure 2.1] over which Gauss’ 

theorem will be applied to further reduce the integrals in the last two lines of the right-hand side 

of (3.3). It is also noted that the unit normal vectors over this closed differential surface have 

been defined so that they point either always outside or inside the enclosed volume leading to a 

positive or negative sign in the application of Gauss’ theorem, respectively. 

 

Expression (3.3) provides an exact expression for the nonlinear force acting on the body.  It 
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and (3.6) cancel out by virtue of the linearized dynamic free surface condition satisfied by the 

ambient wave on the Z=0 plane. Yet this cancellation does not occur in the nonlinear case. 
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The Froude-Krylov moment and its impulse take the form 

 

 

(3.7) 

 

 

 

Radiation and Diffraction Body Impulse, Force and Moment 

 

The third term in the right hand side of (3.3) leads to the body Radiation-Diffraction disturbance 

Impulse and respective force and moments   
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derivative or spatial gradients. 
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Radiation and Diffraction Free Surface Impulse,  Force and Moment 

 

The fourth and fifth terms in the right hand side of  (3.4) have been reduced to the form  

 

 

 

 

 

 

(3.9) 

The integration in the first,  third and fourth terms in the right hand side is over a closed 

differential surface  bounded by the nonlinear free surface, the ambient wave surface and the 

differential surface around the body waterline. The unit normal vector over this closed surface 

points outside the enclosed volume when the total wave elevation is larger than the ambient 

wave elevation and points inside the differential volume otherwise.  The first, third and fourth 

terms may be reduced by an application of Gauss' theorem over the volume bounded by the 

closed differential surface defined above. Denoting by D T I    the radiation-diffraction 

disturbance wave elevation assumed to be a signed quantity the unit normal vectors over the 

differential surface point outside the differential volume when 0D  and inside the volume 

when 0D  . Grouping terms and applying Gauss' theorem in (3.10) we obtain 
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The second and third terms in the right-hand side of the second equality of (3.10) may be 

expressed as integrals over the ambient wave free surface exterior to the body by a Taylor's 

series expansion 

 

 

 

 

 

(3.11) 

 

 

 

 

Expression (3.11) provides the impulse imparted upon the body by the radiation-diffraction 

disturbances via the ambient wave free surface.  

 

The corresponding expression for the moment follows in an analogous manner 

 

 

 

 

(3.12) 

 

 

 

 

 

Applying again Gauss' theorem the second and third terms in the right-hand side of (3.12) may 

be converted into an integral over the differential volume between the exact and the ambient 

wave surfaces 
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(3.13) 

 

 

 

The further reduction of (3.13) into a form analogous to (3.11) is omitted for brevity. 

Summarizing, the nonlinear fluid force and moment acting on a body floating in an ambient 

irregular wave of large amplitude has been derived as the sum of a nonlinear buoyancy force 

pointing upwards and the time derivative of a sequence of impulses. The Froude-Krylov 

nonlinear impulse involves an integral of the ambient wave velocity potential over the 

instantaneous body wetted surface and the interior waterplane area defined by the ambient wave 

elevation. The body Radiation-Diffraction (RD) nonlinear impulse  involves an integral of the 

RD velocity potentials over the body wetted surface. The free-surface RD nonlinear impulse 

involves integrals of the RD disturbances over ambient wave free surface. It is shown in the next 

section that it is small relative to the nonlinear Froude-Krylov and body RD forces may be 

neglected in a number of applications. 

 

4. Free Surface Impulse 

 

All expressions for the nonlinear impulses and forces derived above involve integrals of the 
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ambient wave profile. For fixed bodies this wetted surface is known  in terms of the ambient 

wave profile which is known a priori. For bodies free to oscillate it follows as the geometric 

intersection of the instantaneous body position as obtained from the time marching of its 

equations of motion and the ambient wave profile. This geometric may be simply carried out 

during each time step of the simulation of the body using a standard Computer Aided Design 

program. 

Nonlinear ambient waves are assumed to have an amplitude A=O(1) comparable to the body 
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 

,5

( )

( ) ( )

( )

sgn( ) sgn( )

E
I

B D

S t

I D D D

t t

d
M X n ds

dt

d
X dv g X k dv

dt
 

 

     



 
  

  

 
      

  



 



 

18 

 

cases where d~10-20m. The ambient wave steepness kA= kA= 2π A/ λ is assumed to be small 

and of O(δ) where δ ~ 0.1. For fixed offshore structures the magnitude of the body wave 

disturbance ( , ) ( ) (2 / ) ( )D D O kd O d O       . The case of the interaction of a breaking 

wave interaction with a structure requires a fully nonlinear treatment which is beyond the scope 

of the present article. For a ship floating in steep waves encountered in design seastates typically 

have a length larger than teh ship length therefore they are long compared to the ship draft and 

beam. Therefore the body wave disturbance is again of the 

( , ) ( ) (2 / ) ( )D D O kd O d O        where d is characteristic transverse dimension of the ship. 

Typically ε < 0.1 in design seastates. These order of magnitude estimates justify the linearization 

of the body wave disturbance about the ambient wave profile which assumed to have a large 

amplitude. 

 

Invoking the fully nonlinear free surface condition (2.3)  and linearizing the body disturbance 

about the ambient wave profile we obtain the dynamic surface condition for ( , )D D 
 

 

 

 

(4.1) 

 

 

The kinematic free surface condition takes the form 
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The disturbance potential satisfies the Laplace equation in the fluid domain and on the body 
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For a fixed body 0nU   and the disturbance potential reduces to the diffraction potential. 

 

Vertical Free Surface Impulse 

 

It follows from (3.12) that the vertical component of the force and free surface impulse takes the 

form 

 

 

 

(4.4) 

 

 

The unit normal vector on the ambient wave free is given by the expression 

 

(4.5) 

 

Substituting its vertical component in (4.6) and with errors of 2 2( , )O   we obtain 

 

(4.6) 

 

 

The integrals in (4.8) may be projected on the Z=0 using ds=dXdY 
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The terms in the last equation of (4.6) are seen to be of ( )O  by virtue of the second equation in 

(4.1) and the order of magnitudes of the body wave disturbance and the ambient wave gradients. 

 

By comparison, the nonlinear buoyancy force (3.5) for a surface piercing body is of the order of 

the wave amplitude hence of (1)O and the same applies for the vertical component of nonlinear 

Froude-Krylov force (3.7) The body impulse force (3.9) is of the order of the disturbance 

potential hence of ( )O  . Consequently the vertical component of the free surface potential being 

of order   may be neglected. Therefore the contribution of the vertical impulse and 

corresponding force may be neglected in most applications.  

 

Horizontal Free Surface Impulse 

 

Invoking (4.5) in (3.12) the free surface impulse and force in the X-direction, assumed to 

coincide with the direction of propagation of the ambient wave, takes the form  

 

 

(4.8) 

 

 

 

 

The first two terms term in the right hand side of (4.10) are seen to be of ( )O   and the  last 

term of 2( )O  . The nonlinear hydrostatic force in the horizontal direction is in the present 

formulation identically zero. The horizontal component of the nonlinear Froude-Krylov force 

(3.7)  is of ( )O   and the force due to the body impulse given by (3.9) is of ( )O  . This order of 

magnitude analysis suggests that the contribution of may be neglected. The physics of the wave 

force represented by the horizontal free surface impulse (4.8) is further discussed in the next 

section.  
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5. Discussion and Applications 

 

Expressions have been derived for the ocean wave impulse and the nonlinear loads on floating 

bodies find application in wide range of problems of in naval hydrodynamics and ocean 

engineering. They are discussed next 

 

"Impulse Dispersion Relation" for Nonlinear Irregular Ocean Waves 

 

Expression (2.13) states an integral dynamic equilibrium between the inertia and restoring effects 

of an irregular nonlinear wave train. Its derivation used both the nonlinear dynamic free surface 

condition of zero pressure and the kinematic free surface condition that the normal flow velocity 

equals the normal velocity of the free surface. It may therefore be regarded as a nonlinear 

impulse dispersion relation that constrains the irregular wave profiles that are admissible 

representations of ocean waves. Assuming a space and time evolution of a large amplitude free 

surface elevation a potential flow problem follows in the fluid domain the solution of which 

leads to a velocity potential on the presumed free surface which must satisfy (3.13). Therefore 

not all presumed ambient wave free surface elevations are admissible under the nonlinear free 

surface conditions. Equation (3.13) is an integral physical constrain and may be viewed as a 

generalized dispersion relation and by virtue of the fact that it represents an integral balance 

between inertia effects, the time derivative of the impulse, and restoring effects, the integral of 

the free surface elevation.  

 

Nonlinear Hydrostatics and Impulse Froude-Krylov Force 

 

A principal result of the present paper is the derivation of the coupled nonlinear buoyancy and 

Froude-Krylov force and moment in nonlinear irregular ambient waves given by expressions 

(3.5)-(3.8). It was shown that by introducing the ambient wave free surface elevation as a 

dynamic waterplane area for surface piercing bodies, the nonlinear buoyancy force always points 

upwards. The direct use of Bernoulli's equation which is often used in applications keeps the 

hydrostatic effects strongly coupled with the dynamic effects. Moreover the expressions of the 

Froude-Krylov component have the simple form of the time derivative of integrals of just the 
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ambient wave velocity potential over the body wetted surface and the dynamic waterplane area. 

Gradients of the ambient wave velocity potential are absent and the force takes the form of the 

time derivatives of an impulse which may also be expressed as an integral of the ambient wave 

velocity inside the body. 

 

The computation of the Froude-Krylov force thus reduces to a simple task if the ambient wave 

velocity potential is known. Moreover, in a number of seakeeping problems for ships and other 

surface piercing offshore structures the vertical component of the Froude-Krylov force and 

moment are known to dominate the force components due to the radiation and diffraction 

components. Therefore the accurate computation of the nonlinear Froude-Krylov force is 

essential in wave body interactions. 

 

Nonlinear Seakeeping of Ships 

 

The expressions derived in the present article for the wave loads on general floating bodies may 

be readily applied to ship like  geometries. Slender body approximations may be invoked to 

simplify three dimensional integrals of the ambient wave and body velocity potentials over 

sections of the ship hull along its length. The section wetted surface remains time dependent and 

all dynamic forces follow as time derivatives of sectional impulses relative to the reference 

frame. By virtue of its simplicity the nonlinear buoyancy and Froude-Krylov force may be 

evaluated in their exact three-dimensional form in order to account as accurately as possible for 

three-dimensional effects near the ship ends.. 

 

Generalized Morison's Equation 

 

The combination of the Froude-Krylov force and the body impulse force given by expression 

(3.9) applied to cylindrical members encountered in offshore engineering offer a generalization 

of the inertia terms in Morison's equation. Viscous effects may be added as in the classical 

Morison formulation. The present formulation allows for the complete account of nonlinear 

hydrostatic and Froude-Krylov effects in both the vertical and horizontal forces and moments 

and for a time dependent body wetted surface in steep irregular waves. The integral of the body 
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disturbance potential in (3.9) over slender cylindrical members with diameters small compared to 

the ambient wavelength may be approximated in terms of the sectional added-mass coefficient of 

each member providing  the fluid inertia force completing the formulation of a generalized 

Morison equation. 

 

This generalization of Morison's equation leads to explicit expressions for the nonlinear forces  

on a wide range of geometries encountered in connection with offshore platforms and offshore 

wind turbines. The consistent, complete and explicit account of all horizontal and vertical forces 

acting on slender cylindrical members and pontoons of such structures is particularly useful in 

practice.. 

 

Horizontal Drift Forces 

 

The horizontal free surface impulse contributes all the horizontal drift force acting on a floating 

body. This follows from the observation that the Froude-Krylov and body disturbance forces 

have been expressed as time derivatives of the corresponding impulses which are stationary time 

dependent quantities in irregular waves. The time average of the time derivative of any stationary 

signal of sufficiently long duration vanishes. This follows easily by an integration by parts. 

Therefore the only remaining force component that may account for the horizontal drift force is 

the horizontal impulse given in its exact form by (3.12). If the ambient wave interaction starts 

from rest the free surface area over which the integrations in (3.12) are carried out grow in time 

and this must be accounted for properly when computing the mean value of the force signal. 

Otherwise it follows from the analysis of Section 3 that the free surface impulse and force are 

quadratic functions of the ambient wave and body disturbances and therefore their time average 

is nonzero. 

 

Ringing Loads on Offshore Structures and Wind Turbines 

 

Offshore structures and wind turbines fixed on the ocean floor or constrained by vertical tethers 

as in the case of Tension leg Platforms have resonant flexural frequencies of the order of a few 

seconds which may be excited by ambient waves. This subject has been studied extensively by 
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the oil industry and "ringing" events have been measured when a steep wave impinges upon the 

offshore structure. "Ringing" may also occur in offshore wind turbines and is a topic of particular 

interest since the lowest natural frequency of the tower is around 3 seconds and higher tower 

natural frequencies overlap with the natural frequencies of the blades. Excessive ringing may 

therefore lead to fatigue and structural failure. 

 

The flexural natural frequencies of offshore structures and wind turbines fall well to right of the 

modal frequency of design seastates which is 12-15 seconds. Therefore the excitation of ringing 

events must arise primarily from nonlinearities in the wave loads. Such nonlinearities originate 

from the ambient wave kinematics the nonlinear form of the buoyancy and Froude-Krylov force, 

the body impulse force and viscous forces that may be modeled in a Morison like manner. The 

quadratic wave force and moment due to the horizontal free surface impulse, approximated in 

(4.8) for ambient waves of large amplitude and small steepness contributes a nonlinear wave 

load which must be compared to the other dominant nonlinear loads at the high flexural 

frequencies of the structure. The power spectral density of these nonlinear force components 

needs to be determined in design seastates. The force (4.8) may be evaluated numerically or 

estimated analytically and its power spectral density at the natural frequencies compared with 

that of the other force components. It should be pointed out that the accuracy in the estimation of 

the force spectral density at high frequencies must be balanced with an equally accurate estimate 

of the damping of the structure at resonance which is often of viscous origin and hard to 

estimate. 
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